]>
Commit | Line | Data |
---|---|---|
2b27bdcc | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1e51764a AB |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation. | |
6 | * | |
1e51764a AB |
7 | * Authors: Adrian Hunter |
8 | * Artem Bityutskiy (Битюцкий Артём) | |
9 | */ | |
10 | ||
11 | /* | |
12 | * This file implements garbage collection. The procedure for garbage collection | |
13 | * is different depending on whether a LEB as an index LEB (contains index | |
14 | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which | |
15 | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete | |
16 | * nodes to the journal, at which point the garbage-collected LEB is free to be | |
17 | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes | |
18 | * dirty in the TNC, and after the next commit, the garbage-collected LEB is | |
19 | * to be reused. Garbage collection will cause the number of dirty index nodes | |
20 | * to grow, however sufficient space is reserved for the index to ensure the | |
21 | * commit will never run out of space. | |
7078202e AB |
22 | * |
23 | * Notes about dead watermark. At current UBIFS implementation we assume that | |
24 | * LEBs which have less than @c->dead_wm bytes of free + dirty space are full | |
25 | * and not worth garbage-collecting. The dead watermark is one min. I/O unit | |
26 | * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS | |
27 | * Garbage Collector has to synchronize the GC head's write buffer before | |
28 | * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can | |
29 | * actually reclaim even very small pieces of dirty space by garbage collecting | |
30 | * enough dirty LEBs, but we do not bother doing this at this implementation. | |
31 | * | |
32 | * Notes about dark watermark. The results of GC work depends on how big are | |
33 | * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, | |
34 | * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would | |
35 | * have to waste large pieces of free space at the end of LEB B, because nodes | |
36 | * from LEB A would not fit. And the worst situation is when all nodes are of | |
37 | * maximum size. So dark watermark is the amount of free + dirty space in LEB | |
f10770f5 | 38 | * which are guaranteed to be reclaimable. If LEB has less space, the GC might |
7078202e | 39 | * be unable to reclaim it. So, LEBs with free + dirty greater than dark |
28e5dfd8 | 40 | * watermark are "good" LEBs from GC's point of view. The other LEBs are not so |
7078202e | 41 | * good, and GC takes extra care when moving them. |
1e51764a AB |
42 | */ |
43 | ||
5a0e3ad6 | 44 | #include <linux/slab.h> |
1e51764a | 45 | #include <linux/pagemap.h> |
2c761270 | 46 | #include <linux/list_sort.h> |
1e51764a AB |
47 | #include "ubifs.h" |
48 | ||
1e51764a | 49 | /* |
025dfdaf | 50 | * GC may need to move more than one LEB to make progress. The below constants |
1e51764a AB |
51 | * define "soft" and "hard" limits on the number of LEBs the garbage collector |
52 | * may move. | |
53 | */ | |
54 | #define SOFT_LEBS_LIMIT 4 | |
55 | #define HARD_LEBS_LIMIT 32 | |
56 | ||
57 | /** | |
58 | * switch_gc_head - switch the garbage collection journal head. | |
59 | * @c: UBIFS file-system description object | |
1e51764a AB |
60 | * |
61 | * This function switch the GC head to the next LEB which is reserved in | |
62 | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, | |
63 | * and other negative error code in case of failures. | |
64 | */ | |
65 | static int switch_gc_head(struct ubifs_info *c) | |
66 | { | |
67 | int err, gc_lnum = c->gc_lnum; | |
68 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
69 | ||
6eb61d58 | 70 | ubifs_assert(c, gc_lnum != -1); |
1e51764a AB |
71 | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", |
72 | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, | |
73 | c->leb_size - wbuf->offs - wbuf->used); | |
74 | ||
75 | err = ubifs_wbuf_sync_nolock(wbuf); | |
76 | if (err) | |
77 | return err; | |
78 | ||
79 | /* | |
80 | * The GC write-buffer was synchronized, we may safely unmap | |
81 | * 'c->gc_lnum'. | |
82 | */ | |
83 | err = ubifs_leb_unmap(c, gc_lnum); | |
84 | if (err) | |
85 | return err; | |
86 | ||
87 | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); | |
88 | if (err) | |
89 | return err; | |
90 | ||
91 | c->gc_lnum = -1; | |
b36a261e | 92 | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); |
1e51764a AB |
93 | return err; |
94 | } | |
95 | ||
96 | /** | |
f10770f5 AB |
97 | * data_nodes_cmp - compare 2 data nodes. |
98 | * @priv: UBIFS file-system description object | |
99 | * @a: first data node | |
ec037dfc | 100 | * @b: second data node |
f10770f5 AB |
101 | * |
102 | * This function compares data nodes @a and @b. Returns %1 if @a has greater | |
103 | * inode or block number, and %-1 otherwise. | |
104 | */ | |
e9ef7b5f | 105 | static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) |
f10770f5 AB |
106 | { |
107 | ino_t inuma, inumb; | |
108 | struct ubifs_info *c = priv; | |
109 | struct ubifs_scan_node *sa, *sb; | |
110 | ||
111 | cond_resched(); | |
1a9476a7 AB |
112 | if (a == b) |
113 | return 0; | |
114 | ||
f10770f5 AB |
115 | sa = list_entry(a, struct ubifs_scan_node, list); |
116 | sb = list_entry(b, struct ubifs_scan_node, list); | |
66576833 | 117 | |
6eb61d58 RW |
118 | ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY); |
119 | ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY); | |
120 | ubifs_assert(c, sa->type == UBIFS_DATA_NODE); | |
121 | ubifs_assert(c, sb->type == UBIFS_DATA_NODE); | |
f10770f5 AB |
122 | |
123 | inuma = key_inum(c, &sa->key); | |
124 | inumb = key_inum(c, &sb->key); | |
125 | ||
126 | if (inuma == inumb) { | |
127 | unsigned int blka = key_block(c, &sa->key); | |
128 | unsigned int blkb = key_block(c, &sb->key); | |
129 | ||
130 | if (blka <= blkb) | |
131 | return -1; | |
132 | } else if (inuma <= inumb) | |
133 | return -1; | |
134 | ||
135 | return 1; | |
136 | } | |
137 | ||
138 | /* | |
139 | * nondata_nodes_cmp - compare 2 non-data nodes. | |
140 | * @priv: UBIFS file-system description object | |
141 | * @a: first node | |
142 | * @a: second node | |
143 | * | |
144 | * This function compares nodes @a and @b. It makes sure that inode nodes go | |
145 | * first and sorted by length in descending order. Directory entry nodes go | |
146 | * after inode nodes and are sorted in ascending hash valuer order. | |
147 | */ | |
e9ef7b5f AB |
148 | static int nondata_nodes_cmp(void *priv, struct list_head *a, |
149 | struct list_head *b) | |
f10770f5 | 150 | { |
f10770f5 AB |
151 | ino_t inuma, inumb; |
152 | struct ubifs_info *c = priv; | |
153 | struct ubifs_scan_node *sa, *sb; | |
154 | ||
155 | cond_resched(); | |
1a9476a7 AB |
156 | if (a == b) |
157 | return 0; | |
158 | ||
f10770f5 AB |
159 | sa = list_entry(a, struct ubifs_scan_node, list); |
160 | sb = list_entry(b, struct ubifs_scan_node, list); | |
66576833 | 161 | |
6eb61d58 | 162 | ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY && |
66576833 | 163 | key_type(c, &sb->key) != UBIFS_DATA_KEY); |
6eb61d58 | 164 | ubifs_assert(c, sa->type != UBIFS_DATA_NODE && |
ab87118d | 165 | sb->type != UBIFS_DATA_NODE); |
f10770f5 AB |
166 | |
167 | /* Inodes go before directory entries */ | |
ab87118d AB |
168 | if (sa->type == UBIFS_INO_NODE) { |
169 | if (sb->type == UBIFS_INO_NODE) | |
f10770f5 AB |
170 | return sb->len - sa->len; |
171 | return -1; | |
172 | } | |
ab87118d | 173 | if (sb->type == UBIFS_INO_NODE) |
f10770f5 AB |
174 | return 1; |
175 | ||
6eb61d58 | 176 | ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY || |
66576833 | 177 | key_type(c, &sa->key) == UBIFS_XENT_KEY); |
6eb61d58 | 178 | ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY || |
66576833 | 179 | key_type(c, &sb->key) == UBIFS_XENT_KEY); |
6eb61d58 | 180 | ubifs_assert(c, sa->type == UBIFS_DENT_NODE || |
ab87118d | 181 | sa->type == UBIFS_XENT_NODE); |
6eb61d58 | 182 | ubifs_assert(c, sb->type == UBIFS_DENT_NODE || |
ab87118d | 183 | sb->type == UBIFS_XENT_NODE); |
66576833 | 184 | |
f10770f5 AB |
185 | inuma = key_inum(c, &sa->key); |
186 | inumb = key_inum(c, &sb->key); | |
187 | ||
188 | if (inuma == inumb) { | |
189 | uint32_t hasha = key_hash(c, &sa->key); | |
190 | uint32_t hashb = key_hash(c, &sb->key); | |
191 | ||
192 | if (hasha <= hashb) | |
193 | return -1; | |
194 | } else if (inuma <= inumb) | |
195 | return -1; | |
196 | ||
197 | return 1; | |
198 | } | |
199 | ||
200 | /** | |
201 | * sort_nodes - sort nodes for GC. | |
1e51764a | 202 | * @c: UBIFS file-system description object |
f10770f5 AB |
203 | * @sleb: describes nodes to sort and contains the result on exit |
204 | * @nondata: contains non-data nodes on exit | |
205 | * @min: minimum node size is returned here | |
1e51764a | 206 | * |
f10770f5 AB |
207 | * This function sorts the list of inodes to garbage collect. First of all, it |
208 | * kills obsolete nodes and separates data and non-data nodes to the | |
209 | * @sleb->nodes and @nondata lists correspondingly. | |
1e51764a | 210 | * |
f10770f5 AB |
211 | * Data nodes are then sorted in block number order - this is important for |
212 | * bulk-read; data nodes with lower inode number go before data nodes with | |
213 | * higher inode number, and data nodes with lower block number go before data | |
214 | * nodes with higher block number; | |
1e51764a | 215 | * |
f10770f5 AB |
216 | * Non-data nodes are sorted as follows. |
217 | * o First go inode nodes - they are sorted in descending length order. | |
218 | * o Then go directory entry nodes - they are sorted in hash order, which | |
219 | * should supposedly optimize 'readdir()'. Direntry nodes with lower parent | |
220 | * inode number go before direntry nodes with higher parent inode number, | |
221 | * and direntry nodes with lower name hash values go before direntry nodes | |
222 | * with higher name hash values. | |
223 | * | |
224 | * This function returns zero in case of success and a negative error code in | |
225 | * case of failure. | |
1e51764a | 226 | */ |
f10770f5 AB |
227 | static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
228 | struct list_head *nondata, int *min) | |
1e51764a | 229 | { |
3bb66b47 | 230 | int err; |
1e51764a | 231 | struct ubifs_scan_node *snod, *tmp; |
1e51764a | 232 | |
f10770f5 | 233 | *min = INT_MAX; |
1e51764a | 234 | |
f10770f5 AB |
235 | /* Separate data nodes and non-data nodes */ |
236 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | |
6eb61d58 | 237 | ubifs_assert(c, snod->type == UBIFS_INO_NODE || |
44ec83b8 AB |
238 | snod->type == UBIFS_DATA_NODE || |
239 | snod->type == UBIFS_DENT_NODE || | |
240 | snod->type == UBIFS_XENT_NODE || | |
6a98bc46 SH |
241 | snod->type == UBIFS_TRUN_NODE || |
242 | snod->type == UBIFS_AUTH_NODE); | |
44ec83b8 AB |
243 | |
244 | if (snod->type != UBIFS_INO_NODE && | |
245 | snod->type != UBIFS_DATA_NODE && | |
246 | snod->type != UBIFS_DENT_NODE && | |
247 | snod->type != UBIFS_XENT_NODE) { | |
248 | /* Probably truncation node, zap it */ | |
249 | list_del(&snod->list); | |
250 | kfree(snod); | |
251 | continue; | |
252 | } | |
253 | ||
6eb61d58 | 254 | ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY || |
44ec83b8 AB |
255 | key_type(c, &snod->key) == UBIFS_INO_KEY || |
256 | key_type(c, &snod->key) == UBIFS_DENT_KEY || | |
257 | key_type(c, &snod->key) == UBIFS_XENT_KEY); | |
1e51764a AB |
258 | |
259 | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, | |
260 | snod->offs, 0); | |
261 | if (err < 0) | |
f10770f5 | 262 | return err; |
1e51764a | 263 | |
1e51764a AB |
264 | if (!err) { |
265 | /* The node is obsolete, remove it from the list */ | |
f10770f5 | 266 | list_del(&snod->list); |
1e51764a AB |
267 | kfree(snod); |
268 | continue; | |
269 | } | |
270 | ||
f10770f5 AB |
271 | if (snod->len < *min) |
272 | *min = snod->len; | |
273 | ||
274 | if (key_type(c, &snod->key) != UBIFS_DATA_KEY) | |
275 | list_move_tail(&snod->list, nondata); | |
1e51764a AB |
276 | } |
277 | ||
f10770f5 AB |
278 | /* Sort data and non-data nodes */ |
279 | list_sort(c, &sleb->nodes, &data_nodes_cmp); | |
280 | list_sort(c, nondata, &nondata_nodes_cmp); | |
3bb66b47 AB |
281 | |
282 | err = dbg_check_data_nodes_order(c, &sleb->nodes); | |
283 | if (err) | |
284 | return err; | |
285 | err = dbg_check_nondata_nodes_order(c, nondata); | |
286 | if (err) | |
287 | return err; | |
f10770f5 AB |
288 | return 0; |
289 | } | |
290 | ||
291 | /** | |
292 | * move_node - move a node. | |
293 | * @c: UBIFS file-system description object | |
294 | * @sleb: describes the LEB to move nodes from | |
295 | * @snod: the mode to move | |
296 | * @wbuf: write-buffer to move node to | |
297 | * | |
298 | * This function moves node @snod to @wbuf, changes TNC correspondingly, and | |
299 | * destroys @snod. Returns zero in case of success and a negative error code in | |
300 | * case of failure. | |
301 | */ | |
302 | static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | |
303 | struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) | |
304 | { | |
305 | int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; | |
306 | ||
307 | cond_resched(); | |
308 | err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); | |
309 | if (err) | |
310 | return err; | |
311 | ||
312 | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, | |
313 | snod->offs, new_lnum, new_offs, | |
314 | snod->len); | |
315 | list_del(&snod->list); | |
316 | kfree(snod); | |
317 | return err; | |
318 | } | |
319 | ||
320 | /** | |
321 | * move_nodes - move nodes. | |
322 | * @c: UBIFS file-system description object | |
323 | * @sleb: describes the LEB to move nodes from | |
324 | * | |
325 | * This function moves valid nodes from data LEB described by @sleb to the GC | |
326 | * journal head. This function returns zero in case of success, %-EAGAIN if | |
327 | * commit is required, and other negative error codes in case of other | |
328 | * failures. | |
329 | */ | |
330 | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) | |
331 | { | |
332 | int err, min; | |
333 | LIST_HEAD(nondata); | |
334 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
1e51764a AB |
335 | |
336 | if (wbuf->lnum == -1) { | |
337 | /* | |
338 | * The GC journal head is not set, because it is the first GC | |
339 | * invocation since mount. | |
340 | */ | |
341 | err = switch_gc_head(c); | |
342 | if (err) | |
f10770f5 | 343 | return err; |
1e51764a AB |
344 | } |
345 | ||
f10770f5 AB |
346 | err = sort_nodes(c, sleb, &nondata, &min); |
347 | if (err) | |
348 | goto out; | |
349 | ||
1e51764a AB |
350 | /* Write nodes to their new location. Use the first-fit strategy */ |
351 | while (1) { | |
6f06d96f | 352 | int avail, moved = 0; |
f10770f5 AB |
353 | struct ubifs_scan_node *snod, *tmp; |
354 | ||
355 | /* Move data nodes */ | |
356 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | |
6f06d96f SH |
357 | avail = c->leb_size - wbuf->offs - wbuf->used - |
358 | ubifs_auth_node_sz(c); | |
f10770f5 AB |
359 | if (snod->len > avail) |
360 | /* | |
361 | * Do not skip data nodes in order to optimize | |
362 | * bulk-read. | |
363 | */ | |
364 | break; | |
365 | ||
6f06d96f SH |
366 | err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, |
367 | snod->node, snod->len); | |
368 | if (err) | |
369 | goto out; | |
370 | ||
f10770f5 AB |
371 | err = move_node(c, sleb, snod, wbuf); |
372 | if (err) | |
373 | goto out; | |
6f06d96f | 374 | moved = 1; |
f10770f5 | 375 | } |
1e51764a | 376 | |
f10770f5 AB |
377 | /* Move non-data nodes */ |
378 | list_for_each_entry_safe(snod, tmp, &nondata, list) { | |
6f06d96f SH |
379 | avail = c->leb_size - wbuf->offs - wbuf->used - |
380 | ubifs_auth_node_sz(c); | |
1e51764a AB |
381 | if (avail < min) |
382 | break; | |
383 | ||
f10770f5 AB |
384 | if (snod->len > avail) { |
385 | /* | |
386 | * Keep going only if this is an inode with | |
387 | * some data. Otherwise stop and switch the GC | |
388 | * head. IOW, we assume that data-less inode | |
389 | * nodes and direntry nodes are roughly of the | |
390 | * same size. | |
391 | */ | |
392 | if (key_type(c, &snod->key) == UBIFS_DENT_KEY || | |
393 | snod->len == UBIFS_INO_NODE_SZ) | |
394 | break; | |
1e51764a | 395 | continue; |
f10770f5 | 396 | } |
1e51764a | 397 | |
6f06d96f SH |
398 | err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, |
399 | snod->node, snod->len); | |
400 | if (err) | |
401 | goto out; | |
402 | ||
f10770f5 | 403 | err = move_node(c, sleb, snod, wbuf); |
1e51764a AB |
404 | if (err) |
405 | goto out; | |
6f06d96f SH |
406 | moved = 1; |
407 | } | |
408 | ||
409 | if (ubifs_authenticated(c) && moved) { | |
410 | struct ubifs_auth_node *auth; | |
411 | ||
412 | auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS); | |
413 | if (!auth) { | |
414 | err = -ENOMEM; | |
415 | goto out; | |
416 | } | |
417 | ||
418 | err = ubifs_prepare_auth_node(c, auth, | |
419 | c->jheads[GCHD].log_hash); | |
420 | if (err) { | |
421 | kfree(auth); | |
422 | goto out; | |
423 | } | |
424 | ||
425 | err = ubifs_wbuf_write_nolock(wbuf, auth, | |
426 | ubifs_auth_node_sz(c)); | |
427 | if (err) { | |
428 | kfree(auth); | |
429 | goto out; | |
430 | } | |
431 | ||
432 | ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c)); | |
1e51764a AB |
433 | } |
434 | ||
f10770f5 | 435 | if (list_empty(&sleb->nodes) && list_empty(&nondata)) |
1e51764a AB |
436 | break; |
437 | ||
438 | /* | |
439 | * Waste the rest of the space in the LEB and switch to the | |
440 | * next LEB. | |
441 | */ | |
442 | err = switch_gc_head(c); | |
443 | if (err) | |
444 | goto out; | |
445 | } | |
446 | ||
447 | return 0; | |
448 | ||
449 | out: | |
f10770f5 | 450 | list_splice_tail(&nondata, &sleb->nodes); |
1e51764a AB |
451 | return err; |
452 | } | |
453 | ||
454 | /** | |
455 | * gc_sync_wbufs - sync write-buffers for GC. | |
456 | * @c: UBIFS file-system description object | |
457 | * | |
458 | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may | |
459 | * be in a write-buffer instead. That is, a node could be written to a | |
460 | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is | |
461 | * erased before the write-buffer is sync'd and then there is an unclean | |
462 | * unmount, then an existing node is lost. To avoid this, we sync all | |
463 | * write-buffers. | |
464 | * | |
465 | * This function returns %0 on success or a negative error code on failure. | |
466 | */ | |
467 | static int gc_sync_wbufs(struct ubifs_info *c) | |
468 | { | |
469 | int err, i; | |
470 | ||
471 | for (i = 0; i < c->jhead_cnt; i++) { | |
472 | if (i == GCHD) | |
473 | continue; | |
474 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | |
475 | if (err) | |
476 | return err; | |
477 | } | |
478 | return 0; | |
479 | } | |
480 | ||
481 | /** | |
482 | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. | |
483 | * @c: UBIFS file-system description object | |
484 | * @lp: describes the LEB to garbage collect | |
485 | * | |
486 | * This function garbage-collects an LEB and returns one of the @LEB_FREED, | |
487 | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is | |
488 | * required, and other negative error codes in case of failures. | |
489 | */ | |
490 | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) | |
491 | { | |
492 | struct ubifs_scan_leb *sleb; | |
493 | struct ubifs_scan_node *snod; | |
494 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
495 | int err = 0, lnum = lp->lnum; | |
496 | ||
6eb61d58 | 497 | ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || |
1e51764a | 498 | c->need_recovery); |
6eb61d58 RW |
499 | ubifs_assert(c, c->gc_lnum != lnum); |
500 | ubifs_assert(c, wbuf->lnum != lnum); | |
1e51764a | 501 | |
2405f594 AB |
502 | if (lp->free + lp->dirty == c->leb_size) { |
503 | /* Special case - a free LEB */ | |
504 | dbg_gc("LEB %d is free, return it", lp->lnum); | |
6eb61d58 | 505 | ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); |
2405f594 AB |
506 | |
507 | if (lp->free != c->leb_size) { | |
508 | /* | |
509 | * Write buffers must be sync'd before unmapping | |
510 | * freeable LEBs, because one of them may contain data | |
312c39bd | 511 | * which obsoletes something in 'lp->lnum'. |
2405f594 AB |
512 | */ |
513 | err = gc_sync_wbufs(c); | |
514 | if (err) | |
515 | return err; | |
516 | err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, | |
517 | 0, 0, 0, 0); | |
518 | if (err) | |
519 | return err; | |
520 | } | |
521 | err = ubifs_leb_unmap(c, lp->lnum); | |
522 | if (err) | |
523 | return err; | |
524 | ||
525 | if (c->gc_lnum == -1) { | |
526 | c->gc_lnum = lnum; | |
527 | return LEB_RETAINED; | |
528 | } | |
529 | ||
530 | return LEB_FREED; | |
531 | } | |
532 | ||
1e51764a AB |
533 | /* |
534 | * We scan the entire LEB even though we only really need to scan up to | |
535 | * (c->leb_size - lp->free). | |
536 | */ | |
348709ba | 537 | sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); |
1e51764a AB |
538 | if (IS_ERR(sleb)) |
539 | return PTR_ERR(sleb); | |
540 | ||
6eb61d58 | 541 | ubifs_assert(c, !list_empty(&sleb->nodes)); |
1e51764a AB |
542 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); |
543 | ||
544 | if (snod->type == UBIFS_IDX_NODE) { | |
545 | struct ubifs_gced_idx_leb *idx_gc; | |
546 | ||
547 | dbg_gc("indexing LEB %d (free %d, dirty %d)", | |
548 | lnum, lp->free, lp->dirty); | |
549 | list_for_each_entry(snod, &sleb->nodes, list) { | |
550 | struct ubifs_idx_node *idx = snod->node; | |
551 | int level = le16_to_cpu(idx->level); | |
552 | ||
6eb61d58 | 553 | ubifs_assert(c, snod->type == UBIFS_IDX_NODE); |
1e51764a AB |
554 | key_read(c, ubifs_idx_key(c, idx), &snod->key); |
555 | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, | |
556 | snod->offs); | |
557 | if (err) | |
558 | goto out; | |
559 | } | |
560 | ||
561 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
562 | if (!idx_gc) { | |
563 | err = -ENOMEM; | |
564 | goto out; | |
565 | } | |
566 | ||
567 | idx_gc->lnum = lnum; | |
568 | idx_gc->unmap = 0; | |
569 | list_add(&idx_gc->list, &c->idx_gc); | |
570 | ||
571 | /* | |
572 | * Don't release the LEB until after the next commit, because | |
227c75c9 | 573 | * it may contain data which is needed for recovery. So |
1e51764a AB |
574 | * although we freed this LEB, it will become usable only after |
575 | * the commit. | |
576 | */ | |
577 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, | |
578 | LPROPS_INDEX, 1); | |
579 | if (err) | |
580 | goto out; | |
581 | err = LEB_FREED_IDX; | |
582 | } else { | |
583 | dbg_gc("data LEB %d (free %d, dirty %d)", | |
584 | lnum, lp->free, lp->dirty); | |
585 | ||
586 | err = move_nodes(c, sleb); | |
587 | if (err) | |
6dcfac4f | 588 | goto out_inc_seq; |
1e51764a AB |
589 | |
590 | err = gc_sync_wbufs(c); | |
591 | if (err) | |
6dcfac4f | 592 | goto out_inc_seq; |
1e51764a AB |
593 | |
594 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); | |
595 | if (err) | |
6dcfac4f | 596 | goto out_inc_seq; |
1e51764a | 597 | |
601c0bc4 AH |
598 | /* Allow for races with TNC */ |
599 | c->gced_lnum = lnum; | |
600 | smp_wmb(); | |
601 | c->gc_seq += 1; | |
602 | smp_wmb(); | |
603 | ||
1e51764a AB |
604 | if (c->gc_lnum == -1) { |
605 | c->gc_lnum = lnum; | |
606 | err = LEB_RETAINED; | |
607 | } else { | |
608 | err = ubifs_wbuf_sync_nolock(wbuf); | |
609 | if (err) | |
610 | goto out; | |
611 | ||
612 | err = ubifs_leb_unmap(c, lnum); | |
613 | if (err) | |
614 | goto out; | |
615 | ||
616 | err = LEB_FREED; | |
617 | } | |
618 | } | |
619 | ||
620 | out: | |
621 | ubifs_scan_destroy(sleb); | |
622 | return err; | |
6dcfac4f AH |
623 | |
624 | out_inc_seq: | |
625 | /* We may have moved at least some nodes so allow for races with TNC */ | |
626 | c->gced_lnum = lnum; | |
627 | smp_wmb(); | |
628 | c->gc_seq += 1; | |
629 | smp_wmb(); | |
630 | goto out; | |
1e51764a AB |
631 | } |
632 | ||
633 | /** | |
634 | * ubifs_garbage_collect - UBIFS garbage collector. | |
635 | * @c: UBIFS file-system description object | |
636 | * @anyway: do GC even if there are free LEBs | |
637 | * | |
638 | * This function does out-of-place garbage collection. The return codes are: | |
639 | * o positive LEB number if the LEB has been freed and may be used; | |
640 | * o %-EAGAIN if the caller has to run commit; | |
641 | * o %-ENOSPC if GC failed to make any progress; | |
642 | * o other negative error codes in case of other errors. | |
643 | * | |
644 | * Garbage collector writes data to the journal when GC'ing data LEBs, and just | |
645 | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point | |
646 | * commit may be required. But commit cannot be run from inside GC, because the | |
647 | * caller might be holding the commit lock, so %-EAGAIN is returned instead; | |
648 | * And this error code means that the caller has to run commit, and re-run GC | |
649 | * if there is still no free space. | |
650 | * | |
651 | * There are many reasons why this function may return %-EAGAIN: | |
652 | * o the log is full and there is no space to write an LEB reference for | |
653 | * @c->gc_lnum; | |
654 | * o the journal is too large and exceeds size limitations; | |
655 | * o GC moved indexing LEBs, but they can be used only after the commit; | |
656 | * o the shrinker fails to find clean znodes to free and requests the commit; | |
657 | * o etc. | |
658 | * | |
659 | * Note, if the file-system is close to be full, this function may return | |
660 | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of | |
661 | * the function. E.g., this happens if the limits on the journal size are too | |
662 | * tough and GC writes too much to the journal before an LEB is freed. This | |
663 | * might also mean that the journal is too large, and the TNC becomes to big, | |
664 | * so that the shrinker is constantly called, finds not clean znodes to free, | |
665 | * and requests commit. Well, this may also happen if the journal is all right, | |
666 | * but another kernel process consumes too much memory. Anyway, infinite | |
667 | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. | |
668 | */ | |
669 | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) | |
670 | { | |
671 | int i, err, ret, min_space = c->dead_wm; | |
672 | struct ubifs_lprops lp; | |
673 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
674 | ||
675 | ubifs_assert_cmt_locked(c); | |
6eb61d58 | 676 | ubifs_assert(c, !c->ro_media && !c->ro_mount); |
1e51764a AB |
677 | |
678 | if (ubifs_gc_should_commit(c)) | |
679 | return -EAGAIN; | |
680 | ||
681 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
682 | ||
2680d722 | 683 | if (c->ro_error) { |
1e51764a AB |
684 | ret = -EROFS; |
685 | goto out_unlock; | |
686 | } | |
687 | ||
688 | /* We expect the write-buffer to be empty on entry */ | |
6eb61d58 | 689 | ubifs_assert(c, !wbuf->used); |
1e51764a AB |
690 | |
691 | for (i = 0; ; i++) { | |
e71d1a59 | 692 | int space_before, space_after; |
1e51764a AB |
693 | |
694 | cond_resched(); | |
695 | ||
696 | /* Give the commit an opportunity to run */ | |
697 | if (ubifs_gc_should_commit(c)) { | |
698 | ret = -EAGAIN; | |
699 | break; | |
700 | } | |
701 | ||
702 | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { | |
703 | /* | |
704 | * We've done enough iterations. Indexing LEBs were | |
705 | * moved and will be available after the commit. | |
706 | */ | |
707 | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); | |
708 | ubifs_commit_required(c); | |
709 | ret = -EAGAIN; | |
710 | break; | |
711 | } | |
712 | ||
713 | if (i > HARD_LEBS_LIMIT) { | |
714 | /* | |
715 | * We've moved too many LEBs and have not made | |
716 | * progress, give up. | |
717 | */ | |
718 | dbg_gc("hard limit, -ENOSPC"); | |
719 | ret = -ENOSPC; | |
720 | break; | |
721 | } | |
722 | ||
723 | /* | |
724 | * Empty and freeable LEBs can turn up while we waited for | |
725 | * the wbuf lock, or while we have been running GC. In that | |
726 | * case, we should just return one of those instead of | |
727 | * continuing to GC dirty LEBs. Hence we request | |
728 | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. | |
729 | */ | |
730 | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); | |
731 | if (ret) { | |
732 | if (ret == -ENOSPC) | |
733 | dbg_gc("no more dirty LEBs"); | |
734 | break; | |
735 | } | |
736 | ||
79fda517 AB |
737 | dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", |
738 | lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, | |
739 | min_space); | |
1e51764a | 740 | |
1e51764a AB |
741 | space_before = c->leb_size - wbuf->offs - wbuf->used; |
742 | if (wbuf->lnum == -1) | |
743 | space_before = 0; | |
744 | ||
745 | ret = ubifs_garbage_collect_leb(c, &lp); | |
746 | if (ret < 0) { | |
efe1881f | 747 | if (ret == -EAGAIN) { |
1e51764a | 748 | /* |
efe1881f AB |
749 | * This is not error, so we have to return the |
750 | * LEB to lprops. But if 'ubifs_return_leb()' | |
751 | * fails, its failure code is propagated to the | |
752 | * caller instead of the original '-EAGAIN'. | |
1e51764a AB |
753 | */ |
754 | err = ubifs_return_leb(c, lp.lnum); | |
755 | if (err) | |
756 | ret = err; | |
757 | break; | |
758 | } | |
759 | goto out; | |
760 | } | |
761 | ||
762 | if (ret == LEB_FREED) { | |
763 | /* An LEB has been freed and is ready for use */ | |
764 | dbg_gc("LEB %d freed, return", lp.lnum); | |
765 | ret = lp.lnum; | |
766 | break; | |
767 | } | |
768 | ||
769 | if (ret == LEB_FREED_IDX) { | |
770 | /* | |
771 | * This was an indexing LEB and it cannot be | |
772 | * immediately used. And instead of requesting the | |
773 | * commit straight away, we try to garbage collect some | |
774 | * more. | |
775 | */ | |
776 | dbg_gc("indexing LEB %d freed, continue", lp.lnum); | |
777 | continue; | |
778 | } | |
779 | ||
6eb61d58 | 780 | ubifs_assert(c, ret == LEB_RETAINED); |
1e51764a AB |
781 | space_after = c->leb_size - wbuf->offs - wbuf->used; |
782 | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, | |
783 | space_after - space_before); | |
784 | ||
785 | if (space_after > space_before) { | |
786 | /* GC makes progress, keep working */ | |
787 | min_space >>= 1; | |
788 | if (min_space < c->dead_wm) | |
789 | min_space = c->dead_wm; | |
790 | continue; | |
791 | } | |
792 | ||
793 | dbg_gc("did not make progress"); | |
794 | ||
795 | /* | |
796 | * GC moved an LEB bud have not done any progress. This means | |
797 | * that the previous GC head LEB contained too few free space | |
798 | * and the LEB which was GC'ed contained only large nodes which | |
799 | * did not fit that space. | |
800 | * | |
801 | * We can do 2 things: | |
802 | * 1. pick another LEB in a hope it'll contain a small node | |
803 | * which will fit the space we have at the end of current GC | |
804 | * head LEB, but there is no guarantee, so we try this out | |
805 | * unless we have already been working for too long; | |
806 | * 2. request an LEB with more dirty space, which will force | |
807 | * 'ubifs_find_dirty_leb()' to start scanning the lprops | |
808 | * table, instead of just picking one from the heap | |
809 | * (previously it already picked the dirtiest LEB). | |
810 | */ | |
811 | if (i < SOFT_LEBS_LIMIT) { | |
812 | dbg_gc("try again"); | |
813 | continue; | |
814 | } | |
815 | ||
816 | min_space <<= 1; | |
817 | if (min_space > c->dark_wm) | |
818 | min_space = c->dark_wm; | |
819 | dbg_gc("set min. space to %d", min_space); | |
820 | } | |
821 | ||
822 | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { | |
823 | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); | |
824 | ubifs_commit_required(c); | |
825 | ret = -EAGAIN; | |
826 | } | |
827 | ||
828 | err = ubifs_wbuf_sync_nolock(wbuf); | |
829 | if (!err) | |
830 | err = ubifs_leb_unmap(c, c->gc_lnum); | |
831 | if (err) { | |
832 | ret = err; | |
833 | goto out; | |
834 | } | |
835 | out_unlock: | |
836 | mutex_unlock(&wbuf->io_mutex); | |
837 | return ret; | |
838 | ||
839 | out: | |
6eb61d58 RW |
840 | ubifs_assert(c, ret < 0); |
841 | ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN); | |
1e51764a | 842 | ubifs_wbuf_sync_nolock(wbuf); |
5ffef88f | 843 | ubifs_ro_mode(c, ret); |
1e51764a AB |
844 | mutex_unlock(&wbuf->io_mutex); |
845 | ubifs_return_leb(c, lp.lnum); | |
846 | return ret; | |
847 | } | |
848 | ||
849 | /** | |
850 | * ubifs_gc_start_commit - garbage collection at start of commit. | |
851 | * @c: UBIFS file-system description object | |
852 | * | |
853 | * If a LEB has only dirty and free space, then we may safely unmap it and make | |
854 | * it free. Note, we cannot do this with indexing LEBs because dirty space may | |
855 | * correspond index nodes that are required for recovery. In that case, the | |
856 | * LEB cannot be unmapped until after the next commit. | |
857 | * | |
858 | * This function returns %0 upon success and a negative error code upon failure. | |
859 | */ | |
860 | int ubifs_gc_start_commit(struct ubifs_info *c) | |
861 | { | |
862 | struct ubifs_gced_idx_leb *idx_gc; | |
863 | const struct ubifs_lprops *lp; | |
864 | int err = 0, flags; | |
865 | ||
866 | ubifs_get_lprops(c); | |
867 | ||
868 | /* | |
869 | * Unmap (non-index) freeable LEBs. Note that recovery requires that all | |
870 | * wbufs are sync'd before this, which is done in 'do_commit()'. | |
871 | */ | |
872 | while (1) { | |
873 | lp = ubifs_fast_find_freeable(c); | |
1e51764a AB |
874 | if (!lp) |
875 | break; | |
6eb61d58 RW |
876 | ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); |
877 | ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); | |
1e51764a AB |
878 | err = ubifs_leb_unmap(c, lp->lnum); |
879 | if (err) | |
880 | goto out; | |
881 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); | |
8d47aef4 | 882 | if (IS_ERR(lp)) { |
1e51764a AB |
883 | err = PTR_ERR(lp); |
884 | goto out; | |
885 | } | |
6eb61d58 RW |
886 | ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); |
887 | ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); | |
1e51764a AB |
888 | } |
889 | ||
890 | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ | |
891 | list_for_each_entry(idx_gc, &c->idx_gc, list) | |
892 | idx_gc->unmap = 1; | |
893 | ||
894 | /* Record index freeable LEBs for unmapping after commit */ | |
895 | while (1) { | |
896 | lp = ubifs_fast_find_frdi_idx(c); | |
8d47aef4 | 897 | if (IS_ERR(lp)) { |
1e51764a AB |
898 | err = PTR_ERR(lp); |
899 | goto out; | |
900 | } | |
901 | if (!lp) | |
902 | break; | |
903 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
904 | if (!idx_gc) { | |
905 | err = -ENOMEM; | |
906 | goto out; | |
907 | } | |
6eb61d58 RW |
908 | ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); |
909 | ubifs_assert(c, lp->flags & LPROPS_INDEX); | |
1e51764a AB |
910 | /* Don't release the LEB until after the next commit */ |
911 | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; | |
912 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); | |
8d47aef4 | 913 | if (IS_ERR(lp)) { |
1e51764a AB |
914 | err = PTR_ERR(lp); |
915 | kfree(idx_gc); | |
916 | goto out; | |
917 | } | |
6eb61d58 RW |
918 | ubifs_assert(c, lp->flags & LPROPS_TAKEN); |
919 | ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); | |
1e51764a AB |
920 | idx_gc->lnum = lp->lnum; |
921 | idx_gc->unmap = 1; | |
922 | list_add(&idx_gc->list, &c->idx_gc); | |
923 | } | |
924 | out: | |
925 | ubifs_release_lprops(c); | |
926 | return err; | |
927 | } | |
928 | ||
929 | /** | |
930 | * ubifs_gc_end_commit - garbage collection at end of commit. | |
931 | * @c: UBIFS file-system description object | |
932 | * | |
933 | * This function completes out-of-place garbage collection of index LEBs. | |
934 | */ | |
935 | int ubifs_gc_end_commit(struct ubifs_info *c) | |
936 | { | |
937 | struct ubifs_gced_idx_leb *idx_gc, *tmp; | |
938 | struct ubifs_wbuf *wbuf; | |
939 | int err = 0; | |
940 | ||
941 | wbuf = &c->jheads[GCHD].wbuf; | |
942 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
943 | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) | |
944 | if (idx_gc->unmap) { | |
945 | dbg_gc("LEB %d", idx_gc->lnum); | |
946 | err = ubifs_leb_unmap(c, idx_gc->lnum); | |
947 | if (err) | |
948 | goto out; | |
949 | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, | |
950 | LPROPS_NC, 0, LPROPS_TAKEN, -1); | |
951 | if (err) | |
952 | goto out; | |
953 | list_del(&idx_gc->list); | |
954 | kfree(idx_gc); | |
955 | } | |
956 | out: | |
957 | mutex_unlock(&wbuf->io_mutex); | |
958 | return err; | |
959 | } | |
960 | ||
961 | /** | |
962 | * ubifs_destroy_idx_gc - destroy idx_gc list. | |
963 | * @c: UBIFS file-system description object | |
964 | * | |
b466f17d AH |
965 | * This function destroys the @c->idx_gc list. It is called when unmounting |
966 | * so locks are not needed. Returns zero in case of success and a negative | |
967 | * error code in case of failure. | |
1e51764a | 968 | */ |
b466f17d | 969 | void ubifs_destroy_idx_gc(struct ubifs_info *c) |
1e51764a AB |
970 | { |
971 | while (!list_empty(&c->idx_gc)) { | |
972 | struct ubifs_gced_idx_leb *idx_gc; | |
973 | ||
974 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, | |
975 | list); | |
b466f17d | 976 | c->idx_gc_cnt -= 1; |
1e51764a AB |
977 | list_del(&idx_gc->list); |
978 | kfree(idx_gc); | |
979 | } | |
1e51764a AB |
980 | } |
981 | ||
982 | /** | |
983 | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. | |
984 | * @c: UBIFS file-system description object | |
985 | * | |
986 | * Called during start commit so locks are not needed. | |
987 | */ | |
988 | int ubifs_get_idx_gc_leb(struct ubifs_info *c) | |
989 | { | |
990 | struct ubifs_gced_idx_leb *idx_gc; | |
991 | int lnum; | |
992 | ||
993 | if (list_empty(&c->idx_gc)) | |
994 | return -ENOSPC; | |
995 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); | |
996 | lnum = idx_gc->lnum; | |
997 | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ | |
998 | list_del(&idx_gc->list); | |
999 | kfree(idx_gc); | |
1000 | return lnum; | |
1001 | } |