]>
Commit | Line | Data |
---|---|---|
d7a131d3 | 1 | // SPDX-License-Identifier: GPL-2.0 |
7edf7369 BG |
2 | /* |
3 | * Copyright (C) STMicroelectronics 2016 | |
4 | * | |
5 | * Author: Gerald Baeza <[email protected]> | |
6 | * | |
7edf7369 BG |
7 | * Inspired by timer-stm32.c from Maxime Coquelin |
8 | * pwm-atmel.c from Bo Shen | |
9 | */ | |
10 | ||
ab3a8978 | 11 | #include <linux/bitfield.h> |
7edf7369 BG |
12 | #include <linux/mfd/stm32-timers.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/of.h> | |
2d3aa06b | 15 | #include <linux/pinctrl/consumer.h> |
7edf7369 BG |
16 | #include <linux/platform_device.h> |
17 | #include <linux/pwm.h> | |
18 | ||
19 | #define CCMR_CHANNEL_SHIFT 8 | |
20 | #define CCMR_CHANNEL_MASK 0xFF | |
21 | #define MAX_BREAKINPUT 2 | |
22 | ||
0f9d2ecb FG |
23 | struct stm32_breakinput { |
24 | u32 index; | |
25 | u32 level; | |
26 | u32 filter; | |
27 | }; | |
28 | ||
7edf7369 BG |
29 | struct stm32_pwm { |
30 | struct pwm_chip chip; | |
4eb67a20 | 31 | struct mutex lock; /* protect pwm config/enable */ |
7edf7369 BG |
32 | struct clk *clk; |
33 | struct regmap *regmap; | |
34 | u32 max_arr; | |
35 | bool have_complementary_output; | |
0f9d2ecb FG |
36 | struct stm32_breakinput breakinputs[MAX_BREAKINPUT]; |
37 | unsigned int num_breakinputs; | |
53e38fe7 | 38 | u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */ |
7edf7369 BG |
39 | }; |
40 | ||
7edf7369 BG |
41 | static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip) |
42 | { | |
43 | return container_of(chip, struct stm32_pwm, chip); | |
44 | } | |
45 | ||
46 | static u32 active_channels(struct stm32_pwm *dev) | |
47 | { | |
48 | u32 ccer; | |
49 | ||
50 | regmap_read(dev->regmap, TIM_CCER, &ccer); | |
51 | ||
52 | return ccer & TIM_CCER_CCXE; | |
53 | } | |
54 | ||
55 | static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value) | |
56 | { | |
57 | switch (ch) { | |
58 | case 0: | |
59 | return regmap_write(dev->regmap, TIM_CCR1, value); | |
60 | case 1: | |
61 | return regmap_write(dev->regmap, TIM_CCR2, value); | |
62 | case 2: | |
63 | return regmap_write(dev->regmap, TIM_CCR3, value); | |
64 | case 3: | |
65 | return regmap_write(dev->regmap, TIM_CCR4, value); | |
66 | } | |
67 | return -EINVAL; | |
68 | } | |
69 | ||
53e38fe7 FG |
70 | #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P) |
71 | #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E) | |
72 | #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P) | |
73 | #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E) | |
74 | ||
75 | /* | |
76 | * Capture using PWM input mode: | |
77 | * ___ ___ | |
78 | * TI[1, 2, 3 or 4]: ........._| |________| | |
79 | * ^0 ^1 ^2 | |
80 | * . . . | |
81 | * . . XXXXX | |
82 | * . . XXXXX | | |
83 | * . XXXXX . | | |
84 | * XXXXX . . | | |
85 | * COUNTER: ______XXXXX . . . |_XXX | |
86 | * start^ . . . ^stop | |
87 | * . . . . | |
88 | * v v . v | |
89 | * v | |
90 | * CCR1/CCR3: tx..........t0...........t2 | |
91 | * CCR2/CCR4: tx..............t1......... | |
92 | * | |
93 | * DMA burst transfer: | | | |
94 | * v v | |
95 | * DMA buffer: { t0, tx } { t2, t1 } | |
96 | * DMA done: ^ | |
97 | * | |
98 | * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 | |
99 | * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care) | |
100 | * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4 | |
101 | * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3 | |
102 | * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1) | |
103 | * | |
104 | * DMA done, compute: | |
105 | * - Period = t2 - t0 | |
106 | * - Duty cycle = t1 - t0 | |
107 | */ | |
108 | static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm, | |
109 | unsigned long tmo_ms, u32 *raw_prd, | |
110 | u32 *raw_dty) | |
111 | { | |
112 | struct device *parent = priv->chip.dev->parent; | |
113 | enum stm32_timers_dmas dma_id; | |
114 | u32 ccen, ccr; | |
115 | int ret; | |
116 | ||
117 | /* Ensure registers have been updated, enable counter and capture */ | |
118 | regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); | |
119 | regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); | |
120 | ||
121 | /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */ | |
122 | dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3; | |
123 | ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E; | |
124 | ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3; | |
125 | regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen); | |
126 | ||
127 | /* | |
128 | * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both | |
129 | * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event. | |
130 | * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 } | |
131 | * or { CCR3, CCR4 }, { CCR3, CCR4 } | |
132 | */ | |
133 | ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2, | |
134 | 2, tmo_ms); | |
135 | if (ret) | |
136 | goto stop; | |
137 | ||
138 | /* Period: t2 - t0 (take care of counter overflow) */ | |
139 | if (priv->capture[0] <= priv->capture[2]) | |
140 | *raw_prd = priv->capture[2] - priv->capture[0]; | |
141 | else | |
142 | *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2]; | |
143 | ||
144 | /* Duty cycle capture requires at least two capture units */ | |
145 | if (pwm->chip->npwm < 2) | |
146 | *raw_dty = 0; | |
147 | else if (priv->capture[0] <= priv->capture[3]) | |
148 | *raw_dty = priv->capture[3] - priv->capture[0]; | |
149 | else | |
150 | *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3]; | |
151 | ||
152 | if (*raw_dty > *raw_prd) { | |
153 | /* | |
154 | * Race beetween PWM input and DMA: it may happen | |
155 | * falling edge triggers new capture on TI2/4 before DMA | |
156 | * had a chance to read CCR2/4. It means capture[1] | |
157 | * contains period + duty_cycle. So, subtract period. | |
158 | */ | |
159 | *raw_dty -= *raw_prd; | |
160 | } | |
161 | ||
162 | stop: | |
163 | regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0); | |
164 | regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); | |
165 | ||
166 | return ret; | |
167 | } | |
168 | ||
169 | static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm, | |
170 | struct pwm_capture *result, unsigned long tmo_ms) | |
171 | { | |
172 | struct stm32_pwm *priv = to_stm32_pwm_dev(chip); | |
173 | unsigned long long prd, div, dty; | |
174 | unsigned long rate; | |
ab3a8978 | 175 | unsigned int psc = 0, icpsc, scale; |
a3b51be3 | 176 | u32 raw_prd = 0, raw_dty = 0; |
53e38fe7 FG |
177 | int ret = 0; |
178 | ||
179 | mutex_lock(&priv->lock); | |
180 | ||
181 | if (active_channels(priv)) { | |
182 | ret = -EBUSY; | |
183 | goto unlock; | |
184 | } | |
185 | ||
186 | ret = clk_enable(priv->clk); | |
187 | if (ret) { | |
188 | dev_err(priv->chip.dev, "failed to enable counter clock\n"); | |
189 | goto unlock; | |
190 | } | |
191 | ||
192 | rate = clk_get_rate(priv->clk); | |
193 | if (!rate) { | |
194 | ret = -EINVAL; | |
195 | goto clk_dis; | |
196 | } | |
197 | ||
198 | /* prescaler: fit timeout window provided by upper layer */ | |
199 | div = (unsigned long long)rate * (unsigned long long)tmo_ms; | |
200 | do_div(div, MSEC_PER_SEC); | |
201 | prd = div; | |
202 | while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) { | |
203 | psc++; | |
204 | div = prd; | |
205 | do_div(div, psc + 1); | |
206 | } | |
207 | regmap_write(priv->regmap, TIM_ARR, priv->max_arr); | |
208 | regmap_write(priv->regmap, TIM_PSC, psc); | |
209 | ||
210 | /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */ | |
211 | regmap_update_bits(priv->regmap, | |
212 | pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, | |
213 | TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ? | |
214 | TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 : | |
215 | TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1); | |
216 | ||
217 | /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */ | |
218 | regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ? | |
219 | TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ? | |
220 | TIM_CCER_CC2P : TIM_CCER_CC4P); | |
221 | ||
222 | ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); | |
223 | if (ret) | |
224 | goto stop; | |
225 | ||
d66ffb91 FG |
226 | /* |
227 | * Got a capture. Try to improve accuracy at high rates: | |
228 | * - decrease counter clock prescaler, scale up to max rate. | |
ab3a8978 | 229 | * - use input prescaler, capture once every /2 /4 or /8 edges. |
d66ffb91 FG |
230 | */ |
231 | if (raw_prd) { | |
232 | u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */ | |
233 | ||
234 | scale = max_arr / min(max_arr, raw_prd); | |
235 | } else { | |
236 | scale = priv->max_arr; /* bellow resolution, use max scale */ | |
237 | } | |
238 | ||
239 | if (psc && scale > 1) { | |
240 | /* 2nd measure with new scale */ | |
241 | psc /= scale; | |
242 | regmap_write(priv->regmap, TIM_PSC, psc); | |
243 | ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, | |
244 | &raw_dty); | |
245 | if (ret) | |
246 | goto stop; | |
247 | } | |
248 | ||
ab3a8978 | 249 | /* Compute intermediate period not to exceed timeout at low rates */ |
53e38fe7 | 250 | prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; |
ab3a8978 FG |
251 | do_div(prd, rate); |
252 | ||
253 | for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) { | |
254 | /* input prescaler: also keep arbitrary margin */ | |
255 | if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1)) | |
256 | break; | |
257 | if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2)) | |
258 | break; | |
259 | } | |
260 | ||
261 | if (!icpsc) | |
262 | goto done; | |
263 | ||
264 | /* Last chance to improve period accuracy, using input prescaler */ | |
265 | regmap_update_bits(priv->regmap, | |
266 | pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, | |
267 | TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC, | |
268 | FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) | | |
269 | FIELD_PREP(TIM_CCMR_IC2PSC, icpsc)); | |
270 | ||
271 | ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty); | |
272 | if (ret) | |
273 | goto stop; | |
274 | ||
275 | if (raw_dty >= (raw_prd >> icpsc)) { | |
276 | /* | |
277 | * We may fall here using input prescaler, when input | |
278 | * capture starts on high side (before falling edge). | |
279 | * Example with icpsc to capture on each 4 events: | |
280 | * | |
281 | * start 1st capture 2nd capture | |
282 | * v v v | |
283 | * ___ _____ _____ _____ _____ ____ | |
284 | * TI1..4 |__| |__| |__| |__| |__| | |
285 | * v v . . . . . v v | |
286 | * icpsc1/3: . 0 . 1 . 2 . 3 . 0 | |
287 | * icpsc2/4: 0 1 2 3 0 | |
288 | * v v v v | |
289 | * CCR1/3 ......t0..............................t2 | |
290 | * CCR2/4 ..t1..............................t1'... | |
291 | * . . . | |
292 | * Capture0: .<----------------------------->. | |
293 | * Capture1: .<-------------------------->. . | |
294 | * . . . | |
295 | * Period: .<------> . . | |
296 | * Low side: .<>. | |
297 | * | |
298 | * Result: | |
299 | * - Period = Capture0 / icpsc | |
300 | * - Duty = Period - Low side = Period - (Capture0 - Capture1) | |
301 | */ | |
302 | raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty); | |
303 | } | |
304 | ||
305 | done: | |
306 | prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC; | |
307 | result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc); | |
53e38fe7 FG |
308 | dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC; |
309 | result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate); | |
310 | stop: | |
311 | regmap_write(priv->regmap, TIM_CCER, 0); | |
312 | regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0); | |
313 | regmap_write(priv->regmap, TIM_PSC, 0); | |
314 | clk_dis: | |
315 | clk_disable(priv->clk); | |
316 | unlock: | |
317 | mutex_unlock(&priv->lock); | |
318 | ||
319 | return ret; | |
320 | } | |
321 | ||
7edf7369 BG |
322 | static int stm32_pwm_config(struct stm32_pwm *priv, int ch, |
323 | int duty_ns, int period_ns) | |
324 | { | |
325 | unsigned long long prd, div, dty; | |
326 | unsigned int prescaler = 0; | |
327 | u32 ccmr, mask, shift; | |
328 | ||
329 | /* Period and prescaler values depends on clock rate */ | |
330 | div = (unsigned long long)clk_get_rate(priv->clk) * period_ns; | |
331 | ||
332 | do_div(div, NSEC_PER_SEC); | |
333 | prd = div; | |
334 | ||
335 | while (div > priv->max_arr) { | |
336 | prescaler++; | |
337 | div = prd; | |
338 | do_div(div, prescaler + 1); | |
339 | } | |
340 | ||
341 | prd = div; | |
342 | ||
343 | if (prescaler > MAX_TIM_PSC) | |
344 | return -EINVAL; | |
345 | ||
346 | /* | |
347 | * All channels share the same prescaler and counter so when two | |
348 | * channels are active at the same time we can't change them | |
349 | */ | |
350 | if (active_channels(priv) & ~(1 << ch * 4)) { | |
351 | u32 psc, arr; | |
352 | ||
353 | regmap_read(priv->regmap, TIM_PSC, &psc); | |
354 | regmap_read(priv->regmap, TIM_ARR, &arr); | |
355 | ||
356 | if ((psc != prescaler) || (arr != prd - 1)) | |
357 | return -EBUSY; | |
358 | } | |
359 | ||
360 | regmap_write(priv->regmap, TIM_PSC, prescaler); | |
361 | regmap_write(priv->regmap, TIM_ARR, prd - 1); | |
362 | regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE); | |
363 | ||
364 | /* Calculate the duty cycles */ | |
365 | dty = prd * duty_ns; | |
366 | do_div(dty, period_ns); | |
367 | ||
368 | write_ccrx(priv, ch, dty); | |
369 | ||
370 | /* Configure output mode */ | |
371 | shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT; | |
372 | ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift; | |
373 | mask = CCMR_CHANNEL_MASK << shift; | |
374 | ||
375 | if (ch < 2) | |
376 | regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr); | |
377 | else | |
378 | regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr); | |
379 | ||
0c73201c | 380 | regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE); |
7edf7369 BG |
381 | |
382 | return 0; | |
383 | } | |
384 | ||
385 | static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch, | |
386 | enum pwm_polarity polarity) | |
387 | { | |
388 | u32 mask; | |
389 | ||
390 | mask = TIM_CCER_CC1P << (ch * 4); | |
391 | if (priv->have_complementary_output) | |
392 | mask |= TIM_CCER_CC1NP << (ch * 4); | |
393 | ||
394 | regmap_update_bits(priv->regmap, TIM_CCER, mask, | |
395 | polarity == PWM_POLARITY_NORMAL ? 0 : mask); | |
396 | ||
397 | return 0; | |
398 | } | |
399 | ||
400 | static int stm32_pwm_enable(struct stm32_pwm *priv, int ch) | |
401 | { | |
402 | u32 mask; | |
403 | int ret; | |
404 | ||
405 | ret = clk_enable(priv->clk); | |
406 | if (ret) | |
407 | return ret; | |
408 | ||
409 | /* Enable channel */ | |
410 | mask = TIM_CCER_CC1E << (ch * 4); | |
411 | if (priv->have_complementary_output) | |
412 | mask |= TIM_CCER_CC1NE << (ch * 4); | |
413 | ||
414 | regmap_update_bits(priv->regmap, TIM_CCER, mask, mask); | |
415 | ||
416 | /* Make sure that registers are updated */ | |
417 | regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); | |
418 | ||
419 | /* Enable controller */ | |
420 | regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN); | |
421 | ||
422 | return 0; | |
423 | } | |
424 | ||
425 | static void stm32_pwm_disable(struct stm32_pwm *priv, int ch) | |
426 | { | |
427 | u32 mask; | |
428 | ||
429 | /* Disable channel */ | |
430 | mask = TIM_CCER_CC1E << (ch * 4); | |
431 | if (priv->have_complementary_output) | |
432 | mask |= TIM_CCER_CC1NE << (ch * 4); | |
433 | ||
434 | regmap_update_bits(priv->regmap, TIM_CCER, mask, 0); | |
435 | ||
436 | /* When all channels are disabled, we can disable the controller */ | |
437 | if (!active_channels(priv)) | |
438 | regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); | |
439 | ||
440 | clk_disable(priv->clk); | |
441 | } | |
442 | ||
443 | static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, | |
71523d18 | 444 | const struct pwm_state *state) |
7edf7369 BG |
445 | { |
446 | bool enabled; | |
447 | struct stm32_pwm *priv = to_stm32_pwm_dev(chip); | |
448 | int ret; | |
449 | ||
450 | enabled = pwm->state.enabled; | |
451 | ||
452 | if (enabled && !state->enabled) { | |
453 | stm32_pwm_disable(priv, pwm->hwpwm); | |
454 | return 0; | |
455 | } | |
456 | ||
457 | if (state->polarity != pwm->state.polarity) | |
458 | stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity); | |
459 | ||
460 | ret = stm32_pwm_config(priv, pwm->hwpwm, | |
461 | state->duty_cycle, state->period); | |
462 | if (ret) | |
463 | return ret; | |
464 | ||
465 | if (!enabled && state->enabled) | |
466 | ret = stm32_pwm_enable(priv, pwm->hwpwm); | |
467 | ||
468 | return ret; | |
469 | } | |
470 | ||
4eb67a20 | 471 | static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, |
71523d18 | 472 | const struct pwm_state *state) |
4eb67a20 FG |
473 | { |
474 | struct stm32_pwm *priv = to_stm32_pwm_dev(chip); | |
475 | int ret; | |
476 | ||
477 | /* protect common prescaler for all active channels */ | |
478 | mutex_lock(&priv->lock); | |
479 | ret = stm32_pwm_apply(chip, pwm, state); | |
480 | mutex_unlock(&priv->lock); | |
481 | ||
482 | return ret; | |
483 | } | |
484 | ||
7edf7369 BG |
485 | static const struct pwm_ops stm32pwm_ops = { |
486 | .owner = THIS_MODULE, | |
4eb67a20 | 487 | .apply = stm32_pwm_apply_locked, |
414c52b7 | 488 | .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL, |
7edf7369 BG |
489 | }; |
490 | ||
491 | static int stm32_pwm_set_breakinput(struct stm32_pwm *priv, | |
9e1b4999 | 492 | const struct stm32_breakinput *bi) |
7edf7369 | 493 | { |
9e1b4999 TR |
494 | u32 shift = TIM_BDTR_BKF_SHIFT(bi->index); |
495 | u32 bke = TIM_BDTR_BKE(bi->index); | |
496 | u32 bkp = TIM_BDTR_BKP(bi->index); | |
497 | u32 bkf = TIM_BDTR_BKF(bi->index); | |
8e536225 TR |
498 | u32 mask = bkf | bkp | bke; |
499 | u32 bdtr; | |
7edf7369 | 500 | |
9e1b4999 | 501 | bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke; |
7edf7369 | 502 | |
9e1b4999 | 503 | if (bi->level) |
8e536225 | 504 | bdtr |= bkp; |
7edf7369 BG |
505 | |
506 | regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr); | |
507 | ||
508 | regmap_read(priv->regmap, TIM_BDTR, &bdtr); | |
509 | ||
510 | return (bdtr & bke) ? 0 : -EINVAL; | |
511 | } | |
512 | ||
0f9d2ecb FG |
513 | static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv) |
514 | { | |
515 | unsigned int i; | |
516 | int ret; | |
517 | ||
518 | for (i = 0; i < priv->num_breakinputs; i++) { | |
9e1b4999 | 519 | ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]); |
0f9d2ecb FG |
520 | if (ret < 0) |
521 | return ret; | |
522 | } | |
523 | ||
524 | return 0; | |
525 | } | |
526 | ||
527 | static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv, | |
7edf7369 BG |
528 | struct device_node *np) |
529 | { | |
0f9d2ecb | 530 | int nb, ret, array_size; |
8dfa620e | 531 | unsigned int i; |
7edf7369 BG |
532 | |
533 | nb = of_property_count_elems_of_size(np, "st,breakinput", | |
534 | sizeof(struct stm32_breakinput)); | |
535 | ||
536 | /* | |
537 | * Because "st,breakinput" parameter is optional do not make probe | |
538 | * failed if it doesn't exist. | |
539 | */ | |
540 | if (nb <= 0) | |
541 | return 0; | |
542 | ||
543 | if (nb > MAX_BREAKINPUT) | |
544 | return -EINVAL; | |
545 | ||
0f9d2ecb | 546 | priv->num_breakinputs = nb; |
7edf7369 BG |
547 | array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32); |
548 | ret = of_property_read_u32_array(np, "st,breakinput", | |
0f9d2ecb | 549 | (u32 *)priv->breakinputs, array_size); |
7edf7369 BG |
550 | if (ret) |
551 | return ret; | |
552 | ||
8dfa620e TR |
553 | for (i = 0; i < priv->num_breakinputs; i++) { |
554 | if (priv->breakinputs[i].index > 1 || | |
555 | priv->breakinputs[i].level > 1 || | |
556 | priv->breakinputs[i].filter > 15) | |
557 | return -EINVAL; | |
558 | } | |
559 | ||
0f9d2ecb | 560 | return stm32_pwm_apply_breakinputs(priv); |
7edf7369 BG |
561 | } |
562 | ||
563 | static void stm32_pwm_detect_complementary(struct stm32_pwm *priv) | |
564 | { | |
565 | u32 ccer; | |
566 | ||
567 | /* | |
568 | * If complementary bit doesn't exist writing 1 will have no | |
569 | * effect so we can detect it. | |
570 | */ | |
571 | regmap_update_bits(priv->regmap, | |
572 | TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE); | |
573 | regmap_read(priv->regmap, TIM_CCER, &ccer); | |
574 | regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0); | |
575 | ||
576 | priv->have_complementary_output = (ccer != 0); | |
577 | } | |
578 | ||
579 | static int stm32_pwm_detect_channels(struct stm32_pwm *priv) | |
580 | { | |
581 | u32 ccer; | |
582 | int npwm = 0; | |
583 | ||
584 | /* | |
585 | * If channels enable bits don't exist writing 1 will have no | |
586 | * effect so we can detect and count them. | |
587 | */ | |
588 | regmap_update_bits(priv->regmap, | |
589 | TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE); | |
590 | regmap_read(priv->regmap, TIM_CCER, &ccer); | |
591 | regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0); | |
592 | ||
593 | if (ccer & TIM_CCER_CC1E) | |
594 | npwm++; | |
595 | ||
596 | if (ccer & TIM_CCER_CC2E) | |
597 | npwm++; | |
598 | ||
599 | if (ccer & TIM_CCER_CC3E) | |
600 | npwm++; | |
601 | ||
602 | if (ccer & TIM_CCER_CC4E) | |
603 | npwm++; | |
604 | ||
605 | return npwm; | |
606 | } | |
607 | ||
608 | static int stm32_pwm_probe(struct platform_device *pdev) | |
609 | { | |
610 | struct device *dev = &pdev->dev; | |
611 | struct device_node *np = dev->of_node; | |
612 | struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); | |
613 | struct stm32_pwm *priv; | |
614 | int ret; | |
615 | ||
616 | priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); | |
617 | if (!priv) | |
618 | return -ENOMEM; | |
619 | ||
4eb67a20 | 620 | mutex_init(&priv->lock); |
7edf7369 BG |
621 | priv->regmap = ddata->regmap; |
622 | priv->clk = ddata->clk; | |
623 | priv->max_arr = ddata->max_arr; | |
624 | ||
625 | if (!priv->regmap || !priv->clk) | |
626 | return -EINVAL; | |
627 | ||
0f9d2ecb | 628 | ret = stm32_pwm_probe_breakinputs(priv, np); |
7edf7369 BG |
629 | if (ret) |
630 | return ret; | |
631 | ||
632 | stm32_pwm_detect_complementary(priv); | |
633 | ||
7edf7369 BG |
634 | priv->chip.dev = dev; |
635 | priv->chip.ops = &stm32pwm_ops; | |
636 | priv->chip.npwm = stm32_pwm_detect_channels(priv); | |
637 | ||
638 | ret = pwmchip_add(&priv->chip); | |
639 | if (ret < 0) | |
640 | return ret; | |
641 | ||
642 | platform_set_drvdata(pdev, priv); | |
643 | ||
644 | return 0; | |
645 | } | |
646 | ||
647 | static int stm32_pwm_remove(struct platform_device *pdev) | |
648 | { | |
649 | struct stm32_pwm *priv = platform_get_drvdata(pdev); | |
650 | unsigned int i; | |
651 | ||
652 | for (i = 0; i < priv->chip.npwm; i++) | |
653 | pwm_disable(&priv->chip.pwms[i]); | |
654 | ||
655 | pwmchip_remove(&priv->chip); | |
656 | ||
657 | return 0; | |
658 | } | |
659 | ||
2d3aa06b FG |
660 | static int __maybe_unused stm32_pwm_suspend(struct device *dev) |
661 | { | |
662 | struct stm32_pwm *priv = dev_get_drvdata(dev); | |
663 | unsigned int i; | |
664 | u32 ccer, mask; | |
665 | ||
666 | /* Look for active channels */ | |
667 | ccer = active_channels(priv); | |
668 | ||
669 | for (i = 0; i < priv->chip.npwm; i++) { | |
670 | mask = TIM_CCER_CC1E << (i * 4); | |
671 | if (ccer & mask) { | |
672 | dev_err(dev, "PWM %u still in use by consumer %s\n", | |
673 | i, priv->chip.pwms[i].label); | |
674 | return -EBUSY; | |
675 | } | |
676 | } | |
677 | ||
678 | return pinctrl_pm_select_sleep_state(dev); | |
679 | } | |
680 | ||
681 | static int __maybe_unused stm32_pwm_resume(struct device *dev) | |
682 | { | |
683 | struct stm32_pwm *priv = dev_get_drvdata(dev); | |
684 | int ret; | |
685 | ||
686 | ret = pinctrl_pm_select_default_state(dev); | |
687 | if (ret) | |
688 | return ret; | |
689 | ||
690 | /* restore breakinput registers that may have been lost in low power */ | |
691 | return stm32_pwm_apply_breakinputs(priv); | |
692 | } | |
693 | ||
694 | static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume); | |
695 | ||
7edf7369 BG |
696 | static const struct of_device_id stm32_pwm_of_match[] = { |
697 | { .compatible = "st,stm32-pwm", }, | |
698 | { /* end node */ }, | |
699 | }; | |
700 | MODULE_DEVICE_TABLE(of, stm32_pwm_of_match); | |
701 | ||
702 | static struct platform_driver stm32_pwm_driver = { | |
703 | .probe = stm32_pwm_probe, | |
704 | .remove = stm32_pwm_remove, | |
705 | .driver = { | |
706 | .name = "stm32-pwm", | |
707 | .of_match_table = stm32_pwm_of_match, | |
2d3aa06b | 708 | .pm = &stm32_pwm_pm_ops, |
7edf7369 BG |
709 | }, |
710 | }; | |
711 | module_platform_driver(stm32_pwm_driver); | |
712 | ||
713 | MODULE_ALIAS("platform:stm32-pwm"); | |
714 | MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver"); | |
715 | MODULE_LICENSE("GPL v2"); |