]>
Commit | Line | Data |
---|---|---|
9db33d22 MW |
1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* | |
3 | * sl28cpld PWM driver | |
4 | * | |
5 | * Copyright (c) 2020 Michael Walle <[email protected]> | |
6 | * | |
7 | * There is no public datasheet available for this PWM core. But it is easy | |
8 | * enough to be briefly explained. It consists of one 8-bit counter. The PWM | |
9 | * supports four distinct frequencies by selecting when to reset the counter. | |
10 | * With the prescaler setting you can select which bit of the counter is used | |
11 | * to reset it. This implies that the higher the frequency the less remaining | |
12 | * bits are available for the actual counter. | |
13 | * | |
14 | * Let cnt[7:0] be the counter, clocked at 32kHz: | |
15 | * +-----------+--------+--------------+-----------+---------------+ | |
16 | * | prescaler | reset | counter bits | frequency | period length | | |
17 | * +-----------+--------+--------------+-----------+---------------+ | |
18 | * | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns | | |
19 | * | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns | | |
20 | * | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns | | |
21 | * | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns | | |
22 | * +-----------+--------+--------------+-----------+---------------+ | |
23 | * | |
24 | * Limitations: | |
25 | * - The hardware cannot generate a 100% duty cycle if the prescaler is 0. | |
26 | * - The hardware cannot atomically set the prescaler and the counter value, | |
27 | * which might lead to glitches and inconsistent states if a write fails. | |
28 | * - The counter is not reset if you switch the prescaler which leads | |
29 | * to glitches, too. | |
30 | * - The duty cycle will switch immediately and not after a complete cycle. | |
31 | * - Depending on the actual implementation, disabling the PWM might have | |
32 | * side effects. For example, if the output pin is shared with a GPIO pin | |
33 | * it will automatically switch back to GPIO mode. | |
34 | */ | |
35 | ||
36 | #include <linux/bitfield.h> | |
37 | #include <linux/kernel.h> | |
38 | #include <linux/mod_devicetable.h> | |
39 | #include <linux/module.h> | |
40 | #include <linux/platform_device.h> | |
41 | #include <linux/pwm.h> | |
42 | #include <linux/regmap.h> | |
43 | ||
44 | /* | |
45 | * PWM timer block registers. | |
46 | */ | |
47 | #define SL28CPLD_PWM_CTRL 0x00 | |
48 | #define SL28CPLD_PWM_CTRL_ENABLE BIT(7) | |
49 | #define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0) | |
50 | #define SL28CPLD_PWM_CYCLE 0x01 | |
51 | #define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0) | |
52 | ||
53 | #define SL28CPLD_PWM_CLK 32000 /* 32 kHz */ | |
54 | #define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler))) | |
55 | #define SL28CPLD_PWM_PERIOD(prescaler) \ | |
56 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)) | |
57 | ||
58 | /* | |
59 | * We calculate the duty cycle like this: | |
60 | * duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle | |
61 | * | |
62 | * With | |
63 | * max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC | |
64 | * max_duty_cycle = 1 << (7 - prescaler) | |
65 | * this then simplifies to: | |
66 | * duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC | |
67 | * = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg | |
68 | * | |
69 | * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing | |
70 | * precision by doing the divison first. | |
71 | */ | |
72 | #define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \ | |
73 | (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg)) | |
74 | #define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \ | |
75 | (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK)) | |
76 | ||
77 | #define sl28cpld_pwm_read(priv, reg, val) \ | |
78 | regmap_read((priv)->regmap, (priv)->offset + (reg), (val)) | |
79 | #define sl28cpld_pwm_write(priv, reg, val) \ | |
80 | regmap_write((priv)->regmap, (priv)->offset + (reg), (val)) | |
81 | ||
82 | struct sl28cpld_pwm { | |
83 | struct pwm_chip pwm_chip; | |
84 | struct regmap *regmap; | |
85 | u32 offset; | |
86 | }; | |
062c9cdf UKK |
87 | #define sl28cpld_pwm_from_chip(_chip) \ |
88 | container_of(_chip, struct sl28cpld_pwm, pwm_chip) | |
9db33d22 MW |
89 | |
90 | static void sl28cpld_pwm_get_state(struct pwm_chip *chip, | |
91 | struct pwm_device *pwm, | |
92 | struct pwm_state *state) | |
93 | { | |
062c9cdf | 94 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
9db33d22 MW |
95 | unsigned int reg; |
96 | int prescaler; | |
97 | ||
98 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®); | |
99 | ||
100 | state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE; | |
101 | ||
102 | prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg); | |
103 | state->period = SL28CPLD_PWM_PERIOD(prescaler); | |
104 | ||
105 | sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®); | |
106 | state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg); | |
107 | state->polarity = PWM_POLARITY_NORMAL; | |
108 | ||
109 | /* | |
110 | * Sanitize values for the PWM core. Depending on the prescaler it | |
111 | * might happen that we calculate a duty_cycle greater than the actual | |
112 | * period. This might happen if someone (e.g. the bootloader) sets an | |
113 | * invalid combination of values. The behavior of the hardware is | |
114 | * undefined in this case. But we need to report sane values back to | |
115 | * the PWM core. | |
116 | */ | |
117 | state->duty_cycle = min(state->duty_cycle, state->period); | |
118 | } | |
119 | ||
120 | static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, | |
121 | const struct pwm_state *state) | |
122 | { | |
062c9cdf | 123 | struct sl28cpld_pwm *priv = sl28cpld_pwm_from_chip(chip); |
9db33d22 MW |
124 | unsigned int cycle, prescaler; |
125 | bool write_duty_cycle_first; | |
126 | int ret; | |
127 | u8 ctrl; | |
128 | ||
129 | /* Polarity inversion is not supported */ | |
130 | if (state->polarity != PWM_POLARITY_NORMAL) | |
131 | return -EINVAL; | |
132 | ||
133 | /* | |
134 | * Calculate the prescaler. Pick the biggest period that isn't | |
135 | * bigger than the requested period. | |
136 | */ | |
137 | prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period); | |
138 | prescaler = order_base_2(prescaler); | |
139 | ||
140 | if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK)) | |
141 | return -ERANGE; | |
142 | ||
143 | ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler); | |
144 | if (state->enabled) | |
145 | ctrl |= SL28CPLD_PWM_CTRL_ENABLE; | |
146 | ||
147 | cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle); | |
148 | cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler)); | |
149 | ||
150 | /* | |
151 | * Work around the hardware limitation. See also above. Trap 100% duty | |
152 | * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't | |
153 | * care about the frequency because its "all-one" in either case. | |
154 | * | |
155 | * We don't need to check the actual prescaler setting, because only | |
156 | * if the prescaler is 0 we can have this particular value. | |
157 | */ | |
158 | if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) { | |
159 | ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK; | |
160 | ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1); | |
161 | cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1); | |
162 | } | |
163 | ||
164 | /* | |
165 | * To avoid glitches when we switch the prescaler, we have to make sure | |
166 | * we have a valid duty cycle for the new mode. | |
167 | * | |
168 | * Take the current prescaler (or the current period length) into | |
169 | * account to decide whether we have to write the duty cycle or the new | |
170 | * prescaler first. If the period length is decreasing we have to | |
171 | * write the duty cycle first. | |
172 | */ | |
173 | write_duty_cycle_first = pwm->state.period > state->period; | |
174 | ||
175 | if (write_duty_cycle_first) { | |
176 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); | |
177 | if (ret) | |
178 | return ret; | |
179 | } | |
180 | ||
181 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl); | |
182 | if (ret) | |
183 | return ret; | |
184 | ||
185 | if (!write_duty_cycle_first) { | |
186 | ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle); | |
187 | if (ret) | |
188 | return ret; | |
189 | } | |
190 | ||
191 | return 0; | |
192 | } | |
193 | ||
194 | static const struct pwm_ops sl28cpld_pwm_ops = { | |
195 | .apply = sl28cpld_pwm_apply, | |
196 | .get_state = sl28cpld_pwm_get_state, | |
197 | .owner = THIS_MODULE, | |
198 | }; | |
199 | ||
200 | static int sl28cpld_pwm_probe(struct platform_device *pdev) | |
201 | { | |
202 | struct sl28cpld_pwm *priv; | |
203 | struct pwm_chip *chip; | |
204 | int ret; | |
205 | ||
206 | if (!pdev->dev.parent) { | |
207 | dev_err(&pdev->dev, "no parent device\n"); | |
208 | return -ENODEV; | |
209 | } | |
210 | ||
211 | priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); | |
212 | if (!priv) | |
213 | return -ENOMEM; | |
214 | ||
215 | priv->regmap = dev_get_regmap(pdev->dev.parent, NULL); | |
216 | if (!priv->regmap) { | |
217 | dev_err(&pdev->dev, "could not get parent regmap\n"); | |
218 | return -ENODEV; | |
219 | } | |
220 | ||
221 | ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset); | |
222 | if (ret) { | |
223 | dev_err(&pdev->dev, "no 'reg' property found (%pe)\n", | |
224 | ERR_PTR(ret)); | |
225 | return -EINVAL; | |
226 | } | |
227 | ||
228 | /* Initialize the pwm_chip structure */ | |
229 | chip = &priv->pwm_chip; | |
230 | chip->dev = &pdev->dev; | |
231 | chip->ops = &sl28cpld_pwm_ops; | |
9db33d22 MW |
232 | chip->npwm = 1; |
233 | ||
02dd2e41 | 234 | ret = devm_pwmchip_add(&pdev->dev, &priv->pwm_chip); |
9db33d22 MW |
235 | if (ret) { |
236 | dev_err(&pdev->dev, "failed to add PWM chip (%pe)", | |
237 | ERR_PTR(ret)); | |
238 | return ret; | |
239 | } | |
240 | ||
9db33d22 MW |
241 | return 0; |
242 | } | |
243 | ||
9db33d22 MW |
244 | static const struct of_device_id sl28cpld_pwm_of_match[] = { |
245 | { .compatible = "kontron,sl28cpld-pwm" }, | |
246 | {} | |
247 | }; | |
248 | MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match); | |
249 | ||
250 | static struct platform_driver sl28cpld_pwm_driver = { | |
251 | .probe = sl28cpld_pwm_probe, | |
9db33d22 MW |
252 | .driver = { |
253 | .name = "sl28cpld-pwm", | |
254 | .of_match_table = sl28cpld_pwm_of_match, | |
255 | }, | |
256 | }; | |
257 | module_platform_driver(sl28cpld_pwm_driver); | |
258 | ||
259 | MODULE_DESCRIPTION("sl28cpld PWM Driver"); | |
260 | MODULE_AUTHOR("Michael Walle <[email protected]>"); | |
261 | MODULE_LICENSE("GPL"); |