]>
Commit | Line | Data |
---|---|---|
801c135c AB |
1 | /* |
2 | * Copyright (c) International Business Machines Corp., 2006 | |
3 | * Copyright (c) Nokia Corporation, 2006, 2007 | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify | |
6 | * it under the terms of the GNU General Public License as published by | |
7 | * the Free Software Foundation; either version 2 of the License, or | |
8 | * (at your option) any later version. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, | |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | |
13 | * the GNU General Public License for more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License | |
16 | * along with this program; if not, write to the Free Software | |
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
18 | * | |
19 | * Author: Artem Bityutskiy (Битюцкий Артём) | |
20 | */ | |
21 | ||
22 | /* | |
85c6e6e2 | 23 | * UBI input/output sub-system. |
801c135c | 24 | * |
85c6e6e2 AB |
25 | * This sub-system provides a uniform way to work with all kinds of the |
26 | * underlying MTD devices. It also implements handy functions for reading and | |
27 | * writing UBI headers. | |
801c135c AB |
28 | * |
29 | * We are trying to have a paranoid mindset and not to trust to what we read | |
85c6e6e2 AB |
30 | * from the flash media in order to be more secure and robust. So this |
31 | * sub-system validates every single header it reads from the flash media. | |
801c135c AB |
32 | * |
33 | * Some words about how the eraseblock headers are stored. | |
34 | * | |
35 | * The erase counter header is always stored at offset zero. By default, the | |
36 | * VID header is stored after the EC header at the closest aligned offset | |
37 | * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID | |
38 | * header at the closest aligned offset. But this default layout may be | |
39 | * changed. For example, for different reasons (e.g., optimization) UBI may be | |
40 | * asked to put the VID header at further offset, and even at an unaligned | |
41 | * offset. Of course, if the offset of the VID header is unaligned, UBI adds | |
42 | * proper padding in front of it. Data offset may also be changed but it has to | |
43 | * be aligned. | |
44 | * | |
45 | * About minimal I/O units. In general, UBI assumes flash device model where | |
46 | * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, | |
47 | * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the | |
48 | * @ubi->mtd->writesize field. But as an exception, UBI admits of using another | |
49 | * (smaller) minimal I/O unit size for EC and VID headers to make it possible | |
50 | * to do different optimizations. | |
51 | * | |
52 | * This is extremely useful in case of NAND flashes which admit of several | |
53 | * write operations to one NAND page. In this case UBI can fit EC and VID | |
54 | * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal | |
55 | * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still | |
56 | * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI | |
57 | * users. | |
58 | * | |
59 | * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so | |
60 | * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID | |
61 | * headers. | |
62 | * | |
63 | * Q: why not just to treat sub-page as a minimal I/O unit of this flash | |
64 | * device, e.g., make @ubi->min_io_size = 512 in the example above? | |
65 | * | |
66 | * A: because when writing a sub-page, MTD still writes a full 2K page but the | |
be436f62 SK |
67 | * bytes which are not relevant to the sub-page are 0xFF. So, basically, |
68 | * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. | |
69 | * Thus, we prefer to use sub-pages only for EC and VID headers. | |
801c135c AB |
70 | * |
71 | * As it was noted above, the VID header may start at a non-aligned offset. | |
72 | * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, | |
73 | * the VID header may reside at offset 1984 which is the last 64 bytes of the | |
74 | * last sub-page (EC header is always at offset zero). This causes some | |
75 | * difficulties when reading and writing VID headers. | |
76 | * | |
77 | * Suppose we have a 64-byte buffer and we read a VID header at it. We change | |
78 | * the data and want to write this VID header out. As we can only write in | |
79 | * 512-byte chunks, we have to allocate one more buffer and copy our VID header | |
80 | * to offset 448 of this buffer. | |
81 | * | |
85c6e6e2 AB |
82 | * The I/O sub-system does the following trick in order to avoid this extra |
83 | * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID | |
84 | * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. | |
85 | * When the VID header is being written out, it shifts the VID header pointer | |
86 | * back and writes the whole sub-page. | |
801c135c AB |
87 | */ |
88 | ||
89 | #include <linux/crc32.h> | |
90 | #include <linux/err.h> | |
5a0e3ad6 | 91 | #include <linux/slab.h> |
801c135c AB |
92 | #include "ubi.h" |
93 | ||
92d124f5 | 94 | #ifdef CONFIG_MTD_UBI_DEBUG |
801c135c AB |
95 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum); |
96 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); | |
97 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, | |
98 | const struct ubi_ec_hdr *ec_hdr); | |
99 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); | |
100 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, | |
101 | const struct ubi_vid_hdr *vid_hdr); | |
801c135c AB |
102 | #else |
103 | #define paranoid_check_not_bad(ubi, pnum) 0 | |
104 | #define paranoid_check_peb_ec_hdr(ubi, pnum) 0 | |
105 | #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0 | |
106 | #define paranoid_check_peb_vid_hdr(ubi, pnum) 0 | |
107 | #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0 | |
801c135c AB |
108 | #endif |
109 | ||
110 | /** | |
111 | * ubi_io_read - read data from a physical eraseblock. | |
112 | * @ubi: UBI device description object | |
113 | * @buf: buffer where to store the read data | |
114 | * @pnum: physical eraseblock number to read from | |
115 | * @offset: offset within the physical eraseblock from where to read | |
116 | * @len: how many bytes to read | |
117 | * | |
118 | * This function reads data from offset @offset of physical eraseblock @pnum | |
119 | * and stores the read data in the @buf buffer. The following return codes are | |
120 | * possible: | |
121 | * | |
122 | * o %0 if all the requested data were successfully read; | |
123 | * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but | |
124 | * correctable bit-flips were detected; this is harmless but may indicate | |
125 | * that this eraseblock may become bad soon (but do not have to); | |
63b6c1ed AB |
126 | * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for |
127 | * example it can be an ECC error in case of NAND; this most probably means | |
128 | * that the data is corrupted; | |
801c135c AB |
129 | * o %-EIO if some I/O error occurred; |
130 | * o other negative error codes in case of other errors. | |
131 | */ | |
132 | int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, | |
133 | int len) | |
134 | { | |
135 | int err, retries = 0; | |
136 | size_t read; | |
137 | loff_t addr; | |
138 | ||
139 | dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); | |
140 | ||
141 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
142 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | |
143 | ubi_assert(len > 0); | |
144 | ||
145 | err = paranoid_check_not_bad(ubi, pnum); | |
146 | if (err) | |
adbf05e3 | 147 | return err; |
801c135c | 148 | |
276832d8 AB |
149 | /* |
150 | * Deliberately corrupt the buffer to improve robustness. Indeed, if we | |
151 | * do not do this, the following may happen: | |
152 | * 1. The buffer contains data from previous operation, e.g., read from | |
153 | * another PEB previously. The data looks like expected, e.g., if we | |
154 | * just do not read anything and return - the caller would not | |
155 | * notice this. E.g., if we are reading a VID header, the buffer may | |
156 | * contain a valid VID header from another PEB. | |
157 | * 2. The driver is buggy and returns us success or -EBADMSG or | |
158 | * -EUCLEAN, but it does not actually put any data to the buffer. | |
159 | * | |
160 | * This may confuse UBI or upper layers - they may think the buffer | |
161 | * contains valid data while in fact it is just old data. This is | |
162 | * especially possible because UBI (and UBIFS) relies on CRC, and | |
163 | * treats data as correct even in case of ECC errors if the CRC is | |
164 | * correct. | |
165 | * | |
166 | * Try to prevent this situation by changing the first byte of the | |
167 | * buffer. | |
168 | */ | |
169 | *((uint8_t *)buf) ^= 0xFF; | |
170 | ||
801c135c AB |
171 | addr = (loff_t)pnum * ubi->peb_size + offset; |
172 | retry: | |
329ad399 | 173 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
801c135c | 174 | if (err) { |
d57f4054 | 175 | const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; |
1a49af2c | 176 | |
d57f4054 | 177 | if (mtd_is_bitflip(err)) { |
801c135c AB |
178 | /* |
179 | * -EUCLEAN is reported if there was a bit-flip which | |
180 | * was corrected, so this is harmless. | |
8c1e6ee1 AB |
181 | * |
182 | * We do not report about it here unless debugging is | |
183 | * enabled. A corresponding message will be printed | |
184 | * later, when it is has been scrubbed. | |
801c135c | 185 | */ |
8c1e6ee1 | 186 | dbg_msg("fixable bit-flip detected at PEB %d", pnum); |
801c135c AB |
187 | ubi_assert(len == read); |
188 | return UBI_IO_BITFLIPS; | |
189 | } | |
190 | ||
a87f29cb | 191 | if (retries++ < UBI_IO_RETRIES) { |
feddbb34 AB |
192 | dbg_io("error %d%s while reading %d bytes from PEB " |
193 | "%d:%d, read only %zd bytes, retry", | |
1a49af2c | 194 | err, errstr, len, pnum, offset, read); |
801c135c AB |
195 | yield(); |
196 | goto retry; | |
197 | } | |
198 | ||
f5d5b1f8 | 199 | ubi_err("error %d%s while reading %d bytes from PEB %d:%d, " |
1a49af2c | 200 | "read %zd bytes", err, errstr, len, pnum, offset, read); |
801c135c | 201 | ubi_dbg_dump_stack(); |
2362a53e AB |
202 | |
203 | /* | |
204 | * The driver should never return -EBADMSG if it failed to read | |
205 | * all the requested data. But some buggy drivers might do | |
206 | * this, so we change it to -EIO. | |
207 | */ | |
d57f4054 | 208 | if (read != len && mtd_is_eccerr(err)) { |
2362a53e AB |
209 | ubi_assert(0); |
210 | err = -EIO; | |
211 | } | |
801c135c AB |
212 | } else { |
213 | ubi_assert(len == read); | |
214 | ||
27a0f2a3 | 215 | if (ubi_dbg_is_bitflip(ubi)) { |
c8566350 | 216 | dbg_gen("bit-flip (emulated)"); |
801c135c AB |
217 | err = UBI_IO_BITFLIPS; |
218 | } | |
219 | } | |
220 | ||
221 | return err; | |
222 | } | |
223 | ||
224 | /** | |
225 | * ubi_io_write - write data to a physical eraseblock. | |
226 | * @ubi: UBI device description object | |
227 | * @buf: buffer with the data to write | |
228 | * @pnum: physical eraseblock number to write to | |
229 | * @offset: offset within the physical eraseblock where to write | |
230 | * @len: how many bytes to write | |
231 | * | |
232 | * This function writes @len bytes of data from buffer @buf to offset @offset | |
233 | * of physical eraseblock @pnum. If all the data were successfully written, | |
234 | * zero is returned. If an error occurred, this function returns a negative | |
235 | * error code. If %-EIO is returned, the physical eraseblock most probably went | |
236 | * bad. | |
237 | * | |
238 | * Note, in case of an error, it is possible that something was still written | |
239 | * to the flash media, but may be some garbage. | |
240 | */ | |
e88d6e10 AB |
241 | int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, |
242 | int len) | |
801c135c AB |
243 | { |
244 | int err; | |
245 | size_t written; | |
246 | loff_t addr; | |
247 | ||
248 | dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); | |
249 | ||
250 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
251 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | |
252 | ubi_assert(offset % ubi->hdrs_min_io_size == 0); | |
253 | ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); | |
254 | ||
255 | if (ubi->ro_mode) { | |
256 | ubi_err("read-only mode"); | |
257 | return -EROFS; | |
258 | } | |
259 | ||
260 | /* The below has to be compiled out if paranoid checks are disabled */ | |
261 | ||
262 | err = paranoid_check_not_bad(ubi, pnum); | |
263 | if (err) | |
adbf05e3 | 264 | return err; |
801c135c AB |
265 | |
266 | /* The area we are writing to has to contain all 0xFF bytes */ | |
40a71a87 | 267 | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); |
801c135c | 268 | if (err) |
adbf05e3 | 269 | return err; |
801c135c AB |
270 | |
271 | if (offset >= ubi->leb_start) { | |
272 | /* | |
273 | * We write to the data area of the physical eraseblock. Make | |
274 | * sure it has valid EC and VID headers. | |
275 | */ | |
276 | err = paranoid_check_peb_ec_hdr(ubi, pnum); | |
277 | if (err) | |
adbf05e3 | 278 | return err; |
801c135c AB |
279 | err = paranoid_check_peb_vid_hdr(ubi, pnum); |
280 | if (err) | |
adbf05e3 | 281 | return err; |
801c135c AB |
282 | } |
283 | ||
27a0f2a3 | 284 | if (ubi_dbg_is_write_failure(ubi)) { |
801c135c AB |
285 | dbg_err("cannot write %d bytes to PEB %d:%d " |
286 | "(emulated)", len, pnum, offset); | |
287 | ubi_dbg_dump_stack(); | |
288 | return -EIO; | |
289 | } | |
290 | ||
291 | addr = (loff_t)pnum * ubi->peb_size + offset; | |
eda95cbf | 292 | err = mtd_write(ubi->mtd, addr, len, &written, buf); |
801c135c | 293 | if (err) { |
ebf53f42 AB |
294 | ubi_err("error %d while writing %d bytes to PEB %d:%d, written " |
295 | "%zd bytes", err, len, pnum, offset, written); | |
801c135c | 296 | ubi_dbg_dump_stack(); |
867996b1 | 297 | ubi_dbg_dump_flash(ubi, pnum, offset, len); |
801c135c AB |
298 | } else |
299 | ubi_assert(written == len); | |
300 | ||
6e9065d7 AB |
301 | if (!err) { |
302 | err = ubi_dbg_check_write(ubi, buf, pnum, offset, len); | |
303 | if (err) | |
304 | return err; | |
305 | ||
306 | /* | |
307 | * Since we always write sequentially, the rest of the PEB has | |
308 | * to contain only 0xFF bytes. | |
309 | */ | |
310 | offset += len; | |
311 | len = ubi->peb_size - offset; | |
312 | if (len) | |
313 | err = ubi_dbg_check_all_ff(ubi, pnum, offset, len); | |
314 | } | |
315 | ||
801c135c AB |
316 | return err; |
317 | } | |
318 | ||
319 | /** | |
320 | * erase_callback - MTD erasure call-back. | |
321 | * @ei: MTD erase information object. | |
322 | * | |
323 | * Note, even though MTD erase interface is asynchronous, all the current | |
324 | * implementations are synchronous anyway. | |
325 | */ | |
326 | static void erase_callback(struct erase_info *ei) | |
327 | { | |
328 | wake_up_interruptible((wait_queue_head_t *)ei->priv); | |
329 | } | |
330 | ||
331 | /** | |
332 | * do_sync_erase - synchronously erase a physical eraseblock. | |
333 | * @ubi: UBI device description object | |
334 | * @pnum: the physical eraseblock number to erase | |
335 | * | |
336 | * This function synchronously erases physical eraseblock @pnum and returns | |
337 | * zero in case of success and a negative error code in case of failure. If | |
338 | * %-EIO is returned, the physical eraseblock most probably went bad. | |
339 | */ | |
e88d6e10 | 340 | static int do_sync_erase(struct ubi_device *ubi, int pnum) |
801c135c AB |
341 | { |
342 | int err, retries = 0; | |
343 | struct erase_info ei; | |
344 | wait_queue_head_t wq; | |
345 | ||
346 | dbg_io("erase PEB %d", pnum); | |
3efe5090 AB |
347 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
348 | ||
349 | if (ubi->ro_mode) { | |
350 | ubi_err("read-only mode"); | |
351 | return -EROFS; | |
352 | } | |
801c135c AB |
353 | |
354 | retry: | |
355 | init_waitqueue_head(&wq); | |
356 | memset(&ei, 0, sizeof(struct erase_info)); | |
357 | ||
358 | ei.mtd = ubi->mtd; | |
2f176f79 | 359 | ei.addr = (loff_t)pnum * ubi->peb_size; |
801c135c AB |
360 | ei.len = ubi->peb_size; |
361 | ei.callback = erase_callback; | |
362 | ei.priv = (unsigned long)&wq; | |
363 | ||
7e1f0dc0 | 364 | err = mtd_erase(ubi->mtd, &ei); |
801c135c AB |
365 | if (err) { |
366 | if (retries++ < UBI_IO_RETRIES) { | |
367 | dbg_io("error %d while erasing PEB %d, retry", | |
368 | err, pnum); | |
369 | yield(); | |
370 | goto retry; | |
371 | } | |
372 | ubi_err("cannot erase PEB %d, error %d", pnum, err); | |
373 | ubi_dbg_dump_stack(); | |
374 | return err; | |
375 | } | |
376 | ||
377 | err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || | |
378 | ei.state == MTD_ERASE_FAILED); | |
379 | if (err) { | |
380 | ubi_err("interrupted PEB %d erasure", pnum); | |
381 | return -EINTR; | |
382 | } | |
383 | ||
384 | if (ei.state == MTD_ERASE_FAILED) { | |
385 | if (retries++ < UBI_IO_RETRIES) { | |
386 | dbg_io("error while erasing PEB %d, retry", pnum); | |
387 | yield(); | |
388 | goto retry; | |
389 | } | |
390 | ubi_err("cannot erase PEB %d", pnum); | |
391 | ubi_dbg_dump_stack(); | |
392 | return -EIO; | |
393 | } | |
394 | ||
40a71a87 | 395 | err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size); |
801c135c | 396 | if (err) |
adbf05e3 | 397 | return err; |
801c135c | 398 | |
27a0f2a3 | 399 | if (ubi_dbg_is_erase_failure(ubi)) { |
801c135c AB |
400 | dbg_err("cannot erase PEB %d (emulated)", pnum); |
401 | return -EIO; | |
402 | } | |
403 | ||
404 | return 0; | |
405 | } | |
406 | ||
801c135c AB |
407 | /* Patterns to write to a physical eraseblock when torturing it */ |
408 | static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; | |
409 | ||
410 | /** | |
411 | * torture_peb - test a supposedly bad physical eraseblock. | |
412 | * @ubi: UBI device description object | |
413 | * @pnum: the physical eraseblock number to test | |
414 | * | |
415 | * This function returns %-EIO if the physical eraseblock did not pass the | |
416 | * test, a positive number of erase operations done if the test was | |
417 | * successfully passed, and other negative error codes in case of other errors. | |
418 | */ | |
e88d6e10 | 419 | static int torture_peb(struct ubi_device *ubi, int pnum) |
801c135c | 420 | { |
801c135c AB |
421 | int err, i, patt_count; |
422 | ||
8c1e6ee1 | 423 | ubi_msg("run torture test for PEB %d", pnum); |
801c135c AB |
424 | patt_count = ARRAY_SIZE(patterns); |
425 | ubi_assert(patt_count > 0); | |
426 | ||
e88d6e10 | 427 | mutex_lock(&ubi->buf_mutex); |
801c135c AB |
428 | for (i = 0; i < patt_count; i++) { |
429 | err = do_sync_erase(ubi, pnum); | |
430 | if (err) | |
431 | goto out; | |
432 | ||
433 | /* Make sure the PEB contains only 0xFF bytes */ | |
e88d6e10 | 434 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); |
801c135c AB |
435 | if (err) |
436 | goto out; | |
437 | ||
bb00e180 | 438 | err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); |
801c135c AB |
439 | if (err == 0) { |
440 | ubi_err("erased PEB %d, but a non-0xFF byte found", | |
441 | pnum); | |
442 | err = -EIO; | |
443 | goto out; | |
444 | } | |
445 | ||
446 | /* Write a pattern and check it */ | |
e88d6e10 AB |
447 | memset(ubi->peb_buf1, patterns[i], ubi->peb_size); |
448 | err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); | |
801c135c AB |
449 | if (err) |
450 | goto out; | |
451 | ||
e88d6e10 AB |
452 | memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); |
453 | err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); | |
801c135c AB |
454 | if (err) |
455 | goto out; | |
456 | ||
bb00e180 AB |
457 | err = ubi_check_pattern(ubi->peb_buf1, patterns[i], |
458 | ubi->peb_size); | |
801c135c AB |
459 | if (err == 0) { |
460 | ubi_err("pattern %x checking failed for PEB %d", | |
461 | patterns[i], pnum); | |
462 | err = -EIO; | |
463 | goto out; | |
464 | } | |
465 | } | |
466 | ||
467 | err = patt_count; | |
14264144 | 468 | ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum); |
801c135c AB |
469 | |
470 | out: | |
e88d6e10 | 471 | mutex_unlock(&ubi->buf_mutex); |
d57f4054 | 472 | if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { |
801c135c AB |
473 | /* |
474 | * If a bit-flip or data integrity error was detected, the test | |
475 | * has not passed because it happened on a freshly erased | |
476 | * physical eraseblock which means something is wrong with it. | |
477 | */ | |
8d2d4011 AB |
478 | ubi_err("read problems on freshly erased PEB %d, must be bad", |
479 | pnum); | |
801c135c | 480 | err = -EIO; |
8d2d4011 | 481 | } |
801c135c AB |
482 | return err; |
483 | } | |
484 | ||
ebf53f42 AB |
485 | /** |
486 | * nor_erase_prepare - prepare a NOR flash PEB for erasure. | |
487 | * @ubi: UBI device description object | |
488 | * @pnum: physical eraseblock number to prepare | |
489 | * | |
490 | * NOR flash, or at least some of them, have peculiar embedded PEB erasure | |
491 | * algorithm: the PEB is first filled with zeroes, then it is erased. And | |
492 | * filling with zeroes starts from the end of the PEB. This was observed with | |
493 | * Spansion S29GL512N NOR flash. | |
494 | * | |
495 | * This means that in case of a power cut we may end up with intact data at the | |
496 | * beginning of the PEB, and all zeroes at the end of PEB. In other words, the | |
497 | * EC and VID headers are OK, but a large chunk of data at the end of PEB is | |
498 | * zeroed. This makes UBI mistakenly treat this PEB as used and associate it | |
499 | * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). | |
500 | * | |
501 | * This function is called before erasing NOR PEBs and it zeroes out EC and VID | |
502 | * magic numbers in order to invalidate them and prevent the failures. Returns | |
503 | * zero in case of success and a negative error code in case of failure. | |
504 | */ | |
505 | static int nor_erase_prepare(struct ubi_device *ubi, int pnum) | |
506 | { | |
de75c771 | 507 | int err, err1; |
ebf53f42 AB |
508 | size_t written; |
509 | loff_t addr; | |
510 | uint32_t data = 0; | |
2fff570e AB |
511 | /* |
512 | * Note, we cannot generally define VID header buffers on stack, | |
513 | * because of the way we deal with these buffers (see the header | |
514 | * comment in this file). But we know this is a NOR-specific piece of | |
515 | * code, so we can do this. But yes, this is error-prone and we should | |
516 | * (pre-)allocate VID header buffer instead. | |
517 | */ | |
de75c771 | 518 | struct ubi_vid_hdr vid_hdr; |
ebf53f42 | 519 | |
7ac760c2 AB |
520 | /* |
521 | * It is important to first invalidate the EC header, and then the VID | |
522 | * header. Otherwise a power cut may lead to valid EC header and | |
523 | * invalid VID header, in which case UBI will treat this PEB as | |
524 | * corrupted and will try to preserve it, and print scary warnings (see | |
525 | * the header comment in scan.c for more information). | |
526 | */ | |
527 | addr = (loff_t)pnum * ubi->peb_size; | |
eda95cbf | 528 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
de75c771 | 529 | if (!err) { |
7ac760c2 | 530 | addr += ubi->vid_hdr_aloffset; |
eda95cbf | 531 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); |
de75c771 AB |
532 | if (!err) |
533 | return 0; | |
ebf53f42 AB |
534 | } |
535 | ||
de75c771 AB |
536 | /* |
537 | * We failed to write to the media. This was observed with Spansion | |
7ac760c2 AB |
538 | * S29GL512N NOR flash. Most probably the previously eraseblock erasure |
539 | * was interrupted at a very inappropriate moment, so it became | |
540 | * unwritable. In this case we probably anyway have garbage in this | |
541 | * PEB. | |
de75c771 AB |
542 | */ |
543 | err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); | |
d4c63813 HB |
544 | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
545 | err1 == UBI_IO_FF) { | |
7ac760c2 AB |
546 | struct ubi_ec_hdr ec_hdr; |
547 | ||
548 | err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); | |
d4c63813 HB |
549 | if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR || |
550 | err1 == UBI_IO_FF) | |
7ac760c2 AB |
551 | /* |
552 | * Both VID and EC headers are corrupted, so we can | |
553 | * safely erase this PEB and not afraid that it will be | |
554 | * treated as a valid PEB in case of an unclean reboot. | |
555 | */ | |
556 | return 0; | |
557 | } | |
de75c771 AB |
558 | |
559 | /* | |
560 | * The PEB contains a valid VID header, but we cannot invalidate it. | |
561 | * Supposedly the flash media or the driver is screwed up, so return an | |
562 | * error. | |
563 | */ | |
564 | ubi_err("cannot invalidate PEB %d, write returned %d read returned %d", | |
565 | pnum, err, err1); | |
566 | ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size); | |
567 | return -EIO; | |
ebf53f42 AB |
568 | } |
569 | ||
801c135c AB |
570 | /** |
571 | * ubi_io_sync_erase - synchronously erase a physical eraseblock. | |
572 | * @ubi: UBI device description object | |
573 | * @pnum: physical eraseblock number to erase | |
574 | * @torture: if this physical eraseblock has to be tortured | |
575 | * | |
576 | * This function synchronously erases physical eraseblock @pnum. If @torture | |
577 | * flag is not zero, the physical eraseblock is checked by means of writing | |
578 | * different patterns to it and reading them back. If the torturing is enabled, | |
025dfdaf | 579 | * the physical eraseblock is erased more than once. |
801c135c AB |
580 | * |
581 | * This function returns the number of erasures made in case of success, %-EIO | |
582 | * if the erasure failed or the torturing test failed, and other negative error | |
583 | * codes in case of other errors. Note, %-EIO means that the physical | |
584 | * eraseblock is bad. | |
585 | */ | |
e88d6e10 | 586 | int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) |
801c135c AB |
587 | { |
588 | int err, ret = 0; | |
589 | ||
590 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
591 | ||
592 | err = paranoid_check_not_bad(ubi, pnum); | |
593 | if (err != 0) | |
adbf05e3 | 594 | return err; |
801c135c AB |
595 | |
596 | if (ubi->ro_mode) { | |
597 | ubi_err("read-only mode"); | |
598 | return -EROFS; | |
599 | } | |
600 | ||
ebf53f42 AB |
601 | if (ubi->nor_flash) { |
602 | err = nor_erase_prepare(ubi, pnum); | |
603 | if (err) | |
604 | return err; | |
605 | } | |
606 | ||
801c135c AB |
607 | if (torture) { |
608 | ret = torture_peb(ubi, pnum); | |
609 | if (ret < 0) | |
610 | return ret; | |
611 | } | |
612 | ||
613 | err = do_sync_erase(ubi, pnum); | |
614 | if (err) | |
615 | return err; | |
616 | ||
617 | return ret + 1; | |
618 | } | |
619 | ||
620 | /** | |
621 | * ubi_io_is_bad - check if a physical eraseblock is bad. | |
622 | * @ubi: UBI device description object | |
623 | * @pnum: the physical eraseblock number to check | |
624 | * | |
625 | * This function returns a positive number if the physical eraseblock is bad, | |
626 | * zero if not, and a negative error code if an error occurred. | |
627 | */ | |
628 | int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) | |
629 | { | |
630 | struct mtd_info *mtd = ubi->mtd; | |
631 | ||
632 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
633 | ||
634 | if (ubi->bad_allowed) { | |
635 | int ret; | |
636 | ||
7086c19d | 637 | ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); |
801c135c AB |
638 | if (ret < 0) |
639 | ubi_err("error %d while checking if PEB %d is bad", | |
640 | ret, pnum); | |
641 | else if (ret) | |
642 | dbg_io("PEB %d is bad", pnum); | |
643 | return ret; | |
644 | } | |
645 | ||
646 | return 0; | |
647 | } | |
648 | ||
649 | /** | |
650 | * ubi_io_mark_bad - mark a physical eraseblock as bad. | |
651 | * @ubi: UBI device description object | |
652 | * @pnum: the physical eraseblock number to mark | |
653 | * | |
654 | * This function returns zero in case of success and a negative error code in | |
655 | * case of failure. | |
656 | */ | |
657 | int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) | |
658 | { | |
659 | int err; | |
660 | struct mtd_info *mtd = ubi->mtd; | |
661 | ||
662 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
663 | ||
664 | if (ubi->ro_mode) { | |
665 | ubi_err("read-only mode"); | |
666 | return -EROFS; | |
667 | } | |
668 | ||
669 | if (!ubi->bad_allowed) | |
670 | return 0; | |
671 | ||
5942ddbc | 672 | err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); |
801c135c AB |
673 | if (err) |
674 | ubi_err("cannot mark PEB %d bad, error %d", pnum, err); | |
675 | return err; | |
676 | } | |
677 | ||
678 | /** | |
679 | * validate_ec_hdr - validate an erase counter header. | |
680 | * @ubi: UBI device description object | |
681 | * @ec_hdr: the erase counter header to check | |
682 | * | |
683 | * This function returns zero if the erase counter header is OK, and %1 if | |
684 | * not. | |
685 | */ | |
fe96efc1 | 686 | static int validate_ec_hdr(const struct ubi_device *ubi, |
801c135c AB |
687 | const struct ubi_ec_hdr *ec_hdr) |
688 | { | |
689 | long long ec; | |
fe96efc1 | 690 | int vid_hdr_offset, leb_start; |
801c135c | 691 | |
3261ebd7 CH |
692 | ec = be64_to_cpu(ec_hdr->ec); |
693 | vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); | |
694 | leb_start = be32_to_cpu(ec_hdr->data_offset); | |
801c135c AB |
695 | |
696 | if (ec_hdr->version != UBI_VERSION) { | |
697 | ubi_err("node with incompatible UBI version found: " | |
698 | "this UBI version is %d, image version is %d", | |
699 | UBI_VERSION, (int)ec_hdr->version); | |
700 | goto bad; | |
701 | } | |
702 | ||
703 | if (vid_hdr_offset != ubi->vid_hdr_offset) { | |
704 | ubi_err("bad VID header offset %d, expected %d", | |
705 | vid_hdr_offset, ubi->vid_hdr_offset); | |
706 | goto bad; | |
707 | } | |
708 | ||
709 | if (leb_start != ubi->leb_start) { | |
710 | ubi_err("bad data offset %d, expected %d", | |
711 | leb_start, ubi->leb_start); | |
712 | goto bad; | |
713 | } | |
714 | ||
715 | if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { | |
716 | ubi_err("bad erase counter %lld", ec); | |
717 | goto bad; | |
718 | } | |
719 | ||
720 | return 0; | |
721 | ||
722 | bad: | |
723 | ubi_err("bad EC header"); | |
724 | ubi_dbg_dump_ec_hdr(ec_hdr); | |
725 | ubi_dbg_dump_stack(); | |
726 | return 1; | |
727 | } | |
728 | ||
729 | /** | |
730 | * ubi_io_read_ec_hdr - read and check an erase counter header. | |
731 | * @ubi: UBI device description object | |
732 | * @pnum: physical eraseblock to read from | |
733 | * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter | |
734 | * header | |
735 | * @verbose: be verbose if the header is corrupted or was not found | |
736 | * | |
737 | * This function reads erase counter header from physical eraseblock @pnum and | |
738 | * stores it in @ec_hdr. This function also checks CRC checksum of the read | |
739 | * erase counter header. The following codes may be returned: | |
740 | * | |
741 | * o %0 if the CRC checksum is correct and the header was successfully read; | |
742 | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected | |
743 | * and corrected by the flash driver; this is harmless but may indicate that | |
744 | * this eraseblock may become bad soon (but may be not); | |
786d7831 | 745 | * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); |
756e1df1 AB |
746 | * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was |
747 | * a data integrity error (uncorrectable ECC error in case of NAND); | |
74d82d26 | 748 | * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) |
801c135c AB |
749 | * o a negative error code in case of failure. |
750 | */ | |
e88d6e10 | 751 | int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, |
801c135c AB |
752 | struct ubi_ec_hdr *ec_hdr, int verbose) |
753 | { | |
92e1a7d9 | 754 | int err, read_err; |
801c135c AB |
755 | uint32_t crc, magic, hdr_crc; |
756 | ||
757 | dbg_io("read EC header from PEB %d", pnum); | |
758 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
759 | ||
92e1a7d9 AB |
760 | read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
761 | if (read_err) { | |
d57f4054 | 762 | if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
92e1a7d9 | 763 | return read_err; |
801c135c AB |
764 | |
765 | /* | |
766 | * We read all the data, but either a correctable bit-flip | |
756e1df1 AB |
767 | * occurred, or MTD reported a data integrity error |
768 | * (uncorrectable ECC error in case of NAND). The former is | |
769 | * harmless, the later may mean that the read data is | |
770 | * corrupted. But we have a CRC check-sum and we will detect | |
771 | * this. If the EC header is still OK, we just report this as | |
772 | * there was a bit-flip, to force scrubbing. | |
801c135c | 773 | */ |
801c135c AB |
774 | } |
775 | ||
3261ebd7 | 776 | magic = be32_to_cpu(ec_hdr->magic); |
801c135c | 777 | if (magic != UBI_EC_HDR_MAGIC) { |
d57f4054 | 778 | if (mtd_is_eccerr(read_err)) |
92e1a7d9 | 779 | return UBI_IO_BAD_HDR_EBADMSG; |
eb89580e | 780 | |
801c135c AB |
781 | /* |
782 | * The magic field is wrong. Let's check if we have read all | |
783 | * 0xFF. If yes, this physical eraseblock is assumed to be | |
784 | * empty. | |
801c135c | 785 | */ |
bb00e180 | 786 | if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { |
801c135c | 787 | /* The physical eraseblock is supposedly empty */ |
801c135c AB |
788 | if (verbose) |
789 | ubi_warn("no EC header found at PEB %d, " | |
790 | "only 0xFF bytes", pnum); | |
6f9fdf62 AB |
791 | dbg_bld("no EC header found at PEB %d, " |
792 | "only 0xFF bytes", pnum); | |
92e1a7d9 AB |
793 | if (!read_err) |
794 | return UBI_IO_FF; | |
795 | else | |
796 | return UBI_IO_FF_BITFLIPS; | |
801c135c AB |
797 | } |
798 | ||
799 | /* | |
800 | * This is not a valid erase counter header, and these are not | |
801 | * 0xFF bytes. Report that the header is corrupted. | |
802 | */ | |
803 | if (verbose) { | |
804 | ubi_warn("bad magic number at PEB %d: %08x instead of " | |
805 | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); | |
806 | ubi_dbg_dump_ec_hdr(ec_hdr); | |
6f9fdf62 AB |
807 | } |
808 | dbg_bld("bad magic number at PEB %d: %08x instead of " | |
809 | "%08x", pnum, magic, UBI_EC_HDR_MAGIC); | |
786d7831 | 810 | return UBI_IO_BAD_HDR; |
801c135c AB |
811 | } |
812 | ||
813 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | |
3261ebd7 | 814 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
801c135c AB |
815 | |
816 | if (hdr_crc != crc) { | |
817 | if (verbose) { | |
9c9ec147 AB |
818 | ubi_warn("bad EC header CRC at PEB %d, calculated " |
819 | "%#08x, read %#08x", pnum, crc, hdr_crc); | |
801c135c | 820 | ubi_dbg_dump_ec_hdr(ec_hdr); |
6f9fdf62 AB |
821 | } |
822 | dbg_bld("bad EC header CRC at PEB %d, calculated " | |
823 | "%#08x, read %#08x", pnum, crc, hdr_crc); | |
92e1a7d9 AB |
824 | |
825 | if (!read_err) | |
826 | return UBI_IO_BAD_HDR; | |
827 | else | |
828 | return UBI_IO_BAD_HDR_EBADMSG; | |
801c135c AB |
829 | } |
830 | ||
831 | /* And of course validate what has just been read from the media */ | |
832 | err = validate_ec_hdr(ubi, ec_hdr); | |
833 | if (err) { | |
834 | ubi_err("validation failed for PEB %d", pnum); | |
835 | return -EINVAL; | |
836 | } | |
837 | ||
eb89580e AB |
838 | /* |
839 | * If there was %-EBADMSG, but the header CRC is still OK, report about | |
840 | * a bit-flip to force scrubbing on this PEB. | |
841 | */ | |
801c135c AB |
842 | return read_err ? UBI_IO_BITFLIPS : 0; |
843 | } | |
844 | ||
845 | /** | |
846 | * ubi_io_write_ec_hdr - write an erase counter header. | |
847 | * @ubi: UBI device description object | |
848 | * @pnum: physical eraseblock to write to | |
849 | * @ec_hdr: the erase counter header to write | |
850 | * | |
851 | * This function writes erase counter header described by @ec_hdr to physical | |
852 | * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so | |
853 | * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec | |
854 | * field. | |
855 | * | |
856 | * This function returns zero in case of success and a negative error code in | |
857 | * case of failure. If %-EIO is returned, the physical eraseblock most probably | |
858 | * went bad. | |
859 | */ | |
e88d6e10 | 860 | int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, |
801c135c AB |
861 | struct ubi_ec_hdr *ec_hdr) |
862 | { | |
863 | int err; | |
864 | uint32_t crc; | |
865 | ||
866 | dbg_io("write EC header to PEB %d", pnum); | |
867 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
868 | ||
3261ebd7 | 869 | ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); |
801c135c | 870 | ec_hdr->version = UBI_VERSION; |
3261ebd7 CH |
871 | ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); |
872 | ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); | |
0c6c7fa1 | 873 | ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); |
801c135c | 874 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
3261ebd7 | 875 | ec_hdr->hdr_crc = cpu_to_be32(crc); |
801c135c AB |
876 | |
877 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); | |
878 | if (err) | |
adbf05e3 | 879 | return err; |
801c135c AB |
880 | |
881 | err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); | |
882 | return err; | |
883 | } | |
884 | ||
885 | /** | |
886 | * validate_vid_hdr - validate a volume identifier header. | |
887 | * @ubi: UBI device description object | |
888 | * @vid_hdr: the volume identifier header to check | |
889 | * | |
890 | * This function checks that data stored in the volume identifier header | |
891 | * @vid_hdr. Returns zero if the VID header is OK and %1 if not. | |
892 | */ | |
893 | static int validate_vid_hdr(const struct ubi_device *ubi, | |
894 | const struct ubi_vid_hdr *vid_hdr) | |
895 | { | |
896 | int vol_type = vid_hdr->vol_type; | |
897 | int copy_flag = vid_hdr->copy_flag; | |
3261ebd7 CH |
898 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
899 | int lnum = be32_to_cpu(vid_hdr->lnum); | |
801c135c | 900 | int compat = vid_hdr->compat; |
3261ebd7 CH |
901 | int data_size = be32_to_cpu(vid_hdr->data_size); |
902 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | |
903 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | |
904 | int data_crc = be32_to_cpu(vid_hdr->data_crc); | |
801c135c AB |
905 | int usable_leb_size = ubi->leb_size - data_pad; |
906 | ||
907 | if (copy_flag != 0 && copy_flag != 1) { | |
908 | dbg_err("bad copy_flag"); | |
909 | goto bad; | |
910 | } | |
911 | ||
912 | if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || | |
913 | data_pad < 0) { | |
914 | dbg_err("negative values"); | |
915 | goto bad; | |
916 | } | |
917 | ||
918 | if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { | |
919 | dbg_err("bad vol_id"); | |
920 | goto bad; | |
921 | } | |
922 | ||
923 | if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { | |
924 | dbg_err("bad compat"); | |
925 | goto bad; | |
926 | } | |
927 | ||
928 | if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && | |
929 | compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && | |
930 | compat != UBI_COMPAT_REJECT) { | |
931 | dbg_err("bad compat"); | |
932 | goto bad; | |
933 | } | |
934 | ||
935 | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { | |
936 | dbg_err("bad vol_type"); | |
937 | goto bad; | |
938 | } | |
939 | ||
940 | if (data_pad >= ubi->leb_size / 2) { | |
941 | dbg_err("bad data_pad"); | |
942 | goto bad; | |
943 | } | |
944 | ||
945 | if (vol_type == UBI_VID_STATIC) { | |
946 | /* | |
947 | * Although from high-level point of view static volumes may | |
948 | * contain zero bytes of data, but no VID headers can contain | |
949 | * zero at these fields, because they empty volumes do not have | |
950 | * mapped logical eraseblocks. | |
951 | */ | |
952 | if (used_ebs == 0) { | |
953 | dbg_err("zero used_ebs"); | |
954 | goto bad; | |
955 | } | |
956 | if (data_size == 0) { | |
957 | dbg_err("zero data_size"); | |
958 | goto bad; | |
959 | } | |
960 | if (lnum < used_ebs - 1) { | |
961 | if (data_size != usable_leb_size) { | |
962 | dbg_err("bad data_size"); | |
963 | goto bad; | |
964 | } | |
965 | } else if (lnum == used_ebs - 1) { | |
966 | if (data_size == 0) { | |
967 | dbg_err("bad data_size at last LEB"); | |
968 | goto bad; | |
969 | } | |
970 | } else { | |
971 | dbg_err("too high lnum"); | |
972 | goto bad; | |
973 | } | |
974 | } else { | |
975 | if (copy_flag == 0) { | |
976 | if (data_crc != 0) { | |
977 | dbg_err("non-zero data CRC"); | |
978 | goto bad; | |
979 | } | |
980 | if (data_size != 0) { | |
981 | dbg_err("non-zero data_size"); | |
982 | goto bad; | |
983 | } | |
984 | } else { | |
985 | if (data_size == 0) { | |
986 | dbg_err("zero data_size of copy"); | |
987 | goto bad; | |
988 | } | |
989 | } | |
990 | if (used_ebs != 0) { | |
991 | dbg_err("bad used_ebs"); | |
992 | goto bad; | |
993 | } | |
994 | } | |
995 | ||
996 | return 0; | |
997 | ||
998 | bad: | |
999 | ubi_err("bad VID header"); | |
1000 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
1001 | ubi_dbg_dump_stack(); | |
1002 | return 1; | |
1003 | } | |
1004 | ||
1005 | /** | |
1006 | * ubi_io_read_vid_hdr - read and check a volume identifier header. | |
1007 | * @ubi: UBI device description object | |
1008 | * @pnum: physical eraseblock number to read from | |
1009 | * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume | |
1010 | * identifier header | |
1011 | * @verbose: be verbose if the header is corrupted or wasn't found | |
1012 | * | |
1013 | * This function reads the volume identifier header from physical eraseblock | |
1014 | * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read | |
74d82d26 AB |
1015 | * volume identifier header. The error codes are the same as in |
1016 | * 'ubi_io_read_ec_hdr()'. | |
801c135c | 1017 | * |
74d82d26 AB |
1018 | * Note, the implementation of this function is also very similar to |
1019 | * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. | |
801c135c | 1020 | */ |
e88d6e10 | 1021 | int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, |
801c135c AB |
1022 | struct ubi_vid_hdr *vid_hdr, int verbose) |
1023 | { | |
92e1a7d9 | 1024 | int err, read_err; |
801c135c AB |
1025 | uint32_t crc, magic, hdr_crc; |
1026 | void *p; | |
1027 | ||
1028 | dbg_io("read VID header from PEB %d", pnum); | |
1029 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
1030 | ||
1031 | p = (char *)vid_hdr - ubi->vid_hdr_shift; | |
92e1a7d9 | 1032 | read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
801c135c | 1033 | ubi->vid_hdr_alsize); |
d57f4054 | 1034 | if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
92e1a7d9 | 1035 | return read_err; |
801c135c | 1036 | |
3261ebd7 | 1037 | magic = be32_to_cpu(vid_hdr->magic); |
801c135c | 1038 | if (magic != UBI_VID_HDR_MAGIC) { |
d57f4054 | 1039 | if (mtd_is_eccerr(read_err)) |
92e1a7d9 | 1040 | return UBI_IO_BAD_HDR_EBADMSG; |
eb89580e | 1041 | |
bb00e180 | 1042 | if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { |
801c135c AB |
1043 | if (verbose) |
1044 | ubi_warn("no VID header found at PEB %d, " | |
1045 | "only 0xFF bytes", pnum); | |
6f9fdf62 AB |
1046 | dbg_bld("no VID header found at PEB %d, " |
1047 | "only 0xFF bytes", pnum); | |
92e1a7d9 AB |
1048 | if (!read_err) |
1049 | return UBI_IO_FF; | |
1050 | else | |
1051 | return UBI_IO_FF_BITFLIPS; | |
801c135c AB |
1052 | } |
1053 | ||
801c135c AB |
1054 | if (verbose) { |
1055 | ubi_warn("bad magic number at PEB %d: %08x instead of " | |
1056 | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); | |
1057 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
6f9fdf62 AB |
1058 | } |
1059 | dbg_bld("bad magic number at PEB %d: %08x instead of " | |
1060 | "%08x", pnum, magic, UBI_VID_HDR_MAGIC); | |
786d7831 | 1061 | return UBI_IO_BAD_HDR; |
801c135c AB |
1062 | } |
1063 | ||
1064 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | |
3261ebd7 | 1065 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
801c135c AB |
1066 | |
1067 | if (hdr_crc != crc) { | |
1068 | if (verbose) { | |
1069 | ubi_warn("bad CRC at PEB %d, calculated %#08x, " | |
1070 | "read %#08x", pnum, crc, hdr_crc); | |
1071 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
6f9fdf62 AB |
1072 | } |
1073 | dbg_bld("bad CRC at PEB %d, calculated %#08x, " | |
1074 | "read %#08x", pnum, crc, hdr_crc); | |
92e1a7d9 AB |
1075 | if (!read_err) |
1076 | return UBI_IO_BAD_HDR; | |
1077 | else | |
1078 | return UBI_IO_BAD_HDR_EBADMSG; | |
801c135c AB |
1079 | } |
1080 | ||
801c135c AB |
1081 | err = validate_vid_hdr(ubi, vid_hdr); |
1082 | if (err) { | |
1083 | ubi_err("validation failed for PEB %d", pnum); | |
1084 | return -EINVAL; | |
1085 | } | |
1086 | ||
1087 | return read_err ? UBI_IO_BITFLIPS : 0; | |
1088 | } | |
1089 | ||
1090 | /** | |
1091 | * ubi_io_write_vid_hdr - write a volume identifier header. | |
1092 | * @ubi: UBI device description object | |
1093 | * @pnum: the physical eraseblock number to write to | |
1094 | * @vid_hdr: the volume identifier header to write | |
1095 | * | |
1096 | * This function writes the volume identifier header described by @vid_hdr to | |
1097 | * physical eraseblock @pnum. This function automatically fills the | |
1098 | * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates | |
1099 | * header CRC checksum and stores it at vid_hdr->hdr_crc. | |
1100 | * | |
1101 | * This function returns zero in case of success and a negative error code in | |
1102 | * case of failure. If %-EIO is returned, the physical eraseblock probably went | |
1103 | * bad. | |
1104 | */ | |
e88d6e10 | 1105 | int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, |
801c135c AB |
1106 | struct ubi_vid_hdr *vid_hdr) |
1107 | { | |
1108 | int err; | |
1109 | uint32_t crc; | |
1110 | void *p; | |
1111 | ||
1112 | dbg_io("write VID header to PEB %d", pnum); | |
1113 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
1114 | ||
1115 | err = paranoid_check_peb_ec_hdr(ubi, pnum); | |
1116 | if (err) | |
adbf05e3 | 1117 | return err; |
801c135c | 1118 | |
3261ebd7 | 1119 | vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); |
801c135c AB |
1120 | vid_hdr->version = UBI_VERSION; |
1121 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | |
3261ebd7 | 1122 | vid_hdr->hdr_crc = cpu_to_be32(crc); |
801c135c AB |
1123 | |
1124 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); | |
1125 | if (err) | |
adbf05e3 | 1126 | return err; |
801c135c AB |
1127 | |
1128 | p = (char *)vid_hdr - ubi->vid_hdr_shift; | |
1129 | err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, | |
1130 | ubi->vid_hdr_alsize); | |
1131 | return err; | |
1132 | } | |
1133 | ||
92d124f5 | 1134 | #ifdef CONFIG_MTD_UBI_DEBUG |
801c135c AB |
1135 | |
1136 | /** | |
1137 | * paranoid_check_not_bad - ensure that a physical eraseblock is not bad. | |
1138 | * @ubi: UBI device description object | |
1139 | * @pnum: physical eraseblock number to check | |
1140 | * | |
adbf05e3 AB |
1141 | * This function returns zero if the physical eraseblock is good, %-EINVAL if |
1142 | * it is bad and a negative error code if an error occurred. | |
801c135c AB |
1143 | */ |
1144 | static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum) | |
1145 | { | |
1146 | int err; | |
1147 | ||
2a734bb8 | 1148 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1149 | return 0; |
1150 | ||
801c135c AB |
1151 | err = ubi_io_is_bad(ubi, pnum); |
1152 | if (!err) | |
1153 | return err; | |
1154 | ||
1155 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1156 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1157 | return err > 0 ? -EINVAL : err; |
801c135c AB |
1158 | } |
1159 | ||
1160 | /** | |
1161 | * paranoid_check_ec_hdr - check if an erase counter header is all right. | |
1162 | * @ubi: UBI device description object | |
1163 | * @pnum: physical eraseblock number the erase counter header belongs to | |
1164 | * @ec_hdr: the erase counter header to check | |
1165 | * | |
1166 | * This function returns zero if the erase counter header contains valid | |
adbf05e3 | 1167 | * values, and %-EINVAL if not. |
801c135c AB |
1168 | */ |
1169 | static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum, | |
1170 | const struct ubi_ec_hdr *ec_hdr) | |
1171 | { | |
1172 | int err; | |
1173 | uint32_t magic; | |
1174 | ||
2a734bb8 | 1175 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1176 | return 0; |
1177 | ||
3261ebd7 | 1178 | magic = be32_to_cpu(ec_hdr->magic); |
801c135c AB |
1179 | if (magic != UBI_EC_HDR_MAGIC) { |
1180 | ubi_err("bad magic %#08x, must be %#08x", | |
1181 | magic, UBI_EC_HDR_MAGIC); | |
1182 | goto fail; | |
1183 | } | |
1184 | ||
1185 | err = validate_ec_hdr(ubi, ec_hdr); | |
1186 | if (err) { | |
1187 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1188 | goto fail; | |
1189 | } | |
1190 | ||
1191 | return 0; | |
1192 | ||
1193 | fail: | |
1194 | ubi_dbg_dump_ec_hdr(ec_hdr); | |
1195 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1196 | return -EINVAL; |
801c135c AB |
1197 | } |
1198 | ||
1199 | /** | |
ebaaf1af | 1200 | * paranoid_check_peb_ec_hdr - check erase counter header. |
801c135c AB |
1201 | * @ubi: UBI device description object |
1202 | * @pnum: the physical eraseblock number to check | |
1203 | * | |
adbf05e3 AB |
1204 | * This function returns zero if the erase counter header is all right and and |
1205 | * a negative error code if not or if an error occurred. | |
801c135c AB |
1206 | */ |
1207 | static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) | |
1208 | { | |
1209 | int err; | |
1210 | uint32_t crc, hdr_crc; | |
1211 | struct ubi_ec_hdr *ec_hdr; | |
1212 | ||
2a734bb8 | 1213 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1214 | return 0; |
1215 | ||
33818bbb | 1216 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
801c135c AB |
1217 | if (!ec_hdr) |
1218 | return -ENOMEM; | |
1219 | ||
1220 | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); | |
d57f4054 | 1221 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
801c135c AB |
1222 | goto exit; |
1223 | ||
1224 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | |
3261ebd7 | 1225 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); |
801c135c AB |
1226 | if (hdr_crc != crc) { |
1227 | ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc); | |
1228 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1229 | ubi_dbg_dump_ec_hdr(ec_hdr); | |
1230 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1231 | err = -EINVAL; |
801c135c AB |
1232 | goto exit; |
1233 | } | |
1234 | ||
1235 | err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr); | |
1236 | ||
1237 | exit: | |
1238 | kfree(ec_hdr); | |
1239 | return err; | |
1240 | } | |
1241 | ||
1242 | /** | |
1243 | * paranoid_check_vid_hdr - check that a volume identifier header is all right. | |
1244 | * @ubi: UBI device description object | |
1245 | * @pnum: physical eraseblock number the volume identifier header belongs to | |
1246 | * @vid_hdr: the volume identifier header to check | |
1247 | * | |
1248 | * This function returns zero if the volume identifier header is all right, and | |
adbf05e3 | 1249 | * %-EINVAL if not. |
801c135c AB |
1250 | */ |
1251 | static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum, | |
1252 | const struct ubi_vid_hdr *vid_hdr) | |
1253 | { | |
1254 | int err; | |
1255 | uint32_t magic; | |
1256 | ||
2a734bb8 | 1257 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1258 | return 0; |
1259 | ||
3261ebd7 | 1260 | magic = be32_to_cpu(vid_hdr->magic); |
801c135c AB |
1261 | if (magic != UBI_VID_HDR_MAGIC) { |
1262 | ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x", | |
1263 | magic, pnum, UBI_VID_HDR_MAGIC); | |
1264 | goto fail; | |
1265 | } | |
1266 | ||
1267 | err = validate_vid_hdr(ubi, vid_hdr); | |
1268 | if (err) { | |
1269 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1270 | goto fail; | |
1271 | } | |
1272 | ||
1273 | return err; | |
1274 | ||
1275 | fail: | |
1276 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1277 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
1278 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1279 | return -EINVAL; |
801c135c AB |
1280 | |
1281 | } | |
1282 | ||
1283 | /** | |
ebaaf1af | 1284 | * paranoid_check_peb_vid_hdr - check volume identifier header. |
801c135c AB |
1285 | * @ubi: UBI device description object |
1286 | * @pnum: the physical eraseblock number to check | |
1287 | * | |
1288 | * This function returns zero if the volume identifier header is all right, | |
adbf05e3 | 1289 | * and a negative error code if not or if an error occurred. |
801c135c AB |
1290 | */ |
1291 | static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) | |
1292 | { | |
1293 | int err; | |
1294 | uint32_t crc, hdr_crc; | |
1295 | struct ubi_vid_hdr *vid_hdr; | |
1296 | void *p; | |
1297 | ||
2a734bb8 | 1298 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1299 | return 0; |
1300 | ||
33818bbb | 1301 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
801c135c AB |
1302 | if (!vid_hdr) |
1303 | return -ENOMEM; | |
1304 | ||
1305 | p = (char *)vid_hdr - ubi->vid_hdr_shift; | |
1306 | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, | |
1307 | ubi->vid_hdr_alsize); | |
d57f4054 | 1308 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
801c135c AB |
1309 | goto exit; |
1310 | ||
1311 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); | |
3261ebd7 | 1312 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); |
801c135c AB |
1313 | if (hdr_crc != crc) { |
1314 | ubi_err("bad VID header CRC at PEB %d, calculated %#08x, " | |
1315 | "read %#08x", pnum, crc, hdr_crc); | |
1316 | ubi_err("paranoid check failed for PEB %d", pnum); | |
1317 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
1318 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1319 | err = -EINVAL; |
801c135c AB |
1320 | goto exit; |
1321 | } | |
1322 | ||
1323 | err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr); | |
1324 | ||
1325 | exit: | |
1326 | ubi_free_vid_hdr(ubi, vid_hdr); | |
1327 | return err; | |
1328 | } | |
1329 | ||
6e9065d7 AB |
1330 | /** |
1331 | * ubi_dbg_check_write - make sure write succeeded. | |
1332 | * @ubi: UBI device description object | |
1333 | * @buf: buffer with data which were written | |
1334 | * @pnum: physical eraseblock number the data were written to | |
1335 | * @offset: offset within the physical eraseblock the data were written to | |
1336 | * @len: how many bytes were written | |
1337 | * | |
1338 | * This functions reads data which were recently written and compares it with | |
1339 | * the original data buffer - the data have to match. Returns zero if the data | |
1340 | * match and a negative error code if not or in case of failure. | |
1341 | */ | |
1342 | int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum, | |
1343 | int offset, int len) | |
1344 | { | |
1345 | int err, i; | |
7950d023 | 1346 | size_t read; |
a7586743 | 1347 | void *buf1; |
7950d023 | 1348 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
6e9065d7 | 1349 | |
2a734bb8 | 1350 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1351 | return 0; |
1352 | ||
3d46b316 | 1353 | buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
a7586743 AB |
1354 | if (!buf1) { |
1355 | ubi_err("cannot allocate memory to check writes"); | |
1356 | return 0; | |
1357 | } | |
1358 | ||
329ad399 | 1359 | err = mtd_read(ubi->mtd, addr, len, &read, buf1); |
d57f4054 | 1360 | if (err && !mtd_is_bitflip(err)) |
a7586743 | 1361 | goto out_free; |
6e9065d7 AB |
1362 | |
1363 | for (i = 0; i < len; i++) { | |
1364 | uint8_t c = ((uint8_t *)buf)[i]; | |
a7586743 | 1365 | uint8_t c1 = ((uint8_t *)buf1)[i]; |
6e9065d7 AB |
1366 | int dump_len; |
1367 | ||
1368 | if (c == c1) | |
1369 | continue; | |
1370 | ||
1371 | ubi_err("paranoid check failed for PEB %d:%d, len %d", | |
1372 | pnum, offset, len); | |
1373 | ubi_msg("data differ at position %d", i); | |
1374 | dump_len = max_t(int, 128, len - i); | |
1375 | ubi_msg("hex dump of the original buffer from %d to %d", | |
1376 | i, i + dump_len); | |
1377 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | |
1378 | buf + i, dump_len, 1); | |
1379 | ubi_msg("hex dump of the read buffer from %d to %d", | |
1380 | i, i + dump_len); | |
1381 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | |
a7586743 | 1382 | buf1 + i, dump_len, 1); |
6e9065d7 AB |
1383 | ubi_dbg_dump_stack(); |
1384 | err = -EINVAL; | |
a7586743 | 1385 | goto out_free; |
6e9065d7 | 1386 | } |
6e9065d7 | 1387 | |
a7586743 | 1388 | vfree(buf1); |
6e9065d7 AB |
1389 | return 0; |
1390 | ||
a7586743 AB |
1391 | out_free: |
1392 | vfree(buf1); | |
6e9065d7 AB |
1393 | return err; |
1394 | } | |
1395 | ||
801c135c | 1396 | /** |
40a71a87 | 1397 | * ubi_dbg_check_all_ff - check that a region of flash is empty. |
801c135c AB |
1398 | * @ubi: UBI device description object |
1399 | * @pnum: the physical eraseblock number to check | |
1400 | * @offset: the starting offset within the physical eraseblock to check | |
1401 | * @len: the length of the region to check | |
1402 | * | |
1403 | * This function returns zero if only 0xFF bytes are present at offset | |
adbf05e3 AB |
1404 | * @offset of the physical eraseblock @pnum, and a negative error code if not |
1405 | * or if an error occurred. | |
801c135c | 1406 | */ |
40a71a87 | 1407 | int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) |
801c135c AB |
1408 | { |
1409 | size_t read; | |
1410 | int err; | |
332873d6 | 1411 | void *buf; |
801c135c AB |
1412 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
1413 | ||
2a734bb8 | 1414 | if (!ubi->dbg->chk_io) |
92d124f5 AB |
1415 | return 0; |
1416 | ||
3d46b316 | 1417 | buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); |
332873d6 AB |
1418 | if (!buf) { |
1419 | ubi_err("cannot allocate memory to check for 0xFFs"); | |
1420 | return 0; | |
1421 | } | |
1422 | ||
329ad399 | 1423 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
d57f4054 | 1424 | if (err && !mtd_is_bitflip(err)) { |
801c135c AB |
1425 | ubi_err("error %d while reading %d bytes from PEB %d:%d, " |
1426 | "read %zd bytes", err, len, pnum, offset, read); | |
1427 | goto error; | |
1428 | } | |
1429 | ||
332873d6 | 1430 | err = ubi_check_pattern(buf, 0xFF, len); |
801c135c AB |
1431 | if (err == 0) { |
1432 | ubi_err("flash region at PEB %d:%d, length %d does not " | |
1433 | "contain all 0xFF bytes", pnum, offset, len); | |
1434 | goto fail; | |
1435 | } | |
1436 | ||
332873d6 | 1437 | vfree(buf); |
801c135c AB |
1438 | return 0; |
1439 | ||
1440 | fail: | |
1441 | ubi_err("paranoid check failed for PEB %d", pnum); | |
c8566350 | 1442 | ubi_msg("hex dump of the %d-%d region", offset, offset + len); |
332873d6 | 1443 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); |
adbf05e3 | 1444 | err = -EINVAL; |
801c135c AB |
1445 | error: |
1446 | ubi_dbg_dump_stack(); | |
332873d6 | 1447 | vfree(buf); |
801c135c AB |
1448 | return err; |
1449 | } | |
1450 | ||
92d124f5 | 1451 | #endif /* CONFIG_MTD_UBI_DEBUG */ |