]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/posix_timers.c | |
3 | * | |
4 | * | |
5 | * 2002-10-15 Posix Clocks & timers | |
6 | * by George Anzinger [email protected] | |
7 | * | |
8 | * Copyright (C) 2002 2003 by MontaVista Software. | |
9 | * | |
10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | |
11 | * Copyright (C) 2004 Boris Hu | |
12 | * | |
13 | * This program is free software; you can redistribute it and/or modify | |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or (at | |
16 | * your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, but | |
19 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * General Public License for more details. | |
22 | ||
23 | * You should have received a copy of the GNU General Public License | |
24 | * along with this program; if not, write to the Free Software | |
25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
26 | * | |
27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | |
28 | */ | |
29 | ||
30 | /* These are all the functions necessary to implement | |
31 | * POSIX clocks & timers | |
32 | */ | |
33 | #include <linux/mm.h> | |
34 | #include <linux/smp_lock.h> | |
35 | #include <linux/interrupt.h> | |
36 | #include <linux/slab.h> | |
37 | #include <linux/time.h> | |
38 | ||
39 | #include <asm/uaccess.h> | |
40 | #include <asm/semaphore.h> | |
41 | #include <linux/list.h> | |
42 | #include <linux/init.h> | |
43 | #include <linux/compiler.h> | |
44 | #include <linux/idr.h> | |
45 | #include <linux/posix-timers.h> | |
46 | #include <linux/syscalls.h> | |
47 | #include <linux/wait.h> | |
48 | #include <linux/workqueue.h> | |
49 | #include <linux/module.h> | |
50 | ||
51 | #ifndef div_long_long_rem | |
52 | #include <asm/div64.h> | |
53 | ||
54 | #define div_long_long_rem(dividend,divisor,remainder) ({ \ | |
55 | u64 result = dividend; \ | |
56 | *remainder = do_div(result,divisor); \ | |
57 | result; }) | |
58 | ||
59 | #endif | |
60 | #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */ | |
61 | ||
62 | static inline u64 mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | |
63 | { | |
64 | return (u64)mpy1 * mpy2; | |
65 | } | |
66 | /* | |
67 | * Management arrays for POSIX timers. Timers are kept in slab memory | |
68 | * Timer ids are allocated by an external routine that keeps track of the | |
69 | * id and the timer. The external interface is: | |
70 | * | |
71 | * void *idr_find(struct idr *idp, int id); to find timer_id <id> | |
72 | * int idr_get_new(struct idr *idp, void *ptr); to get a new id and | |
73 | * related it to <ptr> | |
74 | * void idr_remove(struct idr *idp, int id); to release <id> | |
75 | * void idr_init(struct idr *idp); to initialize <idp> | |
76 | * which we supply. | |
77 | * The idr_get_new *may* call slab for more memory so it must not be | |
78 | * called under a spin lock. Likewise idr_remore may release memory | |
79 | * (but it may be ok to do this under a lock...). | |
80 | * idr_find is just a memory look up and is quite fast. A -1 return | |
81 | * indicates that the requested id does not exist. | |
82 | */ | |
83 | ||
84 | /* | |
85 | * Lets keep our timers in a slab cache :-) | |
86 | */ | |
87 | static kmem_cache_t *posix_timers_cache; | |
88 | static struct idr posix_timers_id; | |
89 | static DEFINE_SPINLOCK(idr_lock); | |
90 | ||
91 | /* | |
92 | * Just because the timer is not in the timer list does NOT mean it is | |
93 | * inactive. It could be in the "fire" routine getting a new expire time. | |
94 | */ | |
95 | #define TIMER_INACTIVE 1 | |
96 | ||
97 | #ifdef CONFIG_SMP | |
98 | # define timer_active(tmr) \ | |
99 | ((tmr)->it.real.timer.entry.prev != (void *)TIMER_INACTIVE) | |
100 | # define set_timer_inactive(tmr) \ | |
101 | do { \ | |
102 | (tmr)->it.real.timer.entry.prev = (void *)TIMER_INACTIVE; \ | |
103 | } while (0) | |
104 | #else | |
105 | # define timer_active(tmr) BARFY // error to use outside of SMP | |
106 | # define set_timer_inactive(tmr) do { } while (0) | |
107 | #endif | |
108 | /* | |
109 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | |
110 | * SIGEV values. Here we put out an error if this assumption fails. | |
111 | */ | |
112 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | |
113 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | |
114 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | |
115 | #endif | |
116 | ||
117 | ||
118 | /* | |
119 | * The timer ID is turned into a timer address by idr_find(). | |
120 | * Verifying a valid ID consists of: | |
121 | * | |
122 | * a) checking that idr_find() returns other than -1. | |
123 | * b) checking that the timer id matches the one in the timer itself. | |
124 | * c) that the timer owner is in the callers thread group. | |
125 | */ | |
126 | ||
127 | /* | |
128 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | |
129 | * to implement others. This structure defines the various | |
130 | * clocks and allows the possibility of adding others. We | |
131 | * provide an interface to add clocks to the table and expect | |
132 | * the "arch" code to add at least one clock that is high | |
133 | * resolution. Here we define the standard CLOCK_REALTIME as a | |
134 | * 1/HZ resolution clock. | |
135 | * | |
136 | * RESOLUTION: Clock resolution is used to round up timer and interval | |
137 | * times, NOT to report clock times, which are reported with as | |
138 | * much resolution as the system can muster. In some cases this | |
139 | * resolution may depend on the underlying clock hardware and | |
140 | * may not be quantifiable until run time, and only then is the | |
141 | * necessary code is written. The standard says we should say | |
142 | * something about this issue in the documentation... | |
143 | * | |
144 | * FUNCTIONS: The CLOCKs structure defines possible functions to handle | |
145 | * various clock functions. For clocks that use the standard | |
146 | * system timer code these entries should be NULL. This will | |
147 | * allow dispatch without the overhead of indirect function | |
148 | * calls. CLOCKS that depend on other sources (e.g. WWV or GPS) | |
149 | * must supply functions here, even if the function just returns | |
150 | * ENOSYS. The standard POSIX timer management code assumes the | |
151 | * following: 1.) The k_itimer struct (sched.h) is used for the | |
152 | * timer. 2.) The list, it_lock, it_clock, it_id and it_process | |
153 | * fields are not modified by timer code. | |
154 | * | |
155 | * At this time all functions EXCEPT clock_nanosleep can be | |
156 | * redirected by the CLOCKS structure. Clock_nanosleep is in | |
157 | * there, but the code ignores it. | |
158 | * | |
159 | * Permissions: It is assumed that the clock_settime() function defined | |
160 | * for each clock will take care of permission checks. Some | |
161 | * clocks may be set able by any user (i.e. local process | |
162 | * clocks) others not. Currently the only set able clock we | |
163 | * have is CLOCK_REALTIME and its high res counter part, both of | |
164 | * which we beg off on and pass to do_sys_settimeofday(). | |
165 | */ | |
166 | ||
167 | static struct k_clock posix_clocks[MAX_CLOCKS]; | |
168 | /* | |
169 | * We only have one real clock that can be set so we need only one abs list, | |
170 | * even if we should want to have several clocks with differing resolutions. | |
171 | */ | |
172 | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | |
173 | .lock = SPIN_LOCK_UNLOCKED}; | |
174 | ||
175 | static void posix_timer_fn(unsigned long); | |
176 | static u64 do_posix_clock_monotonic_gettime_parts( | |
177 | struct timespec *tp, struct timespec *mo); | |
178 | int do_posix_clock_monotonic_gettime(struct timespec *tp); | |
179 | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); | |
180 | ||
181 | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | |
182 | ||
183 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | |
184 | { | |
185 | spin_unlock_irqrestore(&timr->it_lock, flags); | |
186 | } | |
187 | ||
188 | /* | |
189 | * Call the k_clock hook function if non-null, or the default function. | |
190 | */ | |
191 | #define CLOCK_DISPATCH(clock, call, arglist) \ | |
192 | ((clock) < 0 ? posix_cpu_##call arglist : \ | |
193 | (posix_clocks[clock].call != NULL \ | |
194 | ? (*posix_clocks[clock].call) arglist : common_##call arglist)) | |
195 | ||
196 | /* | |
197 | * Default clock hook functions when the struct k_clock passed | |
198 | * to register_posix_clock leaves a function pointer null. | |
199 | * | |
200 | * The function common_CALL is the default implementation for | |
201 | * the function pointer CALL in struct k_clock. | |
202 | */ | |
203 | ||
204 | static inline int common_clock_getres(clockid_t which_clock, | |
205 | struct timespec *tp) | |
206 | { | |
207 | tp->tv_sec = 0; | |
208 | tp->tv_nsec = posix_clocks[which_clock].res; | |
209 | return 0; | |
210 | } | |
211 | ||
212 | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) | |
213 | { | |
214 | getnstimeofday(tp); | |
215 | return 0; | |
216 | } | |
217 | ||
218 | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) | |
219 | { | |
220 | return do_sys_settimeofday(tp, NULL); | |
221 | } | |
222 | ||
223 | static inline int common_timer_create(struct k_itimer *new_timer) | |
224 | { | |
225 | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | |
226 | init_timer(&new_timer->it.real.timer); | |
227 | new_timer->it.real.timer.data = (unsigned long) new_timer; | |
228 | new_timer->it.real.timer.function = posix_timer_fn; | |
229 | set_timer_inactive(new_timer); | |
230 | return 0; | |
231 | } | |
232 | ||
233 | /* | |
234 | * These ones are defined below. | |
235 | */ | |
236 | static int common_nsleep(clockid_t, int flags, struct timespec *t); | |
237 | static void common_timer_get(struct k_itimer *, struct itimerspec *); | |
238 | static int common_timer_set(struct k_itimer *, int, | |
239 | struct itimerspec *, struct itimerspec *); | |
240 | static int common_timer_del(struct k_itimer *timer); | |
241 | ||
242 | /* | |
243 | * Return nonzero iff we know a priori this clockid_t value is bogus. | |
244 | */ | |
245 | static inline int invalid_clockid(clockid_t which_clock) | |
246 | { | |
247 | if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */ | |
248 | return 0; | |
249 | if ((unsigned) which_clock >= MAX_CLOCKS) | |
250 | return 1; | |
251 | if (posix_clocks[which_clock].clock_getres != NULL) | |
252 | return 0; | |
253 | #ifndef CLOCK_DISPATCH_DIRECT | |
254 | if (posix_clocks[which_clock].res != 0) | |
255 | return 0; | |
256 | #endif | |
257 | return 1; | |
258 | } | |
259 | ||
260 | ||
261 | /* | |
262 | * Initialize everything, well, just everything in Posix clocks/timers ;) | |
263 | */ | |
264 | static __init int init_posix_timers(void) | |
265 | { | |
266 | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | |
267 | .abs_struct = &abs_list | |
268 | }; | |
269 | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | |
270 | .abs_struct = NULL, | |
271 | .clock_get = do_posix_clock_monotonic_get, | |
272 | .clock_set = do_posix_clock_nosettime | |
273 | }; | |
274 | ||
275 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | |
276 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | |
277 | ||
278 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | |
279 | sizeof (struct k_itimer), 0, 0, NULL, NULL); | |
280 | idr_init(&posix_timers_id); | |
281 | return 0; | |
282 | } | |
283 | ||
284 | __initcall(init_posix_timers); | |
285 | ||
286 | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | |
287 | { | |
288 | long sec = tp->tv_sec; | |
289 | long nsec = tp->tv_nsec + res - 1; | |
290 | ||
291 | if (nsec > NSEC_PER_SEC) { | |
292 | sec++; | |
293 | nsec -= NSEC_PER_SEC; | |
294 | } | |
295 | ||
296 | /* | |
297 | * The scaling constants are defined in <linux/time.h> | |
298 | * The difference between there and here is that we do the | |
299 | * res rounding and compute a 64-bit result (well so does that | |
300 | * but it then throws away the high bits). | |
301 | */ | |
302 | *jiff = (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | |
303 | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | |
304 | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | |
305 | } | |
306 | ||
307 | /* | |
308 | * This function adjusts the timer as needed as a result of the clock | |
309 | * being set. It should only be called for absolute timers, and then | |
310 | * under the abs_list lock. It computes the time difference and sets | |
311 | * the new jiffies value in the timer. It also updates the timers | |
312 | * reference wall_to_monotonic value. It is complicated by the fact | |
313 | * that tstojiffies() only handles positive times and it needs to work | |
314 | * with both positive and negative times. Also, for negative offsets, | |
315 | * we need to defeat the res round up. | |
316 | * | |
317 | * Return is true if there is a new time, else false. | |
318 | */ | |
319 | static long add_clockset_delta(struct k_itimer *timr, | |
320 | struct timespec *new_wall_to) | |
321 | { | |
322 | struct timespec delta; | |
323 | int sign = 0; | |
324 | u64 exp; | |
325 | ||
326 | set_normalized_timespec(&delta, | |
327 | new_wall_to->tv_sec - | |
328 | timr->it.real.wall_to_prev.tv_sec, | |
329 | new_wall_to->tv_nsec - | |
330 | timr->it.real.wall_to_prev.tv_nsec); | |
331 | if (likely(!(delta.tv_sec | delta.tv_nsec))) | |
332 | return 0; | |
333 | if (delta.tv_sec < 0) { | |
334 | set_normalized_timespec(&delta, | |
335 | -delta.tv_sec, | |
336 | 1 - delta.tv_nsec - | |
337 | posix_clocks[timr->it_clock].res); | |
338 | sign++; | |
339 | } | |
340 | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | |
341 | timr->it.real.wall_to_prev = *new_wall_to; | |
342 | timr->it.real.timer.expires += (sign ? -exp : exp); | |
343 | return 1; | |
344 | } | |
345 | ||
346 | static void remove_from_abslist(struct k_itimer *timr) | |
347 | { | |
348 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | |
349 | spin_lock(&abs_list.lock); | |
350 | list_del_init(&timr->it.real.abs_timer_entry); | |
351 | spin_unlock(&abs_list.lock); | |
352 | } | |
353 | } | |
354 | ||
355 | static void schedule_next_timer(struct k_itimer *timr) | |
356 | { | |
357 | struct timespec new_wall_to; | |
358 | struct now_struct now; | |
359 | unsigned long seq; | |
360 | ||
361 | /* | |
362 | * Set up the timer for the next interval (if there is one). | |
363 | * Note: this code uses the abs_timer_lock to protect | |
364 | * it.real.wall_to_prev and must hold it until exp is set, not exactly | |
365 | * obvious... | |
366 | ||
367 | * This function is used for CLOCK_REALTIME* and | |
368 | * CLOCK_MONOTONIC* timers. If we ever want to handle other | |
369 | * CLOCKs, the calling code (do_schedule_next_timer) would need | |
370 | * to pull the "clock" info from the timer and dispatch the | |
371 | * "other" CLOCKs "next timer" code (which, I suppose should | |
372 | * also be added to the k_clock structure). | |
373 | */ | |
374 | if (!timr->it.real.incr) | |
375 | return; | |
376 | ||
377 | do { | |
378 | seq = read_seqbegin(&xtime_lock); | |
379 | new_wall_to = wall_to_monotonic; | |
380 | posix_get_now(&now); | |
381 | } while (read_seqretry(&xtime_lock, seq)); | |
382 | ||
383 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | |
384 | spin_lock(&abs_list.lock); | |
385 | add_clockset_delta(timr, &new_wall_to); | |
386 | ||
387 | posix_bump_timer(timr, now); | |
388 | ||
389 | spin_unlock(&abs_list.lock); | |
390 | } else { | |
391 | posix_bump_timer(timr, now); | |
392 | } | |
393 | timr->it_overrun_last = timr->it_overrun; | |
394 | timr->it_overrun = -1; | |
395 | ++timr->it_requeue_pending; | |
396 | add_timer(&timr->it.real.timer); | |
397 | } | |
398 | ||
399 | /* | |
400 | * This function is exported for use by the signal deliver code. It is | |
401 | * called just prior to the info block being released and passes that | |
402 | * block to us. It's function is to update the overrun entry AND to | |
403 | * restart the timer. It should only be called if the timer is to be | |
404 | * restarted (i.e. we have flagged this in the sys_private entry of the | |
405 | * info block). | |
406 | * | |
407 | * To protect aginst the timer going away while the interrupt is queued, | |
408 | * we require that the it_requeue_pending flag be set. | |
409 | */ | |
410 | void do_schedule_next_timer(struct siginfo *info) | |
411 | { | |
412 | struct k_itimer *timr; | |
413 | unsigned long flags; | |
414 | ||
415 | timr = lock_timer(info->si_tid, &flags); | |
416 | ||
417 | if (!timr || timr->it_requeue_pending != info->si_sys_private) | |
418 | goto exit; | |
419 | ||
420 | if (timr->it_clock < 0) /* CPU clock */ | |
421 | posix_cpu_timer_schedule(timr); | |
422 | else | |
423 | schedule_next_timer(timr); | |
424 | info->si_overrun = timr->it_overrun_last; | |
425 | exit: | |
426 | if (timr) | |
427 | unlock_timer(timr, flags); | |
428 | } | |
429 | ||
430 | int posix_timer_event(struct k_itimer *timr,int si_private) | |
431 | { | |
432 | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | |
433 | timr->sigq->info.si_sys_private = si_private; | |
434 | /* | |
435 | * Send signal to the process that owns this timer. | |
436 | ||
437 | * This code assumes that all the possible abs_lists share the | |
438 | * same lock (there is only one list at this time). If this is | |
439 | * not the case, the CLOCK info would need to be used to find | |
440 | * the proper abs list lock. | |
441 | */ | |
442 | ||
443 | timr->sigq->info.si_signo = timr->it_sigev_signo; | |
444 | timr->sigq->info.si_errno = 0; | |
445 | timr->sigq->info.si_code = SI_TIMER; | |
446 | timr->sigq->info.si_tid = timr->it_id; | |
447 | timr->sigq->info.si_value = timr->it_sigev_value; | |
448 | if (timr->it_sigev_notify & SIGEV_THREAD_ID) { | |
449 | if (unlikely(timr->it_process->flags & PF_EXITING)) { | |
450 | timr->it_sigev_notify = SIGEV_SIGNAL; | |
451 | put_task_struct(timr->it_process); | |
452 | timr->it_process = timr->it_process->group_leader; | |
453 | goto group; | |
454 | } | |
455 | return send_sigqueue(timr->it_sigev_signo, timr->sigq, | |
456 | timr->it_process); | |
457 | } | |
458 | else { | |
459 | group: | |
460 | return send_group_sigqueue(timr->it_sigev_signo, timr->sigq, | |
461 | timr->it_process); | |
462 | } | |
463 | } | |
464 | EXPORT_SYMBOL_GPL(posix_timer_event); | |
465 | ||
466 | /* | |
467 | * This function gets called when a POSIX.1b interval timer expires. It | |
468 | * is used as a callback from the kernel internal timer. The | |
469 | * run_timer_list code ALWAYS calls with interrupts on. | |
470 | ||
471 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | |
472 | */ | |
473 | static void posix_timer_fn(unsigned long __data) | |
474 | { | |
475 | struct k_itimer *timr = (struct k_itimer *) __data; | |
476 | unsigned long flags; | |
477 | unsigned long seq; | |
478 | struct timespec delta, new_wall_to; | |
479 | u64 exp = 0; | |
480 | int do_notify = 1; | |
481 | ||
482 | spin_lock_irqsave(&timr->it_lock, flags); | |
483 | set_timer_inactive(timr); | |
484 | if (!list_empty(&timr->it.real.abs_timer_entry)) { | |
485 | spin_lock(&abs_list.lock); | |
486 | do { | |
487 | seq = read_seqbegin(&xtime_lock); | |
488 | new_wall_to = wall_to_monotonic; | |
489 | } while (read_seqretry(&xtime_lock, seq)); | |
490 | set_normalized_timespec(&delta, | |
491 | new_wall_to.tv_sec - | |
492 | timr->it.real.wall_to_prev.tv_sec, | |
493 | new_wall_to.tv_nsec - | |
494 | timr->it.real.wall_to_prev.tv_nsec); | |
495 | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | |
496 | /* do nothing, timer is on time */ | |
497 | } else if (delta.tv_sec < 0) { | |
498 | /* do nothing, timer is already late */ | |
499 | } else { | |
500 | /* timer is early due to a clock set */ | |
501 | tstojiffie(&delta, | |
502 | posix_clocks[timr->it_clock].res, | |
503 | &exp); | |
504 | timr->it.real.wall_to_prev = new_wall_to; | |
505 | timr->it.real.timer.expires += exp; | |
506 | add_timer(&timr->it.real.timer); | |
507 | do_notify = 0; | |
508 | } | |
509 | spin_unlock(&abs_list.lock); | |
510 | ||
511 | } | |
512 | if (do_notify) { | |
513 | int si_private=0; | |
514 | ||
515 | if (timr->it.real.incr) | |
516 | si_private = ++timr->it_requeue_pending; | |
517 | else { | |
518 | remove_from_abslist(timr); | |
519 | } | |
520 | ||
521 | if (posix_timer_event(timr, si_private)) | |
522 | /* | |
523 | * signal was not sent because of sig_ignor | |
524 | * we will not get a call back to restart it AND | |
525 | * it should be restarted. | |
526 | */ | |
527 | schedule_next_timer(timr); | |
528 | } | |
529 | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | |
530 | } | |
531 | ||
532 | ||
533 | static inline struct task_struct * good_sigevent(sigevent_t * event) | |
534 | { | |
535 | struct task_struct *rtn = current->group_leader; | |
536 | ||
537 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | |
538 | (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) || | |
539 | rtn->tgid != current->tgid || | |
540 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) | |
541 | return NULL; | |
542 | ||
543 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | |
544 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | |
545 | return NULL; | |
546 | ||
547 | return rtn; | |
548 | } | |
549 | ||
550 | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) | |
551 | { | |
552 | if ((unsigned) clock_id >= MAX_CLOCKS) { | |
553 | printk("POSIX clock register failed for clock_id %d\n", | |
554 | clock_id); | |
555 | return; | |
556 | } | |
557 | ||
558 | posix_clocks[clock_id] = *new_clock; | |
559 | } | |
560 | EXPORT_SYMBOL_GPL(register_posix_clock); | |
561 | ||
562 | static struct k_itimer * alloc_posix_timer(void) | |
563 | { | |
564 | struct k_itimer *tmr; | |
565 | tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL); | |
566 | if (!tmr) | |
567 | return tmr; | |
568 | memset(tmr, 0, sizeof (struct k_itimer)); | |
569 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { | |
570 | kmem_cache_free(posix_timers_cache, tmr); | |
571 | tmr = NULL; | |
572 | } | |
573 | return tmr; | |
574 | } | |
575 | ||
576 | #define IT_ID_SET 1 | |
577 | #define IT_ID_NOT_SET 0 | |
578 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |
579 | { | |
580 | if (it_id_set) { | |
581 | unsigned long flags; | |
582 | spin_lock_irqsave(&idr_lock, flags); | |
583 | idr_remove(&posix_timers_id, tmr->it_id); | |
584 | spin_unlock_irqrestore(&idr_lock, flags); | |
585 | } | |
586 | sigqueue_free(tmr->sigq); | |
587 | if (unlikely(tmr->it_process) && | |
588 | tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | |
589 | put_task_struct(tmr->it_process); | |
590 | kmem_cache_free(posix_timers_cache, tmr); | |
591 | } | |
592 | ||
593 | /* Create a POSIX.1b interval timer. */ | |
594 | ||
595 | asmlinkage long | |
596 | sys_timer_create(clockid_t which_clock, | |
597 | struct sigevent __user *timer_event_spec, | |
598 | timer_t __user * created_timer_id) | |
599 | { | |
600 | int error = 0; | |
601 | struct k_itimer *new_timer = NULL; | |
602 | int new_timer_id; | |
603 | struct task_struct *process = NULL; | |
604 | unsigned long flags; | |
605 | sigevent_t event; | |
606 | int it_id_set = IT_ID_NOT_SET; | |
607 | ||
608 | if (invalid_clockid(which_clock)) | |
609 | return -EINVAL; | |
610 | ||
611 | new_timer = alloc_posix_timer(); | |
612 | if (unlikely(!new_timer)) | |
613 | return -EAGAIN; | |
614 | ||
615 | spin_lock_init(&new_timer->it_lock); | |
616 | retry: | |
617 | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | |
618 | error = -EAGAIN; | |
619 | goto out; | |
620 | } | |
621 | spin_lock_irq(&idr_lock); | |
622 | error = idr_get_new(&posix_timers_id, | |
623 | (void *) new_timer, | |
624 | &new_timer_id); | |
625 | spin_unlock_irq(&idr_lock); | |
626 | if (error == -EAGAIN) | |
627 | goto retry; | |
628 | else if (error) { | |
629 | /* | |
630 | * Wierd looking, but we return EAGAIN if the IDR is | |
631 | * full (proper POSIX return value for this) | |
632 | */ | |
633 | error = -EAGAIN; | |
634 | goto out; | |
635 | } | |
636 | ||
637 | it_id_set = IT_ID_SET; | |
638 | new_timer->it_id = (timer_t) new_timer_id; | |
639 | new_timer->it_clock = which_clock; | |
640 | new_timer->it_overrun = -1; | |
641 | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | |
642 | if (error) | |
643 | goto out; | |
644 | ||
645 | /* | |
646 | * return the timer_id now. The next step is hard to | |
647 | * back out if there is an error. | |
648 | */ | |
649 | if (copy_to_user(created_timer_id, | |
650 | &new_timer_id, sizeof (new_timer_id))) { | |
651 | error = -EFAULT; | |
652 | goto out; | |
653 | } | |
654 | if (timer_event_spec) { | |
655 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | |
656 | error = -EFAULT; | |
657 | goto out; | |
658 | } | |
659 | new_timer->it_sigev_notify = event.sigev_notify; | |
660 | new_timer->it_sigev_signo = event.sigev_signo; | |
661 | new_timer->it_sigev_value = event.sigev_value; | |
662 | ||
663 | read_lock(&tasklist_lock); | |
664 | if ((process = good_sigevent(&event))) { | |
665 | /* | |
666 | * We may be setting up this process for another | |
667 | * thread. It may be exiting. To catch this | |
668 | * case the we check the PF_EXITING flag. If | |
669 | * the flag is not set, the siglock will catch | |
670 | * him before it is too late (in exit_itimers). | |
671 | * | |
672 | * The exec case is a bit more invloved but easy | |
673 | * to code. If the process is in our thread | |
674 | * group (and it must be or we would not allow | |
675 | * it here) and is doing an exec, it will cause | |
676 | * us to be killed. In this case it will wait | |
677 | * for us to die which means we can finish this | |
678 | * linkage with our last gasp. I.e. no code :) | |
679 | */ | |
680 | spin_lock_irqsave(&process->sighand->siglock, flags); | |
681 | if (!(process->flags & PF_EXITING)) { | |
682 | new_timer->it_process = process; | |
683 | list_add(&new_timer->list, | |
684 | &process->signal->posix_timers); | |
685 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | |
686 | if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | |
687 | get_task_struct(process); | |
688 | } else { | |
689 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | |
690 | process = NULL; | |
691 | } | |
692 | } | |
693 | read_unlock(&tasklist_lock); | |
694 | if (!process) { | |
695 | error = -EINVAL; | |
696 | goto out; | |
697 | } | |
698 | } else { | |
699 | new_timer->it_sigev_notify = SIGEV_SIGNAL; | |
700 | new_timer->it_sigev_signo = SIGALRM; | |
701 | new_timer->it_sigev_value.sival_int = new_timer->it_id; | |
702 | process = current->group_leader; | |
703 | spin_lock_irqsave(&process->sighand->siglock, flags); | |
704 | new_timer->it_process = process; | |
705 | list_add(&new_timer->list, &process->signal->posix_timers); | |
706 | spin_unlock_irqrestore(&process->sighand->siglock, flags); | |
707 | } | |
708 | ||
709 | /* | |
710 | * In the case of the timer belonging to another task, after | |
711 | * the task is unlocked, the timer is owned by the other task | |
712 | * and may cease to exist at any time. Don't use or modify | |
713 | * new_timer after the unlock call. | |
714 | */ | |
715 | ||
716 | out: | |
717 | if (error) | |
718 | release_posix_timer(new_timer, it_id_set); | |
719 | ||
720 | return error; | |
721 | } | |
722 | ||
723 | /* | |
724 | * good_timespec | |
725 | * | |
726 | * This function checks the elements of a timespec structure. | |
727 | * | |
728 | * Arguments: | |
729 | * ts : Pointer to the timespec structure to check | |
730 | * | |
731 | * Return value: | |
732 | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | |
733 | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | |
734 | * this function returns 0. Otherwise it returns 1. | |
735 | */ | |
736 | static int good_timespec(const struct timespec *ts) | |
737 | { | |
738 | if ((!ts) || (ts->tv_sec < 0) || | |
739 | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) | |
740 | return 0; | |
741 | return 1; | |
742 | } | |
743 | ||
744 | /* | |
745 | * Locking issues: We need to protect the result of the id look up until | |
746 | * we get the timer locked down so it is not deleted under us. The | |
747 | * removal is done under the idr spinlock so we use that here to bridge | |
748 | * the find to the timer lock. To avoid a dead lock, the timer id MUST | |
749 | * be release with out holding the timer lock. | |
750 | */ | |
751 | static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | |
752 | { | |
753 | struct k_itimer *timr; | |
754 | /* | |
755 | * Watch out here. We do a irqsave on the idr_lock and pass the | |
756 | * flags part over to the timer lock. Must not let interrupts in | |
757 | * while we are moving the lock. | |
758 | */ | |
759 | ||
760 | spin_lock_irqsave(&idr_lock, *flags); | |
761 | timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id); | |
762 | if (timr) { | |
763 | spin_lock(&timr->it_lock); | |
764 | spin_unlock(&idr_lock); | |
765 | ||
766 | if ((timr->it_id != timer_id) || !(timr->it_process) || | |
767 | timr->it_process->tgid != current->tgid) { | |
768 | unlock_timer(timr, *flags); | |
769 | timr = NULL; | |
770 | } | |
771 | } else | |
772 | spin_unlock_irqrestore(&idr_lock, *flags); | |
773 | ||
774 | return timr; | |
775 | } | |
776 | ||
777 | /* | |
778 | * Get the time remaining on a POSIX.1b interval timer. This function | |
779 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | |
780 | * mess with irq. | |
781 | * | |
782 | * We have a couple of messes to clean up here. First there is the case | |
783 | * of a timer that has a requeue pending. These timers should appear to | |
784 | * be in the timer list with an expiry as if we were to requeue them | |
785 | * now. | |
786 | * | |
787 | * The second issue is the SIGEV_NONE timer which may be active but is | |
788 | * not really ever put in the timer list (to save system resources). | |
789 | * This timer may be expired, and if so, we will do it here. Otherwise | |
790 | * it is the same as a requeue pending timer WRT to what we should | |
791 | * report. | |
792 | */ | |
793 | static void | |
794 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | |
795 | { | |
796 | unsigned long expires; | |
797 | struct now_struct now; | |
798 | ||
799 | do | |
800 | expires = timr->it.real.timer.expires; | |
801 | while ((volatile long) (timr->it.real.timer.expires) != expires); | |
802 | ||
803 | posix_get_now(&now); | |
804 | ||
805 | if (expires && | |
806 | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | |
807 | !timr->it.real.incr && | |
808 | posix_time_before(&timr->it.real.timer, &now)) | |
809 | timr->it.real.timer.expires = expires = 0; | |
810 | if (expires) { | |
811 | if (timr->it_requeue_pending & REQUEUE_PENDING || | |
812 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | |
813 | posix_bump_timer(timr, now); | |
814 | expires = timr->it.real.timer.expires; | |
815 | } | |
816 | else | |
817 | if (!timer_pending(&timr->it.real.timer)) | |
818 | expires = 0; | |
819 | if (expires) | |
820 | expires -= now.jiffies; | |
821 | } | |
822 | jiffies_to_timespec(expires, &cur_setting->it_value); | |
823 | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | |
824 | ||
825 | if (cur_setting->it_value.tv_sec < 0) { | |
826 | cur_setting->it_value.tv_nsec = 1; | |
827 | cur_setting->it_value.tv_sec = 0; | |
828 | } | |
829 | } | |
830 | ||
831 | /* Get the time remaining on a POSIX.1b interval timer. */ | |
832 | asmlinkage long | |
833 | sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | |
834 | { | |
835 | struct k_itimer *timr; | |
836 | struct itimerspec cur_setting; | |
837 | unsigned long flags; | |
838 | ||
839 | timr = lock_timer(timer_id, &flags); | |
840 | if (!timr) | |
841 | return -EINVAL; | |
842 | ||
843 | CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); | |
844 | ||
845 | unlock_timer(timr, flags); | |
846 | ||
847 | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | |
848 | return -EFAULT; | |
849 | ||
850 | return 0; | |
851 | } | |
852 | /* | |
853 | * Get the number of overruns of a POSIX.1b interval timer. This is to | |
854 | * be the overrun of the timer last delivered. At the same time we are | |
855 | * accumulating overruns on the next timer. The overrun is frozen when | |
856 | * the signal is delivered, either at the notify time (if the info block | |
857 | * is not queued) or at the actual delivery time (as we are informed by | |
858 | * the call back to do_schedule_next_timer(). So all we need to do is | |
859 | * to pick up the frozen overrun. | |
860 | */ | |
861 | ||
862 | asmlinkage long | |
863 | sys_timer_getoverrun(timer_t timer_id) | |
864 | { | |
865 | struct k_itimer *timr; | |
866 | int overrun; | |
867 | long flags; | |
868 | ||
869 | timr = lock_timer(timer_id, &flags); | |
870 | if (!timr) | |
871 | return -EINVAL; | |
872 | ||
873 | overrun = timr->it_overrun_last; | |
874 | unlock_timer(timr, flags); | |
875 | ||
876 | return overrun; | |
877 | } | |
878 | /* | |
879 | * Adjust for absolute time | |
880 | * | |
881 | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | |
882 | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | |
883 | * what ever clock he is using. | |
884 | * | |
885 | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | |
886 | * time to it to get the proper time for the timer. | |
887 | */ | |
888 | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | |
889 | int abs, u64 *exp, struct timespec *wall_to) | |
890 | { | |
891 | struct timespec now; | |
892 | struct timespec oc = *tp; | |
893 | u64 jiffies_64_f; | |
894 | int rtn =0; | |
895 | ||
896 | if (abs) { | |
897 | /* | |
898 | * The mask pick up the 4 basic clocks | |
899 | */ | |
900 | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | |
901 | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | |
902 | &now, wall_to); | |
903 | /* | |
904 | * If we are doing a MONOTONIC clock | |
905 | */ | |
906 | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | |
907 | now.tv_sec += wall_to->tv_sec; | |
908 | now.tv_nsec += wall_to->tv_nsec; | |
909 | } | |
910 | } else { | |
911 | /* | |
912 | * Not one of the basic clocks | |
913 | */ | |
914 | clock->clock_get(clock - posix_clocks, &now); | |
915 | jiffies_64_f = get_jiffies_64(); | |
916 | } | |
917 | /* | |
918 | * Take away now to get delta | |
919 | */ | |
920 | oc.tv_sec -= now.tv_sec; | |
921 | oc.tv_nsec -= now.tv_nsec; | |
922 | /* | |
923 | * Normalize... | |
924 | */ | |
925 | while ((oc.tv_nsec - NSEC_PER_SEC) >= 0) { | |
926 | oc.tv_nsec -= NSEC_PER_SEC; | |
927 | oc.tv_sec++; | |
928 | } | |
929 | while ((oc.tv_nsec) < 0) { | |
930 | oc.tv_nsec += NSEC_PER_SEC; | |
931 | oc.tv_sec--; | |
932 | } | |
933 | }else{ | |
934 | jiffies_64_f = get_jiffies_64(); | |
935 | } | |
936 | /* | |
937 | * Check if the requested time is prior to now (if so set now) | |
938 | */ | |
939 | if (oc.tv_sec < 0) | |
940 | oc.tv_sec = oc.tv_nsec = 0; | |
941 | ||
942 | if (oc.tv_sec | oc.tv_nsec) | |
943 | set_normalized_timespec(&oc, oc.tv_sec, | |
944 | oc.tv_nsec + clock->res); | |
945 | tstojiffie(&oc, clock->res, exp); | |
946 | ||
947 | /* | |
948 | * Check if the requested time is more than the timer code | |
949 | * can handle (if so we error out but return the value too). | |
950 | */ | |
951 | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | |
952 | /* | |
953 | * This is a considered response, not exactly in | |
954 | * line with the standard (in fact it is silent on | |
955 | * possible overflows). We assume such a large | |
956 | * value is ALMOST always a programming error and | |
957 | * try not to compound it by setting a really dumb | |
958 | * value. | |
959 | */ | |
960 | rtn = -EINVAL; | |
961 | /* | |
962 | * return the actual jiffies expire time, full 64 bits | |
963 | */ | |
964 | *exp += jiffies_64_f; | |
965 | return rtn; | |
966 | } | |
967 | ||
968 | /* Set a POSIX.1b interval timer. */ | |
969 | /* timr->it_lock is taken. */ | |
970 | static inline int | |
971 | common_timer_set(struct k_itimer *timr, int flags, | |
972 | struct itimerspec *new_setting, struct itimerspec *old_setting) | |
973 | { | |
974 | struct k_clock *clock = &posix_clocks[timr->it_clock]; | |
975 | u64 expire_64; | |
976 | ||
977 | if (old_setting) | |
978 | common_timer_get(timr, old_setting); | |
979 | ||
980 | /* disable the timer */ | |
981 | timr->it.real.incr = 0; | |
982 | /* | |
983 | * careful here. If smp we could be in the "fire" routine which will | |
984 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | |
985 | */ | |
986 | #ifdef CONFIG_SMP | |
987 | if (timer_active(timr) && !del_timer(&timr->it.real.timer)) | |
988 | /* | |
989 | * It can only be active if on an other cpu. Since | |
990 | * we have cleared the interval stuff above, it should | |
991 | * clear once we release the spin lock. Of course once | |
992 | * we do that anything could happen, including the | |
993 | * complete melt down of the timer. So return with | |
994 | * a "retry" exit status. | |
995 | */ | |
996 | return TIMER_RETRY; | |
997 | ||
998 | set_timer_inactive(timr); | |
999 | #else | |
1000 | del_timer(&timr->it.real.timer); | |
1001 | #endif | |
1002 | remove_from_abslist(timr); | |
1003 | ||
1004 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | |
1005 | ~REQUEUE_PENDING; | |
1006 | timr->it_overrun_last = 0; | |
1007 | timr->it_overrun = -1; | |
1008 | /* | |
1009 | *switch off the timer when it_value is zero | |
1010 | */ | |
1011 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | |
1012 | timr->it.real.timer.expires = 0; | |
1013 | return 0; | |
1014 | } | |
1015 | ||
1016 | if (adjust_abs_time(clock, | |
1017 | &new_setting->it_value, flags & TIMER_ABSTIME, | |
1018 | &expire_64, &(timr->it.real.wall_to_prev))) { | |
1019 | return -EINVAL; | |
1020 | } | |
1021 | timr->it.real.timer.expires = (unsigned long)expire_64; | |
1022 | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | |
1023 | timr->it.real.incr = (unsigned long)expire_64; | |
1024 | ||
1025 | /* | |
1026 | * We do not even queue SIGEV_NONE timers! But we do put them | |
1027 | * in the abs list so we can do that right. | |
1028 | */ | |
1029 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | |
1030 | add_timer(&timr->it.real.timer); | |
1031 | ||
1032 | if (flags & TIMER_ABSTIME && clock->abs_struct) { | |
1033 | spin_lock(&clock->abs_struct->lock); | |
1034 | list_add_tail(&(timr->it.real.abs_timer_entry), | |
1035 | &(clock->abs_struct->list)); | |
1036 | spin_unlock(&clock->abs_struct->lock); | |
1037 | } | |
1038 | return 0; | |
1039 | } | |
1040 | ||
1041 | /* Set a POSIX.1b interval timer */ | |
1042 | asmlinkage long | |
1043 | sys_timer_settime(timer_t timer_id, int flags, | |
1044 | const struct itimerspec __user *new_setting, | |
1045 | struct itimerspec __user *old_setting) | |
1046 | { | |
1047 | struct k_itimer *timr; | |
1048 | struct itimerspec new_spec, old_spec; | |
1049 | int error = 0; | |
1050 | long flag; | |
1051 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; | |
1052 | ||
1053 | if (!new_setting) | |
1054 | return -EINVAL; | |
1055 | ||
1056 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | |
1057 | return -EFAULT; | |
1058 | ||
1059 | if ((!good_timespec(&new_spec.it_interval)) || | |
1060 | (!good_timespec(&new_spec.it_value))) | |
1061 | return -EINVAL; | |
1062 | retry: | |
1063 | timr = lock_timer(timer_id, &flag); | |
1064 | if (!timr) | |
1065 | return -EINVAL; | |
1066 | ||
1067 | error = CLOCK_DISPATCH(timr->it_clock, timer_set, | |
1068 | (timr, flags, &new_spec, rtn)); | |
1069 | ||
1070 | unlock_timer(timr, flag); | |
1071 | if (error == TIMER_RETRY) { | |
1072 | rtn = NULL; // We already got the old time... | |
1073 | goto retry; | |
1074 | } | |
1075 | ||
1076 | if (old_setting && !error && copy_to_user(old_setting, | |
1077 | &old_spec, sizeof (old_spec))) | |
1078 | error = -EFAULT; | |
1079 | ||
1080 | return error; | |
1081 | } | |
1082 | ||
1083 | static inline int common_timer_del(struct k_itimer *timer) | |
1084 | { | |
1085 | timer->it.real.incr = 0; | |
1086 | #ifdef CONFIG_SMP | |
1087 | if (timer_active(timer) && !del_timer(&timer->it.real.timer)) | |
1088 | /* | |
1089 | * It can only be active if on an other cpu. Since | |
1090 | * we have cleared the interval stuff above, it should | |
1091 | * clear once we release the spin lock. Of course once | |
1092 | * we do that anything could happen, including the | |
1093 | * complete melt down of the timer. So return with | |
1094 | * a "retry" exit status. | |
1095 | */ | |
1096 | return TIMER_RETRY; | |
1097 | #else | |
1098 | del_timer(&timer->it.real.timer); | |
1099 | #endif | |
1100 | remove_from_abslist(timer); | |
1101 | ||
1102 | return 0; | |
1103 | } | |
1104 | ||
1105 | static inline int timer_delete_hook(struct k_itimer *timer) | |
1106 | { | |
1107 | return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); | |
1108 | } | |
1109 | ||
1110 | /* Delete a POSIX.1b interval timer. */ | |
1111 | asmlinkage long | |
1112 | sys_timer_delete(timer_t timer_id) | |
1113 | { | |
1114 | struct k_itimer *timer; | |
1115 | long flags; | |
1116 | ||
1117 | #ifdef CONFIG_SMP | |
1118 | int error; | |
1119 | retry_delete: | |
1120 | #endif | |
1121 | timer = lock_timer(timer_id, &flags); | |
1122 | if (!timer) | |
1123 | return -EINVAL; | |
1124 | ||
1125 | #ifdef CONFIG_SMP | |
1126 | error = timer_delete_hook(timer); | |
1127 | ||
1128 | if (error == TIMER_RETRY) { | |
1129 | unlock_timer(timer, flags); | |
1130 | goto retry_delete; | |
1131 | } | |
1132 | #else | |
1133 | timer_delete_hook(timer); | |
1134 | #endif | |
1135 | spin_lock(¤t->sighand->siglock); | |
1136 | list_del(&timer->list); | |
1137 | spin_unlock(¤t->sighand->siglock); | |
1138 | /* | |
1139 | * This keeps any tasks waiting on the spin lock from thinking | |
1140 | * they got something (see the lock code above). | |
1141 | */ | |
1142 | if (timer->it_process) { | |
1143 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | |
1144 | put_task_struct(timer->it_process); | |
1145 | timer->it_process = NULL; | |
1146 | } | |
1147 | unlock_timer(timer, flags); | |
1148 | release_posix_timer(timer, IT_ID_SET); | |
1149 | return 0; | |
1150 | } | |
1151 | /* | |
1152 | * return timer owned by the process, used by exit_itimers | |
1153 | */ | |
1154 | static inline void itimer_delete(struct k_itimer *timer) | |
1155 | { | |
1156 | unsigned long flags; | |
1157 | ||
1158 | #ifdef CONFIG_SMP | |
1159 | int error; | |
1160 | retry_delete: | |
1161 | #endif | |
1162 | spin_lock_irqsave(&timer->it_lock, flags); | |
1163 | ||
1164 | #ifdef CONFIG_SMP | |
1165 | error = timer_delete_hook(timer); | |
1166 | ||
1167 | if (error == TIMER_RETRY) { | |
1168 | unlock_timer(timer, flags); | |
1169 | goto retry_delete; | |
1170 | } | |
1171 | #else | |
1172 | timer_delete_hook(timer); | |
1173 | #endif | |
1174 | list_del(&timer->list); | |
1175 | /* | |
1176 | * This keeps any tasks waiting on the spin lock from thinking | |
1177 | * they got something (see the lock code above). | |
1178 | */ | |
1179 | if (timer->it_process) { | |
1180 | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | |
1181 | put_task_struct(timer->it_process); | |
1182 | timer->it_process = NULL; | |
1183 | } | |
1184 | unlock_timer(timer, flags); | |
1185 | release_posix_timer(timer, IT_ID_SET); | |
1186 | } | |
1187 | ||
1188 | /* | |
1189 | * This is called by __exit_signal, only when there are no more | |
1190 | * references to the shared signal_struct. | |
1191 | */ | |
1192 | void exit_itimers(struct signal_struct *sig) | |
1193 | { | |
1194 | struct k_itimer *tmr; | |
1195 | ||
1196 | while (!list_empty(&sig->posix_timers)) { | |
1197 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | |
1198 | itimer_delete(tmr); | |
1199 | } | |
caf2857a | 1200 | del_timer_sync(&sig->real_timer); |
1da177e4 LT |
1201 | } |
1202 | ||
1203 | /* | |
1204 | * And now for the "clock" calls | |
1205 | * | |
1206 | * These functions are called both from timer functions (with the timer | |
1207 | * spin_lock_irq() held and from clock calls with no locking. They must | |
1208 | * use the save flags versions of locks. | |
1209 | */ | |
1210 | ||
1211 | /* | |
1212 | * We do ticks here to avoid the irq lock ( they take sooo long). | |
1213 | * The seqlock is great here. Since we a reader, we don't really care | |
1214 | * if we are interrupted since we don't take lock that will stall us or | |
1215 | * any other cpu. Voila, no irq lock is needed. | |
1216 | * | |
1217 | */ | |
1218 | ||
1219 | static u64 do_posix_clock_monotonic_gettime_parts( | |
1220 | struct timespec *tp, struct timespec *mo) | |
1221 | { | |
1222 | u64 jiff; | |
1223 | unsigned int seq; | |
1224 | ||
1225 | do { | |
1226 | seq = read_seqbegin(&xtime_lock); | |
1227 | getnstimeofday(tp); | |
1228 | *mo = wall_to_monotonic; | |
1229 | jiff = jiffies_64; | |
1230 | ||
1231 | } while(read_seqretry(&xtime_lock, seq)); | |
1232 | ||
1233 | return jiff; | |
1234 | } | |
1235 | ||
1236 | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) | |
1237 | { | |
1238 | struct timespec wall_to_mono; | |
1239 | ||
1240 | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | |
1241 | ||
1242 | tp->tv_sec += wall_to_mono.tv_sec; | |
1243 | tp->tv_nsec += wall_to_mono.tv_nsec; | |
1244 | ||
1245 | if ((tp->tv_nsec - NSEC_PER_SEC) > 0) { | |
1246 | tp->tv_nsec -= NSEC_PER_SEC; | |
1247 | tp->tv_sec++; | |
1248 | } | |
1249 | return 0; | |
1250 | } | |
1251 | ||
1252 | int do_posix_clock_monotonic_gettime(struct timespec *tp) | |
1253 | { | |
1254 | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | |
1255 | } | |
1256 | ||
1257 | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) | |
1258 | { | |
1259 | return -EINVAL; | |
1260 | } | |
1261 | EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); | |
1262 | ||
1263 | int do_posix_clock_notimer_create(struct k_itimer *timer) | |
1264 | { | |
1265 | return -EINVAL; | |
1266 | } | |
1267 | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); | |
1268 | ||
1269 | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | |
1270 | { | |
1271 | #ifndef ENOTSUP | |
1272 | return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */ | |
1273 | #else /* parisc does define it separately. */ | |
1274 | return -ENOTSUP; | |
1275 | #endif | |
1276 | } | |
1277 | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | |
1278 | ||
1279 | asmlinkage long | |
1280 | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | |
1281 | { | |
1282 | struct timespec new_tp; | |
1283 | ||
1284 | if (invalid_clockid(which_clock)) | |
1285 | return -EINVAL; | |
1286 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) | |
1287 | return -EFAULT; | |
1288 | ||
1289 | return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); | |
1290 | } | |
1291 | ||
1292 | asmlinkage long | |
1293 | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | |
1294 | { | |
1295 | struct timespec kernel_tp; | |
1296 | int error; | |
1297 | ||
1298 | if (invalid_clockid(which_clock)) | |
1299 | return -EINVAL; | |
1300 | error = CLOCK_DISPATCH(which_clock, clock_get, | |
1301 | (which_clock, &kernel_tp)); | |
1302 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) | |
1303 | error = -EFAULT; | |
1304 | ||
1305 | return error; | |
1306 | ||
1307 | } | |
1308 | ||
1309 | asmlinkage long | |
1310 | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | |
1311 | { | |
1312 | struct timespec rtn_tp; | |
1313 | int error; | |
1314 | ||
1315 | if (invalid_clockid(which_clock)) | |
1316 | return -EINVAL; | |
1317 | ||
1318 | error = CLOCK_DISPATCH(which_clock, clock_getres, | |
1319 | (which_clock, &rtn_tp)); | |
1320 | ||
1321 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { | |
1322 | error = -EFAULT; | |
1323 | } | |
1324 | ||
1325 | return error; | |
1326 | } | |
1327 | ||
1328 | static void nanosleep_wake_up(unsigned long __data) | |
1329 | { | |
1330 | struct task_struct *p = (struct task_struct *) __data; | |
1331 | ||
1332 | wake_up_process(p); | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * The standard says that an absolute nanosleep call MUST wake up at | |
1337 | * the requested time in spite of clock settings. Here is what we do: | |
1338 | * For each nanosleep call that needs it (only absolute and not on | |
1339 | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | |
1340 | * into the "nanosleep_abs_list". All we need is the task_struct pointer. | |
1341 | * When ever the clock is set we just wake up all those tasks. The rest | |
1342 | * is done by the while loop in clock_nanosleep(). | |
1343 | * | |
1344 | * On locking, clock_was_set() is called from update_wall_clock which | |
1345 | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | |
1346 | * called from the timer bh code. Thus we need the irq save locks. | |
1347 | * | |
1348 | * Also, on the call from update_wall_clock, that is done as part of a | |
1349 | * softirq thing. We don't want to delay the system that much (possibly | |
1350 | * long list of timers to fix), so we defer that work to keventd. | |
1351 | */ | |
1352 | ||
1353 | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | |
1354 | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | |
1355 | ||
1356 | static DECLARE_MUTEX(clock_was_set_lock); | |
1357 | ||
1358 | void clock_was_set(void) | |
1359 | { | |
1360 | struct k_itimer *timr; | |
1361 | struct timespec new_wall_to; | |
1362 | LIST_HEAD(cws_list); | |
1363 | unsigned long seq; | |
1364 | ||
1365 | ||
1366 | if (unlikely(in_interrupt())) { | |
1367 | schedule_work(&clock_was_set_work); | |
1368 | return; | |
1369 | } | |
1370 | wake_up_all(&nanosleep_abs_wqueue); | |
1371 | ||
1372 | /* | |
1373 | * Check if there exist TIMER_ABSTIME timers to correct. | |
1374 | * | |
1375 | * Notes on locking: This code is run in task context with irq | |
1376 | * on. We CAN be interrupted! All other usage of the abs list | |
1377 | * lock is under the timer lock which holds the irq lock as | |
1378 | * well. We REALLY don't want to scan the whole list with the | |
1379 | * interrupt system off, AND we would like a sequence lock on | |
1380 | * this code as well. Since we assume that the clock will not | |
1381 | * be set often, it seems ok to take and release the irq lock | |
1382 | * for each timer. In fact add_timer will do this, so this is | |
1383 | * not an issue. So we know when we are done, we will move the | |
1384 | * whole list to a new location. Then as we process each entry, | |
1385 | * we will move it to the actual list again. This way, when our | |
1386 | * copy is empty, we are done. We are not all that concerned | |
1387 | * about preemption so we will use a semaphore lock to protect | |
1388 | * aginst reentry. This way we will not stall another | |
1389 | * processor. It is possible that this may delay some timers | |
1390 | * that should have expired, given the new clock, but even this | |
1391 | * will be minimal as we will always update to the current time, | |
1392 | * even if it was set by a task that is waiting for entry to | |
1393 | * this code. Timers that expire too early will be caught by | |
1394 | * the expire code and restarted. | |
1395 | ||
1396 | * Absolute timers that repeat are left in the abs list while | |
1397 | * waiting for the task to pick up the signal. This means we | |
1398 | * may find timers that are not in the "add_timer" list, but are | |
1399 | * in the abs list. We do the same thing for these, save | |
1400 | * putting them back in the "add_timer" list. (Note, these are | |
1401 | * left in the abs list mainly to indicate that they are | |
1402 | * ABSOLUTE timers, a fact that is used by the re-arm code, and | |
1403 | * for which we have no other flag.) | |
1404 | ||
1405 | */ | |
1406 | ||
1407 | down(&clock_was_set_lock); | |
1408 | spin_lock_irq(&abs_list.lock); | |
1409 | list_splice_init(&abs_list.list, &cws_list); | |
1410 | spin_unlock_irq(&abs_list.lock); | |
1411 | do { | |
1412 | do { | |
1413 | seq = read_seqbegin(&xtime_lock); | |
1414 | new_wall_to = wall_to_monotonic; | |
1415 | } while (read_seqretry(&xtime_lock, seq)); | |
1416 | ||
1417 | spin_lock_irq(&abs_list.lock); | |
1418 | if (list_empty(&cws_list)) { | |
1419 | spin_unlock_irq(&abs_list.lock); | |
1420 | break; | |
1421 | } | |
1422 | timr = list_entry(cws_list.next, struct k_itimer, | |
1423 | it.real.abs_timer_entry); | |
1424 | ||
1425 | list_del_init(&timr->it.real.abs_timer_entry); | |
1426 | if (add_clockset_delta(timr, &new_wall_to) && | |
1427 | del_timer(&timr->it.real.timer)) /* timer run yet? */ | |
1428 | add_timer(&timr->it.real.timer); | |
1429 | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | |
1430 | spin_unlock_irq(&abs_list.lock); | |
1431 | } while (1); | |
1432 | ||
1433 | up(&clock_was_set_lock); | |
1434 | } | |
1435 | ||
1436 | long clock_nanosleep_restart(struct restart_block *restart_block); | |
1437 | ||
1438 | asmlinkage long | |
1439 | sys_clock_nanosleep(clockid_t which_clock, int flags, | |
1440 | const struct timespec __user *rqtp, | |
1441 | struct timespec __user *rmtp) | |
1442 | { | |
1443 | struct timespec t; | |
1444 | struct restart_block *restart_block = | |
1445 | &(current_thread_info()->restart_block); | |
1446 | int ret; | |
1447 | ||
1448 | if (invalid_clockid(which_clock)) | |
1449 | return -EINVAL; | |
1450 | ||
1451 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | |
1452 | return -EFAULT; | |
1453 | ||
1454 | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) | |
1455 | return -EINVAL; | |
1456 | ||
1457 | /* | |
1458 | * Do this here as nsleep function does not have the real address. | |
1459 | */ | |
1460 | restart_block->arg1 = (unsigned long)rmtp; | |
1461 | ||
1462 | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); | |
1463 | ||
1464 | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && | |
1465 | copy_to_user(rmtp, &t, sizeof (t))) | |
1466 | return -EFAULT; | |
1467 | return ret; | |
1468 | } | |
1469 | ||
1470 | ||
1471 | static int common_nsleep(clockid_t which_clock, | |
1472 | int flags, struct timespec *tsave) | |
1473 | { | |
1474 | struct timespec t, dum; | |
1475 | struct timer_list new_timer; | |
1476 | DECLARE_WAITQUEUE(abs_wqueue, current); | |
1477 | u64 rq_time = (u64)0; | |
1478 | s64 left; | |
1479 | int abs; | |
1480 | struct restart_block *restart_block = | |
1481 | ¤t_thread_info()->restart_block; | |
1482 | ||
1483 | abs_wqueue.flags = 0; | |
1484 | init_timer(&new_timer); | |
1485 | new_timer.expires = 0; | |
1486 | new_timer.data = (unsigned long) current; | |
1487 | new_timer.function = nanosleep_wake_up; | |
1488 | abs = flags & TIMER_ABSTIME; | |
1489 | ||
1490 | if (restart_block->fn == clock_nanosleep_restart) { | |
1491 | /* | |
1492 | * Interrupted by a non-delivered signal, pick up remaining | |
1493 | * time and continue. Remaining time is in arg2 & 3. | |
1494 | */ | |
1495 | restart_block->fn = do_no_restart_syscall; | |
1496 | ||
1497 | rq_time = restart_block->arg3; | |
1498 | rq_time = (rq_time << 32) + restart_block->arg2; | |
1499 | if (!rq_time) | |
1500 | return -EINTR; | |
1501 | left = rq_time - get_jiffies_64(); | |
1502 | if (left <= (s64)0) | |
1503 | return 0; /* Already passed */ | |
1504 | } | |
1505 | ||
1506 | if (abs && (posix_clocks[which_clock].clock_get != | |
1507 | posix_clocks[CLOCK_MONOTONIC].clock_get)) | |
1508 | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); | |
1509 | ||
1510 | do { | |
1511 | t = *tsave; | |
1512 | if (abs || !rq_time) { | |
1513 | adjust_abs_time(&posix_clocks[which_clock], &t, abs, | |
1514 | &rq_time, &dum); | |
1515 | } | |
1516 | ||
1517 | left = rq_time - get_jiffies_64(); | |
1518 | if (left >= (s64)MAX_JIFFY_OFFSET) | |
1519 | left = (s64)MAX_JIFFY_OFFSET; | |
1520 | if (left < (s64)0) | |
1521 | break; | |
1522 | ||
1523 | new_timer.expires = jiffies + left; | |
1524 | __set_current_state(TASK_INTERRUPTIBLE); | |
1525 | add_timer(&new_timer); | |
1526 | ||
1527 | schedule(); | |
1528 | ||
1529 | del_timer_sync(&new_timer); | |
1530 | left = rq_time - get_jiffies_64(); | |
1531 | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); | |
1532 | ||
1533 | if (abs_wqueue.task_list.next) | |
1534 | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); | |
1535 | ||
1536 | if (left > (s64)0) { | |
1537 | ||
1538 | /* | |
1539 | * Always restart abs calls from scratch to pick up any | |
1540 | * clock shifting that happened while we are away. | |
1541 | */ | |
1542 | if (abs) | |
1543 | return -ERESTARTNOHAND; | |
1544 | ||
1545 | left *= TICK_NSEC; | |
1546 | tsave->tv_sec = div_long_long_rem(left, | |
1547 | NSEC_PER_SEC, | |
1548 | &tsave->tv_nsec); | |
1549 | /* | |
1550 | * Restart works by saving the time remaing in | |
1551 | * arg2 & 3 (it is 64-bits of jiffies). The other | |
1552 | * info we need is the clock_id (saved in arg0). | |
1553 | * The sys_call interface needs the users | |
1554 | * timespec return address which _it_ saves in arg1. | |
1555 | * Since we have cast the nanosleep call to a clock_nanosleep | |
1556 | * both can be restarted with the same code. | |
1557 | */ | |
1558 | restart_block->fn = clock_nanosleep_restart; | |
1559 | restart_block->arg0 = which_clock; | |
1560 | /* | |
1561 | * Caller sets arg1 | |
1562 | */ | |
1563 | restart_block->arg2 = rq_time & 0xffffffffLL; | |
1564 | restart_block->arg3 = rq_time >> 32; | |
1565 | ||
1566 | return -ERESTART_RESTARTBLOCK; | |
1567 | } | |
1568 | ||
1569 | return 0; | |
1570 | } | |
1571 | /* | |
1572 | * This will restart clock_nanosleep. | |
1573 | */ | |
1574 | long | |
1575 | clock_nanosleep_restart(struct restart_block *restart_block) | |
1576 | { | |
1577 | struct timespec t; | |
1578 | int ret = common_nsleep(restart_block->arg0, 0, &t); | |
1579 | ||
1580 | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && | |
1581 | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, | |
1582 | sizeof (t))) | |
1583 | return -EFAULT; | |
1584 | return ret; | |
1585 | } |