]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
efcc7ae2 EB |
2 | /* |
3 | * fs/crypto/hooks.c | |
4 | * | |
5 | * Encryption hooks for higher-level filesystem operations. | |
6 | */ | |
7 | ||
aa408f83 DR |
8 | #include <linux/key.h> |
9 | ||
efcc7ae2 EB |
10 | #include "fscrypt_private.h" |
11 | ||
12 | /** | |
d2fe9754 | 13 | * fscrypt_file_open() - prepare to open a possibly-encrypted regular file |
efcc7ae2 EB |
14 | * @inode: the inode being opened |
15 | * @filp: the struct file being set up | |
16 | * | |
17 | * Currently, an encrypted regular file can only be opened if its encryption key | |
18 | * is available; access to the raw encrypted contents is not supported. | |
19 | * Therefore, we first set up the inode's encryption key (if not already done) | |
20 | * and return an error if it's unavailable. | |
21 | * | |
22 | * We also verify that if the parent directory (from the path via which the file | |
23 | * is being opened) is encrypted, then the inode being opened uses the same | |
24 | * encryption policy. This is needed as part of the enforcement that all files | |
25 | * in an encrypted directory tree use the same encryption policy, as a | |
26 | * protection against certain types of offline attacks. Note that this check is | |
27 | * needed even when opening an *unencrypted* file, since it's forbidden to have | |
28 | * an unencrypted file in an encrypted directory. | |
29 | * | |
30 | * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code | |
31 | */ | |
32 | int fscrypt_file_open(struct inode *inode, struct file *filp) | |
33 | { | |
34 | int err; | |
35 | struct dentry *dir; | |
36 | ||
37 | err = fscrypt_require_key(inode); | |
38 | if (err) | |
39 | return err; | |
40 | ||
41 | dir = dget_parent(file_dentry(filp)); | |
42 | if (IS_ENCRYPTED(d_inode(dir)) && | |
43 | !fscrypt_has_permitted_context(d_inode(dir), inode)) { | |
886da8b3 EB |
44 | fscrypt_warn(inode, |
45 | "Inconsistent encryption context (parent directory: %lu)", | |
46 | d_inode(dir)->i_ino); | |
efcc7ae2 EB |
47 | err = -EPERM; |
48 | } | |
49 | dput(dir); | |
50 | return err; | |
51 | } | |
52 | EXPORT_SYMBOL_GPL(fscrypt_file_open); | |
0ea87a96 | 53 | |
968dd6d0 EB |
54 | int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, |
55 | struct dentry *dentry) | |
0ea87a96 | 56 | { |
159e1de2 | 57 | if (fscrypt_is_nokey_name(dentry)) |
968dd6d0 | 58 | return -ENOKEY; |
234f1b7f EB |
59 | /* |
60 | * We don't need to separately check that the directory inode's key is | |
61 | * available, as it's implied by the dentry not being a no-key name. | |
62 | */ | |
968dd6d0 | 63 | |
0ea87a96 | 64 | if (!fscrypt_has_permitted_context(dir, inode)) |
f5e55e77 | 65 | return -EXDEV; |
0ea87a96 EB |
66 | |
67 | return 0; | |
68 | } | |
69 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_link); | |
94b26f36 EB |
70 | |
71 | int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry, | |
72 | struct inode *new_dir, struct dentry *new_dentry, | |
73 | unsigned int flags) | |
74 | { | |
159e1de2 EB |
75 | if (fscrypt_is_nokey_name(old_dentry) || |
76 | fscrypt_is_nokey_name(new_dentry)) | |
968dd6d0 | 77 | return -ENOKEY; |
234f1b7f EB |
78 | /* |
79 | * We don't need to separately check that the directory inodes' keys are | |
80 | * available, as it's implied by the dentries not being no-key names. | |
81 | */ | |
968dd6d0 | 82 | |
94b26f36 EB |
83 | if (old_dir != new_dir) { |
84 | if (IS_ENCRYPTED(new_dir) && | |
85 | !fscrypt_has_permitted_context(new_dir, | |
86 | d_inode(old_dentry))) | |
f5e55e77 | 87 | return -EXDEV; |
94b26f36 EB |
88 | |
89 | if ((flags & RENAME_EXCHANGE) && | |
90 | IS_ENCRYPTED(old_dir) && | |
91 | !fscrypt_has_permitted_context(old_dir, | |
92 | d_inode(new_dentry))) | |
f5e55e77 | 93 | return -EXDEV; |
94b26f36 EB |
94 | } |
95 | return 0; | |
96 | } | |
97 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename); | |
32c3cf02 | 98 | |
b01531db EB |
99 | int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, |
100 | struct fscrypt_name *fname) | |
32c3cf02 | 101 | { |
b01531db | 102 | int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname); |
32c3cf02 | 103 | |
b01531db | 104 | if (err && err != -ENOENT) |
32c3cf02 EB |
105 | return err; |
106 | ||
70fb2612 | 107 | if (fname->is_nokey_name) { |
32c3cf02 | 108 | spin_lock(&dentry->d_lock); |
501e43fb | 109 | dentry->d_flags |= DCACHE_NOKEY_NAME; |
32c3cf02 EB |
110 | spin_unlock(&dentry->d_lock); |
111 | } | |
b01531db | 112 | return err; |
32c3cf02 EB |
113 | } |
114 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup); | |
76e81d6d | 115 | |
ec0caa97 EB |
116 | int __fscrypt_prepare_readdir(struct inode *dir) |
117 | { | |
a14d0b67 | 118 | return fscrypt_get_encryption_info(dir, true); |
ec0caa97 EB |
119 | } |
120 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir); | |
121 | ||
7622350e EB |
122 | int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr) |
123 | { | |
124 | if (attr->ia_valid & ATTR_SIZE) | |
125 | return fscrypt_require_key(d_inode(dentry)); | |
126 | return 0; | |
127 | } | |
128 | EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr); | |
129 | ||
6e1918cf DR |
130 | /** |
131 | * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS | |
132 | * @inode: the inode on which flags are being changed | |
133 | * @oldflags: the old flags | |
134 | * @flags: the new flags | |
135 | * | |
136 | * The caller should be holding i_rwsem for write. | |
137 | * | |
138 | * Return: 0 on success; -errno if the flags change isn't allowed or if | |
139 | * another error occurs. | |
140 | */ | |
141 | int fscrypt_prepare_setflags(struct inode *inode, | |
142 | unsigned int oldflags, unsigned int flags) | |
143 | { | |
144 | struct fscrypt_info *ci; | |
4a4b8721 | 145 | struct key *key; |
aa408f83 | 146 | struct fscrypt_master_key *mk; |
6e1918cf DR |
147 | int err; |
148 | ||
aa408f83 DR |
149 | /* |
150 | * When the CASEFOLD flag is set on an encrypted directory, we must | |
151 | * derive the secret key needed for the dirhash. This is only possible | |
152 | * if the directory uses a v2 encryption policy. | |
153 | */ | |
6e1918cf DR |
154 | if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) { |
155 | err = fscrypt_require_key(inode); | |
156 | if (err) | |
157 | return err; | |
158 | ci = inode->i_crypt_info; | |
159 | if (ci->ci_policy.version != FSCRYPT_POLICY_V2) | |
160 | return -EINVAL; | |
4a4b8721 EB |
161 | key = ci->ci_master_key; |
162 | mk = key->payload.data[0]; | |
163 | down_read(&key->sem); | |
aa408f83 DR |
164 | if (is_master_key_secret_present(&mk->mk_secret)) |
165 | err = fscrypt_derive_dirhash_key(ci, mk); | |
166 | else | |
167 | err = -ENOKEY; | |
4a4b8721 | 168 | up_read(&key->sem); |
aa408f83 | 169 | return err; |
6e1918cf DR |
170 | } |
171 | return 0; | |
172 | } | |
173 | ||
31114726 EB |
174 | /** |
175 | * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink | |
176 | * @dir: directory in which the symlink is being created | |
177 | * @target: plaintext symlink target | |
178 | * @len: length of @target excluding null terminator | |
179 | * @max_len: space the filesystem has available to store the symlink target | |
180 | * @disk_link: (out) the on-disk symlink target being prepared | |
181 | * | |
182 | * This function computes the size the symlink target will require on-disk, | |
183 | * stores it in @disk_link->len, and validates it against @max_len. An | |
184 | * encrypted symlink may be longer than the original. | |
185 | * | |
186 | * Additionally, @disk_link->name is set to @target if the symlink will be | |
187 | * unencrypted, but left NULL if the symlink will be encrypted. For encrypted | |
188 | * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the | |
189 | * on-disk target later. (The reason for the two-step process is that some | |
190 | * filesystems need to know the size of the symlink target before creating the | |
191 | * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) | |
192 | * | |
193 | * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, | |
194 | * -ENOKEY if the encryption key is missing, or another -errno code if a problem | |
195 | * occurred while setting up the encryption key. | |
196 | */ | |
197 | int fscrypt_prepare_symlink(struct inode *dir, const char *target, | |
198 | unsigned int len, unsigned int max_len, | |
199 | struct fscrypt_str *disk_link) | |
76e81d6d | 200 | { |
ac4acb1f | 201 | const union fscrypt_policy *policy; |
76e81d6d | 202 | |
ac4acb1f EB |
203 | /* |
204 | * To calculate the size of the encrypted symlink target we need to know | |
205 | * the amount of NUL padding, which is determined by the flags set in | |
206 | * the encryption policy which will be inherited from the directory. | |
207 | */ | |
208 | policy = fscrypt_policy_to_inherit(dir); | |
209 | if (policy == NULL) { | |
210 | /* Not encrypted */ | |
31114726 EB |
211 | disk_link->name = (unsigned char *)target; |
212 | disk_link->len = len + 1; | |
213 | if (disk_link->len > max_len) | |
214 | return -ENAMETOOLONG; | |
215 | return 0; | |
216 | } | |
ac4acb1f EB |
217 | if (IS_ERR(policy)) |
218 | return PTR_ERR(policy); | |
76e81d6d EB |
219 | |
220 | /* | |
221 | * Calculate the size of the encrypted symlink and verify it won't | |
222 | * exceed max_len. Note that for historical reasons, encrypted symlink | |
223 | * targets are prefixed with the ciphertext length, despite this | |
224 | * actually being redundant with i_size. This decreases by 2 bytes the | |
225 | * longest symlink target we can accept. | |
226 | * | |
227 | * We could recover 1 byte by not counting a null terminator, but | |
228 | * counting it (even though it is meaningless for ciphertext) is simpler | |
229 | * for now since filesystems will assume it is there and subtract it. | |
230 | */ | |
ac4acb1f | 231 | if (!fscrypt_fname_encrypted_size(policy, len, |
b9db0b4a EB |
232 | max_len - sizeof(struct fscrypt_symlink_data), |
233 | &disk_link->len)) | |
76e81d6d | 234 | return -ENAMETOOLONG; |
b9db0b4a EB |
235 | disk_link->len += sizeof(struct fscrypt_symlink_data); |
236 | ||
76e81d6d EB |
237 | disk_link->name = NULL; |
238 | return 0; | |
239 | } | |
31114726 | 240 | EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink); |
76e81d6d EB |
241 | |
242 | int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, | |
243 | unsigned int len, struct fscrypt_str *disk_link) | |
244 | { | |
245 | int err; | |
0b1dfa4c | 246 | struct qstr iname = QSTR_INIT(target, len); |
76e81d6d EB |
247 | struct fscrypt_symlink_data *sd; |
248 | unsigned int ciphertext_len; | |
76e81d6d | 249 | |
4cc1a3e7 EB |
250 | /* |
251 | * fscrypt_prepare_new_inode() should have already set up the new | |
252 | * symlink inode's encryption key. We don't wait until now to do it, | |
253 | * since we may be in a filesystem transaction now. | |
254 | */ | |
255 | if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode))) | |
256 | return -ENOKEY; | |
76e81d6d EB |
257 | |
258 | if (disk_link->name) { | |
259 | /* filesystem-provided buffer */ | |
260 | sd = (struct fscrypt_symlink_data *)disk_link->name; | |
261 | } else { | |
262 | sd = kmalloc(disk_link->len, GFP_NOFS); | |
263 | if (!sd) | |
264 | return -ENOMEM; | |
265 | } | |
266 | ciphertext_len = disk_link->len - sizeof(*sd); | |
267 | sd->len = cpu_to_le16(ciphertext_len); | |
268 | ||
1b3b827e EB |
269 | err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path, |
270 | ciphertext_len); | |
2c58d548 EB |
271 | if (err) |
272 | goto err_free_sd; | |
273 | ||
76e81d6d EB |
274 | /* |
275 | * Null-terminating the ciphertext doesn't make sense, but we still | |
276 | * count the null terminator in the length, so we might as well | |
277 | * initialize it just in case the filesystem writes it out. | |
278 | */ | |
279 | sd->encrypted_path[ciphertext_len] = '\0'; | |
280 | ||
2c58d548 EB |
281 | /* Cache the plaintext symlink target for later use by get_link() */ |
282 | err = -ENOMEM; | |
283 | inode->i_link = kmemdup(target, len + 1, GFP_NOFS); | |
284 | if (!inode->i_link) | |
285 | goto err_free_sd; | |
286 | ||
76e81d6d EB |
287 | if (!disk_link->name) |
288 | disk_link->name = (unsigned char *)sd; | |
289 | return 0; | |
2c58d548 EB |
290 | |
291 | err_free_sd: | |
292 | if (!disk_link->name) | |
293 | kfree(sd); | |
294 | return err; | |
76e81d6d EB |
295 | } |
296 | EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink); | |
3b0d8837 EB |
297 | |
298 | /** | |
d2fe9754 | 299 | * fscrypt_get_symlink() - get the target of an encrypted symlink |
3b0d8837 EB |
300 | * @inode: the symlink inode |
301 | * @caddr: the on-disk contents of the symlink | |
302 | * @max_size: size of @caddr buffer | |
2c58d548 | 303 | * @done: if successful, will be set up to free the returned target if needed |
3b0d8837 EB |
304 | * |
305 | * If the symlink's encryption key is available, we decrypt its target. | |
306 | * Otherwise, we encode its target for presentation. | |
307 | * | |
308 | * This may sleep, so the filesystem must have dropped out of RCU mode already. | |
309 | * | |
310 | * Return: the presentable symlink target or an ERR_PTR() | |
311 | */ | |
312 | const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, | |
313 | unsigned int max_size, | |
314 | struct delayed_call *done) | |
315 | { | |
316 | const struct fscrypt_symlink_data *sd; | |
317 | struct fscrypt_str cstr, pstr; | |
2c58d548 | 318 | bool has_key; |
3b0d8837 EB |
319 | int err; |
320 | ||
321 | /* This is for encrypted symlinks only */ | |
322 | if (WARN_ON(!IS_ENCRYPTED(inode))) | |
323 | return ERR_PTR(-EINVAL); | |
324 | ||
2c58d548 EB |
325 | /* If the decrypted target is already cached, just return it. */ |
326 | pstr.name = READ_ONCE(inode->i_link); | |
327 | if (pstr.name) | |
328 | return pstr.name; | |
329 | ||
3b0d8837 EB |
330 | /* |
331 | * Try to set up the symlink's encryption key, but we can continue | |
332 | * regardless of whether the key is available or not. | |
333 | */ | |
a14d0b67 | 334 | err = fscrypt_get_encryption_info(inode, false); |
3b0d8837 EB |
335 | if (err) |
336 | return ERR_PTR(err); | |
2c58d548 | 337 | has_key = fscrypt_has_encryption_key(inode); |
3b0d8837 EB |
338 | |
339 | /* | |
340 | * For historical reasons, encrypted symlink targets are prefixed with | |
341 | * the ciphertext length, even though this is redundant with i_size. | |
342 | */ | |
343 | ||
344 | if (max_size < sizeof(*sd)) | |
345 | return ERR_PTR(-EUCLEAN); | |
346 | sd = caddr; | |
347 | cstr.name = (unsigned char *)sd->encrypted_path; | |
348 | cstr.len = le16_to_cpu(sd->len); | |
349 | ||
350 | if (cstr.len == 0) | |
351 | return ERR_PTR(-EUCLEAN); | |
352 | ||
353 | if (cstr.len + sizeof(*sd) - 1 > max_size) | |
354 | return ERR_PTR(-EUCLEAN); | |
355 | ||
8b10fe68 | 356 | err = fscrypt_fname_alloc_buffer(cstr.len, &pstr); |
3b0d8837 EB |
357 | if (err) |
358 | return ERR_PTR(err); | |
359 | ||
360 | err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); | |
361 | if (err) | |
362 | goto err_kfree; | |
363 | ||
364 | err = -EUCLEAN; | |
365 | if (pstr.name[0] == '\0') | |
366 | goto err_kfree; | |
367 | ||
368 | pstr.name[pstr.len] = '\0'; | |
2c58d548 EB |
369 | |
370 | /* | |
371 | * Cache decrypted symlink targets in i_link for later use. Don't cache | |
372 | * symlink targets encoded without the key, since those become outdated | |
373 | * once the key is added. This pairs with the READ_ONCE() above and in | |
374 | * the VFS path lookup code. | |
375 | */ | |
376 | if (!has_key || | |
377 | cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL) | |
378 | set_delayed_call(done, kfree_link, pstr.name); | |
379 | ||
3b0d8837 EB |
380 | return pstr.name; |
381 | ||
382 | err_kfree: | |
383 | kfree(pstr.name); | |
384 | return ERR_PTR(err); | |
385 | } | |
386 | EXPORT_SYMBOL_GPL(fscrypt_get_symlink); |