]>
Commit | Line | Data |
---|---|---|
d865bea4 RB |
1 | /* |
2 | * i8253.c 8253/PIT functions | |
3 | * | |
4 | */ | |
5 | #include <linux/clockchips.h> | |
6 | #include <linux/init.h> | |
7 | #include <linux/interrupt.h> | |
8 | #include <linux/jiffies.h> | |
9 | #include <linux/module.h> | |
10 | #include <linux/spinlock.h> | |
11 | ||
12 | #include <asm/delay.h> | |
13 | #include <asm/i8253.h> | |
14 | #include <asm/io.h> | |
15 | ||
16 | static DEFINE_SPINLOCK(i8253_lock); | |
17 | ||
18 | /* | |
19 | * Initialize the PIT timer. | |
20 | * | |
21 | * This is also called after resume to bring the PIT into operation again. | |
22 | */ | |
23 | static void init_pit_timer(enum clock_event_mode mode, | |
24 | struct clock_event_device *evt) | |
25 | { | |
26 | unsigned long flags; | |
27 | ||
28 | spin_lock_irqsave(&i8253_lock, flags); | |
29 | ||
30 | switch(mode) { | |
31 | case CLOCK_EVT_MODE_PERIODIC: | |
32 | /* binary, mode 2, LSB/MSB, ch 0 */ | |
33 | outb_p(0x34, PIT_MODE); | |
34 | outb_p(LATCH & 0xff , PIT_CH0); /* LSB */ | |
35 | outb(LATCH >> 8 , PIT_CH0); /* MSB */ | |
36 | break; | |
37 | ||
38 | case CLOCK_EVT_MODE_SHUTDOWN: | |
39 | case CLOCK_EVT_MODE_UNUSED: | |
40 | if (evt->mode == CLOCK_EVT_MODE_PERIODIC || | |
41 | evt->mode == CLOCK_EVT_MODE_ONESHOT) { | |
42 | outb_p(0x30, PIT_MODE); | |
43 | outb_p(0, PIT_CH0); | |
44 | outb_p(0, PIT_CH0); | |
45 | } | |
46 | break; | |
47 | ||
48 | case CLOCK_EVT_MODE_ONESHOT: | |
49 | /* One shot setup */ | |
50 | outb_p(0x38, PIT_MODE); | |
51 | break; | |
52 | ||
53 | case CLOCK_EVT_MODE_RESUME: | |
54 | /* Nothing to do here */ | |
55 | break; | |
56 | } | |
57 | spin_unlock_irqrestore(&i8253_lock, flags); | |
58 | } | |
59 | ||
60 | /* | |
61 | * Program the next event in oneshot mode | |
62 | * | |
63 | * Delta is given in PIT ticks | |
64 | */ | |
65 | static int pit_next_event(unsigned long delta, struct clock_event_device *evt) | |
66 | { | |
67 | unsigned long flags; | |
68 | ||
69 | spin_lock_irqsave(&i8253_lock, flags); | |
70 | outb_p(delta & 0xff , PIT_CH0); /* LSB */ | |
71 | outb(delta >> 8 , PIT_CH0); /* MSB */ | |
72 | spin_unlock_irqrestore(&i8253_lock, flags); | |
73 | ||
74 | return 0; | |
75 | } | |
76 | ||
77 | /* | |
78 | * On UP the PIT can serve all of the possible timer functions. On SMP systems | |
79 | * it can be solely used for the global tick. | |
80 | * | |
81 | * The profiling and update capabilites are switched off once the local apic is | |
82 | * registered. This mechanism replaces the previous #ifdef LOCAL_APIC - | |
83 | * !using_apic_timer decisions in do_timer_interrupt_hook() | |
84 | */ | |
85 | struct clock_event_device pit_clockevent = { | |
86 | .name = "pit", | |
87 | .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | |
88 | .set_mode = init_pit_timer, | |
89 | .set_next_event = pit_next_event, | |
90 | .shift = 32, | |
91 | .irq = 0, | |
92 | }; | |
93 | ||
94 | irqreturn_t timer_interrupt(int irq, void *dev_id) | |
95 | { | |
96 | pit_clockevent.event_handler(&pit_clockevent); | |
97 | ||
98 | return IRQ_HANDLED; | |
99 | } | |
100 | ||
101 | static struct irqaction irq0 = { | |
102 | .handler = timer_interrupt, | |
103 | .flags = IRQF_DISABLED | IRQF_NOBALANCING, | |
104 | .mask = CPU_MASK_NONE, | |
105 | .name = "timer" | |
106 | }; | |
107 | ||
108 | /* | |
109 | * Initialize the conversion factor and the min/max deltas of the clock event | |
110 | * structure and register the clock event source with the framework. | |
111 | */ | |
112 | void __init setup_pit_timer(void) | |
113 | { | |
114 | /* | |
115 | * Start pit with the boot cpu mask and make it global after the | |
116 | * IO_APIC has been initialized. | |
117 | */ | |
118 | pit_clockevent.cpumask = cpumask_of_cpu(0); | |
119 | pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32); | |
120 | pit_clockevent.max_delta_ns = | |
121 | clockevent_delta2ns(0x7FFF, &pit_clockevent); | |
122 | pit_clockevent.min_delta_ns = | |
123 | clockevent_delta2ns(0xF, &pit_clockevent); | |
124 | clockevents_register_device(&pit_clockevent); | |
125 | ||
126 | irq0.mask = cpumask_of_cpu(0); | |
127 | setup_irq(0, &irq0); | |
128 | } | |
129 | ||
130 | /* | |
131 | * Since the PIT overflows every tick, its not very useful | |
132 | * to just read by itself. So use jiffies to emulate a free | |
133 | * running counter: | |
134 | */ | |
135 | static cycle_t pit_read(void) | |
136 | { | |
137 | unsigned long flags; | |
138 | int count; | |
139 | u32 jifs; | |
140 | static int old_count; | |
141 | static u32 old_jifs; | |
142 | ||
143 | spin_lock_irqsave(&i8253_lock, flags); | |
144 | /* | |
145 | * Although our caller may have the read side of xtime_lock, | |
146 | * this is now a seqlock, and we are cheating in this routine | |
147 | * by having side effects on state that we cannot undo if | |
148 | * there is a collision on the seqlock and our caller has to | |
149 | * retry. (Namely, old_jifs and old_count.) So we must treat | |
150 | * jiffies as volatile despite the lock. We read jiffies | |
151 | * before latching the timer count to guarantee that although | |
152 | * the jiffies value might be older than the count (that is, | |
153 | * the counter may underflow between the last point where | |
154 | * jiffies was incremented and the point where we latch the | |
155 | * count), it cannot be newer. | |
156 | */ | |
157 | jifs = jiffies; | |
158 | outb_p(0x00, PIT_MODE); /* latch the count ASAP */ | |
159 | count = inb_p(PIT_CH0); /* read the latched count */ | |
160 | count |= inb_p(PIT_CH0) << 8; | |
161 | ||
162 | /* VIA686a test code... reset the latch if count > max + 1 */ | |
163 | if (count > LATCH) { | |
164 | outb_p(0x34, PIT_MODE); | |
165 | outb_p(LATCH & 0xff, PIT_CH0); | |
166 | outb(LATCH >> 8, PIT_CH0); | |
167 | count = LATCH - 1; | |
168 | } | |
169 | ||
170 | /* | |
171 | * It's possible for count to appear to go the wrong way for a | |
172 | * couple of reasons: | |
173 | * | |
174 | * 1. The timer counter underflows, but we haven't handled the | |
175 | * resulting interrupt and incremented jiffies yet. | |
176 | * 2. Hardware problem with the timer, not giving us continuous time, | |
177 | * the counter does small "jumps" upwards on some Pentium systems, | |
178 | * (see c't 95/10 page 335 for Neptun bug.) | |
179 | * | |
180 | * Previous attempts to handle these cases intelligently were | |
181 | * buggy, so we just do the simple thing now. | |
182 | */ | |
183 | if (count > old_count && jifs == old_jifs) { | |
184 | count = old_count; | |
185 | } | |
186 | old_count = count; | |
187 | old_jifs = jifs; | |
188 | ||
189 | spin_unlock_irqrestore(&i8253_lock, flags); | |
190 | ||
191 | count = (LATCH - 1) - count; | |
192 | ||
193 | return (cycle_t)(jifs * LATCH) + count; | |
194 | } | |
195 | ||
196 | static struct clocksource clocksource_pit = { | |
197 | .name = "pit", | |
198 | .rating = 110, | |
199 | .read = pit_read, | |
200 | .mask = CLOCKSOURCE_MASK(32), | |
201 | .mult = 0, | |
202 | .shift = 20, | |
203 | }; | |
204 | ||
205 | static int __init init_pit_clocksource(void) | |
206 | { | |
207 | if (num_possible_cpus() > 1) /* PIT does not scale! */ | |
208 | return 0; | |
209 | ||
210 | clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20); | |
211 | return clocksource_register(&clocksource_pit); | |
212 | } | |
213 | arch_initcall(init_pit_clocksource); |