]> Git Repo - linux.git/blame - fs/xfs/xfs_mount.c
Merge tag 'mvebu-arm-5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/gclemen...
[linux.git] / fs / xfs / xfs_mount.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
1da177e4 15#include "xfs_inode.h"
a4fbe6ab 16#include "xfs_dir2.h"
a844f451 17#include "xfs_ialloc.h"
1da177e4
LT
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
a4fbe6ab
DC
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
b5f17bec 24#include "xfs_log_priv.h"
1da177e4 25#include "xfs_error.h"
1da177e4
LT
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
6d8b79cf 28#include "xfs_icache.h"
a31b1d3d 29#include "xfs_sysfs.h"
035e00ac 30#include "xfs_rmap_btree.h"
1946b91c 31#include "xfs_refcount_btree.h"
174edb0e 32#include "xfs_reflink.h"
ebf55872 33#include "xfs_extent_busy.h"
39353ff6 34#include "xfs_health.h"
13eaec4b 35#include "xfs_trace.h"
9bbafc71 36#include "xfs_ag.h"
1da177e4 37
27174203
CH
38static DEFINE_MUTEX(xfs_uuid_table_mutex);
39static int xfs_uuid_table_size;
40static uuid_t *xfs_uuid_table;
41
af3b6382
DW
42void
43xfs_uuid_table_free(void)
44{
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50}
51
27174203
CH
52/*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56STATIC int
57xfs_uuid_mount(
58 struct xfs_mount *mp)
59{
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
8f720d9f 63 /* Publish UUID in struct super_block */
85787090 64 uuid_copy(&mp->m_super->s_uuid, uuid);
8f720d9f 65
0560f31a 66 if (xfs_has_nouuid(mp))
27174203
CH
67 return 0;
68
d905fdaa
AG
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
2451337d 71 return -EINVAL;
27174203
CH
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
d905fdaa 76 if (uuid_is_null(&xfs_uuid_table[i])) {
27174203
CH
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
771915c4 85 xfs_uuid_table = krealloc(xfs_uuid_table,
27174203 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
771915c4 87 GFP_KERNEL | __GFP_NOFAIL);
27174203
CH
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 98 return -EINVAL;
27174203
CH
99}
100
101STATIC void
102xfs_uuid_unmount(
103 struct xfs_mount *mp)
104{
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
0560f31a 108 if (xfs_has_nouuid(mp))
27174203
CH
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
d905fdaa 113 if (uuid_is_null(&xfs_uuid_table[i]))
27174203
CH
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122}
123
4cc929ee
NS
124/*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128int
129xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
c8ce540d 131 uint64_t nblocks)
4cc929ee
NS
132{
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
d5cf09ba 136 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 138 return -EFBIG;
4cc929ee
NS
139 return 0;
140}
1da177e4 141
1da177e4
LT
142/*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147int
ff55068c
DC
148xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
1da177e4
LT
151{
152 unsigned int sector_size;
04a1e6c5
DC
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 155 int error;
af34e09d 156 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 157 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
daba5427
ES
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
1da177e4 172 /*
c891c30a
BF
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
1da177e4 177 */
26af6552 178reread:
ba372674 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
ba372674 182 if (error) {
eab4e633 183 if (loud)
e721f504 184 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 185 /* bad CRC means corrupted metadata */
2451337d
DC
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
ba372674 188 return error;
eab4e633 189 }
1da177e4
LT
190
191 /*
192 * Initialize the mount structure from the superblock.
1da177e4 193 */
3e6e8afd 194 xfs_sb_from_disk(sbp, bp->b_addr);
556b8883
DC
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
2451337d 203 error = -EINVAL;
556b8883
DC
204 goto release_buf;
205 }
ff55068c 206
1da177e4
LT
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
04a1e6c5 210 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 213 sector_size, sbp->sb_sectsize);
2451337d 214 error = -ENOSYS;
26af6552 215 goto release_buf;
1da177e4
LT
216 }
217
daba5427 218 if (buf_ops == NULL) {
556b8883
DC
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
1da177e4 223 xfs_buf_relse(bp);
04a1e6c5 224 sector_size = sbp->sb_sectsize;
daba5427 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 226 goto reread;
1da177e4
LT
227 }
228
a1d86e8d 229 mp->m_features |= xfs_sb_version_to_features(sbp);
5681ca40 230 xfs_reinit_percpu_counters(mp);
8d280b98 231
04a1e6c5
DC
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
1da177e4 235 mp->m_sb_bp = bp;
26af6552 236 xfs_buf_unlock(bp);
1da177e4
LT
237 return 0;
238
26af6552
DC
239release_buf:
240 xfs_buf_relse(bp);
1da177e4
LT
241 return error;
242}
243
13eaec4b
DW
244/*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250static inline int
251xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255{
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268"Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278}
279
1da177e4 280/*
4f5b1b3a
DW
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
1da177e4 285 */
0771fb45 286STATIC int
4f5b1b3a
DW
287xfs_validate_new_dalign(
288 struct xfs_mount *mp)
1da177e4 289{
4f5b1b3a
DW
290 if (mp->m_dalign == 0)
291 return 0;
1da177e4 292
4f5b1b3a
DW
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 } else {
1da177e4 304 /*
4f5b1b3a 305 * Convert the stripe unit and width to FSBs.
1da177e4 306 */
4f5b1b3a
DW
307 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
308 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
39a45d84 309 xfs_warn(mp,
4f5b1b3a
DW
310 "alignment check failed: sunit/swidth vs. agsize(%d)",
311 mp->m_sb.sb_agblocks);
2451337d 312 return -EINVAL;
4f5b1b3a
DW
313 } else if (mp->m_dalign) {
314 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
34d7f603
JL
315 } else {
316 xfs_warn(mp,
4f5b1b3a
DW
317 "alignment check failed: sunit(%d) less than bsize(%d)",
318 mp->m_dalign, mp->m_sb.sb_blocksize);
2451337d 319 return -EINVAL;
1da177e4 320 }
4f5b1b3a
DW
321 }
322
38c26bfd 323 if (!xfs_has_dalign(mp)) {
4f5b1b3a
DW
324 xfs_warn(mp,
325"cannot change alignment: superblock does not support data alignment");
326 return -EINVAL;
327 }
328
329 return 0;
330}
331
332/* Update alignment values based on mount options and sb values. */
333STATIC int
334xfs_update_alignment(
335 struct xfs_mount *mp)
336{
337 struct xfs_sb *sbp = &mp->m_sb;
338
339 if (mp->m_dalign) {
13eaec4b
DW
340 bool update_sb;
341 int error;
342
4f5b1b3a
DW
343 if (sbp->sb_unit == mp->m_dalign &&
344 sbp->sb_width == mp->m_swidth)
345 return 0;
346
13eaec4b
DW
347 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
348 if (error || !update_sb)
349 return error;
350
4f5b1b3a
DW
351 sbp->sb_unit = mp->m_dalign;
352 sbp->sb_width = mp->m_swidth;
353 mp->m_update_sb = true;
0560f31a 354 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
4f5b1b3a
DW
355 mp->m_dalign = sbp->sb_unit;
356 mp->m_swidth = sbp->sb_width;
1da177e4
LT
357 }
358
0771fb45
ES
359 return 0;
360}
1da177e4 361
055388a3
DC
362/*
363 * precalculate the low space thresholds for dynamic speculative preallocation.
364 */
365void
366xfs_set_low_space_thresholds(
367 struct xfs_mount *mp)
368{
65f03d86
DW
369 uint64_t dblocks = mp->m_sb.sb_dblocks;
370 uint64_t rtexts = mp->m_sb.sb_rextents;
371 int i;
055388a3 372
65f03d86
DW
373 do_div(dblocks, 100);
374 do_div(rtexts, 100);
055388a3 375
65f03d86
DW
376 for (i = 0; i < XFS_LOWSP_MAX; i++) {
377 mp->m_low_space[i] = dblocks * (i + 1);
378 mp->m_low_rtexts[i] = rtexts * (i + 1);
055388a3
DC
379 }
380}
381
0771fb45 382/*
0471f62e 383 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
384 */
385STATIC int
ba372674
DC
386xfs_check_sizes(
387 struct xfs_mount *mp)
0771fb45 388{
ba372674 389 struct xfs_buf *bp;
0771fb45 390 xfs_daddr_t d;
ba372674 391 int error;
0771fb45 392
1da177e4
LT
393 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
394 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 395 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 396 return -EFBIG;
1da177e4 397 }
ba372674 398 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 399 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
400 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
401 if (error) {
0b932ccc 402 xfs_warn(mp, "last sector read failed");
ba372674 403 return error;
1da177e4 404 }
1922c949 405 xfs_buf_relse(bp);
1da177e4 406
ba372674
DC
407 if (mp->m_logdev_targp == mp->m_ddev_targp)
408 return 0;
409
410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
412 xfs_warn(mp, "log size mismatch detected");
413 return -EFBIG;
414 }
415 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 416 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
417 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
418 if (error) {
419 xfs_warn(mp, "log device read failed");
420 return error;
0771fb45 421 }
ba372674 422 xfs_buf_relse(bp);
0771fb45
ES
423 return 0;
424}
425
7d095257
CH
426/*
427 * Clear the quotaflags in memory and in the superblock.
428 */
429int
430xfs_mount_reset_sbqflags(
431 struct xfs_mount *mp)
432{
7d095257
CH
433 mp->m_qflags = 0;
434
61e63ecb 435 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
436 if (mp->m_sb.sb_qflags == 0)
437 return 0;
438 spin_lock(&mp->m_sb_lock);
439 mp->m_sb.sb_qflags = 0;
440 spin_unlock(&mp->m_sb_lock);
441
61e63ecb 442 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
443 return 0;
444
61e63ecb 445 return xfs_sync_sb(mp, false);
7d095257
CH
446}
447
c8ce540d 448uint64_t
d5db0f97
ES
449xfs_default_resblks(xfs_mount_t *mp)
450{
c8ce540d 451 uint64_t resblks;
d5db0f97
ES
452
453 /*
8babd8a2
DC
454 * We default to 5% or 8192 fsbs of space reserved, whichever is
455 * smaller. This is intended to cover concurrent allocation
456 * transactions when we initially hit enospc. These each require a 4
457 * block reservation. Hence by default we cover roughly 2000 concurrent
458 * allocation reservations.
d5db0f97
ES
459 */
460 resblks = mp->m_sb.sb_dblocks;
461 do_div(resblks, 20);
c8ce540d 462 resblks = min_t(uint64_t, resblks, 8192);
d5db0f97
ES
463 return resblks;
464}
465
2e9e6481
DW
466/* Ensure the summary counts are correct. */
467STATIC int
468xfs_check_summary_counts(
469 struct xfs_mount *mp)
470{
471 /*
472 * The AG0 superblock verifier rejects in-progress filesystems,
473 * so we should never see the flag set this far into mounting.
474 */
475 if (mp->m_sb.sb_inprogress) {
476 xfs_err(mp, "sb_inprogress set after log recovery??");
477 WARN_ON(1);
478 return -EFSCORRUPTED;
479 }
480
481 /*
482 * Now the log is mounted, we know if it was an unclean shutdown or
483 * not. If it was, with the first phase of recovery has completed, we
484 * have consistent AG blocks on disk. We have not recovered EFIs yet,
485 * but they are recovered transactionally in the second recovery phase
486 * later.
487 *
488 * If the log was clean when we mounted, we can check the summary
489 * counters. If any of them are obviously incorrect, we can recompute
490 * them from the AGF headers in the next step.
491 */
2e973b2c 492 if (xfs_is_clean(mp) &&
2e9e6481 493 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
00d22a1c 494 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
2e9e6481 495 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
39353ff6 496 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
2e9e6481
DW
497
498 /*
499 * We can safely re-initialise incore superblock counters from the
500 * per-ag data. These may not be correct if the filesystem was not
501 * cleanly unmounted, so we waited for recovery to finish before doing
502 * this.
503 *
504 * If the filesystem was cleanly unmounted or the previous check did
505 * not flag anything weird, then we can trust the values in the
506 * superblock to be correct and we don't need to do anything here.
507 * Otherwise, recalculate the summary counters.
508 */
2e973b2c 509 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
39353ff6 510 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
2e9e6481
DW
511 return 0;
512
513 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
514}
515
d336f7eb
DW
516/*
517 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
518 * internal inode structures can be sitting in the CIL and AIL at this point,
519 * so we need to unpin them, write them back and/or reclaim them before unmount
ab23a776
DC
520 * can proceed. In other words, callers are required to have inactivated all
521 * inodes.
d336f7eb
DW
522 *
523 * An inode cluster that has been freed can have its buffer still pinned in
524 * memory because the transaction is still sitting in a iclog. The stale inodes
525 * on that buffer will be pinned to the buffer until the transaction hits the
526 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
527 * may never see the pinned buffer, so nothing will push out the iclog and
528 * unpin the buffer.
529 *
530 * Hence we need to force the log to unpin everything first. However, log
531 * forces don't wait for the discards they issue to complete, so we have to
532 * explicitly wait for them to complete here as well.
533 *
534 * Then we can tell the world we are unmounting so that error handling knows
535 * that the filesystem is going away and we should error out anything that we
536 * have been retrying in the background. This will prevent never-ending
537 * retries in AIL pushing from hanging the unmount.
538 *
539 * Finally, we can push the AIL to clean all the remaining dirty objects, then
540 * reclaim the remaining inodes that are still in memory at this point in time.
541 */
542static void
543xfs_unmount_flush_inodes(
544 struct xfs_mount *mp)
545{
546 xfs_log_force(mp, XFS_LOG_SYNC);
547 xfs_extent_busy_wait_all(mp);
548 flush_workqueue(xfs_discard_wq);
549
2e973b2c 550 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
d336f7eb
DW
551
552 xfs_ail_push_all_sync(mp->m_ail);
ab23a776 553 xfs_inodegc_stop(mp);
d336f7eb
DW
554 cancel_delayed_work_sync(&mp->m_reclaim_work);
555 xfs_reclaim_inodes(mp);
556 xfs_health_unmount(mp);
557}
558
b2941046
DC
559static void
560xfs_mount_setup_inode_geom(
561 struct xfs_mount *mp)
562{
563 struct xfs_ino_geometry *igeo = M_IGEO(mp);
564
565 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
566 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
567
568 xfs_ialloc_setup_geometry(mp);
569}
570
b74e15d7
DW
571/* Compute maximum possible height for per-AG btree types for this fs. */
572static inline void
573xfs_agbtree_compute_maxlevels(
574 struct xfs_mount *mp)
575{
576 unsigned int levels;
577
578 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
579 levels = max(levels, mp->m_rmap_maxlevels);
580 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
581}
582
0771fb45 583/*
0771fb45
ES
584 * This function does the following on an initial mount of a file system:
585 * - reads the superblock from disk and init the mount struct
586 * - if we're a 32-bit kernel, do a size check on the superblock
587 * so we don't mount terabyte filesystems
588 * - init mount struct realtime fields
589 * - allocate inode hash table for fs
590 * - init directory manager
591 * - perform recovery and init the log manager
592 */
593int
594xfs_mountfs(
f0b2efad 595 struct xfs_mount *mp)
0771fb45 596{
f0b2efad
BF
597 struct xfs_sb *sbp = &(mp->m_sb);
598 struct xfs_inode *rip;
ef325959 599 struct xfs_ino_geometry *igeo = M_IGEO(mp);
c8ce540d 600 uint64_t resblks;
f0b2efad
BF
601 uint quotamount = 0;
602 uint quotaflags = 0;
603 int error = 0;
0771fb45 604
ff55068c 605 xfs_sb_mount_common(mp, sbp);
0771fb45 606
ee1c0908 607 /*
074e427b
DC
608 * Check for a mismatched features2 values. Older kernels read & wrote
609 * into the wrong sb offset for sb_features2 on some platforms due to
610 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
611 * which made older superblock reading/writing routines swap it as a
612 * 64-bit value.
ee1c0908 613 *
e6957ea4
ES
614 * For backwards compatibility, we make both slots equal.
615 *
074e427b
DC
616 * If we detect a mismatched field, we OR the set bits into the existing
617 * features2 field in case it has already been modified; we don't want
618 * to lose any features. We then update the bad location with the ORed
619 * value so that older kernels will see any features2 flags. The
620 * superblock writeback code ensures the new sb_features2 is copied to
621 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 622 */
e6957ea4 623 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 624 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 625 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 626 mp->m_update_sb = true;
7c12f296
TS
627 }
628
ee1c0908 629
263997a6
DC
630 /* always use v2 inodes by default now */
631 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
632 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
38c26bfd 633 mp->m_features |= XFS_FEAT_NLINK;
61e63ecb 634 mp->m_update_sb = true;
263997a6
DC
635 }
636
0771fb45 637 /*
4f5b1b3a
DW
638 * If we were given new sunit/swidth options, do some basic validation
639 * checks and convert the incore dalign and swidth values to the
640 * same units (FSB) that everything else uses. This /must/ happen
641 * before computing the inode geometry.
0771fb45 642 */
4f5b1b3a 643 error = xfs_validate_new_dalign(mp);
0771fb45 644 if (error)
f9057e3d 645 goto out;
0771fb45
ES
646
647 xfs_alloc_compute_maxlevels(mp);
648 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
649 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
b2941046 650 xfs_mount_setup_inode_geom(mp);
035e00ac 651 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 652 xfs_refcountbt_compute_maxlevels(mp);
0771fb45 653
b74e15d7
DW
654 xfs_agbtree_compute_maxlevels(mp);
655
4f5b1b3a
DW
656 /*
657 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
658 * is NOT aligned turn off m_dalign since allocator alignment is within
659 * an ag, therefore ag has to be aligned at stripe boundary. Note that
660 * we must compute the free space and rmap btree geometry before doing
661 * this.
662 */
663 error = xfs_update_alignment(mp);
664 if (error)
665 goto out;
666
e6b3bb78 667 /* enable fail_at_unmount as default */
749f24f3 668 mp->m_fail_unmount = true;
e6b3bb78 669
e1d3d218
IK
670 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
671 NULL, mp->m_super->s_id);
27174203
CH
672 if (error)
673 goto out;
1da177e4 674
225e4635
BD
675 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
676 &mp->m_kobj, "stats");
a31b1d3d
BF
677 if (error)
678 goto out_remove_sysfs;
679
192852be 680 error = xfs_error_sysfs_init(mp);
225e4635
BD
681 if (error)
682 goto out_del_stats;
683
31965ef3
DW
684 error = xfs_errortag_init(mp);
685 if (error)
686 goto out_remove_error_sysfs;
192852be
CM
687
688 error = xfs_uuid_mount(mp);
689 if (error)
31965ef3 690 goto out_remove_errortag;
192852be 691
0771fb45 692 /*
2fcddee8
CH
693 * Update the preferred write size based on the information from the
694 * on-disk superblock.
0771fb45 695 */
2fcddee8
CH
696 mp->m_allocsize_log =
697 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
698 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
0771fb45 699
055388a3
DC
700 /* set the low space thresholds for dynamic preallocation */
701 xfs_set_low_space_thresholds(mp);
702
e5376fc1
BF
703 /*
704 * If enabled, sparse inode chunk alignment is expected to match the
705 * cluster size. Full inode chunk alignment must match the chunk size,
706 * but that is checked on sb read verification...
707 */
38c26bfd 708 if (xfs_has_sparseinodes(mp) &&
e5376fc1 709 mp->m_sb.sb_spino_align !=
490d451f 710 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
e5376fc1
BF
711 xfs_warn(mp,
712 "Sparse inode block alignment (%u) must match cluster size (%llu).",
713 mp->m_sb.sb_spino_align,
490d451f 714 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
e5376fc1
BF
715 error = -EINVAL;
716 goto out_remove_uuid;
717 }
718
0771fb45 719 /*
c2bfbc9b 720 * Check that the data (and log if separate) is an ok size.
0771fb45 721 */
4249023a 722 error = xfs_check_sizes(mp);
0771fb45 723 if (error)
f9057e3d 724 goto out_remove_uuid;
0771fb45 725
1da177e4
LT
726 /*
727 * Initialize realtime fields in the mount structure
728 */
0771fb45
ES
729 error = xfs_rtmount_init(mp);
730 if (error) {
0b932ccc 731 xfs_warn(mp, "RT mount failed");
f9057e3d 732 goto out_remove_uuid;
1da177e4
LT
733 }
734
1da177e4
LT
735 /*
736 * Copies the low order bits of the timestamp and the randomly
737 * set "sequence" number out of a UUID.
738 */
cb0ba6cc
CH
739 mp->m_fixedfsid[0] =
740 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
741 get_unaligned_be16(&sbp->sb_uuid.b[4]);
742 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
1da177e4 743
0650b554
DC
744 error = xfs_da_mount(mp);
745 if (error) {
746 xfs_warn(mp, "Failed dir/attr init: %d", error);
747 goto out_remove_uuid;
748 }
1da177e4
LT
749
750 /*
751 * Initialize the precomputed transaction reservations values.
752 */
753 xfs_trans_init(mp);
754
1da177e4
LT
755 /*
756 * Allocate and initialize the per-ag data.
757 */
1c1c6ebc
DC
758 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
759 if (error) {
0b932ccc 760 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 761 goto out_free_dir;
1c1c6ebc 762 }
1da177e4 763
a71895c5 764 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
0b932ccc 765 xfs_warn(mp, "no log defined");
2451337d 766 error = -EFSCORRUPTED;
f9057e3d
CH
767 goto out_free_perag;
768 }
769
40b1de00
DW
770 error = xfs_inodegc_register_shrinker(mp);
771 if (error)
772 goto out_fail_wait;
773
1da177e4 774 /*
f0b2efad
BF
775 * Log's mount-time initialization. The first part of recovery can place
776 * some items on the AIL, to be handled when recovery is finished or
777 * cancelled.
1da177e4 778 */
f9057e3d
CH
779 error = xfs_log_mount(mp, mp->m_logdev_targp,
780 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
781 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
782 if (error) {
0b932ccc 783 xfs_warn(mp, "log mount failed");
40b1de00 784 goto out_inodegc_shrinker;
1da177e4
LT
785 }
786
2e9e6481
DW
787 /* Make sure the summary counts are ok. */
788 error = xfs_check_summary_counts(mp);
789 if (error)
790 goto out_log_dealloc;
f9057e3d 791
ab23a776
DC
792 /* Enable background inode inactivation workers. */
793 xfs_inodegc_start(mp);
6f649091 794 xfs_blockgc_start(mp);
ab23a776 795
e23b55d5
DC
796 /*
797 * Now that we've recovered any pending superblock feature bit
798 * additions, we can finish setting up the attr2 behaviour for the
0560f31a
DC
799 * mount. The noattr2 option overrides the superblock flag, so only
800 * check the superblock feature flag if the mount option is not set.
e23b55d5 801 */
0560f31a
DC
802 if (xfs_has_noattr2(mp)) {
803 mp->m_features &= ~XFS_FEAT_ATTR2;
804 } else if (!xfs_has_attr2(mp) &&
805 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
806 mp->m_features |= XFS_FEAT_ATTR2;
807 }
e23b55d5 808
1da177e4
LT
809 /*
810 * Get and sanity-check the root inode.
811 * Save the pointer to it in the mount structure.
812 */
541b5acc
DC
813 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
814 XFS_ILOCK_EXCL, &rip);
1da177e4 815 if (error) {
541b5acc
DC
816 xfs_warn(mp,
817 "Failed to read root inode 0x%llx, error %d",
818 sbp->sb_rootino, -error);
f9057e3d 819 goto out_log_dealloc;
1da177e4
LT
820 }
821
822 ASSERT(rip != NULL);
1da177e4 823
a71895c5 824 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 825 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 826 (unsigned long long)rip->i_ino);
1da177e4 827 xfs_iunlock(rip, XFS_ILOCK_EXCL);
2451337d 828 error = -EFSCORRUPTED;
f9057e3d 829 goto out_rele_rip;
1da177e4
LT
830 }
831 mp->m_rootip = rip; /* save it */
832
833 xfs_iunlock(rip, XFS_ILOCK_EXCL);
834
835 /*
836 * Initialize realtime inode pointers in the mount structure
837 */
0771fb45
ES
838 error = xfs_rtmount_inodes(mp);
839 if (error) {
1da177e4
LT
840 /*
841 * Free up the root inode.
842 */
0b932ccc 843 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 844 goto out_rele_rip;
1da177e4
LT
845 }
846
847 /*
7884bc86
CH
848 * If this is a read-only mount defer the superblock updates until
849 * the next remount into writeable mode. Otherwise we would never
850 * perform the update e.g. for the root filesystem.
1da177e4 851 */
2e973b2c 852 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
61e63ecb 853 error = xfs_sync_sb(mp, false);
e5720eec 854 if (error) {
0b932ccc 855 xfs_warn(mp, "failed to write sb changes");
b93b6e43 856 goto out_rtunmount;
e5720eec
DC
857 }
858 }
1da177e4
LT
859
860 /*
861 * Initialise the XFS quota management subsystem for this mount
862 */
149e53af 863 if (XFS_IS_QUOTA_ON(mp)) {
7d095257
CH
864 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
865 if (error)
866 goto out_rtunmount;
867 } else {
7d095257
CH
868 /*
869 * If a file system had quotas running earlier, but decided to
870 * mount without -o uquota/pquota/gquota options, revoke the
871 * quotachecked license.
872 */
873 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 874 xfs_notice(mp, "resetting quota flags");
7d095257
CH
875 error = xfs_mount_reset_sbqflags(mp);
876 if (error)
a70a4fa5 877 goto out_rtunmount;
7d095257
CH
878 }
879 }
1da177e4
LT
880
881 /*
f0b2efad
BF
882 * Finish recovering the file system. This part needed to be delayed
883 * until after the root and real-time bitmap inodes were consistently
81ed9475
DW
884 * read in. Temporarily create per-AG space reservations for metadata
885 * btree shape changes because space freeing transactions (for inode
886 * inactivation) require the per-AG reservation in lieu of reserving
887 * blocks.
1da177e4 888 */
81ed9475
DW
889 error = xfs_fs_reserve_ag_blocks(mp);
890 if (error && error == -ENOSPC)
891 xfs_warn(mp,
892 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
4249023a 893 error = xfs_log_mount_finish(mp);
81ed9475 894 xfs_fs_unreserve_ag_blocks(mp);
1da177e4 895 if (error) {
0b932ccc 896 xfs_warn(mp, "log mount finish failed");
b93b6e43 897 goto out_rtunmount;
1da177e4
LT
898 }
899
ddeb14f4
DC
900 /*
901 * Now the log is fully replayed, we can transition to full read-only
902 * mode for read-only mounts. This will sync all the metadata and clean
903 * the log so that the recovery we just performed does not have to be
904 * replayed again on the next mount.
905 *
906 * We use the same quiesce mechanism as the rw->ro remount, as they are
907 * semantically identical operations.
908 */
2e973b2c 909 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
ea2064da 910 xfs_log_clean(mp);
ddeb14f4 911
1da177e4
LT
912 /*
913 * Complete the quota initialisation, post-log-replay component.
914 */
7d095257
CH
915 if (quotamount) {
916 ASSERT(mp->m_qflags == 0);
917 mp->m_qflags = quotaflags;
918
919 xfs_qm_mount_quotas(mp);
920 }
921
84e1e99f
DC
922 /*
923 * Now we are mounted, reserve a small amount of unused space for
924 * privileged transactions. This is needed so that transaction
925 * space required for critical operations can dip into this pool
926 * when at ENOSPC. This is needed for operations like create with
927 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
928 * are not allowed to use this reserved space.
8babd8a2
DC
929 *
930 * This may drive us straight to ENOSPC on mount, but that implies
931 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 932 */
2e973b2c 933 if (!xfs_is_readonly(mp)) {
d5db0f97
ES
934 resblks = xfs_default_resblks(mp);
935 error = xfs_reserve_blocks(mp, &resblks, NULL);
936 if (error)
0b932ccc
DC
937 xfs_warn(mp,
938 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e 939
84d69619
DW
940 /* Reserve AG blocks for future btree expansion. */
941 error = xfs_fs_reserve_ag_blocks(mp);
942 if (error && error != -ENOSPC)
943 goto out_agresv;
d5db0f97 944 }
84e1e99f 945
1da177e4
LT
946 return 0;
947
84d69619
DW
948 out_agresv:
949 xfs_fs_unreserve_ag_blocks(mp);
174edb0e 950 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
951 out_rtunmount:
952 xfs_rtunmount_inodes(mp);
f9057e3d 953 out_rele_rip:
44a8736b 954 xfs_irele(rip);
77aff8c7
DW
955 /* Clean out dquots that might be in memory after quotacheck. */
956 xfs_qm_unmount(mp);
ab23a776
DC
957
958 /*
959 * Inactivate all inodes that might still be in memory after a log
960 * intent recovery failure so that reclaim can free them. Metadata
961 * inodes and the root directory shouldn't need inactivation, but the
962 * mount failed for some reason, so pull down all the state and flee.
963 */
964 xfs_inodegc_flush(mp);
965
2d1d1da3 966 /*
d336f7eb 967 * Flush all inode reclamation work and flush the log.
2d1d1da3
DW
968 * We have to do this /after/ rtunmount and qm_unmount because those
969 * two will have scheduled delayed reclaim for the rt/quota inodes.
970 *
971 * This is slightly different from the unmountfs call sequence
972 * because we could be tearing down a partially set up mount. In
973 * particular, if log_mount_finish fails we bail out without calling
974 * qm_unmount_quotas and therefore rely on qm_unmount to release the
975 * quota inodes.
976 */
d336f7eb 977 xfs_unmount_flush_inodes(mp);
f9057e3d 978 out_log_dealloc:
f0b2efad 979 xfs_log_mount_cancel(mp);
40b1de00
DW
980 out_inodegc_shrinker:
981 unregister_shrinker(&mp->m_inodegc_shrinker);
d4f3512b
DC
982 out_fail_wait:
983 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
10fb9ac1
BF
984 xfs_buftarg_drain(mp->m_logdev_targp);
985 xfs_buftarg_drain(mp->m_ddev_targp);
f9057e3d 986 out_free_perag:
ff4f038c 987 xfs_free_perag(mp);
0650b554
DC
988 out_free_dir:
989 xfs_da_unmount(mp);
f9057e3d 990 out_remove_uuid:
27174203 991 xfs_uuid_unmount(mp);
31965ef3
DW
992 out_remove_errortag:
993 xfs_errortag_del(mp);
192852be
CM
994 out_remove_error_sysfs:
995 xfs_error_sysfs_del(mp);
225e4635
BD
996 out_del_stats:
997 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
998 out_remove_sysfs:
999 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1000 out:
1da177e4
LT
1001 return error;
1002}
1003
1004/*
1da177e4
LT
1005 * This flushes out the inodes,dquots and the superblock, unmounts the
1006 * log and makes sure that incore structures are freed.
1007 */
41b5c2e7
CH
1008void
1009xfs_unmountfs(
1010 struct xfs_mount *mp)
1da177e4 1011{
c8ce540d 1012 uint64_t resblks;
41b5c2e7 1013 int error;
1da177e4 1014
ab23a776
DC
1015 /*
1016 * Perform all on-disk metadata updates required to inactivate inodes
1017 * that the VFS evicted earlier in the unmount process. Freeing inodes
1018 * and discarding CoW fork preallocations can cause shape changes to
1019 * the free inode and refcount btrees, respectively, so we must finish
1020 * this before we discard the metadata space reservations. Metadata
1021 * inodes and the root directory do not require inactivation.
1022 */
1023 xfs_inodegc_flush(mp);
1024
c9a6526f 1025 xfs_blockgc_stop(mp);
84d69619 1026 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1027 xfs_qm_unmount_quotas(mp);
b93b6e43 1028 xfs_rtunmount_inodes(mp);
44a8736b 1029 xfs_irele(mp->m_rootip);
77508ec8 1030
d336f7eb 1031 xfs_unmount_flush_inodes(mp);
1da177e4 1032
7d095257 1033 xfs_qm_unmount(mp);
a357a121 1034
84e1e99f
DC
1035 /*
1036 * Unreserve any blocks we have so that when we unmount we don't account
1037 * the reserved free space as used. This is really only necessary for
1038 * lazy superblock counting because it trusts the incore superblock
9da096fd 1039 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1040 *
1041 * We don't bother correcting this elsewhere for lazy superblock
1042 * counting because on mount of an unclean filesystem we reconstruct the
1043 * correct counter value and this is irrelevant.
1044 *
1045 * For non-lazy counter filesystems, this doesn't matter at all because
1046 * we only every apply deltas to the superblock and hence the incore
1047 * value does not matter....
1048 */
1049 resblks = 0;
714082bc
DC
1050 error = xfs_reserve_blocks(mp, &resblks, NULL);
1051 if (error)
0b932ccc 1052 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1053 "Freespace may not be correct on next mount.");
1054
21b699c8 1055 xfs_log_unmount(mp);
0650b554 1056 xfs_da_unmount(mp);
27174203 1057 xfs_uuid_unmount(mp);
1da177e4 1058
1550d0b0 1059#if defined(DEBUG)
31965ef3 1060 xfs_errortag_clearall(mp);
1da177e4 1061#endif
40b1de00 1062 unregister_shrinker(&mp->m_inodegc_shrinker);
ff4f038c 1063 xfs_free_perag(mp);
a31b1d3d 1064
31965ef3 1065 xfs_errortag_del(mp);
192852be 1066 xfs_error_sysfs_del(mp);
225e4635 1067 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1068 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1069}
1070
91ee575f
BF
1071/*
1072 * Determine whether modifications can proceed. The caller specifies the minimum
1073 * freeze level for which modifications should not be allowed. This allows
1074 * certain operations to proceed while the freeze sequence is in progress, if
1075 * necessary.
1076 */
1077bool
1078xfs_fs_writable(
1079 struct xfs_mount *mp,
1080 int level)
92821e2b 1081{
91ee575f
BF
1082 ASSERT(level > SB_UNFROZEN);
1083 if ((mp->m_super->s_writers.frozen >= level) ||
75c8c50f 1084 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
91ee575f
BF
1085 return false;
1086
1087 return true;
92821e2b
DC
1088}
1089
0d485ada
DC
1090int
1091xfs_mod_fdblocks(
1092 struct xfs_mount *mp,
1093 int64_t delta,
1094 bool rsvd)
1095{
1096 int64_t lcounter;
1097 long long res_used;
1098 s32 batch;
fd43cf60 1099 uint64_t set_aside;
0d485ada
DC
1100
1101 if (delta > 0) {
1102 /*
1103 * If the reserve pool is depleted, put blocks back into it
1104 * first. Most of the time the pool is full.
1105 */
1106 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1107 percpu_counter_add(&mp->m_fdblocks, delta);
1108 return 0;
1109 }
1110
1111 spin_lock(&mp->m_sb_lock);
1112 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1113
1114 if (res_used > delta) {
1115 mp->m_resblks_avail += delta;
1116 } else {
1117 delta -= res_used;
1118 mp->m_resblks_avail = mp->m_resblks;
1119 percpu_counter_add(&mp->m_fdblocks, delta);
1120 }
1121 spin_unlock(&mp->m_sb_lock);
1122 return 0;
1123 }
1124
1125 /*
1126 * Taking blocks away, need to be more accurate the closer we
1127 * are to zero.
1128 *
0d485ada
DC
1129 * If the counter has a value of less than 2 * max batch size,
1130 * then make everything serialise as we are real close to
1131 * ENOSPC.
1132 */
8c1903d3
DC
1133 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1134 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1135 batch = 1;
1136 else
8c1903d3 1137 batch = XFS_FDBLOCKS_BATCH;
0d485ada 1138
fd43cf60
BF
1139 /*
1140 * Set aside allocbt blocks because these blocks are tracked as free
1141 * space but not available for allocation. Technically this means that a
1142 * single reservation cannot consume all remaining free space, but the
1143 * ratio of allocbt blocks to usable free blocks should be rather small.
1144 * The tradeoff without this is that filesystems that maintain high
1145 * perag block reservations can over reserve physical block availability
1146 * and fail physical allocation, which leads to much more serious
1147 * problems (i.e. transaction abort, pagecache discards, etc.) than
1148 * slightly premature -ENOSPC.
1149 */
c8c56825 1150 set_aside = xfs_fdblocks_unavailable(mp);
104b4e51 1151 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
fd43cf60 1152 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
8c1903d3 1153 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1154 /* we had space! */
1155 return 0;
1156 }
1157
1158 /*
1159 * lock up the sb for dipping into reserves before releasing the space
1160 * that took us to ENOSPC.
1161 */
1162 spin_lock(&mp->m_sb_lock);
1163 percpu_counter_add(&mp->m_fdblocks, -delta);
1164 if (!rsvd)
1165 goto fdblocks_enospc;
1166
1167 lcounter = (long long)mp->m_resblks_avail + delta;
1168 if (lcounter >= 0) {
1169 mp->m_resblks_avail = lcounter;
1170 spin_unlock(&mp->m_sb_lock);
1171 return 0;
1172 }
ec43f6da
ES
1173 xfs_warn_once(mp,
1174"Reserve blocks depleted! Consider increasing reserve pool size.");
1175
0d485ada
DC
1176fdblocks_enospc:
1177 spin_unlock(&mp->m_sb_lock);
1178 return -ENOSPC;
1179}
1180
bab98bbe
DC
1181int
1182xfs_mod_frextents(
1183 struct xfs_mount *mp,
1184 int64_t delta)
1185{
1186 int64_t lcounter;
1187 int ret = 0;
1188
1189 spin_lock(&mp->m_sb_lock);
1190 lcounter = mp->m_sb.sb_frextents + delta;
1191 if (lcounter < 0)
1192 ret = -ENOSPC;
1193 else
1194 mp->m_sb.sb_frextents = lcounter;
1195 spin_unlock(&mp->m_sb_lock);
1196 return ret;
1197}
1198
1da177e4
LT
1199/*
1200 * Used to free the superblock along various error paths.
1201 */
1202void
1203xfs_freesb(
26af6552 1204 struct xfs_mount *mp)
1da177e4 1205{
26af6552 1206 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1207
26af6552 1208 xfs_buf_lock(bp);
1da177e4 1209 mp->m_sb_bp = NULL;
26af6552 1210 xfs_buf_relse(bp);
1da177e4
LT
1211}
1212
dda35b8f
CH
1213/*
1214 * If the underlying (data/log/rt) device is readonly, there are some
1215 * operations that cannot proceed.
1216 */
1217int
1218xfs_dev_is_read_only(
1219 struct xfs_mount *mp,
1220 char *message)
1221{
1222 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1223 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1224 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1225 xfs_notice(mp, "%s required on read-only device.", message);
1226 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1227 return -EROFS;
dda35b8f
CH
1228 }
1229 return 0;
1230}
f467cad9
DW
1231
1232/* Force the summary counters to be recalculated at next mount. */
1233void
1234xfs_force_summary_recalc(
1235 struct xfs_mount *mp)
1236{
38c26bfd 1237 if (!xfs_has_lazysbcount(mp))
f467cad9
DW
1238 return;
1239
39353ff6 1240 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
f467cad9 1241}
9fe82b8c 1242
908ce71e
DW
1243/*
1244 * Enable a log incompat feature flag in the primary superblock. The caller
1245 * cannot have any other transactions in progress.
1246 */
1247int
1248xfs_add_incompat_log_feature(
1249 struct xfs_mount *mp,
1250 uint32_t feature)
1251{
1252 struct xfs_dsb *dsb;
1253 int error;
1254
1255 ASSERT(hweight32(feature) == 1);
1256 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1257
1258 /*
1259 * Force the log to disk and kick the background AIL thread to reduce
1260 * the chances that the bwrite will stall waiting for the AIL to unpin
1261 * the primary superblock buffer. This isn't a data integrity
1262 * operation, so we don't need a synchronous push.
1263 */
1264 error = xfs_log_force(mp, XFS_LOG_SYNC);
1265 if (error)
1266 return error;
1267 xfs_ail_push_all(mp->m_ail);
1268
1269 /*
1270 * Lock the primary superblock buffer to serialize all callers that
1271 * are trying to set feature bits.
1272 */
1273 xfs_buf_lock(mp->m_sb_bp);
1274 xfs_buf_hold(mp->m_sb_bp);
1275
75c8c50f 1276 if (xfs_is_shutdown(mp)) {
908ce71e
DW
1277 error = -EIO;
1278 goto rele;
1279 }
1280
1281 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1282 goto rele;
1283
1284 /*
1285 * Write the primary superblock to disk immediately, because we need
1286 * the log_incompat bit to be set in the primary super now to protect
1287 * the log items that we're going to commit later.
1288 */
1289 dsb = mp->m_sb_bp->b_addr;
1290 xfs_sb_to_disk(dsb, &mp->m_sb);
1291 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1292 error = xfs_bwrite(mp->m_sb_bp);
1293 if (error)
1294 goto shutdown;
1295
1296 /*
1297 * Add the feature bits to the incore superblock before we unlock the
1298 * buffer.
1299 */
1300 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1301 xfs_buf_relse(mp->m_sb_bp);
1302
1303 /* Log the superblock to disk. */
1304 return xfs_sync_sb(mp, false);
1305shutdown:
1306 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1307rele:
1308 xfs_buf_relse(mp->m_sb_bp);
1309 return error;
1310}
1311
1312/*
1313 * Clear all the log incompat flags from the superblock.
1314 *
1315 * The caller cannot be in a transaction, must ensure that the log does not
1316 * contain any log items protected by any log incompat bit, and must ensure
1317 * that there are no other threads that depend on the state of the log incompat
1318 * feature flags in the primary super.
1319 *
1320 * Returns true if the superblock is dirty.
1321 */
1322bool
1323xfs_clear_incompat_log_features(
1324 struct xfs_mount *mp)
1325{
1326 bool ret = false;
1327
ebd9027d 1328 if (!xfs_has_crc(mp) ||
908ce71e
DW
1329 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1330 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
75c8c50f 1331 xfs_is_shutdown(mp))
908ce71e
DW
1332 return false;
1333
1334 /*
1335 * Update the incore superblock. We synchronize on the primary super
1336 * buffer lock to be consistent with the add function, though at least
1337 * in theory this shouldn't be necessary.
1338 */
1339 xfs_buf_lock(mp->m_sb_bp);
1340 xfs_buf_hold(mp->m_sb_bp);
1341
1342 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1343 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1344 xfs_info(mp, "Clearing log incompat feature flags.");
1345 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1346 ret = true;
1347 }
1348
1349 xfs_buf_relse(mp->m_sb_bp);
1350 return ret;
1351}
1352
9fe82b8c
DW
1353/*
1354 * Update the in-core delayed block counter.
1355 *
1356 * We prefer to update the counter without having to take a spinlock for every
1357 * counter update (i.e. batching). Each change to delayed allocation
1358 * reservations can change can easily exceed the default percpu counter
1359 * batching, so we use a larger batch factor here.
1360 *
1361 * Note that we don't currently have any callers requiring fast summation
1362 * (e.g. percpu_counter_read) so we can use a big batch value here.
1363 */
1364#define XFS_DELALLOC_BATCH (4096)
1365void
1366xfs_mod_delalloc(
1367 struct xfs_mount *mp,
1368 int64_t delta)
1369{
1370 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1371 XFS_DELALLOC_BATCH);
1372}
This page took 1.379647 seconds and 4 git commands to generate.