]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
60863c0d MF |
2 | /* |
3 | * Common EFI memory map functions. | |
4 | */ | |
5 | ||
6 | #define pr_fmt(fmt) "efi: " fmt | |
7 | ||
8 | #include <linux/init.h> | |
9 | #include <linux/kernel.h> | |
10 | #include <linux/efi.h> | |
11 | #include <linux/io.h> | |
12 | #include <asm/early_ioremap.h> | |
20b1e22d NS |
13 | #include <linux/memblock.h> |
14 | #include <linux/slab.h> | |
15 | ||
16 | static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size) | |
17 | { | |
7e1c4e27 | 18 | return memblock_phys_alloc(size, SMP_CACHE_BYTES); |
20b1e22d NS |
19 | } |
20 | ||
21 | static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size) | |
22 | { | |
23 | unsigned int order = get_order(size); | |
24 | struct page *p = alloc_pages(GFP_KERNEL, order); | |
25 | ||
26 | if (!p) | |
27 | return 0; | |
28 | ||
29 | return PFN_PHYS(page_to_pfn(p)); | |
30 | } | |
31 | ||
484a418d | 32 | void __init __efi_memmap_free(u64 phys, unsigned long size, unsigned long flags) |
f0ef6523 DW |
33 | { |
34 | if (flags & EFI_MEMMAP_MEMBLOCK) { | |
35 | if (slab_is_available()) | |
36 | memblock_free_late(phys, size); | |
37 | else | |
3ecc6834 | 38 | memblock_phys_free(phys, size); |
f0ef6523 DW |
39 | } else if (flags & EFI_MEMMAP_SLAB) { |
40 | struct page *p = pfn_to_page(PHYS_PFN(phys)); | |
41 | unsigned int order = get_order(size); | |
42 | ||
43 | free_pages((unsigned long) page_address(p), order); | |
44 | } | |
45 | } | |
46 | ||
47 | static void __init efi_memmap_free(void) | |
48 | { | |
49 | __efi_memmap_free(efi.memmap.phys_map, | |
50 | efi.memmap.desc_size * efi.memmap.nr_map, | |
51 | efi.memmap.flags); | |
52 | } | |
53 | ||
20b1e22d NS |
54 | /** |
55 | * efi_memmap_alloc - Allocate memory for the EFI memory map | |
56 | * @num_entries: Number of entries in the allocated map. | |
1db91035 | 57 | * @data: efi memmap installation parameters |
20b1e22d NS |
58 | * |
59 | * Depending on whether mm_init() has already been invoked or not, | |
60 | * either memblock or "normal" page allocation is used. | |
61 | * | |
db01ea88 | 62 | * Returns zero on success, a negative error code on failure. |
20b1e22d | 63 | */ |
1db91035 DW |
64 | int __init efi_memmap_alloc(unsigned int num_entries, |
65 | struct efi_memory_map_data *data) | |
20b1e22d | 66 | { |
1db91035 DW |
67 | /* Expect allocation parameters are zero initialized */ |
68 | WARN_ON(data->phys_map || data->size); | |
69 | ||
70 | data->size = num_entries * efi.memmap.desc_size; | |
71 | data->desc_version = efi.memmap.desc_version; | |
72 | data->desc_size = efi.memmap.desc_size; | |
73 | data->flags &= ~(EFI_MEMMAP_SLAB | EFI_MEMMAP_MEMBLOCK); | |
74 | data->flags |= efi.memmap.flags & EFI_MEMMAP_LATE; | |
75 | ||
76 | if (slab_is_available()) { | |
77 | data->flags |= EFI_MEMMAP_SLAB; | |
78 | data->phys_map = __efi_memmap_alloc_late(data->size); | |
79 | } else { | |
80 | data->flags |= EFI_MEMMAP_MEMBLOCK; | |
81 | data->phys_map = __efi_memmap_alloc_early(data->size); | |
82 | } | |
20b1e22d | 83 | |
1db91035 DW |
84 | if (!data->phys_map) |
85 | return -ENOMEM; | |
86 | return 0; | |
20b1e22d | 87 | } |
60863c0d MF |
88 | |
89 | /** | |
90 | * __efi_memmap_init - Common code for mapping the EFI memory map | |
91 | * @data: EFI memory map data | |
60863c0d MF |
92 | * |
93 | * This function takes care of figuring out which function to use to | |
94 | * map the EFI memory map in efi.memmap based on how far into the boot | |
95 | * we are. | |
96 | * | |
26c0e44a DW |
97 | * During bootup EFI_MEMMAP_LATE in data->flags should be clear since we |
98 | * only have access to the early_memremap*() functions as the vmalloc | |
99 | * space isn't setup. Once the kernel is fully booted we can fallback | |
100 | * to the more robust memremap*() API. | |
60863c0d MF |
101 | * |
102 | * Returns zero on success, a negative error code on failure. | |
103 | */ | |
1db91035 | 104 | static int __init __efi_memmap_init(struct efi_memory_map_data *data) |
60863c0d MF |
105 | { |
106 | struct efi_memory_map map; | |
107 | phys_addr_t phys_map; | |
108 | ||
109 | if (efi_enabled(EFI_PARAVIRT)) | |
110 | return 0; | |
111 | ||
112 | phys_map = data->phys_map; | |
113 | ||
26c0e44a | 114 | if (data->flags & EFI_MEMMAP_LATE) |
60863c0d MF |
115 | map.map = memremap(phys_map, data->size, MEMREMAP_WB); |
116 | else | |
117 | map.map = early_memremap(phys_map, data->size); | |
118 | ||
119 | if (!map.map) { | |
120 | pr_err("Could not map the memory map!\n"); | |
121 | return -ENOMEM; | |
122 | } | |
123 | ||
f0ef6523 DW |
124 | /* NOP if data->flags & (EFI_MEMMAP_MEMBLOCK | EFI_MEMMAP_SLAB) == 0 */ |
125 | efi_memmap_free(); | |
126 | ||
60863c0d MF |
127 | map.phys_map = data->phys_map; |
128 | map.nr_map = data->size / data->desc_size; | |
129 | map.map_end = map.map + data->size; | |
130 | ||
131 | map.desc_version = data->desc_version; | |
132 | map.desc_size = data->desc_size; | |
26c0e44a | 133 | map.flags = data->flags; |
60863c0d MF |
134 | |
135 | set_bit(EFI_MEMMAP, &efi.flags); | |
136 | ||
137 | efi.memmap = map; | |
138 | ||
139 | return 0; | |
140 | } | |
141 | ||
142 | /** | |
143 | * efi_memmap_init_early - Map the EFI memory map data structure | |
144 | * @data: EFI memory map data | |
145 | * | |
146 | * Use early_memremap() to map the passed in EFI memory map and assign | |
147 | * it to efi.memmap. | |
148 | */ | |
149 | int __init efi_memmap_init_early(struct efi_memory_map_data *data) | |
150 | { | |
151 | /* Cannot go backwards */ | |
26c0e44a | 152 | WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); |
60863c0d | 153 | |
26c0e44a DW |
154 | data->flags = 0; |
155 | return __efi_memmap_init(data); | |
60863c0d MF |
156 | } |
157 | ||
158 | void __init efi_memmap_unmap(void) | |
159 | { | |
33412b86 AB |
160 | if (!efi_enabled(EFI_MEMMAP)) |
161 | return; | |
162 | ||
26c0e44a | 163 | if (!(efi.memmap.flags & EFI_MEMMAP_LATE)) { |
60863c0d MF |
164 | unsigned long size; |
165 | ||
166 | size = efi.memmap.desc_size * efi.memmap.nr_map; | |
167 | early_memunmap(efi.memmap.map, size); | |
168 | } else { | |
169 | memunmap(efi.memmap.map); | |
170 | } | |
171 | ||
172 | efi.memmap.map = NULL; | |
173 | clear_bit(EFI_MEMMAP, &efi.flags); | |
174 | } | |
175 | ||
176 | /** | |
177 | * efi_memmap_init_late - Map efi.memmap with memremap() | |
178 | * @phys_addr: Physical address of the new EFI memory map | |
179 | * @size: Size in bytes of the new EFI memory map | |
180 | * | |
181 | * Setup a mapping of the EFI memory map using ioremap_cache(). This | |
182 | * function should only be called once the vmalloc space has been | |
183 | * setup and is therefore not suitable for calling during early EFI | |
184 | * initialise, e.g. in efi_init(). Additionally, it expects | |
185 | * efi_memmap_init_early() to have already been called. | |
186 | * | |
187 | * The reason there are two EFI memmap initialisation | |
188 | * (efi_memmap_init_early() and this late version) is because the | |
189 | * early EFI memmap should be explicitly unmapped once EFI | |
190 | * initialisation is complete as the fixmap space used to map the EFI | |
191 | * memmap (via early_memremap()) is a scarce resource. | |
192 | * | |
193 | * This late mapping is intended to persist for the duration of | |
194 | * runtime so that things like efi_mem_desc_lookup() and | |
195 | * efi_mem_attributes() always work. | |
196 | * | |
197 | * Returns zero on success, a negative error code on failure. | |
198 | */ | |
199 | int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size) | |
200 | { | |
201 | struct efi_memory_map_data data = { | |
202 | .phys_map = addr, | |
203 | .size = size, | |
26c0e44a | 204 | .flags = EFI_MEMMAP_LATE, |
60863c0d MF |
205 | }; |
206 | ||
207 | /* Did we forget to unmap the early EFI memmap? */ | |
208 | WARN_ON(efi.memmap.map); | |
209 | ||
210 | /* Were we already called? */ | |
26c0e44a | 211 | WARN_ON(efi.memmap.flags & EFI_MEMMAP_LATE); |
60863c0d MF |
212 | |
213 | /* | |
214 | * It makes no sense to allow callers to register different | |
215 | * values for the following fields. Copy them out of the | |
216 | * existing early EFI memmap. | |
217 | */ | |
218 | data.desc_version = efi.memmap.desc_version; | |
219 | data.desc_size = efi.memmap.desc_size; | |
220 | ||
26c0e44a | 221 | return __efi_memmap_init(&data); |
60863c0d MF |
222 | } |
223 | ||
c45f4da3 MF |
224 | /** |
225 | * efi_memmap_install - Install a new EFI memory map in efi.memmap | |
1db91035 | 226 | * @ctx: map allocation parameters (address, size, flags) |
c45f4da3 MF |
227 | * |
228 | * Unlike efi_memmap_init_*(), this function does not allow the caller | |
229 | * to switch from early to late mappings. It simply uses the existing | |
230 | * mapping function and installs the new memmap. | |
231 | * | |
232 | * Returns zero on success, a negative error code on failure. | |
233 | */ | |
1db91035 | 234 | int __init efi_memmap_install(struct efi_memory_map_data *data) |
c45f4da3 | 235 | { |
c45f4da3 MF |
236 | efi_memmap_unmap(); |
237 | ||
1db91035 | 238 | return __efi_memmap_init(data); |
c45f4da3 MF |
239 | } |
240 | ||
60863c0d MF |
241 | /** |
242 | * efi_memmap_split_count - Count number of additional EFI memmap entries | |
243 | * @md: EFI memory descriptor to split | |
244 | * @range: Address range (start, end) to split around | |
245 | * | |
246 | * Returns the number of additional EFI memmap entries required to | |
1df4d172 | 247 | * accommodate @range. |
60863c0d MF |
248 | */ |
249 | int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range) | |
250 | { | |
251 | u64 m_start, m_end; | |
252 | u64 start, end; | |
253 | int count = 0; | |
254 | ||
255 | start = md->phys_addr; | |
256 | end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1; | |
257 | ||
258 | /* modifying range */ | |
259 | m_start = range->start; | |
260 | m_end = range->end; | |
261 | ||
262 | if (m_start <= start) { | |
263 | /* split into 2 parts */ | |
264 | if (start < m_end && m_end < end) | |
265 | count++; | |
266 | } | |
267 | ||
268 | if (start < m_start && m_start < end) { | |
269 | /* split into 3 parts */ | |
270 | if (m_end < end) | |
271 | count += 2; | |
272 | /* split into 2 parts */ | |
273 | if (end <= m_end) | |
274 | count++; | |
275 | } | |
276 | ||
277 | return count; | |
278 | } | |
279 | ||
280 | /** | |
281 | * efi_memmap_insert - Insert a memory region in an EFI memmap | |
282 | * @old_memmap: The existing EFI memory map structure | |
283 | * @buf: Address of buffer to store new map | |
284 | * @mem: Memory map entry to insert | |
285 | * | |
286 | * It is suggested that you call efi_memmap_split_count() first | |
287 | * to see how large @buf needs to be. | |
288 | */ | |
289 | void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf, | |
290 | struct efi_mem_range *mem) | |
291 | { | |
292 | u64 m_start, m_end, m_attr; | |
293 | efi_memory_desc_t *md; | |
294 | u64 start, end; | |
295 | void *old, *new; | |
296 | ||
297 | /* modifying range */ | |
298 | m_start = mem->range.start; | |
299 | m_end = mem->range.end; | |
300 | m_attr = mem->attribute; | |
301 | ||
92dc3350 MF |
302 | /* |
303 | * The EFI memory map deals with regions in EFI_PAGE_SIZE | |
304 | * units. Ensure that the region described by 'mem' is aligned | |
305 | * correctly. | |
306 | */ | |
307 | if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) || | |
308 | !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) { | |
309 | WARN_ON(1); | |
310 | return; | |
311 | } | |
312 | ||
60863c0d MF |
313 | for (old = old_memmap->map, new = buf; |
314 | old < old_memmap->map_end; | |
315 | old += old_memmap->desc_size, new += old_memmap->desc_size) { | |
316 | ||
317 | /* copy original EFI memory descriptor */ | |
318 | memcpy(new, old, old_memmap->desc_size); | |
319 | md = new; | |
320 | start = md->phys_addr; | |
321 | end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; | |
322 | ||
323 | if (m_start <= start && end <= m_end) | |
324 | md->attribute |= m_attr; | |
325 | ||
326 | if (m_start <= start && | |
327 | (start < m_end && m_end < end)) { | |
328 | /* first part */ | |
329 | md->attribute |= m_attr; | |
330 | md->num_pages = (m_end - md->phys_addr + 1) >> | |
331 | EFI_PAGE_SHIFT; | |
332 | /* latter part */ | |
333 | new += old_memmap->desc_size; | |
334 | memcpy(new, old, old_memmap->desc_size); | |
335 | md = new; | |
336 | md->phys_addr = m_end + 1; | |
337 | md->num_pages = (end - md->phys_addr + 1) >> | |
338 | EFI_PAGE_SHIFT; | |
339 | } | |
340 | ||
341 | if ((start < m_start && m_start < end) && m_end < end) { | |
342 | /* first part */ | |
343 | md->num_pages = (m_start - md->phys_addr) >> | |
344 | EFI_PAGE_SHIFT; | |
345 | /* middle part */ | |
346 | new += old_memmap->desc_size; | |
347 | memcpy(new, old, old_memmap->desc_size); | |
348 | md = new; | |
349 | md->attribute |= m_attr; | |
350 | md->phys_addr = m_start; | |
351 | md->num_pages = (m_end - m_start + 1) >> | |
352 | EFI_PAGE_SHIFT; | |
353 | /* last part */ | |
354 | new += old_memmap->desc_size; | |
355 | memcpy(new, old, old_memmap->desc_size); | |
356 | md = new; | |
357 | md->phys_addr = m_end + 1; | |
358 | md->num_pages = (end - m_end) >> | |
359 | EFI_PAGE_SHIFT; | |
360 | } | |
361 | ||
362 | if ((start < m_start && m_start < end) && | |
363 | (end <= m_end)) { | |
364 | /* first part */ | |
365 | md->num_pages = (m_start - md->phys_addr) >> | |
366 | EFI_PAGE_SHIFT; | |
367 | /* latter part */ | |
368 | new += old_memmap->desc_size; | |
369 | memcpy(new, old, old_memmap->desc_size); | |
370 | md = new; | |
371 | md->phys_addr = m_start; | |
372 | md->num_pages = (end - md->phys_addr + 1) >> | |
373 | EFI_PAGE_SHIFT; | |
374 | md->attribute |= m_attr; | |
375 | } | |
376 | } | |
377 | } |