]> Git Repo - linux.git/blame - fs/xfs/xfs_buf.c
xfs: clean up IRELE/iput callsites
[linux.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
1da177e4
LT
7#include <linux/stddef.h>
8#include <linux/errno.h>
5a0e3ad6 9#include <linux/gfp.h>
1da177e4
LT
10#include <linux/pagemap.h>
11#include <linux/init.h>
12#include <linux/vmalloc.h>
13#include <linux/bio.h>
14#include <linux/sysctl.h>
15#include <linux/proc_fs.h>
16#include <linux/workqueue.h>
17#include <linux/percpu.h>
18#include <linux/blkdev.h>
19#include <linux/hash.h>
4df08c52 20#include <linux/kthread.h>
b20a3503 21#include <linux/migrate.h>
3fcfab16 22#include <linux/backing-dev.h>
7dfb7103 23#include <linux/freezer.h>
1da177e4 24
4fb6e8ad 25#include "xfs_format.h"
239880ef 26#include "xfs_log_format.h"
7fd36c44 27#include "xfs_trans_resv.h"
239880ef 28#include "xfs_sb.h"
b7963133 29#include "xfs_mount.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_log.h"
e9e899a2 32#include "xfs_errortag.h"
7561d27e 33#include "xfs_error.h"
b7963133 34
7989cb8e 35static kmem_zone_t *xfs_buf_zone;
23ea4032 36
ce8e922c
NS
37#ifdef XFS_BUF_LOCK_TRACKING
38# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
39# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
40# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 41#else
ce8e922c
NS
42# define XB_SET_OWNER(bp) do { } while (0)
43# define XB_CLEAR_OWNER(bp) do { } while (0)
44# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
45#endif
46
ce8e922c 47#define xb_to_gfp(flags) \
aa5c158e 48 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 49
1da177e4 50
73c77e2c
JB
51static inline int
52xfs_buf_is_vmapped(
53 struct xfs_buf *bp)
54{
55 /*
56 * Return true if the buffer is vmapped.
57 *
611c9946
DC
58 * b_addr is null if the buffer is not mapped, but the code is clever
59 * enough to know it doesn't have to map a single page, so the check has
60 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 61 */
611c9946 62 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
63}
64
65static inline int
66xfs_buf_vmap_len(
67 struct xfs_buf *bp)
68{
69 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
70}
71
9c7504aa
BF
72/*
73 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
74 * this buffer. The count is incremented once per buffer (per hold cycle)
75 * because the corresponding decrement is deferred to buffer release. Buffers
76 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
77 * tracking adds unnecessary overhead. This is used for sychronization purposes
78 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
79 * in-flight buffers.
80 *
81 * Buffers that are never released (e.g., superblock, iclog buffers) must set
82 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
83 * never reaches zero and unmount hangs indefinitely.
84 */
85static inline void
86xfs_buf_ioacct_inc(
87 struct xfs_buf *bp)
88{
63db7c81 89 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
90 return;
91
92 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
93 spin_lock(&bp->b_lock);
94 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
95 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
96 percpu_counter_inc(&bp->b_target->bt_io_count);
97 }
98 spin_unlock(&bp->b_lock);
9c7504aa
BF
99}
100
101/*
102 * Clear the in-flight state on a buffer about to be released to the LRU or
103 * freed and unaccount from the buftarg.
104 */
105static inline void
63db7c81 106__xfs_buf_ioacct_dec(
9c7504aa
BF
107 struct xfs_buf *bp)
108{
95989c46 109 lockdep_assert_held(&bp->b_lock);
9c7504aa 110
63db7c81
BF
111 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
112 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
113 percpu_counter_dec(&bp->b_target->bt_io_count);
114 }
115}
116
117static inline void
118xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
120{
121 spin_lock(&bp->b_lock);
122 __xfs_buf_ioacct_dec(bp);
123 spin_unlock(&bp->b_lock);
9c7504aa
BF
124}
125
430cbeb8
DC
126/*
127 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
128 * b_lru_ref count so that the buffer is freed immediately when the buffer
129 * reference count falls to zero. If the buffer is already on the LRU, we need
130 * to remove the reference that LRU holds on the buffer.
131 *
132 * This prevents build-up of stale buffers on the LRU.
133 */
134void
135xfs_buf_stale(
136 struct xfs_buf *bp)
137{
43ff2122
CH
138 ASSERT(xfs_buf_islocked(bp));
139
430cbeb8 140 bp->b_flags |= XBF_STALE;
43ff2122
CH
141
142 /*
143 * Clear the delwri status so that a delwri queue walker will not
144 * flush this buffer to disk now that it is stale. The delwri queue has
145 * a reference to the buffer, so this is safe to do.
146 */
147 bp->b_flags &= ~_XBF_DELWRI_Q;
148
9c7504aa
BF
149 /*
150 * Once the buffer is marked stale and unlocked, a subsequent lookup
151 * could reset b_flags. There is no guarantee that the buffer is
152 * unaccounted (released to LRU) before that occurs. Drop in-flight
153 * status now to preserve accounting consistency.
154 */
a4082357 155 spin_lock(&bp->b_lock);
63db7c81
BF
156 __xfs_buf_ioacct_dec(bp);
157
a4082357
DC
158 atomic_set(&bp->b_lru_ref, 0);
159 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
160 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
161 atomic_dec(&bp->b_hold);
162
430cbeb8 163 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 164 spin_unlock(&bp->b_lock);
430cbeb8 165}
1da177e4 166
3e85c868
DC
167static int
168xfs_buf_get_maps(
169 struct xfs_buf *bp,
170 int map_count)
171{
172 ASSERT(bp->b_maps == NULL);
173 bp->b_map_count = map_count;
174
175 if (map_count == 1) {
f4b42421 176 bp->b_maps = &bp->__b_map;
3e85c868
DC
177 return 0;
178 }
179
180 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181 KM_NOFS);
182 if (!bp->b_maps)
2451337d 183 return -ENOMEM;
3e85c868
DC
184 return 0;
185}
186
187/*
188 * Frees b_pages if it was allocated.
189 */
190static void
191xfs_buf_free_maps(
192 struct xfs_buf *bp)
193{
f4b42421 194 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
195 kmem_free(bp->b_maps);
196 bp->b_maps = NULL;
197 }
198}
199
4347b9d7 200struct xfs_buf *
3e85c868 201_xfs_buf_alloc(
4347b9d7 202 struct xfs_buftarg *target,
3e85c868
DC
203 struct xfs_buf_map *map,
204 int nmaps,
ce8e922c 205 xfs_buf_flags_t flags)
1da177e4 206{
4347b9d7 207 struct xfs_buf *bp;
3e85c868
DC
208 int error;
209 int i;
4347b9d7 210
aa5c158e 211 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
212 if (unlikely(!bp))
213 return NULL;
214
1da177e4 215 /*
12bcb3f7
DC
216 * We don't want certain flags to appear in b_flags unless they are
217 * specifically set by later operations on the buffer.
1da177e4 218 */
611c9946 219 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 220
ce8e922c 221 atomic_set(&bp->b_hold, 1);
430cbeb8 222 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 223 init_completion(&bp->b_iowait);
430cbeb8 224 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 225 INIT_LIST_HEAD(&bp->b_list);
643c8c05 226 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 227 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 228 spin_lock_init(&bp->b_lock);
ce8e922c
NS
229 XB_SET_OWNER(bp);
230 bp->b_target = target;
3e85c868 231 bp->b_flags = flags;
de1cbee4 232
1da177e4 233 /*
aa0e8833
DC
234 * Set length and io_length to the same value initially.
235 * I/O routines should use io_length, which will be the same in
1da177e4
LT
236 * most cases but may be reset (e.g. XFS recovery).
237 */
3e85c868
DC
238 error = xfs_buf_get_maps(bp, nmaps);
239 if (error) {
240 kmem_zone_free(xfs_buf_zone, bp);
241 return NULL;
242 }
243
244 bp->b_bn = map[0].bm_bn;
245 bp->b_length = 0;
246 for (i = 0; i < nmaps; i++) {
247 bp->b_maps[i].bm_bn = map[i].bm_bn;
248 bp->b_maps[i].bm_len = map[i].bm_len;
249 bp->b_length += map[i].bm_len;
250 }
251 bp->b_io_length = bp->b_length;
252
ce8e922c
NS
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
ff6d6af2 256 XFS_STATS_INC(target->bt_mount, xb_create);
0b1b213f 257 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
258
259 return bp;
1da177e4
LT
260}
261
262/*
ce8e922c
NS
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
1da177e4
LT
265 */
266STATIC int
ce8e922c
NS
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
87937bf8 269 int page_count)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
b46fe825 304 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
307void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4
LT
347 int error;
348
0e6e847f
DC
349 /*
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
353 */
795cac72
DC
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
aa5c158e 356 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
357 if (!bp->b_addr) {
358 /* low memory - use alloc_page loop instead */
359 goto use_alloc_page;
360 }
361
795cac72 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
363 ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp->b_addr);
366 bp->b_addr = NULL;
367 goto use_alloc_page;
368 }
369 bp->b_offset = offset_in_page(bp->b_addr);
370 bp->b_pages = bp->b_page_array;
371 bp->b_pages[0] = virt_to_page(bp->b_addr);
372 bp->b_page_count = 1;
611c9946 373 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
374 return 0;
375 }
376
377use_alloc_page:
f4b42421
MT
378 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 380 >> PAGE_SHIFT;
795cac72 381 page_count = end - start;
87937bf8 382 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
383 if (unlikely(error))
384 return error;
1da177e4 385
ce8e922c 386 offset = bp->b_offset;
0e6e847f 387 bp->b_flags |= _XBF_PAGES;
1da177e4 388
ce8e922c 389 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
390 struct page *page;
391 uint retries = 0;
0e6e847f
DC
392retry:
393 page = alloc_page(gfp_mask);
1da177e4 394 if (unlikely(page == NULL)) {
ce8e922c
NS
395 if (flags & XBF_READ_AHEAD) {
396 bp->b_page_count = i;
2451337d 397 error = -ENOMEM;
0e6e847f 398 goto out_free_pages;
1da177e4
LT
399 }
400
401 /*
402 * This could deadlock.
403 *
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
406 */
407 if (!(++retries % 100))
4f10700a 408 xfs_err(NULL,
5bf97b1c
TH
409 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410 current->comm, current->pid,
34a622b2 411 __func__, gfp_mask);
1da177e4 412
ff6d6af2 413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
8aa7e847 414 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
415 goto retry;
416 }
417
ff6d6af2 418 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
1da177e4 419
0e6e847f 420 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 421 size -= nbytes;
ce8e922c 422 bp->b_pages[i] = page;
1da177e4
LT
423 offset = 0;
424 }
0e6e847f 425 return 0;
1da177e4 426
0e6e847f
DC
427out_free_pages:
428 for (i = 0; i < bp->b_page_count; i++)
429 __free_page(bp->b_pages[i]);
2aa6ba7b 430 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380 449 int retried = 0;
9ba1fb2c 450 unsigned nofs_flag;
ae687e58
DC
451
452 /*
453 * vm_map_ram() will allocate auxillary structures (e.g.
454 * pagetables) with GFP_KERNEL, yet we are likely to be under
455 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 456 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
457 * memory reclaim re-entering the filesystem here and
458 * potentially deadlocking.
459 */
9ba1fb2c 460 nofs_flag = memalloc_nofs_save();
a19fb380
DC
461 do {
462 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463 -1, PAGE_KERNEL);
464 if (bp->b_addr)
465 break;
466 vm_unmap_aliases();
467 } while (retried++ <= 1);
9ba1fb2c 468 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
469
470 if (!bp->b_addr)
1da177e4 471 return -ENOMEM;
ce8e922c 472 bp->b_addr += bp->b_offset;
1da177e4
LT
473 }
474
475 return 0;
476}
477
478/*
479 * Finding and Reading Buffers
480 */
6031e73a
LS
481static int
482_xfs_buf_obj_cmp(
483 struct rhashtable_compare_arg *arg,
484 const void *obj)
485{
486 const struct xfs_buf_map *map = arg->key;
487 const struct xfs_buf *bp = obj;
488
489 /*
490 * The key hashing in the lookup path depends on the key being the
491 * first element of the compare_arg, make sure to assert this.
492 */
493 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494
495 if (bp->b_bn != map->bm_bn)
496 return 1;
497
498 if (unlikely(bp->b_length != map->bm_len)) {
499 /*
500 * found a block number match. If the range doesn't
501 * match, the only way this is allowed is if the buffer
502 * in the cache is stale and the transaction that made
503 * it stale has not yet committed. i.e. we are
504 * reallocating a busy extent. Skip this buffer and
505 * continue searching for an exact match.
506 */
507 ASSERT(bp->b_flags & XBF_STALE);
508 return 1;
509 }
510 return 0;
511}
512
513static const struct rhashtable_params xfs_buf_hash_params = {
514 .min_size = 32, /* empty AGs have minimal footprint */
515 .nelem_hint = 16,
516 .key_len = sizeof(xfs_daddr_t),
517 .key_offset = offsetof(struct xfs_buf, b_bn),
518 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
519 .automatic_shrinking = true,
520 .obj_cmpfn = _xfs_buf_obj_cmp,
521};
522
523int
524xfs_buf_hash_init(
525 struct xfs_perag *pag)
526{
527 spin_lock_init(&pag->pag_buf_lock);
528 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529}
530
531void
532xfs_buf_hash_destroy(
533 struct xfs_perag *pag)
534{
535 rhashtable_destroy(&pag->pag_buf_hash);
536}
1da177e4
LT
537
538/*
b027d4c9
DC
539 * Look up a buffer in the buffer cache and return it referenced and locked
540 * in @found_bp.
541 *
542 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543 * cache.
544 *
545 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546 * -EAGAIN if we fail to lock it.
547 *
548 * Return values are:
549 * -EFSCORRUPTED if have been supplied with an invalid address
550 * -EAGAIN on trylock failure
551 * -ENOENT if we fail to find a match and @new_bp was NULL
552 * 0, with @found_bp:
553 * - @new_bp if we inserted it into the cache
554 * - the buffer we found and locked.
1da177e4 555 */
b027d4c9
DC
556static int
557xfs_buf_find(
e70b73f8 558 struct xfs_buftarg *btp,
3e85c868
DC
559 struct xfs_buf_map *map,
560 int nmaps,
ce8e922c 561 xfs_buf_flags_t flags,
b027d4c9
DC
562 struct xfs_buf *new_bp,
563 struct xfs_buf **found_bp)
1da177e4 564{
74f75a0c 565 struct xfs_perag *pag;
74f75a0c 566 xfs_buf_t *bp;
6031e73a 567 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 568 xfs_daddr_t eofs;
3e85c868 569 int i;
1da177e4 570
b027d4c9
DC
571 *found_bp = NULL;
572
3e85c868 573 for (i = 0; i < nmaps; i++)
6031e73a 574 cmap.bm_len += map[i].bm_len;
1da177e4
LT
575
576 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
577 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 579
10616b80
DC
580 /*
581 * Corrupted block numbers can get through to here, unfortunately, so we
582 * have to check that the buffer falls within the filesystem bounds.
583 */
584 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 585 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 586 xfs_alert(btp->bt_mount,
c219b015 587 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 588 __func__, cmap.bm_bn, eofs);
7bc0dc27 589 WARN_ON(1);
b027d4c9 590 return -EFSCORRUPTED;
10616b80
DC
591 }
592
74f75a0c 593 pag = xfs_perag_get(btp->bt_mount,
6031e73a 594 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 595
74f75a0c 596 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
597 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598 xfs_buf_hash_params);
599 if (bp) {
600 atomic_inc(&bp->b_hold);
601 goto found;
1da177e4
LT
602 }
603
604 /* No match found */
b027d4c9 605 if (!new_bp) {
ff6d6af2 606 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
607 spin_unlock(&pag->pag_buf_lock);
608 xfs_perag_put(pag);
b027d4c9 609 return -ENOENT;
1da177e4 610 }
b027d4c9
DC
611
612 /* the buffer keeps the perag reference until it is freed */
613 new_bp->b_pag = pag;
614 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615 xfs_buf_hash_params);
616 spin_unlock(&pag->pag_buf_lock);
617 *found_bp = new_bp;
618 return 0;
1da177e4
LT
619
620found:
74f75a0c
DC
621 spin_unlock(&pag->pag_buf_lock);
622 xfs_perag_put(pag);
1da177e4 623
0c842ad4
CH
624 if (!xfs_buf_trylock(bp)) {
625 if (flags & XBF_TRYLOCK) {
ce8e922c 626 xfs_buf_rele(bp);
ff6d6af2 627 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 628 return -EAGAIN;
1da177e4 629 }
0c842ad4 630 xfs_buf_lock(bp);
ff6d6af2 631 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
632 }
633
0e6e847f
DC
634 /*
635 * if the buffer is stale, clear all the external state associated with
636 * it. We need to keep flags such as how we allocated the buffer memory
637 * intact here.
638 */
ce8e922c
NS
639 if (bp->b_flags & XBF_STALE) {
640 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 641 ASSERT(bp->b_iodone == NULL);
611c9946 642 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 643 bp->b_ops = NULL;
2f926587 644 }
0b1b213f
CH
645
646 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 647 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
648 *found_bp = bp;
649 return 0;
1da177e4
LT
650}
651
8925a3dc
DC
652struct xfs_buf *
653xfs_buf_incore(
654 struct xfs_buftarg *target,
655 xfs_daddr_t blkno,
656 size_t numblks,
657 xfs_buf_flags_t flags)
658{
b027d4c9
DC
659 struct xfs_buf *bp;
660 int error;
8925a3dc 661 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
662
663 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664 if (error)
665 return NULL;
666 return bp;
8925a3dc
DC
667}
668
1da177e4 669/*
3815832a
DC
670 * Assembles a buffer covering the specified range. The code is optimised for
671 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672 * more hits than misses.
1da177e4 673 */
3815832a 674struct xfs_buf *
6dde2707
DC
675xfs_buf_get_map(
676 struct xfs_buftarg *target,
677 struct xfs_buf_map *map,
678 int nmaps,
ce8e922c 679 xfs_buf_flags_t flags)
1da177e4 680{
3815832a
DC
681 struct xfs_buf *bp;
682 struct xfs_buf *new_bp;
0e6e847f 683 int error = 0;
1da177e4 684
b027d4c9
DC
685 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686
687 switch (error) {
688 case 0:
689 /* cache hit */
3815832a 690 goto found;
b027d4c9
DC
691 case -EAGAIN:
692 /* cache hit, trylock failure, caller handles failure */
693 ASSERT(flags & XBF_TRYLOCK);
694 return NULL;
695 case -ENOENT:
696 /* cache miss, go for insert */
697 break;
698 case -EFSCORRUPTED:
699 default:
700 /*
701 * None of the higher layers understand failure types
702 * yet, so return NULL to signal a fatal lookup error.
703 */
704 return NULL;
705 }
3815832a 706
6dde2707 707 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 708 if (unlikely(!new_bp))
1da177e4
LT
709 return NULL;
710
fe2429b0
DC
711 error = xfs_buf_allocate_memory(new_bp, flags);
712 if (error) {
3e85c868 713 xfs_buf_free(new_bp);
fe2429b0
DC
714 return NULL;
715 }
716
b027d4c9
DC
717 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 if (error) {
fe2429b0 719 xfs_buf_free(new_bp);
3815832a
DC
720 return NULL;
721 }
722
fe2429b0
DC
723 if (bp != new_bp)
724 xfs_buf_free(new_bp);
1da177e4 725
3815832a 726found:
611c9946 727 if (!bp->b_addr) {
ce8e922c 728 error = _xfs_buf_map_pages(bp, flags);
1da177e4 729 if (unlikely(error)) {
4f10700a 730 xfs_warn(target->bt_mount,
08e96e1a 731 "%s: failed to map pagesn", __func__);
a8acad70
DC
732 xfs_buf_relse(bp);
733 return NULL;
1da177e4
LT
734 }
735 }
736
b79f4a1c
DC
737 /*
738 * Clear b_error if this is a lookup from a caller that doesn't expect
739 * valid data to be found in the buffer.
740 */
741 if (!(flags & XBF_READ))
742 xfs_buf_ioerror(bp, 0);
743
ff6d6af2 744 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 745 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 746 return bp;
1da177e4
LT
747}
748
5d765b97
CH
749STATIC int
750_xfs_buf_read(
751 xfs_buf_t *bp,
752 xfs_buf_flags_t flags)
753{
43ff2122 754 ASSERT(!(flags & XBF_WRITE));
f4b42421 755 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 756
43ff2122 757 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 758 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 759
6af88cda 760 return xfs_buf_submit(bp);
5d765b97
CH
761}
762
1da177e4 763xfs_buf_t *
6dde2707
DC
764xfs_buf_read_map(
765 struct xfs_buftarg *target,
766 struct xfs_buf_map *map,
767 int nmaps,
c3f8fc73 768 xfs_buf_flags_t flags,
1813dd64 769 const struct xfs_buf_ops *ops)
1da177e4 770{
6dde2707 771 struct xfs_buf *bp;
ce8e922c
NS
772
773 flags |= XBF_READ;
774
6dde2707 775 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 776 if (bp) {
0b1b213f
CH
777 trace_xfs_buf_read(bp, flags, _RET_IP_);
778
b0388bf1 779 if (!(bp->b_flags & XBF_DONE)) {
ff6d6af2 780 XFS_STATS_INC(target->bt_mount, xb_get_read);
1813dd64 781 bp->b_ops = ops;
5d765b97 782 _xfs_buf_read(bp, flags);
ce8e922c 783 } else if (flags & XBF_ASYNC) {
1da177e4
LT
784 /*
785 * Read ahead call which is already satisfied,
786 * drop the buffer
787 */
a8acad70
DC
788 xfs_buf_relse(bp);
789 return NULL;
1da177e4 790 } else {
1da177e4 791 /* We do not want read in the flags */
ce8e922c 792 bp->b_flags &= ~XBF_READ;
1da177e4
LT
793 }
794 }
795
ce8e922c 796 return bp;
1da177e4
LT
797}
798
1da177e4 799/*
ce8e922c
NS
800 * If we are not low on memory then do the readahead in a deadlock
801 * safe manner.
1da177e4
LT
802 */
803void
6dde2707
DC
804xfs_buf_readahead_map(
805 struct xfs_buftarg *target,
806 struct xfs_buf_map *map,
c3f8fc73 807 int nmaps,
1813dd64 808 const struct xfs_buf_ops *ops)
1da177e4 809{
efa7c9f9 810 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
811 return;
812
6dde2707 813 xfs_buf_read_map(target, map, nmaps,
1813dd64 814 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
815}
816
5adc94c2
DC
817/*
818 * Read an uncached buffer from disk. Allocates and returns a locked
819 * buffer containing the disk contents or nothing.
820 */
ba372674 821int
5adc94c2 822xfs_buf_read_uncached(
5adc94c2
DC
823 struct xfs_buftarg *target,
824 xfs_daddr_t daddr,
e70b73f8 825 size_t numblks,
c3f8fc73 826 int flags,
ba372674 827 struct xfs_buf **bpp,
1813dd64 828 const struct xfs_buf_ops *ops)
5adc94c2 829{
eab4e633 830 struct xfs_buf *bp;
5adc94c2 831
ba372674
DC
832 *bpp = NULL;
833
e70b73f8 834 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 835 if (!bp)
ba372674 836 return -ENOMEM;
5adc94c2
DC
837
838 /* set up the buffer for a read IO */
3e85c868 839 ASSERT(bp->b_map_count == 1);
ba372674 840 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 841 bp->b_maps[0].bm_bn = daddr;
cbb7baab 842 bp->b_flags |= XBF_READ;
1813dd64 843 bp->b_ops = ops;
5adc94c2 844
6af88cda 845 xfs_buf_submit(bp);
ba372674
DC
846 if (bp->b_error) {
847 int error = bp->b_error;
83a0adc3 848 xfs_buf_relse(bp);
ba372674 849 return error;
83a0adc3 850 }
ba372674
DC
851
852 *bpp = bp;
853 return 0;
1da177e4
LT
854}
855
44396476
DC
856/*
857 * Return a buffer allocated as an empty buffer and associated to external
858 * memory via xfs_buf_associate_memory() back to it's empty state.
859 */
860void
861xfs_buf_set_empty(
862 struct xfs_buf *bp,
e70b73f8 863 size_t numblks)
44396476
DC
864{
865 if (bp->b_pages)
866 _xfs_buf_free_pages(bp);
867
868 bp->b_pages = NULL;
869 bp->b_page_count = 0;
870 bp->b_addr = NULL;
4e94b71b 871 bp->b_length = numblks;
aa0e8833 872 bp->b_io_length = numblks;
3e85c868
DC
873
874 ASSERT(bp->b_map_count == 1);
44396476 875 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
876 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
877 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
878}
879
1da177e4
LT
880static inline struct page *
881mem_to_page(
882 void *addr)
883{
9e2779fa 884 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
885 return virt_to_page(addr);
886 } else {
887 return vmalloc_to_page(addr);
888 }
889}
890
891int
ce8e922c
NS
892xfs_buf_associate_memory(
893 xfs_buf_t *bp,
1da177e4
LT
894 void *mem,
895 size_t len)
896{
897 int rval;
898 int i = 0;
d1afb678
LM
899 unsigned long pageaddr;
900 unsigned long offset;
901 size_t buflen;
1da177e4
LT
902 int page_count;
903
0e6e847f 904 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 905 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
906 buflen = PAGE_ALIGN(len + offset);
907 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
908
909 /* Free any previous set of page pointers */
ce8e922c
NS
910 if (bp->b_pages)
911 _xfs_buf_free_pages(bp);
1da177e4 912
ce8e922c
NS
913 bp->b_pages = NULL;
914 bp->b_addr = mem;
1da177e4 915
87937bf8 916 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
917 if (rval)
918 return rval;
919
ce8e922c 920 bp->b_offset = offset;
d1afb678
LM
921
922 for (i = 0; i < bp->b_page_count; i++) {
923 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 924 pageaddr += PAGE_SIZE;
1da177e4 925 }
1da177e4 926
aa0e8833 927 bp->b_io_length = BTOBB(len);
4e94b71b 928 bp->b_length = BTOBB(buflen);
1da177e4
LT
929
930 return 0;
931}
932
933xfs_buf_t *
686865f7
DC
934xfs_buf_get_uncached(
935 struct xfs_buftarg *target,
e70b73f8 936 size_t numblks,
686865f7 937 int flags)
1da177e4 938{
e70b73f8 939 unsigned long page_count;
1fa40b01 940 int error, i;
3e85c868
DC
941 struct xfs_buf *bp;
942 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 943
c891c30a
BF
944 /* flags might contain irrelevant bits, pass only what we care about */
945 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
946 if (unlikely(bp == NULL))
947 goto fail;
1da177e4 948
e70b73f8 949 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 950 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 951 if (error)
1da177e4
LT
952 goto fail_free_buf;
953
1fa40b01 954 for (i = 0; i < page_count; i++) {
686865f7 955 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
956 if (!bp->b_pages[i])
957 goto fail_free_mem;
1da177e4 958 }
1fa40b01 959 bp->b_flags |= _XBF_PAGES;
1da177e4 960
611c9946 961 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 962 if (unlikely(error)) {
4f10700a 963 xfs_warn(target->bt_mount,
08e96e1a 964 "%s: failed to map pages", __func__);
1da177e4 965 goto fail_free_mem;
1fa40b01 966 }
1da177e4 967
686865f7 968 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 969 return bp;
1fa40b01 970
1da177e4 971 fail_free_mem:
1fa40b01
CH
972 while (--i >= 0)
973 __free_page(bp->b_pages[i]);
ca165b88 974 _xfs_buf_free_pages(bp);
1da177e4 975 fail_free_buf:
3e85c868 976 xfs_buf_free_maps(bp);
4347b9d7 977 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
978 fail:
979 return NULL;
980}
981
982/*
1da177e4
LT
983 * Increment reference count on buffer, to hold the buffer concurrently
984 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
985 * Must hold the buffer already to call this function.
986 */
987void
ce8e922c
NS
988xfs_buf_hold(
989 xfs_buf_t *bp)
1da177e4 990{
0b1b213f 991 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 992 atomic_inc(&bp->b_hold);
1da177e4
LT
993}
994
995/*
9c7504aa
BF
996 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
997 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
998 */
999void
ce8e922c
NS
1000xfs_buf_rele(
1001 xfs_buf_t *bp)
1da177e4 1002{
74f75a0c 1003 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
1004 bool release;
1005 bool freebuf = false;
1da177e4 1006
0b1b213f 1007 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 1008
74f75a0c 1009 if (!pag) {
430cbeb8 1010 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1011 if (atomic_dec_and_test(&bp->b_hold)) {
1012 xfs_buf_ioacct_dec(bp);
fad3aa1e 1013 xfs_buf_free(bp);
9c7504aa 1014 }
fad3aa1e
NS
1015 return;
1016 }
1017
3790689f 1018 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1019
9c7504aa
BF
1020 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1021 spin_lock(&bp->b_lock);
1022 if (!release) {
1023 /*
1024 * Drop the in-flight state if the buffer is already on the LRU
1025 * and it holds the only reference. This is racy because we
1026 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1027 * ensures the decrement occurs only once per-buf.
1028 */
1029 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1030 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1031 goto out_unlock;
1032 }
1033
1034 /* the last reference has been dropped ... */
63db7c81 1035 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1036 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1037 /*
1038 * If the buffer is added to the LRU take a new reference to the
1039 * buffer for the LRU and clear the (now stale) dispose list
1040 * state flag
1041 */
1042 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1043 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1044 atomic_inc(&bp->b_hold);
1da177e4 1045 }
9c7504aa
BF
1046 spin_unlock(&pag->pag_buf_lock);
1047 } else {
1048 /*
1049 * most of the time buffers will already be removed from the
1050 * LRU, so optimise that case by checking for the
1051 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1052 * was on was the disposal list
1053 */
1054 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1055 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1056 } else {
1057 ASSERT(list_empty(&bp->b_lru));
1da177e4 1058 }
9c7504aa
BF
1059
1060 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1061 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1062 xfs_buf_hash_params);
9c7504aa
BF
1063 spin_unlock(&pag->pag_buf_lock);
1064 xfs_perag_put(pag);
1065 freebuf = true;
1da177e4 1066 }
9c7504aa
BF
1067
1068out_unlock:
1069 spin_unlock(&bp->b_lock);
1070
1071 if (freebuf)
1072 xfs_buf_free(bp);
1da177e4
LT
1073}
1074
1075
1076/*
0e6e847f 1077 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1078 *
1079 * If we come across a stale, pinned, locked buffer, we know that we are
1080 * being asked to lock a buffer that has been reallocated. Because it is
1081 * pinned, we know that the log has not been pushed to disk and hence it
1082 * will still be locked. Rather than continuing to have trylock attempts
1083 * fail until someone else pushes the log, push it ourselves before
1084 * returning. This means that the xfsaild will not get stuck trying
1085 * to push on stale inode buffers.
1da177e4
LT
1086 */
1087int
0c842ad4
CH
1088xfs_buf_trylock(
1089 struct xfs_buf *bp)
1da177e4
LT
1090{
1091 int locked;
1092
ce8e922c 1093 locked = down_trylock(&bp->b_sema) == 0;
479c6412 1094 if (locked) {
ce8e922c 1095 XB_SET_OWNER(bp);
479c6412
DW
1096 trace_xfs_buf_trylock(bp, _RET_IP_);
1097 } else {
1098 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1099 }
0c842ad4 1100 return locked;
1da177e4 1101}
1da177e4
LT
1102
1103/*
0e6e847f 1104 * Lock a buffer object.
ed3b4d6c
DC
1105 *
1106 * If we come across a stale, pinned, locked buffer, we know that we
1107 * are being asked to lock a buffer that has been reallocated. Because
1108 * it is pinned, we know that the log has not been pushed to disk and
1109 * hence it will still be locked. Rather than sleeping until someone
1110 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1111 */
ce8e922c
NS
1112void
1113xfs_buf_lock(
0c842ad4 1114 struct xfs_buf *bp)
1da177e4 1115{
0b1b213f
CH
1116 trace_xfs_buf_lock(bp, _RET_IP_);
1117
ed3b4d6c 1118 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 1119 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
1120 down(&bp->b_sema);
1121 XB_SET_OWNER(bp);
0b1b213f
CH
1122
1123 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1124}
1125
1da177e4 1126void
ce8e922c 1127xfs_buf_unlock(
0c842ad4 1128 struct xfs_buf *bp)
1da177e4 1129{
20e8a063
BF
1130 ASSERT(xfs_buf_islocked(bp));
1131
ce8e922c
NS
1132 XB_CLEAR_OWNER(bp);
1133 up(&bp->b_sema);
0b1b213f
CH
1134
1135 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1136}
1137
ce8e922c
NS
1138STATIC void
1139xfs_buf_wait_unpin(
1140 xfs_buf_t *bp)
1da177e4
LT
1141{
1142 DECLARE_WAITQUEUE (wait, current);
1143
ce8e922c 1144 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1145 return;
1146
ce8e922c 1147 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1148 for (;;) {
1149 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1150 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1151 break;
7eaceacc 1152 io_schedule();
1da177e4 1153 }
ce8e922c 1154 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1155 set_current_state(TASK_RUNNING);
1156}
1157
1158/*
1159 * Buffer Utility Routines
1160 */
1161
e8aaba9a
DC
1162void
1163xfs_buf_ioend(
1164 struct xfs_buf *bp)
1da177e4 1165{
e8aaba9a
DC
1166 bool read = bp->b_flags & XBF_READ;
1167
1168 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1169
1170 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1171
61be9c52
DC
1172 /*
1173 * Pull in IO completion errors now. We are guaranteed to be running
1174 * single threaded, so we don't need the lock to read b_io_error.
1175 */
1176 if (!bp->b_error && bp->b_io_error)
1177 xfs_buf_ioerror(bp, bp->b_io_error);
1178
e8aaba9a
DC
1179 /* Only validate buffers that were read without errors */
1180 if (read && !bp->b_error && bp->b_ops) {
1181 ASSERT(!bp->b_iodone);
1813dd64 1182 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1183 }
1184
1185 if (!bp->b_error)
1186 bp->b_flags |= XBF_DONE;
1da177e4 1187
80f6c29d 1188 if (bp->b_iodone)
ce8e922c
NS
1189 (*(bp->b_iodone))(bp);
1190 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1191 xfs_buf_relse(bp);
595bff75 1192 else
1813dd64 1193 complete(&bp->b_iowait);
1da177e4
LT
1194}
1195
e8aaba9a
DC
1196static void
1197xfs_buf_ioend_work(
1198 struct work_struct *work)
1da177e4 1199{
e8aaba9a 1200 struct xfs_buf *bp =
b29c70f5 1201 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1202
e8aaba9a
DC
1203 xfs_buf_ioend(bp);
1204}
1da177e4 1205
211fe1a4 1206static void
e8aaba9a
DC
1207xfs_buf_ioend_async(
1208 struct xfs_buf *bp)
1209{
b29c70f5
BF
1210 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1211 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1da177e4
LT
1212}
1213
1da177e4 1214void
31ca03c9 1215__xfs_buf_ioerror(
ce8e922c 1216 xfs_buf_t *bp,
31ca03c9
DW
1217 int error,
1218 xfs_failaddr_t failaddr)
1da177e4 1219{
2451337d
DC
1220 ASSERT(error <= 0 && error >= -1000);
1221 bp->b_error = error;
31ca03c9 1222 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1223}
1224
901796af
CH
1225void
1226xfs_buf_ioerror_alert(
1227 struct xfs_buf *bp,
1228 const char *func)
1229{
1230 xfs_alert(bp->b_target->bt_mount,
c219b015
DW
1231"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1232 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1233 -bp->b_error);
901796af
CH
1234}
1235
a2dcf5df
CH
1236int
1237xfs_bwrite(
1238 struct xfs_buf *bp)
1239{
1240 int error;
1241
1242 ASSERT(xfs_buf_islocked(bp));
1243
1244 bp->b_flags |= XBF_WRITE;
27187754
DC
1245 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1246 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1247
6af88cda 1248 error = xfs_buf_submit(bp);
a2dcf5df
CH
1249 if (error) {
1250 xfs_force_shutdown(bp->b_target->bt_mount,
1251 SHUTDOWN_META_IO_ERROR);
1252 }
1253 return error;
1254}
1255
9bdd9bd6 1256static void
ce8e922c 1257xfs_buf_bio_end_io(
4246a0b6 1258 struct bio *bio)
1da177e4 1259{
9bdd9bd6 1260 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1261
37eb17e6
DC
1262 /*
1263 * don't overwrite existing errors - otherwise we can lose errors on
1264 * buffers that require multiple bios to complete.
1265 */
4e4cbee9
CH
1266 if (bio->bi_status) {
1267 int error = blk_status_to_errno(bio->bi_status);
1268
1269 cmpxchg(&bp->b_io_error, 0, error);
1270 }
1da177e4 1271
37eb17e6 1272 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1273 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1274
e8aaba9a
DC
1275 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1276 xfs_buf_ioend_async(bp);
1da177e4 1277 bio_put(bio);
1da177e4
LT
1278}
1279
3e85c868
DC
1280static void
1281xfs_buf_ioapply_map(
1282 struct xfs_buf *bp,
1283 int map,
1284 int *buf_offset,
1285 int *count,
50bfcd0c
MC
1286 int op,
1287 int op_flags)
1da177e4 1288{
3e85c868
DC
1289 int page_index;
1290 int total_nr_pages = bp->b_page_count;
1291 int nr_pages;
1292 struct bio *bio;
1293 sector_t sector = bp->b_maps[map].bm_bn;
1294 int size;
1295 int offset;
1da177e4 1296
3e85c868
DC
1297 /* skip the pages in the buffer before the start offset */
1298 page_index = 0;
1299 offset = *buf_offset;
1300 while (offset >= PAGE_SIZE) {
1301 page_index++;
1302 offset -= PAGE_SIZE;
f538d4da
CH
1303 }
1304
3e85c868
DC
1305 /*
1306 * Limit the IO size to the length of the current vector, and update the
1307 * remaining IO count for the next time around.
1308 */
1309 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1310 *count -= size;
1311 *buf_offset += size;
34951f5c 1312
1da177e4 1313next_chunk:
ce8e922c 1314 atomic_inc(&bp->b_io_remaining);
c908e380 1315 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1316
1317 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1318 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1319 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1320 bio->bi_end_io = xfs_buf_bio_end_io;
1321 bio->bi_private = bp;
50bfcd0c 1322 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1323
3e85c868 1324 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1325 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1326
1327 if (nbytes > size)
1328 nbytes = size;
1329
3e85c868
DC
1330 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1331 offset);
ce8e922c 1332 if (rbytes < nbytes)
1da177e4
LT
1333 break;
1334
1335 offset = 0;
aa0e8833 1336 sector += BTOBB(nbytes);
1da177e4
LT
1337 size -= nbytes;
1338 total_nr_pages--;
1339 }
1340
4f024f37 1341 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1342 if (xfs_buf_is_vmapped(bp)) {
1343 flush_kernel_vmap_range(bp->b_addr,
1344 xfs_buf_vmap_len(bp));
1345 }
4e49ea4a 1346 submit_bio(bio);
1da177e4
LT
1347 if (size)
1348 goto next_chunk;
1349 } else {
37eb17e6
DC
1350 /*
1351 * This is guaranteed not to be the last io reference count
595bff75 1352 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1353 */
1354 atomic_dec(&bp->b_io_remaining);
2451337d 1355 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1356 bio_put(bio);
1da177e4 1357 }
3e85c868
DC
1358
1359}
1360
1361STATIC void
1362_xfs_buf_ioapply(
1363 struct xfs_buf *bp)
1364{
1365 struct blk_plug plug;
50bfcd0c
MC
1366 int op;
1367 int op_flags = 0;
3e85c868
DC
1368 int offset;
1369 int size;
1370 int i;
1371
c163f9a1
DC
1372 /*
1373 * Make sure we capture only current IO errors rather than stale errors
1374 * left over from previous use of the buffer (e.g. failed readahead).
1375 */
1376 bp->b_error = 0;
1377
b29c70f5
BF
1378 /*
1379 * Initialize the I/O completion workqueue if we haven't yet or the
1380 * submitter has not opted to specify a custom one.
1381 */
1382 if (!bp->b_ioend_wq)
1383 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1384
3e85c868 1385 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1386 op = REQ_OP_WRITE;
3e85c868 1387 if (bp->b_flags & XBF_SYNCIO)
70fd7614 1388 op_flags = REQ_SYNC;
3e85c868 1389 if (bp->b_flags & XBF_FUA)
50bfcd0c 1390 op_flags |= REQ_FUA;
3e85c868 1391 if (bp->b_flags & XBF_FLUSH)
28a8f0d3 1392 op_flags |= REQ_PREFLUSH;
1813dd64
DC
1393
1394 /*
1395 * Run the write verifier callback function if it exists. If
1396 * this function fails it will mark the buffer with an error and
1397 * the IO should not be dispatched.
1398 */
1399 if (bp->b_ops) {
1400 bp->b_ops->verify_write(bp);
1401 if (bp->b_error) {
1402 xfs_force_shutdown(bp->b_target->bt_mount,
1403 SHUTDOWN_CORRUPT_INCORE);
1404 return;
1405 }
400b9d88
DC
1406 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1407 struct xfs_mount *mp = bp->b_target->bt_mount;
1408
1409 /*
1410 * non-crc filesystems don't attach verifiers during
1411 * log recovery, so don't warn for such filesystems.
1412 */
1413 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1414 xfs_warn(mp,
c219b015 1415 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1416 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1417 xfs_hex_dump(bp->b_addr,
1418 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1419 dump_stack();
1420 }
1813dd64 1421 }
3e85c868 1422 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1423 op = REQ_OP_READ;
1424 op_flags = REQ_RAHEAD;
3e85c868 1425 } else {
50bfcd0c 1426 op = REQ_OP_READ;
3e85c868
DC
1427 }
1428
1429 /* we only use the buffer cache for meta-data */
50bfcd0c 1430 op_flags |= REQ_META;
3e85c868
DC
1431
1432 /*
1433 * Walk all the vectors issuing IO on them. Set up the initial offset
1434 * into the buffer and the desired IO size before we start -
1435 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1436 * subsequent call.
1437 */
1438 offset = bp->b_offset;
1439 size = BBTOB(bp->b_io_length);
1440 blk_start_plug(&plug);
1441 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1442 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1443 if (bp->b_error)
1444 break;
1445 if (size <= 0)
1446 break; /* all done */
1447 }
1448 blk_finish_plug(&plug);
1da177e4
LT
1449}
1450
595bff75 1451/*
bb00b6f1 1452 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1453 */
eaebb515 1454static int
bb00b6f1 1455xfs_buf_iowait(
595bff75 1456 struct xfs_buf *bp)
1da177e4 1457{
bb00b6f1
BF
1458 ASSERT(!(bp->b_flags & XBF_ASYNC));
1459
1460 trace_xfs_buf_iowait(bp, _RET_IP_);
1461 wait_for_completion(&bp->b_iowait);
1462 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1463
1464 return bp->b_error;
1465}
1466
1467/*
1468 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1469 * the buffer lock ownership and the current reference to the IO. It is not
1470 * safe to reference the buffer after a call to this function unless the caller
1471 * holds an additional reference itself.
1472 */
1473int
1474__xfs_buf_submit(
1475 struct xfs_buf *bp,
1476 bool wait)
1477{
1478 int error = 0;
1479
595bff75 1480 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1481
43ff2122 1482 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1483
1484 /* on shutdown we stale and complete the buffer immediately */
1485 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1486 xfs_buf_ioerror(bp, -EIO);
1487 bp->b_flags &= ~XBF_DONE;
1488 xfs_buf_stale(bp);
bb00b6f1
BF
1489 if (bp->b_flags & XBF_ASYNC)
1490 xfs_buf_ioend(bp);
eaebb515 1491 return -EIO;
595bff75 1492 }
1da177e4 1493
bb00b6f1
BF
1494 /*
1495 * Grab a reference so the buffer does not go away underneath us. For
1496 * async buffers, I/O completion drops the callers reference, which
1497 * could occur before submission returns.
1498 */
1499 xfs_buf_hold(bp);
1500
375ec69d 1501 if (bp->b_flags & XBF_WRITE)
ce8e922c 1502 xfs_buf_wait_unpin(bp);
e11bb805 1503
61be9c52
DC
1504 /* clear the internal error state to avoid spurious errors */
1505 bp->b_io_error = 0;
1506
8d6c1210 1507 /*
e11bb805
DC
1508 * Set the count to 1 initially, this will stop an I/O completion
1509 * callout which happens before we have started all the I/O from calling
1510 * xfs_buf_ioend too early.
1da177e4 1511 */
ce8e922c 1512 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1513 if (bp->b_flags & XBF_ASYNC)
1514 xfs_buf_ioacct_inc(bp);
ce8e922c 1515 _xfs_buf_ioapply(bp);
e11bb805 1516
8d6c1210 1517 /*
595bff75
DC
1518 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1519 * reference we took above. If we drop it to zero, run completion so
1520 * that we don't return to the caller with completion still pending.
8d6c1210 1521 */
e8aaba9a 1522 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1523 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1524 xfs_buf_ioend(bp);
1525 else
1526 xfs_buf_ioend_async(bp);
1527 }
1da177e4 1528
6af88cda
BF
1529 if (wait)
1530 error = xfs_buf_iowait(bp);
bb00b6f1 1531
595bff75 1532 /*
6af88cda
BF
1533 * Release the hold that keeps the buffer referenced for the entire
1534 * I/O. Note that if the buffer is async, it is not safe to reference
1535 * after this release.
595bff75
DC
1536 */
1537 xfs_buf_rele(bp);
1538 return error;
1da177e4
LT
1539}
1540
88ee2df7 1541void *
ce8e922c 1542xfs_buf_offset(
88ee2df7 1543 struct xfs_buf *bp,
1da177e4
LT
1544 size_t offset)
1545{
1546 struct page *page;
1547
611c9946 1548 if (bp->b_addr)
62926044 1549 return bp->b_addr + offset;
1da177e4 1550
ce8e922c 1551 offset += bp->b_offset;
0e6e847f 1552 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1553 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1554}
1555
1556/*
1da177e4
LT
1557 * Move data into or out of a buffer.
1558 */
1559void
ce8e922c
NS
1560xfs_buf_iomove(
1561 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1562 size_t boff, /* starting buffer offset */
1563 size_t bsize, /* length to copy */
b9c48649 1564 void *data, /* data address */
ce8e922c 1565 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1566{
795cac72 1567 size_t bend;
1da177e4
LT
1568
1569 bend = boff + bsize;
1570 while (boff < bend) {
795cac72
DC
1571 struct page *page;
1572 int page_index, page_offset, csize;
1573
1574 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1575 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1576 page = bp->b_pages[page_index];
1577 csize = min_t(size_t, PAGE_SIZE - page_offset,
1578 BBTOB(bp->b_io_length) - boff);
1da177e4 1579
795cac72 1580 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1581
1582 switch (mode) {
ce8e922c 1583 case XBRW_ZERO:
795cac72 1584 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1585 break;
ce8e922c 1586 case XBRW_READ:
795cac72 1587 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1588 break;
ce8e922c 1589 case XBRW_WRITE:
795cac72 1590 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1591 }
1592
1593 boff += csize;
1594 data += csize;
1595 }
1596}
1597
1598/*
ce8e922c 1599 * Handling of buffer targets (buftargs).
1da177e4
LT
1600 */
1601
1602/*
430cbeb8
DC
1603 * Wait for any bufs with callbacks that have been submitted but have not yet
1604 * returned. These buffers will have an elevated hold count, so wait on those
1605 * while freeing all the buffers only held by the LRU.
1da177e4 1606 */
e80dfa19
DC
1607static enum lru_status
1608xfs_buftarg_wait_rele(
1609 struct list_head *item,
3f97b163 1610 struct list_lru_one *lru,
e80dfa19
DC
1611 spinlock_t *lru_lock,
1612 void *arg)
1613
1da177e4 1614{
e80dfa19 1615 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1616 struct list_head *dispose = arg;
430cbeb8 1617
e80dfa19 1618 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1619 /* need to wait, so skip it this pass */
e80dfa19 1620 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1621 return LRU_SKIP;
1da177e4 1622 }
a4082357
DC
1623 if (!spin_trylock(&bp->b_lock))
1624 return LRU_SKIP;
e80dfa19 1625
a4082357
DC
1626 /*
1627 * clear the LRU reference count so the buffer doesn't get
1628 * ignored in xfs_buf_rele().
1629 */
1630 atomic_set(&bp->b_lru_ref, 0);
1631 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1632 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1633 spin_unlock(&bp->b_lock);
1634 return LRU_REMOVED;
1da177e4
LT
1635}
1636
e80dfa19
DC
1637void
1638xfs_wait_buftarg(
1639 struct xfs_buftarg *btp)
1640{
a4082357
DC
1641 LIST_HEAD(dispose);
1642 int loop = 0;
1643
85bec546 1644 /*
9c7504aa
BF
1645 * First wait on the buftarg I/O count for all in-flight buffers to be
1646 * released. This is critical as new buffers do not make the LRU until
1647 * they are released.
1648 *
1649 * Next, flush the buffer workqueue to ensure all completion processing
1650 * has finished. Just waiting on buffer locks is not sufficient for
1651 * async IO as the reference count held over IO is not released until
1652 * after the buffer lock is dropped. Hence we need to ensure here that
1653 * all reference counts have been dropped before we start walking the
1654 * LRU list.
85bec546 1655 */
9c7504aa
BF
1656 while (percpu_counter_sum(&btp->bt_io_count))
1657 delay(100);
800b2694 1658 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1659
a4082357
DC
1660 /* loop until there is nothing left on the lru list. */
1661 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1662 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1663 &dispose, LONG_MAX);
1664
1665 while (!list_empty(&dispose)) {
1666 struct xfs_buf *bp;
1667 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1668 list_del_init(&bp->b_lru);
ac8809f9
DC
1669 if (bp->b_flags & XBF_WRITE_FAIL) {
1670 xfs_alert(btp->bt_mount,
c219b015 1671"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1672 (long long)bp->b_bn);
f41febd2
JP
1673 xfs_alert(btp->bt_mount,
1674"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1675 }
a4082357
DC
1676 xfs_buf_rele(bp);
1677 }
1678 if (loop++ != 0)
1679 delay(100);
1680 }
e80dfa19
DC
1681}
1682
1683static enum lru_status
1684xfs_buftarg_isolate(
1685 struct list_head *item,
3f97b163 1686 struct list_lru_one *lru,
e80dfa19
DC
1687 spinlock_t *lru_lock,
1688 void *arg)
1689{
1690 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1691 struct list_head *dispose = arg;
1692
a4082357
DC
1693 /*
1694 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1695 * If we fail to get the lock, just skip it.
1696 */
1697 if (!spin_trylock(&bp->b_lock))
1698 return LRU_SKIP;
e80dfa19
DC
1699 /*
1700 * Decrement the b_lru_ref count unless the value is already
1701 * zero. If the value is already zero, we need to reclaim the
1702 * buffer, otherwise it gets another trip through the LRU.
1703 */
19957a18 1704 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1705 spin_unlock(&bp->b_lock);
e80dfa19 1706 return LRU_ROTATE;
a4082357 1707 }
e80dfa19 1708
a4082357 1709 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1710 list_lru_isolate_move(lru, item, dispose);
a4082357 1711 spin_unlock(&bp->b_lock);
e80dfa19
DC
1712 return LRU_REMOVED;
1713}
1714
addbda40 1715static unsigned long
e80dfa19 1716xfs_buftarg_shrink_scan(
ff57ab21 1717 struct shrinker *shrink,
1495f230 1718 struct shrink_control *sc)
a6867a68 1719{
ff57ab21
DC
1720 struct xfs_buftarg *btp = container_of(shrink,
1721 struct xfs_buftarg, bt_shrinker);
430cbeb8 1722 LIST_HEAD(dispose);
addbda40 1723 unsigned long freed;
430cbeb8 1724
503c358c
VD
1725 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1726 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1727
1728 while (!list_empty(&dispose)) {
e80dfa19 1729 struct xfs_buf *bp;
430cbeb8
DC
1730 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1731 list_del_init(&bp->b_lru);
1732 xfs_buf_rele(bp);
1733 }
1734
e80dfa19
DC
1735 return freed;
1736}
1737
addbda40 1738static unsigned long
e80dfa19
DC
1739xfs_buftarg_shrink_count(
1740 struct shrinker *shrink,
1741 struct shrink_control *sc)
1742{
1743 struct xfs_buftarg *btp = container_of(shrink,
1744 struct xfs_buftarg, bt_shrinker);
503c358c 1745 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1746}
1747
1da177e4
LT
1748void
1749xfs_free_buftarg(
b7963133 1750 struct xfs_buftarg *btp)
1da177e4 1751{
ff57ab21 1752 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1753 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1754 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1755 list_lru_destroy(&btp->bt_lru);
ff57ab21 1756
2291dab2 1757 xfs_blkdev_issue_flush(btp);
a6867a68 1758
f0e2d93c 1759 kmem_free(btp);
1da177e4
LT
1760}
1761
3fefdeee
ES
1762int
1763xfs_setsize_buftarg(
1da177e4 1764 xfs_buftarg_t *btp,
3fefdeee 1765 unsigned int sectorsize)
1da177e4 1766{
7c71ee78 1767 /* Set up metadata sector size info */
6da54179
ES
1768 btp->bt_meta_sectorsize = sectorsize;
1769 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1770
ce8e922c 1771 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1772 xfs_warn(btp->bt_mount,
a1c6f057
DM
1773 "Cannot set_blocksize to %u on device %pg",
1774 sectorsize, btp->bt_bdev);
2451337d 1775 return -EINVAL;
1da177e4
LT
1776 }
1777
7c71ee78
ES
1778 /* Set up device logical sector size mask */
1779 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1780 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1781
1da177e4
LT
1782 return 0;
1783}
1784
1785/*
3fefdeee
ES
1786 * When allocating the initial buffer target we have not yet
1787 * read in the superblock, so don't know what sized sectors
1788 * are being used at this early stage. Play safe.
ce8e922c 1789 */
1da177e4
LT
1790STATIC int
1791xfs_setsize_buftarg_early(
1792 xfs_buftarg_t *btp,
1793 struct block_device *bdev)
1794{
a96c4151 1795 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1796}
1797
1da177e4
LT
1798xfs_buftarg_t *
1799xfs_alloc_buftarg(
ebad861b 1800 struct xfs_mount *mp,
486aff5e
DW
1801 struct block_device *bdev,
1802 struct dax_device *dax_dev)
1da177e4
LT
1803{
1804 xfs_buftarg_t *btp;
1805
b17cb364 1806 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1807
ebad861b 1808 btp->bt_mount = mp;
ce8e922c
NS
1809 btp->bt_dev = bdev->bd_dev;
1810 btp->bt_bdev = bdev;
486aff5e 1811 btp->bt_daxdev = dax_dev;
0e6e847f 1812
1da177e4 1813 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1814 goto error_free;
5ca302c8
GC
1815
1816 if (list_lru_init(&btp->bt_lru))
d210a987 1817 goto error_free;
5ca302c8 1818
9c7504aa 1819 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1820 goto error_lru;
9c7504aa 1821
e80dfa19
DC
1822 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1823 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1824 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1825 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1826 if (register_shrinker(&btp->bt_shrinker))
1827 goto error_pcpu;
1da177e4
LT
1828 return btp;
1829
d210a987
MH
1830error_pcpu:
1831 percpu_counter_destroy(&btp->bt_io_count);
1832error_lru:
1833 list_lru_destroy(&btp->bt_lru);
1834error_free:
f0e2d93c 1835 kmem_free(btp);
1da177e4
LT
1836 return NULL;
1837}
1838
20e8a063
BF
1839/*
1840 * Cancel a delayed write list.
1841 *
1842 * Remove each buffer from the list, clear the delwri queue flag and drop the
1843 * associated buffer reference.
1844 */
1845void
1846xfs_buf_delwri_cancel(
1847 struct list_head *list)
1848{
1849 struct xfs_buf *bp;
1850
1851 while (!list_empty(list)) {
1852 bp = list_first_entry(list, struct xfs_buf, b_list);
1853
1854 xfs_buf_lock(bp);
1855 bp->b_flags &= ~_XBF_DELWRI_Q;
1856 list_del_init(&bp->b_list);
1857 xfs_buf_relse(bp);
1858 }
1859}
1860
1da177e4 1861/*
43ff2122
CH
1862 * Add a buffer to the delayed write list.
1863 *
1864 * This queues a buffer for writeout if it hasn't already been. Note that
1865 * neither this routine nor the buffer list submission functions perform
1866 * any internal synchronization. It is expected that the lists are thread-local
1867 * to the callers.
1868 *
1869 * Returns true if we queued up the buffer, or false if it already had
1870 * been on the buffer list.
1da177e4 1871 */
43ff2122 1872bool
ce8e922c 1873xfs_buf_delwri_queue(
43ff2122
CH
1874 struct xfs_buf *bp,
1875 struct list_head *list)
1da177e4 1876{
43ff2122 1877 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1878 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1879
43ff2122
CH
1880 /*
1881 * If the buffer is already marked delwri it already is queued up
1882 * by someone else for imediate writeout. Just ignore it in that
1883 * case.
1884 */
1885 if (bp->b_flags & _XBF_DELWRI_Q) {
1886 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1887 return false;
1da177e4 1888 }
1da177e4 1889
43ff2122 1890 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1891
1892 /*
43ff2122
CH
1893 * If a buffer gets written out synchronously or marked stale while it
1894 * is on a delwri list we lazily remove it. To do this, the other party
1895 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1896 * It remains referenced and on the list. In a rare corner case it
1897 * might get readded to a delwri list after the synchronous writeout, in
1898 * which case we need just need to re-add the flag here.
d808f617 1899 */
43ff2122
CH
1900 bp->b_flags |= _XBF_DELWRI_Q;
1901 if (list_empty(&bp->b_list)) {
1902 atomic_inc(&bp->b_hold);
1903 list_add_tail(&bp->b_list, list);
585e6d88 1904 }
585e6d88 1905
43ff2122 1906 return true;
585e6d88
DC
1907}
1908
089716aa
DC
1909/*
1910 * Compare function is more complex than it needs to be because
1911 * the return value is only 32 bits and we are doing comparisons
1912 * on 64 bit values
1913 */
1914static int
1915xfs_buf_cmp(
1916 void *priv,
1917 struct list_head *a,
1918 struct list_head *b)
1919{
1920 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1921 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1922 xfs_daddr_t diff;
1923
f4b42421 1924 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1925 if (diff < 0)
1926 return -1;
1927 if (diff > 0)
1928 return 1;
1929 return 0;
1930}
1931
26f1fe85 1932/*
e339dd8d
BF
1933 * Submit buffers for write. If wait_list is specified, the buffers are
1934 * submitted using sync I/O and placed on the wait list such that the caller can
1935 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1936 * at I/O completion time. In either case, buffers remain locked until I/O
1937 * completes and the buffer is released from the queue.
26f1fe85 1938 */
43ff2122 1939static int
26f1fe85 1940xfs_buf_delwri_submit_buffers(
43ff2122 1941 struct list_head *buffer_list,
26f1fe85 1942 struct list_head *wait_list)
1da177e4 1943{
43ff2122 1944 struct xfs_buf *bp, *n;
26f1fe85 1945 LIST_HEAD (submit_list);
43ff2122 1946 int pinned = 0;
26f1fe85 1947 struct blk_plug plug;
43ff2122 1948
26f1fe85 1949 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1950
26f1fe85 1951 blk_start_plug(&plug);
43ff2122 1952 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1953 if (!wait_list) {
43ff2122
CH
1954 if (xfs_buf_ispinned(bp)) {
1955 pinned++;
1956 continue;
1957 }
1958 if (!xfs_buf_trylock(bp))
1959 continue;
1960 } else {
1961 xfs_buf_lock(bp);
1962 }
978c7b2f 1963
43ff2122
CH
1964 /*
1965 * Someone else might have written the buffer synchronously or
1966 * marked it stale in the meantime. In that case only the
1967 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1968 * reference and remove it from the list here.
1969 */
1970 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1971 list_del_init(&bp->b_list);
1972 xfs_buf_relse(bp);
1973 continue;
1974 }
c9c12971 1975
43ff2122 1976 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1977
cf53e99d 1978 /*
e339dd8d
BF
1979 * If we have a wait list, each buffer (and associated delwri
1980 * queue reference) transfers to it and is submitted
1981 * synchronously. Otherwise, drop the buffer from the delwri
1982 * queue and submit async.
cf53e99d 1983 */
bbfeb614 1984 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
e339dd8d 1985 bp->b_flags |= XBF_WRITE;
26f1fe85 1986 if (wait_list) {
e339dd8d 1987 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 1988 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
1989 } else {
1990 bp->b_flags |= XBF_ASYNC;
ce8e922c 1991 list_del_init(&bp->b_list);
e339dd8d 1992 }
6af88cda 1993 __xfs_buf_submit(bp, false);
43ff2122
CH
1994 }
1995 blk_finish_plug(&plug);
1da177e4 1996
43ff2122 1997 return pinned;
1da177e4
LT
1998}
1999
2000/*
43ff2122
CH
2001 * Write out a buffer list asynchronously.
2002 *
2003 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2004 * out and not wait for I/O completion on any of the buffers. This interface
2005 * is only safely useable for callers that can track I/O completion by higher
2006 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2007 * function.
1da177e4
LT
2008 */
2009int
43ff2122
CH
2010xfs_buf_delwri_submit_nowait(
2011 struct list_head *buffer_list)
1da177e4 2012{
26f1fe85 2013 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2014}
1da177e4 2015
43ff2122
CH
2016/*
2017 * Write out a buffer list synchronously.
2018 *
2019 * This will take the @buffer_list, write all buffers out and wait for I/O
2020 * completion on all of the buffers. @buffer_list is consumed by the function,
2021 * so callers must have some other way of tracking buffers if they require such
2022 * functionality.
2023 */
2024int
2025xfs_buf_delwri_submit(
2026 struct list_head *buffer_list)
2027{
26f1fe85 2028 LIST_HEAD (wait_list);
43ff2122
CH
2029 int error = 0, error2;
2030 struct xfs_buf *bp;
1da177e4 2031
26f1fe85 2032 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2033
43ff2122 2034 /* Wait for IO to complete. */
26f1fe85
DC
2035 while (!list_empty(&wait_list)) {
2036 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2037
089716aa 2038 list_del_init(&bp->b_list);
cf53e99d 2039
e339dd8d
BF
2040 /*
2041 * Wait on the locked buffer, check for errors and unlock and
2042 * release the delwri queue reference.
2043 */
2044 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2045 xfs_buf_relse(bp);
2046 if (!error)
2047 error = error2;
1da177e4
LT
2048 }
2049
43ff2122 2050 return error;
1da177e4
LT
2051}
2052
7912e7fe
BF
2053/*
2054 * Push a single buffer on a delwri queue.
2055 *
2056 * The purpose of this function is to submit a single buffer of a delwri queue
2057 * and return with the buffer still on the original queue. The waiting delwri
2058 * buffer submission infrastructure guarantees transfer of the delwri queue
2059 * buffer reference to a temporary wait list. We reuse this infrastructure to
2060 * transfer the buffer back to the original queue.
2061 *
2062 * Note the buffer transitions from the queued state, to the submitted and wait
2063 * listed state and back to the queued state during this call. The buffer
2064 * locking and queue management logic between _delwri_pushbuf() and
2065 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2066 * before returning.
2067 */
2068int
2069xfs_buf_delwri_pushbuf(
2070 struct xfs_buf *bp,
2071 struct list_head *buffer_list)
2072{
2073 LIST_HEAD (submit_list);
2074 int error;
2075
2076 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2077
2078 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2079
2080 /*
2081 * Isolate the buffer to a new local list so we can submit it for I/O
2082 * independently from the rest of the original list.
2083 */
2084 xfs_buf_lock(bp);
2085 list_move(&bp->b_list, &submit_list);
2086 xfs_buf_unlock(bp);
2087
2088 /*
2089 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2090 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2091 * bounce the buffer from a local wait list back to the original list
2092 * after I/O completion, reuse the original list as the wait list.
2093 */
2094 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2095
2096 /*
e339dd8d
BF
2097 * The buffer is now locked, under I/O and wait listed on the original
2098 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2099 * return with the buffer unlocked and on the original queue.
7912e7fe 2100 */
e339dd8d 2101 error = xfs_buf_iowait(bp);
7912e7fe
BF
2102 bp->b_flags |= _XBF_DELWRI_Q;
2103 xfs_buf_unlock(bp);
2104
2105 return error;
2106}
2107
04d8b284 2108int __init
ce8e922c 2109xfs_buf_init(void)
1da177e4 2110{
8758280f
NS
2111 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2112 KM_ZONE_HWALIGN, NULL);
ce8e922c 2113 if (!xfs_buf_zone)
0b1b213f 2114 goto out;
04d8b284 2115
23ea4032 2116 return 0;
1da177e4 2117
0b1b213f 2118 out:
8758280f 2119 return -ENOMEM;
1da177e4
LT
2120}
2121
1da177e4 2122void
ce8e922c 2123xfs_buf_terminate(void)
1da177e4 2124{
ce8e922c 2125 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2126}
7561d27e
BF
2127
2128void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2129{
7561d27e
BF
2130 /*
2131 * Set the lru reference count to 0 based on the error injection tag.
2132 * This allows userspace to disrupt buffer caching for debug/testing
2133 * purposes.
2134 */
4eadcf9a
BF
2135 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2136 XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2137 lru_ref = 0;
2138
2139 atomic_set(&bp->b_lru_ref, lru_ref);
2140}
This page took 1.358216 seconds and 4 git commands to generate.