]>
Commit | Line | Data |
---|---|---|
de56a948 PM |
1 | /* |
2 | * Copyright 2011 Paul Mackerras, IBM Corp. <[email protected]> | |
3 | * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. | |
4 | * | |
5 | * Authors: | |
6 | * Paul Mackerras <[email protected]> | |
7 | * Alexander Graf <[email protected]> | |
8 | * Kevin Wolf <[email protected]> | |
9 | * | |
10 | * Description: KVM functions specific to running on Book 3S | |
11 | * processors in hypervisor mode (specifically POWER7 and later). | |
12 | * | |
13 | * This file is derived from arch/powerpc/kvm/book3s.c, | |
14 | * by Alexander Graf <[email protected]>. | |
15 | * | |
16 | * This program is free software; you can redistribute it and/or modify | |
17 | * it under the terms of the GNU General Public License, version 2, as | |
18 | * published by the Free Software Foundation. | |
19 | */ | |
20 | ||
21 | #include <linux/kvm_host.h> | |
4bb817ed | 22 | #include <linux/kernel.h> |
de56a948 PM |
23 | #include <linux/err.h> |
24 | #include <linux/slab.h> | |
25 | #include <linux/preempt.h> | |
174cd4b1 | 26 | #include <linux/sched/signal.h> |
03441a34 | 27 | #include <linux/sched/stat.h> |
de56a948 | 28 | #include <linux/delay.h> |
66b15db6 | 29 | #include <linux/export.h> |
de56a948 PM |
30 | #include <linux/fs.h> |
31 | #include <linux/anon_inodes.h> | |
07f8ab25 | 32 | #include <linux/cpu.h> |
de56a948 | 33 | #include <linux/cpumask.h> |
aa04b4cc PM |
34 | #include <linux/spinlock.h> |
35 | #include <linux/page-flags.h> | |
2c9097e4 | 36 | #include <linux/srcu.h> |
398a76c6 | 37 | #include <linux/miscdevice.h> |
e23a808b | 38 | #include <linux/debugfs.h> |
d3989143 BH |
39 | #include <linux/gfp.h> |
40 | #include <linux/vmalloc.h> | |
41 | #include <linux/highmem.h> | |
42 | #include <linux/hugetlb.h> | |
43 | #include <linux/kvm_irqfd.h> | |
44 | #include <linux/irqbypass.h> | |
45 | #include <linux/module.h> | |
46 | #include <linux/compiler.h> | |
47 | #include <linux/of.h> | |
de56a948 PM |
48 | |
49 | #include <asm/reg.h> | |
57900694 PM |
50 | #include <asm/ppc-opcode.h> |
51 | #include <asm/disassemble.h> | |
de56a948 PM |
52 | #include <asm/cputable.h> |
53 | #include <asm/cacheflush.h> | |
54 | #include <asm/tlbflush.h> | |
7c0f6ba6 | 55 | #include <linux/uaccess.h> |
de56a948 PM |
56 | #include <asm/io.h> |
57 | #include <asm/kvm_ppc.h> | |
58 | #include <asm/kvm_book3s.h> | |
59 | #include <asm/mmu_context.h> | |
60 | #include <asm/lppaca.h> | |
61 | #include <asm/processor.h> | |
371fefd6 | 62 | #include <asm/cputhreads.h> |
aa04b4cc | 63 | #include <asm/page.h> |
de1d9248 | 64 | #include <asm/hvcall.h> |
ae3a197e | 65 | #include <asm/switch_to.h> |
512691d4 | 66 | #include <asm/smp.h> |
66feed61 | 67 | #include <asm/dbell.h> |
fd7bacbc | 68 | #include <asm/hmi.h> |
c57875f5 | 69 | #include <asm/pnv-pci.h> |
7a84084c | 70 | #include <asm/mmu.h> |
f725758b PM |
71 | #include <asm/opal.h> |
72 | #include <asm/xics.h> | |
5af50993 | 73 | #include <asm/xive.h> |
de56a948 | 74 | |
3a167bea AK |
75 | #include "book3s.h" |
76 | ||
3c78f78a SW |
77 | #define CREATE_TRACE_POINTS |
78 | #include "trace_hv.h" | |
79 | ||
de56a948 PM |
80 | /* #define EXIT_DEBUG */ |
81 | /* #define EXIT_DEBUG_SIMPLE */ | |
82 | /* #define EXIT_DEBUG_INT */ | |
83 | ||
913d3ff9 PM |
84 | /* Used to indicate that a guest page fault needs to be handled */ |
85 | #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) | |
f7af5209 SW |
86 | /* Used to indicate that a guest passthrough interrupt needs to be handled */ |
87 | #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) | |
913d3ff9 | 88 | |
c7b67670 PM |
89 | /* Used as a "null" value for timebase values */ |
90 | #define TB_NIL (~(u64)0) | |
91 | ||
699a0ea0 PM |
92 | static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); |
93 | ||
b4deba5c PM |
94 | static int dynamic_mt_modes = 6; |
95 | module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); | |
96 | MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); | |
ec257165 PM |
97 | static int target_smt_mode; |
98 | module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); | |
99 | MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); | |
9678cdaa | 100 | |
520fe9c6 SW |
101 | #ifdef CONFIG_KVM_XICS |
102 | static struct kernel_param_ops module_param_ops = { | |
103 | .set = param_set_int, | |
104 | .get = param_get_int, | |
105 | }; | |
106 | ||
644abbb2 SW |
107 | module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, |
108 | S_IRUGO | S_IWUSR); | |
109 | MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); | |
110 | ||
520fe9c6 SW |
111 | module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, |
112 | S_IRUGO | S_IWUSR); | |
113 | MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); | |
114 | #endif | |
115 | ||
19ccb76a | 116 | static void kvmppc_end_cede(struct kvm_vcpu *vcpu); |
32fad281 | 117 | static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); |
19ccb76a | 118 | |
7b5f8272 SJS |
119 | static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, |
120 | int *ip) | |
121 | { | |
122 | int i = *ip; | |
123 | struct kvm_vcpu *vcpu; | |
124 | ||
125 | while (++i < MAX_SMT_THREADS) { | |
126 | vcpu = READ_ONCE(vc->runnable_threads[i]); | |
127 | if (vcpu) { | |
128 | *ip = i; | |
129 | return vcpu; | |
130 | } | |
131 | } | |
132 | return NULL; | |
133 | } | |
134 | ||
135 | /* Used to traverse the list of runnable threads for a given vcore */ | |
136 | #define for_each_runnable_thread(i, vcpu, vc) \ | |
137 | for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) | |
138 | ||
66feed61 PM |
139 | static bool kvmppc_ipi_thread(int cpu) |
140 | { | |
1704a81c PM |
141 | unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); |
142 | ||
143 | /* On POWER9 we can use msgsnd to IPI any cpu */ | |
144 | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | |
145 | msg |= get_hard_smp_processor_id(cpu); | |
146 | smp_mb(); | |
147 | __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); | |
148 | return true; | |
149 | } | |
150 | ||
66feed61 PM |
151 | /* On POWER8 for IPIs to threads in the same core, use msgsnd */ |
152 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) { | |
153 | preempt_disable(); | |
154 | if (cpu_first_thread_sibling(cpu) == | |
155 | cpu_first_thread_sibling(smp_processor_id())) { | |
66feed61 PM |
156 | msg |= cpu_thread_in_core(cpu); |
157 | smp_mb(); | |
158 | __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); | |
159 | preempt_enable(); | |
160 | return true; | |
161 | } | |
162 | preempt_enable(); | |
163 | } | |
164 | ||
165 | #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) | |
f725758b PM |
166 | if (cpu >= 0 && cpu < nr_cpu_ids) { |
167 | if (paca[cpu].kvm_hstate.xics_phys) { | |
168 | xics_wake_cpu(cpu); | |
169 | return true; | |
170 | } | |
171 | opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); | |
66feed61 PM |
172 | return true; |
173 | } | |
174 | #endif | |
175 | ||
176 | return false; | |
177 | } | |
178 | ||
3a167bea | 179 | static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) |
54695c30 | 180 | { |
ec257165 | 181 | int cpu; |
8577370f | 182 | struct swait_queue_head *wqp; |
54695c30 BH |
183 | |
184 | wqp = kvm_arch_vcpu_wq(vcpu); | |
267ad7bc | 185 | if (swq_has_sleeper(wqp)) { |
8577370f | 186 | swake_up(wqp); |
54695c30 BH |
187 | ++vcpu->stat.halt_wakeup; |
188 | } | |
189 | ||
3deda5e5 PM |
190 | cpu = READ_ONCE(vcpu->arch.thread_cpu); |
191 | if (cpu >= 0 && kvmppc_ipi_thread(cpu)) | |
66feed61 | 192 | return; |
54695c30 BH |
193 | |
194 | /* CPU points to the first thread of the core */ | |
ec257165 | 195 | cpu = vcpu->cpu; |
66feed61 PM |
196 | if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) |
197 | smp_send_reschedule(cpu); | |
54695c30 BH |
198 | } |
199 | ||
c7b67670 PM |
200 | /* |
201 | * We use the vcpu_load/put functions to measure stolen time. | |
202 | * Stolen time is counted as time when either the vcpu is able to | |
203 | * run as part of a virtual core, but the task running the vcore | |
204 | * is preempted or sleeping, or when the vcpu needs something done | |
205 | * in the kernel by the task running the vcpu, but that task is | |
206 | * preempted or sleeping. Those two things have to be counted | |
207 | * separately, since one of the vcpu tasks will take on the job | |
208 | * of running the core, and the other vcpu tasks in the vcore will | |
209 | * sleep waiting for it to do that, but that sleep shouldn't count | |
210 | * as stolen time. | |
211 | * | |
212 | * Hence we accumulate stolen time when the vcpu can run as part of | |
213 | * a vcore using vc->stolen_tb, and the stolen time when the vcpu | |
214 | * needs its task to do other things in the kernel (for example, | |
215 | * service a page fault) in busy_stolen. We don't accumulate | |
216 | * stolen time for a vcore when it is inactive, or for a vcpu | |
217 | * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of | |
218 | * a misnomer; it means that the vcpu task is not executing in | |
219 | * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in | |
220 | * the kernel. We don't have any way of dividing up that time | |
221 | * between time that the vcpu is genuinely stopped, time that | |
222 | * the task is actively working on behalf of the vcpu, and time | |
223 | * that the task is preempted, so we don't count any of it as | |
224 | * stolen. | |
225 | * | |
226 | * Updates to busy_stolen are protected by arch.tbacct_lock; | |
2711e248 PM |
227 | * updates to vc->stolen_tb are protected by the vcore->stoltb_lock |
228 | * lock. The stolen times are measured in units of timebase ticks. | |
229 | * (Note that the != TB_NIL checks below are purely defensive; | |
230 | * they should never fail.) | |
c7b67670 PM |
231 | */ |
232 | ||
ec257165 PM |
233 | static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) |
234 | { | |
235 | unsigned long flags; | |
236 | ||
237 | spin_lock_irqsave(&vc->stoltb_lock, flags); | |
238 | vc->preempt_tb = mftb(); | |
239 | spin_unlock_irqrestore(&vc->stoltb_lock, flags); | |
240 | } | |
241 | ||
242 | static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) | |
243 | { | |
244 | unsigned long flags; | |
245 | ||
246 | spin_lock_irqsave(&vc->stoltb_lock, flags); | |
247 | if (vc->preempt_tb != TB_NIL) { | |
248 | vc->stolen_tb += mftb() - vc->preempt_tb; | |
249 | vc->preempt_tb = TB_NIL; | |
250 | } | |
251 | spin_unlock_irqrestore(&vc->stoltb_lock, flags); | |
252 | } | |
253 | ||
3a167bea | 254 | static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) |
de56a948 | 255 | { |
0456ec4f | 256 | struct kvmppc_vcore *vc = vcpu->arch.vcore; |
bf3d32e1 | 257 | unsigned long flags; |
0456ec4f | 258 | |
2711e248 PM |
259 | /* |
260 | * We can test vc->runner without taking the vcore lock, | |
261 | * because only this task ever sets vc->runner to this | |
262 | * vcpu, and once it is set to this vcpu, only this task | |
263 | * ever sets it to NULL. | |
264 | */ | |
ec257165 PM |
265 | if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) |
266 | kvmppc_core_end_stolen(vc); | |
267 | ||
2711e248 | 268 | spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
c7b67670 PM |
269 | if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && |
270 | vcpu->arch.busy_preempt != TB_NIL) { | |
271 | vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; | |
272 | vcpu->arch.busy_preempt = TB_NIL; | |
273 | } | |
bf3d32e1 | 274 | spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
de56a948 PM |
275 | } |
276 | ||
3a167bea | 277 | static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) |
de56a948 | 278 | { |
0456ec4f | 279 | struct kvmppc_vcore *vc = vcpu->arch.vcore; |
bf3d32e1 | 280 | unsigned long flags; |
0456ec4f | 281 | |
ec257165 PM |
282 | if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) |
283 | kvmppc_core_start_stolen(vc); | |
284 | ||
2711e248 | 285 | spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
c7b67670 PM |
286 | if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) |
287 | vcpu->arch.busy_preempt = mftb(); | |
bf3d32e1 | 288 | spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
de56a948 PM |
289 | } |
290 | ||
3a167bea | 291 | static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) |
de56a948 | 292 | { |
c20875a3 PM |
293 | /* |
294 | * Check for illegal transactional state bit combination | |
295 | * and if we find it, force the TS field to a safe state. | |
296 | */ | |
297 | if ((msr & MSR_TS_MASK) == MSR_TS_MASK) | |
298 | msr &= ~MSR_TS_MASK; | |
de56a948 | 299 | vcpu->arch.shregs.msr = msr; |
19ccb76a | 300 | kvmppc_end_cede(vcpu); |
de56a948 PM |
301 | } |
302 | ||
5358a963 | 303 | static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) |
de56a948 PM |
304 | { |
305 | vcpu->arch.pvr = pvr; | |
306 | } | |
307 | ||
2ee13be3 SJS |
308 | /* Dummy value used in computing PCR value below */ |
309 | #define PCR_ARCH_300 (PCR_ARCH_207 << 1) | |
310 | ||
5358a963 | 311 | static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) |
388cc6e1 | 312 | { |
2ee13be3 | 313 | unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; |
388cc6e1 PM |
314 | struct kvmppc_vcore *vc = vcpu->arch.vcore; |
315 | ||
2ee13be3 SJS |
316 | /* We can (emulate) our own architecture version and anything older */ |
317 | if (cpu_has_feature(CPU_FTR_ARCH_300)) | |
318 | host_pcr_bit = PCR_ARCH_300; | |
319 | else if (cpu_has_feature(CPU_FTR_ARCH_207S)) | |
320 | host_pcr_bit = PCR_ARCH_207; | |
321 | else if (cpu_has_feature(CPU_FTR_ARCH_206)) | |
322 | host_pcr_bit = PCR_ARCH_206; | |
323 | else | |
324 | host_pcr_bit = PCR_ARCH_205; | |
325 | ||
326 | /* Determine lowest PCR bit needed to run guest in given PVR level */ | |
327 | guest_pcr_bit = host_pcr_bit; | |
388cc6e1 | 328 | if (arch_compat) { |
388cc6e1 PM |
329 | switch (arch_compat) { |
330 | case PVR_ARCH_205: | |
2ee13be3 | 331 | guest_pcr_bit = PCR_ARCH_205; |
388cc6e1 PM |
332 | break; |
333 | case PVR_ARCH_206: | |
334 | case PVR_ARCH_206p: | |
2ee13be3 | 335 | guest_pcr_bit = PCR_ARCH_206; |
5557ae0e PM |
336 | break; |
337 | case PVR_ARCH_207: | |
2ee13be3 SJS |
338 | guest_pcr_bit = PCR_ARCH_207; |
339 | break; | |
340 | case PVR_ARCH_300: | |
341 | guest_pcr_bit = PCR_ARCH_300; | |
388cc6e1 PM |
342 | break; |
343 | default: | |
344 | return -EINVAL; | |
345 | } | |
346 | } | |
347 | ||
2ee13be3 SJS |
348 | /* Check requested PCR bits don't exceed our capabilities */ |
349 | if (guest_pcr_bit > host_pcr_bit) | |
350 | return -EINVAL; | |
351 | ||
388cc6e1 PM |
352 | spin_lock(&vc->lock); |
353 | vc->arch_compat = arch_compat; | |
2ee13be3 SJS |
354 | /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ |
355 | vc->pcr = host_pcr_bit - guest_pcr_bit; | |
388cc6e1 PM |
356 | spin_unlock(&vc->lock); |
357 | ||
358 | return 0; | |
359 | } | |
360 | ||
5358a963 | 361 | static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) |
de56a948 PM |
362 | { |
363 | int r; | |
364 | ||
365 | pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); | |
366 | pr_err("pc = %.16lx msr = %.16llx trap = %x\n", | |
367 | vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); | |
368 | for (r = 0; r < 16; ++r) | |
369 | pr_err("r%2d = %.16lx r%d = %.16lx\n", | |
370 | r, kvmppc_get_gpr(vcpu, r), | |
371 | r+16, kvmppc_get_gpr(vcpu, r+16)); | |
372 | pr_err("ctr = %.16lx lr = %.16lx\n", | |
373 | vcpu->arch.ctr, vcpu->arch.lr); | |
374 | pr_err("srr0 = %.16llx srr1 = %.16llx\n", | |
375 | vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); | |
376 | pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", | |
377 | vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); | |
378 | pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", | |
379 | vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); | |
380 | pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", | |
381 | vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); | |
382 | pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); | |
383 | pr_err("fault dar = %.16lx dsisr = %.8x\n", | |
384 | vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); | |
385 | pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); | |
386 | for (r = 0; r < vcpu->arch.slb_max; ++r) | |
387 | pr_err(" ESID = %.16llx VSID = %.16llx\n", | |
388 | vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); | |
389 | pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", | |
a0144e2a | 390 | vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, |
de56a948 PM |
391 | vcpu->arch.last_inst); |
392 | } | |
393 | ||
5358a963 | 394 | static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) |
a8606e20 | 395 | { |
e09fefde | 396 | struct kvm_vcpu *ret; |
a8606e20 PM |
397 | |
398 | mutex_lock(&kvm->lock); | |
e09fefde | 399 | ret = kvm_get_vcpu_by_id(kvm, id); |
a8606e20 PM |
400 | mutex_unlock(&kvm->lock); |
401 | return ret; | |
402 | } | |
403 | ||
404 | static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) | |
405 | { | |
f13c13a0 | 406 | vpa->__old_status |= LPPACA_OLD_SHARED_PROC; |
02407552 | 407 | vpa->yield_count = cpu_to_be32(1); |
a8606e20 PM |
408 | } |
409 | ||
55b665b0 PM |
410 | static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, |
411 | unsigned long addr, unsigned long len) | |
412 | { | |
413 | /* check address is cacheline aligned */ | |
414 | if (addr & (L1_CACHE_BYTES - 1)) | |
415 | return -EINVAL; | |
416 | spin_lock(&vcpu->arch.vpa_update_lock); | |
417 | if (v->next_gpa != addr || v->len != len) { | |
418 | v->next_gpa = addr; | |
419 | v->len = addr ? len : 0; | |
420 | v->update_pending = 1; | |
421 | } | |
422 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
423 | return 0; | |
424 | } | |
425 | ||
2e25aa5f PM |
426 | /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ |
427 | struct reg_vpa { | |
428 | u32 dummy; | |
429 | union { | |
02407552 AG |
430 | __be16 hword; |
431 | __be32 word; | |
2e25aa5f PM |
432 | } length; |
433 | }; | |
434 | ||
435 | static int vpa_is_registered(struct kvmppc_vpa *vpap) | |
436 | { | |
437 | if (vpap->update_pending) | |
438 | return vpap->next_gpa != 0; | |
439 | return vpap->pinned_addr != NULL; | |
440 | } | |
441 | ||
a8606e20 PM |
442 | static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, |
443 | unsigned long flags, | |
444 | unsigned long vcpuid, unsigned long vpa) | |
445 | { | |
446 | struct kvm *kvm = vcpu->kvm; | |
93e60249 | 447 | unsigned long len, nb; |
a8606e20 PM |
448 | void *va; |
449 | struct kvm_vcpu *tvcpu; | |
2e25aa5f PM |
450 | int err; |
451 | int subfunc; | |
452 | struct kvmppc_vpa *vpap; | |
a8606e20 PM |
453 | |
454 | tvcpu = kvmppc_find_vcpu(kvm, vcpuid); | |
455 | if (!tvcpu) | |
456 | return H_PARAMETER; | |
457 | ||
2e25aa5f PM |
458 | subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; |
459 | if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || | |
460 | subfunc == H_VPA_REG_SLB) { | |
461 | /* Registering new area - address must be cache-line aligned */ | |
462 | if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) | |
a8606e20 | 463 | return H_PARAMETER; |
2e25aa5f PM |
464 | |
465 | /* convert logical addr to kernel addr and read length */ | |
93e60249 PM |
466 | va = kvmppc_pin_guest_page(kvm, vpa, &nb); |
467 | if (va == NULL) | |
b2b2f165 | 468 | return H_PARAMETER; |
2e25aa5f | 469 | if (subfunc == H_VPA_REG_VPA) |
02407552 | 470 | len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); |
a8606e20 | 471 | else |
02407552 | 472 | len = be32_to_cpu(((struct reg_vpa *)va)->length.word); |
c35635ef | 473 | kvmppc_unpin_guest_page(kvm, va, vpa, false); |
2e25aa5f PM |
474 | |
475 | /* Check length */ | |
476 | if (len > nb || len < sizeof(struct reg_vpa)) | |
477 | return H_PARAMETER; | |
478 | } else { | |
479 | vpa = 0; | |
480 | len = 0; | |
481 | } | |
482 | ||
483 | err = H_PARAMETER; | |
484 | vpap = NULL; | |
485 | spin_lock(&tvcpu->arch.vpa_update_lock); | |
486 | ||
487 | switch (subfunc) { | |
488 | case H_VPA_REG_VPA: /* register VPA */ | |
eaac112e NP |
489 | /* |
490 | * The size of our lppaca is 1kB because of the way we align | |
491 | * it for the guest to avoid crossing a 4kB boundary. We only | |
492 | * use 640 bytes of the structure though, so we should accept | |
493 | * clients that set a size of 640. | |
494 | */ | |
495 | if (len < 640) | |
a8606e20 | 496 | break; |
2e25aa5f PM |
497 | vpap = &tvcpu->arch.vpa; |
498 | err = 0; | |
499 | break; | |
500 | ||
501 | case H_VPA_REG_DTL: /* register DTL */ | |
502 | if (len < sizeof(struct dtl_entry)) | |
a8606e20 | 503 | break; |
2e25aa5f PM |
504 | len -= len % sizeof(struct dtl_entry); |
505 | ||
506 | /* Check that they have previously registered a VPA */ | |
507 | err = H_RESOURCE; | |
508 | if (!vpa_is_registered(&tvcpu->arch.vpa)) | |
a8606e20 | 509 | break; |
2e25aa5f PM |
510 | |
511 | vpap = &tvcpu->arch.dtl; | |
512 | err = 0; | |
513 | break; | |
514 | ||
515 | case H_VPA_REG_SLB: /* register SLB shadow buffer */ | |
516 | /* Check that they have previously registered a VPA */ | |
517 | err = H_RESOURCE; | |
518 | if (!vpa_is_registered(&tvcpu->arch.vpa)) | |
a8606e20 | 519 | break; |
2e25aa5f PM |
520 | |
521 | vpap = &tvcpu->arch.slb_shadow; | |
522 | err = 0; | |
523 | break; | |
524 | ||
525 | case H_VPA_DEREG_VPA: /* deregister VPA */ | |
526 | /* Check they don't still have a DTL or SLB buf registered */ | |
527 | err = H_RESOURCE; | |
528 | if (vpa_is_registered(&tvcpu->arch.dtl) || | |
529 | vpa_is_registered(&tvcpu->arch.slb_shadow)) | |
a8606e20 | 530 | break; |
2e25aa5f PM |
531 | |
532 | vpap = &tvcpu->arch.vpa; | |
533 | err = 0; | |
534 | break; | |
535 | ||
536 | case H_VPA_DEREG_DTL: /* deregister DTL */ | |
537 | vpap = &tvcpu->arch.dtl; | |
538 | err = 0; | |
539 | break; | |
540 | ||
541 | case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ | |
542 | vpap = &tvcpu->arch.slb_shadow; | |
543 | err = 0; | |
544 | break; | |
545 | } | |
546 | ||
547 | if (vpap) { | |
548 | vpap->next_gpa = vpa; | |
549 | vpap->len = len; | |
550 | vpap->update_pending = 1; | |
a8606e20 | 551 | } |
93e60249 | 552 | |
2e25aa5f PM |
553 | spin_unlock(&tvcpu->arch.vpa_update_lock); |
554 | ||
93e60249 | 555 | return err; |
a8606e20 PM |
556 | } |
557 | ||
081f323b | 558 | static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) |
2e25aa5f | 559 | { |
081f323b | 560 | struct kvm *kvm = vcpu->kvm; |
2e25aa5f PM |
561 | void *va; |
562 | unsigned long nb; | |
081f323b | 563 | unsigned long gpa; |
2e25aa5f | 564 | |
081f323b PM |
565 | /* |
566 | * We need to pin the page pointed to by vpap->next_gpa, | |
567 | * but we can't call kvmppc_pin_guest_page under the lock | |
568 | * as it does get_user_pages() and down_read(). So we | |
569 | * have to drop the lock, pin the page, then get the lock | |
570 | * again and check that a new area didn't get registered | |
571 | * in the meantime. | |
572 | */ | |
573 | for (;;) { | |
574 | gpa = vpap->next_gpa; | |
575 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
576 | va = NULL; | |
577 | nb = 0; | |
578 | if (gpa) | |
c35635ef | 579 | va = kvmppc_pin_guest_page(kvm, gpa, &nb); |
081f323b PM |
580 | spin_lock(&vcpu->arch.vpa_update_lock); |
581 | if (gpa == vpap->next_gpa) | |
582 | break; | |
583 | /* sigh... unpin that one and try again */ | |
584 | if (va) | |
c35635ef | 585 | kvmppc_unpin_guest_page(kvm, va, gpa, false); |
081f323b PM |
586 | } |
587 | ||
588 | vpap->update_pending = 0; | |
589 | if (va && nb < vpap->len) { | |
590 | /* | |
591 | * If it's now too short, it must be that userspace | |
592 | * has changed the mappings underlying guest memory, | |
593 | * so unregister the region. | |
594 | */ | |
c35635ef | 595 | kvmppc_unpin_guest_page(kvm, va, gpa, false); |
081f323b | 596 | va = NULL; |
2e25aa5f PM |
597 | } |
598 | if (vpap->pinned_addr) | |
c35635ef PM |
599 | kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, |
600 | vpap->dirty); | |
601 | vpap->gpa = gpa; | |
2e25aa5f | 602 | vpap->pinned_addr = va; |
c35635ef | 603 | vpap->dirty = false; |
2e25aa5f PM |
604 | if (va) |
605 | vpap->pinned_end = va + vpap->len; | |
606 | } | |
607 | ||
608 | static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) | |
609 | { | |
2f12f034 PM |
610 | if (!(vcpu->arch.vpa.update_pending || |
611 | vcpu->arch.slb_shadow.update_pending || | |
612 | vcpu->arch.dtl.update_pending)) | |
613 | return; | |
614 | ||
2e25aa5f PM |
615 | spin_lock(&vcpu->arch.vpa_update_lock); |
616 | if (vcpu->arch.vpa.update_pending) { | |
081f323b | 617 | kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); |
55b665b0 PM |
618 | if (vcpu->arch.vpa.pinned_addr) |
619 | init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); | |
2e25aa5f PM |
620 | } |
621 | if (vcpu->arch.dtl.update_pending) { | |
081f323b | 622 | kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); |
2e25aa5f PM |
623 | vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; |
624 | vcpu->arch.dtl_index = 0; | |
625 | } | |
626 | if (vcpu->arch.slb_shadow.update_pending) | |
081f323b | 627 | kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); |
2e25aa5f PM |
628 | spin_unlock(&vcpu->arch.vpa_update_lock); |
629 | } | |
630 | ||
c7b67670 PM |
631 | /* |
632 | * Return the accumulated stolen time for the vcore up until `now'. | |
633 | * The caller should hold the vcore lock. | |
634 | */ | |
635 | static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) | |
636 | { | |
637 | u64 p; | |
2711e248 | 638 | unsigned long flags; |
c7b67670 | 639 | |
2711e248 PM |
640 | spin_lock_irqsave(&vc->stoltb_lock, flags); |
641 | p = vc->stolen_tb; | |
c7b67670 | 642 | if (vc->vcore_state != VCORE_INACTIVE && |
2711e248 PM |
643 | vc->preempt_tb != TB_NIL) |
644 | p += now - vc->preempt_tb; | |
645 | spin_unlock_irqrestore(&vc->stoltb_lock, flags); | |
c7b67670 PM |
646 | return p; |
647 | } | |
648 | ||
0456ec4f PM |
649 | static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, |
650 | struct kvmppc_vcore *vc) | |
651 | { | |
652 | struct dtl_entry *dt; | |
653 | struct lppaca *vpa; | |
c7b67670 PM |
654 | unsigned long stolen; |
655 | unsigned long core_stolen; | |
656 | u64 now; | |
8b24e69f | 657 | unsigned long flags; |
0456ec4f PM |
658 | |
659 | dt = vcpu->arch.dtl_ptr; | |
660 | vpa = vcpu->arch.vpa.pinned_addr; | |
c7b67670 PM |
661 | now = mftb(); |
662 | core_stolen = vcore_stolen_time(vc, now); | |
663 | stolen = core_stolen - vcpu->arch.stolen_logged; | |
664 | vcpu->arch.stolen_logged = core_stolen; | |
8b24e69f | 665 | spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); |
c7b67670 PM |
666 | stolen += vcpu->arch.busy_stolen; |
667 | vcpu->arch.busy_stolen = 0; | |
8b24e69f | 668 | spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); |
0456ec4f PM |
669 | if (!dt || !vpa) |
670 | return; | |
671 | memset(dt, 0, sizeof(struct dtl_entry)); | |
672 | dt->dispatch_reason = 7; | |
02407552 AG |
673 | dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); |
674 | dt->timebase = cpu_to_be64(now + vc->tb_offset); | |
675 | dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); | |
676 | dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); | |
677 | dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); | |
0456ec4f PM |
678 | ++dt; |
679 | if (dt == vcpu->arch.dtl.pinned_end) | |
680 | dt = vcpu->arch.dtl.pinned_addr; | |
681 | vcpu->arch.dtl_ptr = dt; | |
682 | /* order writing *dt vs. writing vpa->dtl_idx */ | |
683 | smp_wmb(); | |
02407552 | 684 | vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); |
c35635ef | 685 | vcpu->arch.dtl.dirty = true; |
0456ec4f PM |
686 | } |
687 | ||
1da4e2f4 PM |
688 | /* See if there is a doorbell interrupt pending for a vcpu */ |
689 | static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) | |
690 | { | |
691 | int thr; | |
692 | struct kvmppc_vcore *vc; | |
693 | ||
57900694 PM |
694 | if (vcpu->arch.doorbell_request) |
695 | return true; | |
696 | /* | |
697 | * Ensure that the read of vcore->dpdes comes after the read | |
698 | * of vcpu->doorbell_request. This barrier matches the | |
699 | * lwsync in book3s_hv_rmhandlers.S just before the | |
700 | * fast_guest_return label. | |
701 | */ | |
702 | smp_rmb(); | |
1da4e2f4 PM |
703 | vc = vcpu->arch.vcore; |
704 | thr = vcpu->vcpu_id - vc->first_vcpuid; | |
705 | return !!(vc->dpdes & (1 << thr)); | |
706 | } | |
707 | ||
9642382e MN |
708 | static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) |
709 | { | |
710 | if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) | |
711 | return true; | |
712 | if ((!vcpu->arch.vcore->arch_compat) && | |
713 | cpu_has_feature(CPU_FTR_ARCH_207S)) | |
714 | return true; | |
715 | return false; | |
716 | } | |
717 | ||
718 | static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, | |
719 | unsigned long resource, unsigned long value1, | |
720 | unsigned long value2) | |
721 | { | |
722 | switch (resource) { | |
723 | case H_SET_MODE_RESOURCE_SET_CIABR: | |
724 | if (!kvmppc_power8_compatible(vcpu)) | |
725 | return H_P2; | |
726 | if (value2) | |
727 | return H_P4; | |
728 | if (mflags) | |
729 | return H_UNSUPPORTED_FLAG_START; | |
730 | /* Guests can't breakpoint the hypervisor */ | |
731 | if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) | |
732 | return H_P3; | |
733 | vcpu->arch.ciabr = value1; | |
734 | return H_SUCCESS; | |
735 | case H_SET_MODE_RESOURCE_SET_DAWR: | |
736 | if (!kvmppc_power8_compatible(vcpu)) | |
737 | return H_P2; | |
738 | if (mflags) | |
739 | return H_UNSUPPORTED_FLAG_START; | |
740 | if (value2 & DABRX_HYP) | |
741 | return H_P4; | |
742 | vcpu->arch.dawr = value1; | |
743 | vcpu->arch.dawrx = value2; | |
744 | return H_SUCCESS; | |
745 | default: | |
746 | return H_TOO_HARD; | |
747 | } | |
748 | } | |
749 | ||
90fd09f8 SB |
750 | static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) |
751 | { | |
752 | struct kvmppc_vcore *vcore = target->arch.vcore; | |
753 | ||
754 | /* | |
755 | * We expect to have been called by the real mode handler | |
756 | * (kvmppc_rm_h_confer()) which would have directly returned | |
757 | * H_SUCCESS if the source vcore wasn't idle (e.g. if it may | |
758 | * have useful work to do and should not confer) so we don't | |
759 | * recheck that here. | |
760 | */ | |
761 | ||
762 | spin_lock(&vcore->lock); | |
763 | if (target->arch.state == KVMPPC_VCPU_RUNNABLE && | |
ec257165 PM |
764 | vcore->vcore_state != VCORE_INACTIVE && |
765 | vcore->runner) | |
90fd09f8 SB |
766 | target = vcore->runner; |
767 | spin_unlock(&vcore->lock); | |
768 | ||
769 | return kvm_vcpu_yield_to(target); | |
770 | } | |
771 | ||
772 | static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) | |
773 | { | |
774 | int yield_count = 0; | |
775 | struct lppaca *lppaca; | |
776 | ||
777 | spin_lock(&vcpu->arch.vpa_update_lock); | |
778 | lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; | |
779 | if (lppaca) | |
ecb6d618 | 780 | yield_count = be32_to_cpu(lppaca->yield_count); |
90fd09f8 SB |
781 | spin_unlock(&vcpu->arch.vpa_update_lock); |
782 | return yield_count; | |
783 | } | |
784 | ||
a8606e20 PM |
785 | int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) |
786 | { | |
787 | unsigned long req = kvmppc_get_gpr(vcpu, 3); | |
788 | unsigned long target, ret = H_SUCCESS; | |
90fd09f8 | 789 | int yield_count; |
a8606e20 | 790 | struct kvm_vcpu *tvcpu; |
8e591cb7 | 791 | int idx, rc; |
a8606e20 | 792 | |
699a0ea0 PM |
793 | if (req <= MAX_HCALL_OPCODE && |
794 | !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) | |
795 | return RESUME_HOST; | |
796 | ||
a8606e20 PM |
797 | switch (req) { |
798 | case H_CEDE: | |
a8606e20 PM |
799 | break; |
800 | case H_PROD: | |
801 | target = kvmppc_get_gpr(vcpu, 4); | |
802 | tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); | |
803 | if (!tvcpu) { | |
804 | ret = H_PARAMETER; | |
805 | break; | |
806 | } | |
807 | tvcpu->arch.prodded = 1; | |
808 | smp_mb(); | |
8464c884 PM |
809 | if (tvcpu->arch.ceded) |
810 | kvmppc_fast_vcpu_kick_hv(tvcpu); | |
a8606e20 PM |
811 | break; |
812 | case H_CONFER: | |
42d7604d PM |
813 | target = kvmppc_get_gpr(vcpu, 4); |
814 | if (target == -1) | |
815 | break; | |
816 | tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); | |
817 | if (!tvcpu) { | |
818 | ret = H_PARAMETER; | |
819 | break; | |
820 | } | |
90fd09f8 SB |
821 | yield_count = kvmppc_get_gpr(vcpu, 5); |
822 | if (kvmppc_get_yield_count(tvcpu) != yield_count) | |
823 | break; | |
824 | kvm_arch_vcpu_yield_to(tvcpu); | |
a8606e20 PM |
825 | break; |
826 | case H_REGISTER_VPA: | |
827 | ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), | |
828 | kvmppc_get_gpr(vcpu, 5), | |
829 | kvmppc_get_gpr(vcpu, 6)); | |
830 | break; | |
8e591cb7 ME |
831 | case H_RTAS: |
832 | if (list_empty(&vcpu->kvm->arch.rtas_tokens)) | |
833 | return RESUME_HOST; | |
834 | ||
c9438092 | 835 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
8e591cb7 | 836 | rc = kvmppc_rtas_hcall(vcpu); |
c9438092 | 837 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8e591cb7 ME |
838 | |
839 | if (rc == -ENOENT) | |
840 | return RESUME_HOST; | |
841 | else if (rc == 0) | |
842 | break; | |
843 | ||
844 | /* Send the error out to userspace via KVM_RUN */ | |
845 | return rc; | |
99342cf8 DG |
846 | case H_LOGICAL_CI_LOAD: |
847 | ret = kvmppc_h_logical_ci_load(vcpu); | |
848 | if (ret == H_TOO_HARD) | |
849 | return RESUME_HOST; | |
850 | break; | |
851 | case H_LOGICAL_CI_STORE: | |
852 | ret = kvmppc_h_logical_ci_store(vcpu); | |
853 | if (ret == H_TOO_HARD) | |
854 | return RESUME_HOST; | |
855 | break; | |
9642382e MN |
856 | case H_SET_MODE: |
857 | ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), | |
858 | kvmppc_get_gpr(vcpu, 5), | |
859 | kvmppc_get_gpr(vcpu, 6), | |
860 | kvmppc_get_gpr(vcpu, 7)); | |
861 | if (ret == H_TOO_HARD) | |
862 | return RESUME_HOST; | |
863 | break; | |
bc5ad3f3 BH |
864 | case H_XIRR: |
865 | case H_CPPR: | |
866 | case H_EOI: | |
867 | case H_IPI: | |
8e44ddc3 PM |
868 | case H_IPOLL: |
869 | case H_XIRR_X: | |
bc5ad3f3 | 870 | if (kvmppc_xics_enabled(vcpu)) { |
5af50993 BH |
871 | if (xive_enabled()) { |
872 | ret = H_NOT_AVAILABLE; | |
873 | return RESUME_GUEST; | |
874 | } | |
bc5ad3f3 BH |
875 | ret = kvmppc_xics_hcall(vcpu, req); |
876 | break; | |
d3695aa4 AK |
877 | } |
878 | return RESUME_HOST; | |
879 | case H_PUT_TCE: | |
880 | ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), | |
881 | kvmppc_get_gpr(vcpu, 5), | |
882 | kvmppc_get_gpr(vcpu, 6)); | |
883 | if (ret == H_TOO_HARD) | |
884 | return RESUME_HOST; | |
885 | break; | |
886 | case H_PUT_TCE_INDIRECT: | |
887 | ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), | |
888 | kvmppc_get_gpr(vcpu, 5), | |
889 | kvmppc_get_gpr(vcpu, 6), | |
890 | kvmppc_get_gpr(vcpu, 7)); | |
891 | if (ret == H_TOO_HARD) | |
892 | return RESUME_HOST; | |
893 | break; | |
894 | case H_STUFF_TCE: | |
895 | ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), | |
896 | kvmppc_get_gpr(vcpu, 5), | |
897 | kvmppc_get_gpr(vcpu, 6), | |
898 | kvmppc_get_gpr(vcpu, 7)); | |
899 | if (ret == H_TOO_HARD) | |
900 | return RESUME_HOST; | |
901 | break; | |
a8606e20 PM |
902 | default: |
903 | return RESUME_HOST; | |
904 | } | |
905 | kvmppc_set_gpr(vcpu, 3, ret); | |
906 | vcpu->arch.hcall_needed = 0; | |
907 | return RESUME_GUEST; | |
908 | } | |
909 | ||
ae2113a4 PM |
910 | static int kvmppc_hcall_impl_hv(unsigned long cmd) |
911 | { | |
912 | switch (cmd) { | |
913 | case H_CEDE: | |
914 | case H_PROD: | |
915 | case H_CONFER: | |
916 | case H_REGISTER_VPA: | |
9642382e | 917 | case H_SET_MODE: |
99342cf8 DG |
918 | case H_LOGICAL_CI_LOAD: |
919 | case H_LOGICAL_CI_STORE: | |
ae2113a4 PM |
920 | #ifdef CONFIG_KVM_XICS |
921 | case H_XIRR: | |
922 | case H_CPPR: | |
923 | case H_EOI: | |
924 | case H_IPI: | |
925 | case H_IPOLL: | |
926 | case H_XIRR_X: | |
927 | #endif | |
928 | return 1; | |
929 | } | |
930 | ||
931 | /* See if it's in the real-mode table */ | |
932 | return kvmppc_hcall_impl_hv_realmode(cmd); | |
933 | } | |
934 | ||
a59c1d9e MS |
935 | static int kvmppc_emulate_debug_inst(struct kvm_run *run, |
936 | struct kvm_vcpu *vcpu) | |
937 | { | |
938 | u32 last_inst; | |
939 | ||
940 | if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != | |
941 | EMULATE_DONE) { | |
942 | /* | |
943 | * Fetch failed, so return to guest and | |
944 | * try executing it again. | |
945 | */ | |
946 | return RESUME_GUEST; | |
947 | } | |
948 | ||
949 | if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { | |
950 | run->exit_reason = KVM_EXIT_DEBUG; | |
951 | run->debug.arch.address = kvmppc_get_pc(vcpu); | |
952 | return RESUME_HOST; | |
953 | } else { | |
954 | kvmppc_core_queue_program(vcpu, SRR1_PROGILL); | |
955 | return RESUME_GUEST; | |
956 | } | |
957 | } | |
958 | ||
57900694 PM |
959 | static void do_nothing(void *x) |
960 | { | |
961 | } | |
962 | ||
963 | static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) | |
964 | { | |
965 | int thr, cpu, pcpu, nthreads; | |
966 | struct kvm_vcpu *v; | |
967 | unsigned long dpdes; | |
968 | ||
969 | nthreads = vcpu->kvm->arch.emul_smt_mode; | |
970 | dpdes = 0; | |
971 | cpu = vcpu->vcpu_id & ~(nthreads - 1); | |
972 | for (thr = 0; thr < nthreads; ++thr, ++cpu) { | |
973 | v = kvmppc_find_vcpu(vcpu->kvm, cpu); | |
974 | if (!v) | |
975 | continue; | |
976 | /* | |
977 | * If the vcpu is currently running on a physical cpu thread, | |
978 | * interrupt it in order to pull it out of the guest briefly, | |
979 | * which will update its vcore->dpdes value. | |
980 | */ | |
981 | pcpu = READ_ONCE(v->cpu); | |
982 | if (pcpu >= 0) | |
983 | smp_call_function_single(pcpu, do_nothing, NULL, 1); | |
984 | if (kvmppc_doorbell_pending(v)) | |
985 | dpdes |= 1 << thr; | |
986 | } | |
987 | return dpdes; | |
988 | } | |
989 | ||
990 | /* | |
991 | * On POWER9, emulate doorbell-related instructions in order to | |
992 | * give the guest the illusion of running on a multi-threaded core. | |
993 | * The instructions emulated are msgsndp, msgclrp, mfspr TIR, | |
994 | * and mfspr DPDES. | |
995 | */ | |
996 | static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) | |
997 | { | |
998 | u32 inst, rb, thr; | |
999 | unsigned long arg; | |
1000 | struct kvm *kvm = vcpu->kvm; | |
1001 | struct kvm_vcpu *tvcpu; | |
1002 | ||
1003 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | |
1004 | return EMULATE_FAIL; | |
1005 | if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) | |
1006 | return RESUME_GUEST; | |
1007 | if (get_op(inst) != 31) | |
1008 | return EMULATE_FAIL; | |
1009 | rb = get_rb(inst); | |
1010 | thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); | |
1011 | switch (get_xop(inst)) { | |
1012 | case OP_31_XOP_MSGSNDP: | |
1013 | arg = kvmppc_get_gpr(vcpu, rb); | |
1014 | if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) | |
1015 | break; | |
1016 | arg &= 0x3f; | |
1017 | if (arg >= kvm->arch.emul_smt_mode) | |
1018 | break; | |
1019 | tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); | |
1020 | if (!tvcpu) | |
1021 | break; | |
1022 | if (!tvcpu->arch.doorbell_request) { | |
1023 | tvcpu->arch.doorbell_request = 1; | |
1024 | kvmppc_fast_vcpu_kick_hv(tvcpu); | |
1025 | } | |
1026 | break; | |
1027 | case OP_31_XOP_MSGCLRP: | |
1028 | arg = kvmppc_get_gpr(vcpu, rb); | |
1029 | if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) | |
1030 | break; | |
1031 | vcpu->arch.vcore->dpdes = 0; | |
1032 | vcpu->arch.doorbell_request = 0; | |
1033 | break; | |
1034 | case OP_31_XOP_MFSPR: | |
1035 | switch (get_sprn(inst)) { | |
1036 | case SPRN_TIR: | |
1037 | arg = thr; | |
1038 | break; | |
1039 | case SPRN_DPDES: | |
1040 | arg = kvmppc_read_dpdes(vcpu); | |
1041 | break; | |
1042 | default: | |
1043 | return EMULATE_FAIL; | |
1044 | } | |
1045 | kvmppc_set_gpr(vcpu, get_rt(inst), arg); | |
1046 | break; | |
1047 | default: | |
1048 | return EMULATE_FAIL; | |
1049 | } | |
1050 | kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); | |
1051 | return RESUME_GUEST; | |
1052 | } | |
1053 | ||
3a167bea AK |
1054 | static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, |
1055 | struct task_struct *tsk) | |
de56a948 PM |
1056 | { |
1057 | int r = RESUME_HOST; | |
1058 | ||
1059 | vcpu->stat.sum_exits++; | |
1060 | ||
1c9e3d51 PM |
1061 | /* |
1062 | * This can happen if an interrupt occurs in the last stages | |
1063 | * of guest entry or the first stages of guest exit (i.e. after | |
1064 | * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV | |
1065 | * and before setting it to KVM_GUEST_MODE_HOST_HV). | |
1066 | * That can happen due to a bug, or due to a machine check | |
1067 | * occurring at just the wrong time. | |
1068 | */ | |
1069 | if (vcpu->arch.shregs.msr & MSR_HV) { | |
1070 | printk(KERN_EMERG "KVM trap in HV mode!\n"); | |
1071 | printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", | |
1072 | vcpu->arch.trap, kvmppc_get_pc(vcpu), | |
1073 | vcpu->arch.shregs.msr); | |
1074 | kvmppc_dump_regs(vcpu); | |
1075 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
1076 | run->hw.hardware_exit_reason = vcpu->arch.trap; | |
1077 | return RESUME_HOST; | |
1078 | } | |
de56a948 PM |
1079 | run->exit_reason = KVM_EXIT_UNKNOWN; |
1080 | run->ready_for_interrupt_injection = 1; | |
1081 | switch (vcpu->arch.trap) { | |
1082 | /* We're good on these - the host merely wanted to get our attention */ | |
1083 | case BOOK3S_INTERRUPT_HV_DECREMENTER: | |
1084 | vcpu->stat.dec_exits++; | |
1085 | r = RESUME_GUEST; | |
1086 | break; | |
1087 | case BOOK3S_INTERRUPT_EXTERNAL: | |
5d00f66b | 1088 | case BOOK3S_INTERRUPT_H_DOORBELL: |
84f7139c | 1089 | case BOOK3S_INTERRUPT_H_VIRT: |
de56a948 PM |
1090 | vcpu->stat.ext_intr_exits++; |
1091 | r = RESUME_GUEST; | |
1092 | break; | |
dee6f24c MS |
1093 | /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ |
1094 | case BOOK3S_INTERRUPT_HMI: | |
de56a948 PM |
1095 | case BOOK3S_INTERRUPT_PERFMON: |
1096 | r = RESUME_GUEST; | |
1097 | break; | |
b4072df4 | 1098 | case BOOK3S_INTERRUPT_MACHINE_CHECK: |
e20bbd3d AP |
1099 | /* Exit to guest with KVM_EXIT_NMI as exit reason */ |
1100 | run->exit_reason = KVM_EXIT_NMI; | |
1101 | run->hw.hardware_exit_reason = vcpu->arch.trap; | |
1102 | /* Clear out the old NMI status from run->flags */ | |
1103 | run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; | |
1104 | /* Now set the NMI status */ | |
1105 | if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) | |
1106 | run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; | |
1107 | else | |
1108 | run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; | |
1109 | ||
1110 | r = RESUME_HOST; | |
1111 | /* Print the MCE event to host console. */ | |
1112 | machine_check_print_event_info(&vcpu->arch.mce_evt, false); | |
b4072df4 | 1113 | break; |
de56a948 PM |
1114 | case BOOK3S_INTERRUPT_PROGRAM: |
1115 | { | |
1116 | ulong flags; | |
1117 | /* | |
1118 | * Normally program interrupts are delivered directly | |
1119 | * to the guest by the hardware, but we can get here | |
1120 | * as a result of a hypervisor emulation interrupt | |
1121 | * (e40) getting turned into a 700 by BML RTAS. | |
1122 | */ | |
1123 | flags = vcpu->arch.shregs.msr & 0x1f0000ull; | |
1124 | kvmppc_core_queue_program(vcpu, flags); | |
1125 | r = RESUME_GUEST; | |
1126 | break; | |
1127 | } | |
1128 | case BOOK3S_INTERRUPT_SYSCALL: | |
1129 | { | |
1130 | /* hcall - punt to userspace */ | |
1131 | int i; | |
1132 | ||
27025a60 LPF |
1133 | /* hypercall with MSR_PR has already been handled in rmode, |
1134 | * and never reaches here. | |
1135 | */ | |
1136 | ||
de56a948 PM |
1137 | run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); |
1138 | for (i = 0; i < 9; ++i) | |
1139 | run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); | |
1140 | run->exit_reason = KVM_EXIT_PAPR_HCALL; | |
1141 | vcpu->arch.hcall_needed = 1; | |
1142 | r = RESUME_HOST; | |
1143 | break; | |
1144 | } | |
1145 | /* | |
342d3db7 PM |
1146 | * We get these next two if the guest accesses a page which it thinks |
1147 | * it has mapped but which is not actually present, either because | |
1148 | * it is for an emulated I/O device or because the corresonding | |
1149 | * host page has been paged out. Any other HDSI/HISI interrupts | |
1150 | * have been handled already. | |
de56a948 PM |
1151 | */ |
1152 | case BOOK3S_INTERRUPT_H_DATA_STORAGE: | |
913d3ff9 | 1153 | r = RESUME_PAGE_FAULT; |
de56a948 PM |
1154 | break; |
1155 | case BOOK3S_INTERRUPT_H_INST_STORAGE: | |
913d3ff9 PM |
1156 | vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); |
1157 | vcpu->arch.fault_dsisr = 0; | |
1158 | r = RESUME_PAGE_FAULT; | |
de56a948 PM |
1159 | break; |
1160 | /* | |
1161 | * This occurs if the guest executes an illegal instruction. | |
a59c1d9e MS |
1162 | * If the guest debug is disabled, generate a program interrupt |
1163 | * to the guest. If guest debug is enabled, we need to check | |
1164 | * whether the instruction is a software breakpoint instruction. | |
1165 | * Accordingly return to Guest or Host. | |
de56a948 PM |
1166 | */ |
1167 | case BOOK3S_INTERRUPT_H_EMUL_ASSIST: | |
4a157d61 PM |
1168 | if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) |
1169 | vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? | |
1170 | swab32(vcpu->arch.emul_inst) : | |
1171 | vcpu->arch.emul_inst; | |
a59c1d9e MS |
1172 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { |
1173 | r = kvmppc_emulate_debug_inst(run, vcpu); | |
1174 | } else { | |
1175 | kvmppc_core_queue_program(vcpu, SRR1_PROGILL); | |
1176 | r = RESUME_GUEST; | |
1177 | } | |
bd3048b8 ME |
1178 | break; |
1179 | /* | |
1180 | * This occurs if the guest (kernel or userspace), does something that | |
57900694 PM |
1181 | * is prohibited by HFSCR. |
1182 | * On POWER9, this could be a doorbell instruction that we need | |
1183 | * to emulate. | |
1184 | * Otherwise, we just generate a program interrupt to the guest. | |
bd3048b8 ME |
1185 | */ |
1186 | case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: | |
57900694 PM |
1187 | r = EMULATE_FAIL; |
1188 | if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) | |
1189 | r = kvmppc_emulate_doorbell_instr(vcpu); | |
1190 | if (r == EMULATE_FAIL) { | |
1191 | kvmppc_core_queue_program(vcpu, SRR1_PROGILL); | |
1192 | r = RESUME_GUEST; | |
1193 | } | |
de56a948 | 1194 | break; |
f7af5209 SW |
1195 | case BOOK3S_INTERRUPT_HV_RM_HARD: |
1196 | r = RESUME_PASSTHROUGH; | |
1197 | break; | |
de56a948 PM |
1198 | default: |
1199 | kvmppc_dump_regs(vcpu); | |
1200 | printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", | |
1201 | vcpu->arch.trap, kvmppc_get_pc(vcpu), | |
1202 | vcpu->arch.shregs.msr); | |
f3271d4c | 1203 | run->hw.hardware_exit_reason = vcpu->arch.trap; |
de56a948 | 1204 | r = RESUME_HOST; |
de56a948 PM |
1205 | break; |
1206 | } | |
1207 | ||
de56a948 PM |
1208 | return r; |
1209 | } | |
1210 | ||
3a167bea AK |
1211 | static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, |
1212 | struct kvm_sregs *sregs) | |
de56a948 PM |
1213 | { |
1214 | int i; | |
1215 | ||
de56a948 | 1216 | memset(sregs, 0, sizeof(struct kvm_sregs)); |
87916442 | 1217 | sregs->pvr = vcpu->arch.pvr; |
de56a948 PM |
1218 | for (i = 0; i < vcpu->arch.slb_max; i++) { |
1219 | sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; | |
1220 | sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; | |
1221 | } | |
1222 | ||
1223 | return 0; | |
1224 | } | |
1225 | ||
3a167bea AK |
1226 | static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, |
1227 | struct kvm_sregs *sregs) | |
de56a948 PM |
1228 | { |
1229 | int i, j; | |
1230 | ||
9333e6c4 PM |
1231 | /* Only accept the same PVR as the host's, since we can't spoof it */ |
1232 | if (sregs->pvr != vcpu->arch.pvr) | |
1233 | return -EINVAL; | |
de56a948 PM |
1234 | |
1235 | j = 0; | |
1236 | for (i = 0; i < vcpu->arch.slb_nr; i++) { | |
1237 | if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { | |
1238 | vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; | |
1239 | vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; | |
1240 | ++j; | |
1241 | } | |
1242 | } | |
1243 | vcpu->arch.slb_max = j; | |
1244 | ||
1245 | return 0; | |
1246 | } | |
1247 | ||
a0840240 AK |
1248 | static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, |
1249 | bool preserve_top32) | |
a0144e2a | 1250 | { |
8f902b00 | 1251 | struct kvm *kvm = vcpu->kvm; |
a0144e2a PM |
1252 | struct kvmppc_vcore *vc = vcpu->arch.vcore; |
1253 | u64 mask; | |
1254 | ||
8f902b00 | 1255 | mutex_lock(&kvm->lock); |
a0144e2a | 1256 | spin_lock(&vc->lock); |
d682916a AB |
1257 | /* |
1258 | * If ILE (interrupt little-endian) has changed, update the | |
1259 | * MSR_LE bit in the intr_msr for each vcpu in this vcore. | |
1260 | */ | |
1261 | if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { | |
d682916a AB |
1262 | struct kvm_vcpu *vcpu; |
1263 | int i; | |
1264 | ||
d682916a AB |
1265 | kvm_for_each_vcpu(i, vcpu, kvm) { |
1266 | if (vcpu->arch.vcore != vc) | |
1267 | continue; | |
1268 | if (new_lpcr & LPCR_ILE) | |
1269 | vcpu->arch.intr_msr |= MSR_LE; | |
1270 | else | |
1271 | vcpu->arch.intr_msr &= ~MSR_LE; | |
1272 | } | |
d682916a AB |
1273 | } |
1274 | ||
a0144e2a PM |
1275 | /* |
1276 | * Userspace can only modify DPFD (default prefetch depth), | |
1277 | * ILE (interrupt little-endian) and TC (translation control). | |
8cf4ecc0 | 1278 | * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). |
a0144e2a PM |
1279 | */ |
1280 | mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; | |
e0622bd9 PM |
1281 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
1282 | mask |= LPCR_AIL; | |
1bc3fe81 PM |
1283 | /* |
1284 | * On POWER9, allow userspace to enable large decrementer for the | |
1285 | * guest, whether or not the host has it enabled. | |
1286 | */ | |
1287 | if (cpu_has_feature(CPU_FTR_ARCH_300)) | |
1288 | mask |= LPCR_LD; | |
a0840240 AK |
1289 | |
1290 | /* Broken 32-bit version of LPCR must not clear top bits */ | |
1291 | if (preserve_top32) | |
1292 | mask &= 0xFFFFFFFF; | |
a0144e2a PM |
1293 | vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); |
1294 | spin_unlock(&vc->lock); | |
8f902b00 | 1295 | mutex_unlock(&kvm->lock); |
a0144e2a PM |
1296 | } |
1297 | ||
3a167bea AK |
1298 | static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, |
1299 | union kvmppc_one_reg *val) | |
31f3438e | 1300 | { |
a136a8bd PM |
1301 | int r = 0; |
1302 | long int i; | |
31f3438e | 1303 | |
a136a8bd | 1304 | switch (id) { |
a59c1d9e MS |
1305 | case KVM_REG_PPC_DEBUG_INST: |
1306 | *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); | |
1307 | break; | |
31f3438e | 1308 | case KVM_REG_PPC_HIOR: |
a136a8bd PM |
1309 | *val = get_reg_val(id, 0); |
1310 | break; | |
1311 | case KVM_REG_PPC_DABR: | |
1312 | *val = get_reg_val(id, vcpu->arch.dabr); | |
1313 | break; | |
8563bf52 PM |
1314 | case KVM_REG_PPC_DABRX: |
1315 | *val = get_reg_val(id, vcpu->arch.dabrx); | |
1316 | break; | |
a136a8bd PM |
1317 | case KVM_REG_PPC_DSCR: |
1318 | *val = get_reg_val(id, vcpu->arch.dscr); | |
1319 | break; | |
1320 | case KVM_REG_PPC_PURR: | |
1321 | *val = get_reg_val(id, vcpu->arch.purr); | |
1322 | break; | |
1323 | case KVM_REG_PPC_SPURR: | |
1324 | *val = get_reg_val(id, vcpu->arch.spurr); | |
1325 | break; | |
1326 | case KVM_REG_PPC_AMR: | |
1327 | *val = get_reg_val(id, vcpu->arch.amr); | |
1328 | break; | |
1329 | case KVM_REG_PPC_UAMOR: | |
1330 | *val = get_reg_val(id, vcpu->arch.uamor); | |
1331 | break; | |
b005255e | 1332 | case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: |
a136a8bd PM |
1333 | i = id - KVM_REG_PPC_MMCR0; |
1334 | *val = get_reg_val(id, vcpu->arch.mmcr[i]); | |
1335 | break; | |
1336 | case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: | |
1337 | i = id - KVM_REG_PPC_PMC1; | |
1338 | *val = get_reg_val(id, vcpu->arch.pmc[i]); | |
31f3438e | 1339 | break; |
b005255e MN |
1340 | case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: |
1341 | i = id - KVM_REG_PPC_SPMC1; | |
1342 | *val = get_reg_val(id, vcpu->arch.spmc[i]); | |
1343 | break; | |
14941789 PM |
1344 | case KVM_REG_PPC_SIAR: |
1345 | *val = get_reg_val(id, vcpu->arch.siar); | |
1346 | break; | |
1347 | case KVM_REG_PPC_SDAR: | |
1348 | *val = get_reg_val(id, vcpu->arch.sdar); | |
1349 | break; | |
b005255e MN |
1350 | case KVM_REG_PPC_SIER: |
1351 | *val = get_reg_val(id, vcpu->arch.sier); | |
a8bd19ef | 1352 | break; |
b005255e MN |
1353 | case KVM_REG_PPC_IAMR: |
1354 | *val = get_reg_val(id, vcpu->arch.iamr); | |
1355 | break; | |
b005255e MN |
1356 | case KVM_REG_PPC_PSPB: |
1357 | *val = get_reg_val(id, vcpu->arch.pspb); | |
1358 | break; | |
b005255e MN |
1359 | case KVM_REG_PPC_DPDES: |
1360 | *val = get_reg_val(id, vcpu->arch.vcore->dpdes); | |
1361 | break; | |
88b02cf9 PM |
1362 | case KVM_REG_PPC_VTB: |
1363 | *val = get_reg_val(id, vcpu->arch.vcore->vtb); | |
1364 | break; | |
b005255e MN |
1365 | case KVM_REG_PPC_DAWR: |
1366 | *val = get_reg_val(id, vcpu->arch.dawr); | |
1367 | break; | |
1368 | case KVM_REG_PPC_DAWRX: | |
1369 | *val = get_reg_val(id, vcpu->arch.dawrx); | |
1370 | break; | |
1371 | case KVM_REG_PPC_CIABR: | |
1372 | *val = get_reg_val(id, vcpu->arch.ciabr); | |
1373 | break; | |
b005255e MN |
1374 | case KVM_REG_PPC_CSIGR: |
1375 | *val = get_reg_val(id, vcpu->arch.csigr); | |
1376 | break; | |
1377 | case KVM_REG_PPC_TACR: | |
1378 | *val = get_reg_val(id, vcpu->arch.tacr); | |
1379 | break; | |
1380 | case KVM_REG_PPC_TCSCR: | |
1381 | *val = get_reg_val(id, vcpu->arch.tcscr); | |
1382 | break; | |
1383 | case KVM_REG_PPC_PID: | |
1384 | *val = get_reg_val(id, vcpu->arch.pid); | |
1385 | break; | |
1386 | case KVM_REG_PPC_ACOP: | |
1387 | *val = get_reg_val(id, vcpu->arch.acop); | |
1388 | break; | |
1389 | case KVM_REG_PPC_WORT: | |
1390 | *val = get_reg_val(id, vcpu->arch.wort); | |
a8bd19ef | 1391 | break; |
e9cf1e08 PM |
1392 | case KVM_REG_PPC_TIDR: |
1393 | *val = get_reg_val(id, vcpu->arch.tid); | |
1394 | break; | |
1395 | case KVM_REG_PPC_PSSCR: | |
1396 | *val = get_reg_val(id, vcpu->arch.psscr); | |
1397 | break; | |
55b665b0 PM |
1398 | case KVM_REG_PPC_VPA_ADDR: |
1399 | spin_lock(&vcpu->arch.vpa_update_lock); | |
1400 | *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); | |
1401 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
1402 | break; | |
1403 | case KVM_REG_PPC_VPA_SLB: | |
1404 | spin_lock(&vcpu->arch.vpa_update_lock); | |
1405 | val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; | |
1406 | val->vpaval.length = vcpu->arch.slb_shadow.len; | |
1407 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
1408 | break; | |
1409 | case KVM_REG_PPC_VPA_DTL: | |
1410 | spin_lock(&vcpu->arch.vpa_update_lock); | |
1411 | val->vpaval.addr = vcpu->arch.dtl.next_gpa; | |
1412 | val->vpaval.length = vcpu->arch.dtl.len; | |
1413 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
1414 | break; | |
93b0f4dc PM |
1415 | case KVM_REG_PPC_TB_OFFSET: |
1416 | *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); | |
1417 | break; | |
a0144e2a | 1418 | case KVM_REG_PPC_LPCR: |
a0840240 | 1419 | case KVM_REG_PPC_LPCR_64: |
a0144e2a PM |
1420 | *val = get_reg_val(id, vcpu->arch.vcore->lpcr); |
1421 | break; | |
4b8473c9 PM |
1422 | case KVM_REG_PPC_PPR: |
1423 | *val = get_reg_val(id, vcpu->arch.ppr); | |
1424 | break; | |
a7d80d01 MN |
1425 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
1426 | case KVM_REG_PPC_TFHAR: | |
1427 | *val = get_reg_val(id, vcpu->arch.tfhar); | |
1428 | break; | |
1429 | case KVM_REG_PPC_TFIAR: | |
1430 | *val = get_reg_val(id, vcpu->arch.tfiar); | |
1431 | break; | |
1432 | case KVM_REG_PPC_TEXASR: | |
1433 | *val = get_reg_val(id, vcpu->arch.texasr); | |
1434 | break; | |
1435 | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: | |
1436 | i = id - KVM_REG_PPC_TM_GPR0; | |
1437 | *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); | |
1438 | break; | |
1439 | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: | |
1440 | { | |
1441 | int j; | |
1442 | i = id - KVM_REG_PPC_TM_VSR0; | |
1443 | if (i < 32) | |
1444 | for (j = 0; j < TS_FPRWIDTH; j++) | |
1445 | val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; | |
1446 | else { | |
1447 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | |
1448 | val->vval = vcpu->arch.vr_tm.vr[i-32]; | |
1449 | else | |
1450 | r = -ENXIO; | |
1451 | } | |
1452 | break; | |
1453 | } | |
1454 | case KVM_REG_PPC_TM_CR: | |
1455 | *val = get_reg_val(id, vcpu->arch.cr_tm); | |
1456 | break; | |
0d808df0 PM |
1457 | case KVM_REG_PPC_TM_XER: |
1458 | *val = get_reg_val(id, vcpu->arch.xer_tm); | |
1459 | break; | |
a7d80d01 MN |
1460 | case KVM_REG_PPC_TM_LR: |
1461 | *val = get_reg_val(id, vcpu->arch.lr_tm); | |
1462 | break; | |
1463 | case KVM_REG_PPC_TM_CTR: | |
1464 | *val = get_reg_val(id, vcpu->arch.ctr_tm); | |
1465 | break; | |
1466 | case KVM_REG_PPC_TM_FPSCR: | |
1467 | *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); | |
1468 | break; | |
1469 | case KVM_REG_PPC_TM_AMR: | |
1470 | *val = get_reg_val(id, vcpu->arch.amr_tm); | |
1471 | break; | |
1472 | case KVM_REG_PPC_TM_PPR: | |
1473 | *val = get_reg_val(id, vcpu->arch.ppr_tm); | |
1474 | break; | |
1475 | case KVM_REG_PPC_TM_VRSAVE: | |
1476 | *val = get_reg_val(id, vcpu->arch.vrsave_tm); | |
1477 | break; | |
1478 | case KVM_REG_PPC_TM_VSCR: | |
1479 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | |
1480 | *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); | |
1481 | else | |
1482 | r = -ENXIO; | |
1483 | break; | |
1484 | case KVM_REG_PPC_TM_DSCR: | |
1485 | *val = get_reg_val(id, vcpu->arch.dscr_tm); | |
1486 | break; | |
1487 | case KVM_REG_PPC_TM_TAR: | |
1488 | *val = get_reg_val(id, vcpu->arch.tar_tm); | |
1489 | break; | |
1490 | #endif | |
388cc6e1 PM |
1491 | case KVM_REG_PPC_ARCH_COMPAT: |
1492 | *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); | |
1493 | break; | |
31f3438e | 1494 | default: |
a136a8bd | 1495 | r = -EINVAL; |
31f3438e PM |
1496 | break; |
1497 | } | |
1498 | ||
1499 | return r; | |
1500 | } | |
1501 | ||
3a167bea AK |
1502 | static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, |
1503 | union kvmppc_one_reg *val) | |
31f3438e | 1504 | { |
a136a8bd PM |
1505 | int r = 0; |
1506 | long int i; | |
55b665b0 | 1507 | unsigned long addr, len; |
31f3438e | 1508 | |
a136a8bd | 1509 | switch (id) { |
31f3438e | 1510 | case KVM_REG_PPC_HIOR: |
31f3438e | 1511 | /* Only allow this to be set to zero */ |
a136a8bd | 1512 | if (set_reg_val(id, *val)) |
31f3438e PM |
1513 | r = -EINVAL; |
1514 | break; | |
a136a8bd PM |
1515 | case KVM_REG_PPC_DABR: |
1516 | vcpu->arch.dabr = set_reg_val(id, *val); | |
1517 | break; | |
8563bf52 PM |
1518 | case KVM_REG_PPC_DABRX: |
1519 | vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; | |
1520 | break; | |
a136a8bd PM |
1521 | case KVM_REG_PPC_DSCR: |
1522 | vcpu->arch.dscr = set_reg_val(id, *val); | |
1523 | break; | |
1524 | case KVM_REG_PPC_PURR: | |
1525 | vcpu->arch.purr = set_reg_val(id, *val); | |
1526 | break; | |
1527 | case KVM_REG_PPC_SPURR: | |
1528 | vcpu->arch.spurr = set_reg_val(id, *val); | |
1529 | break; | |
1530 | case KVM_REG_PPC_AMR: | |
1531 | vcpu->arch.amr = set_reg_val(id, *val); | |
1532 | break; | |
1533 | case KVM_REG_PPC_UAMOR: | |
1534 | vcpu->arch.uamor = set_reg_val(id, *val); | |
1535 | break; | |
b005255e | 1536 | case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: |
a136a8bd PM |
1537 | i = id - KVM_REG_PPC_MMCR0; |
1538 | vcpu->arch.mmcr[i] = set_reg_val(id, *val); | |
1539 | break; | |
1540 | case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: | |
1541 | i = id - KVM_REG_PPC_PMC1; | |
1542 | vcpu->arch.pmc[i] = set_reg_val(id, *val); | |
1543 | break; | |
b005255e MN |
1544 | case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: |
1545 | i = id - KVM_REG_PPC_SPMC1; | |
1546 | vcpu->arch.spmc[i] = set_reg_val(id, *val); | |
1547 | break; | |
14941789 PM |
1548 | case KVM_REG_PPC_SIAR: |
1549 | vcpu->arch.siar = set_reg_val(id, *val); | |
1550 | break; | |
1551 | case KVM_REG_PPC_SDAR: | |
1552 | vcpu->arch.sdar = set_reg_val(id, *val); | |
1553 | break; | |
b005255e MN |
1554 | case KVM_REG_PPC_SIER: |
1555 | vcpu->arch.sier = set_reg_val(id, *val); | |
a8bd19ef | 1556 | break; |
b005255e MN |
1557 | case KVM_REG_PPC_IAMR: |
1558 | vcpu->arch.iamr = set_reg_val(id, *val); | |
1559 | break; | |
b005255e MN |
1560 | case KVM_REG_PPC_PSPB: |
1561 | vcpu->arch.pspb = set_reg_val(id, *val); | |
1562 | break; | |
b005255e MN |
1563 | case KVM_REG_PPC_DPDES: |
1564 | vcpu->arch.vcore->dpdes = set_reg_val(id, *val); | |
1565 | break; | |
88b02cf9 PM |
1566 | case KVM_REG_PPC_VTB: |
1567 | vcpu->arch.vcore->vtb = set_reg_val(id, *val); | |
1568 | break; | |
b005255e MN |
1569 | case KVM_REG_PPC_DAWR: |
1570 | vcpu->arch.dawr = set_reg_val(id, *val); | |
1571 | break; | |
1572 | case KVM_REG_PPC_DAWRX: | |
1573 | vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; | |
1574 | break; | |
1575 | case KVM_REG_PPC_CIABR: | |
1576 | vcpu->arch.ciabr = set_reg_val(id, *val); | |
1577 | /* Don't allow setting breakpoints in hypervisor code */ | |
1578 | if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) | |
1579 | vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ | |
1580 | break; | |
b005255e MN |
1581 | case KVM_REG_PPC_CSIGR: |
1582 | vcpu->arch.csigr = set_reg_val(id, *val); | |
1583 | break; | |
1584 | case KVM_REG_PPC_TACR: | |
1585 | vcpu->arch.tacr = set_reg_val(id, *val); | |
1586 | break; | |
1587 | case KVM_REG_PPC_TCSCR: | |
1588 | vcpu->arch.tcscr = set_reg_val(id, *val); | |
1589 | break; | |
1590 | case KVM_REG_PPC_PID: | |
1591 | vcpu->arch.pid = set_reg_val(id, *val); | |
1592 | break; | |
1593 | case KVM_REG_PPC_ACOP: | |
1594 | vcpu->arch.acop = set_reg_val(id, *val); | |
1595 | break; | |
1596 | case KVM_REG_PPC_WORT: | |
1597 | vcpu->arch.wort = set_reg_val(id, *val); | |
a8bd19ef | 1598 | break; |
e9cf1e08 PM |
1599 | case KVM_REG_PPC_TIDR: |
1600 | vcpu->arch.tid = set_reg_val(id, *val); | |
1601 | break; | |
1602 | case KVM_REG_PPC_PSSCR: | |
1603 | vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; | |
1604 | break; | |
55b665b0 PM |
1605 | case KVM_REG_PPC_VPA_ADDR: |
1606 | addr = set_reg_val(id, *val); | |
1607 | r = -EINVAL; | |
1608 | if (!addr && (vcpu->arch.slb_shadow.next_gpa || | |
1609 | vcpu->arch.dtl.next_gpa)) | |
1610 | break; | |
1611 | r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); | |
1612 | break; | |
1613 | case KVM_REG_PPC_VPA_SLB: | |
1614 | addr = val->vpaval.addr; | |
1615 | len = val->vpaval.length; | |
1616 | r = -EINVAL; | |
1617 | if (addr && !vcpu->arch.vpa.next_gpa) | |
1618 | break; | |
1619 | r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); | |
1620 | break; | |
1621 | case KVM_REG_PPC_VPA_DTL: | |
1622 | addr = val->vpaval.addr; | |
1623 | len = val->vpaval.length; | |
1624 | r = -EINVAL; | |
9f8c8c78 PM |
1625 | if (addr && (len < sizeof(struct dtl_entry) || |
1626 | !vcpu->arch.vpa.next_gpa)) | |
55b665b0 PM |
1627 | break; |
1628 | len -= len % sizeof(struct dtl_entry); | |
1629 | r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); | |
1630 | break; | |
93b0f4dc | 1631 | case KVM_REG_PPC_TB_OFFSET: |
3d3efb68 PM |
1632 | /* |
1633 | * POWER9 DD1 has an erratum where writing TBU40 causes | |
1634 | * the timebase to lose ticks. So we don't let the | |
1635 | * timebase offset be changed on P9 DD1. (It is | |
1636 | * initialized to zero.) | |
1637 | */ | |
1638 | if (cpu_has_feature(CPU_FTR_POWER9_DD1)) | |
1639 | break; | |
93b0f4dc PM |
1640 | /* round up to multiple of 2^24 */ |
1641 | vcpu->arch.vcore->tb_offset = | |
1642 | ALIGN(set_reg_val(id, *val), 1UL << 24); | |
1643 | break; | |
a0144e2a | 1644 | case KVM_REG_PPC_LPCR: |
a0840240 AK |
1645 | kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); |
1646 | break; | |
1647 | case KVM_REG_PPC_LPCR_64: | |
1648 | kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); | |
a0144e2a | 1649 | break; |
4b8473c9 PM |
1650 | case KVM_REG_PPC_PPR: |
1651 | vcpu->arch.ppr = set_reg_val(id, *val); | |
1652 | break; | |
a7d80d01 MN |
1653 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
1654 | case KVM_REG_PPC_TFHAR: | |
1655 | vcpu->arch.tfhar = set_reg_val(id, *val); | |
1656 | break; | |
1657 | case KVM_REG_PPC_TFIAR: | |
1658 | vcpu->arch.tfiar = set_reg_val(id, *val); | |
1659 | break; | |
1660 | case KVM_REG_PPC_TEXASR: | |
1661 | vcpu->arch.texasr = set_reg_val(id, *val); | |
1662 | break; | |
1663 | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: | |
1664 | i = id - KVM_REG_PPC_TM_GPR0; | |
1665 | vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); | |
1666 | break; | |
1667 | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: | |
1668 | { | |
1669 | int j; | |
1670 | i = id - KVM_REG_PPC_TM_VSR0; | |
1671 | if (i < 32) | |
1672 | for (j = 0; j < TS_FPRWIDTH; j++) | |
1673 | vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; | |
1674 | else | |
1675 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | |
1676 | vcpu->arch.vr_tm.vr[i-32] = val->vval; | |
1677 | else | |
1678 | r = -ENXIO; | |
1679 | break; | |
1680 | } | |
1681 | case KVM_REG_PPC_TM_CR: | |
1682 | vcpu->arch.cr_tm = set_reg_val(id, *val); | |
1683 | break; | |
0d808df0 PM |
1684 | case KVM_REG_PPC_TM_XER: |
1685 | vcpu->arch.xer_tm = set_reg_val(id, *val); | |
1686 | break; | |
a7d80d01 MN |
1687 | case KVM_REG_PPC_TM_LR: |
1688 | vcpu->arch.lr_tm = set_reg_val(id, *val); | |
1689 | break; | |
1690 | case KVM_REG_PPC_TM_CTR: | |
1691 | vcpu->arch.ctr_tm = set_reg_val(id, *val); | |
1692 | break; | |
1693 | case KVM_REG_PPC_TM_FPSCR: | |
1694 | vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); | |
1695 | break; | |
1696 | case KVM_REG_PPC_TM_AMR: | |
1697 | vcpu->arch.amr_tm = set_reg_val(id, *val); | |
1698 | break; | |
1699 | case KVM_REG_PPC_TM_PPR: | |
1700 | vcpu->arch.ppr_tm = set_reg_val(id, *val); | |
1701 | break; | |
1702 | case KVM_REG_PPC_TM_VRSAVE: | |
1703 | vcpu->arch.vrsave_tm = set_reg_val(id, *val); | |
1704 | break; | |
1705 | case KVM_REG_PPC_TM_VSCR: | |
1706 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) | |
1707 | vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); | |
1708 | else | |
1709 | r = - ENXIO; | |
1710 | break; | |
1711 | case KVM_REG_PPC_TM_DSCR: | |
1712 | vcpu->arch.dscr_tm = set_reg_val(id, *val); | |
1713 | break; | |
1714 | case KVM_REG_PPC_TM_TAR: | |
1715 | vcpu->arch.tar_tm = set_reg_val(id, *val); | |
1716 | break; | |
1717 | #endif | |
388cc6e1 PM |
1718 | case KVM_REG_PPC_ARCH_COMPAT: |
1719 | r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); | |
1720 | break; | |
31f3438e | 1721 | default: |
a136a8bd | 1722 | r = -EINVAL; |
31f3438e PM |
1723 | break; |
1724 | } | |
1725 | ||
1726 | return r; | |
1727 | } | |
1728 | ||
45c940ba PM |
1729 | /* |
1730 | * On POWER9, threads are independent and can be in different partitions. | |
1731 | * Therefore we consider each thread to be a subcore. | |
1732 | * There is a restriction that all threads have to be in the same | |
1733 | * MMU mode (radix or HPT), unfortunately, but since we only support | |
1734 | * HPT guests on a HPT host so far, that isn't an impediment yet. | |
1735 | */ | |
1736 | static int threads_per_vcore(void) | |
1737 | { | |
1738 | if (cpu_has_feature(CPU_FTR_ARCH_300)) | |
1739 | return 1; | |
1740 | return threads_per_subcore; | |
1741 | } | |
1742 | ||
de9bdd1a SS |
1743 | static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) |
1744 | { | |
1745 | struct kvmppc_vcore *vcore; | |
1746 | ||
1747 | vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); | |
1748 | ||
1749 | if (vcore == NULL) | |
1750 | return NULL; | |
1751 | ||
de9bdd1a | 1752 | spin_lock_init(&vcore->lock); |
2711e248 | 1753 | spin_lock_init(&vcore->stoltb_lock); |
8577370f | 1754 | init_swait_queue_head(&vcore->wq); |
de9bdd1a SS |
1755 | vcore->preempt_tb = TB_NIL; |
1756 | vcore->lpcr = kvm->arch.lpcr; | |
3c313524 | 1757 | vcore->first_vcpuid = core * kvm->arch.smt_mode; |
de9bdd1a | 1758 | vcore->kvm = kvm; |
ec257165 | 1759 | INIT_LIST_HEAD(&vcore->preempt_list); |
de9bdd1a SS |
1760 | |
1761 | return vcore; | |
1762 | } | |
1763 | ||
b6c295df PM |
1764 | #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING |
1765 | static struct debugfs_timings_element { | |
1766 | const char *name; | |
1767 | size_t offset; | |
1768 | } timings[] = { | |
1769 | {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, | |
1770 | {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, | |
1771 | {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, | |
1772 | {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, | |
1773 | {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, | |
1774 | }; | |
1775 | ||
4bb817ed | 1776 | #define N_TIMINGS (ARRAY_SIZE(timings)) |
b6c295df PM |
1777 | |
1778 | struct debugfs_timings_state { | |
1779 | struct kvm_vcpu *vcpu; | |
1780 | unsigned int buflen; | |
1781 | char buf[N_TIMINGS * 100]; | |
1782 | }; | |
1783 | ||
1784 | static int debugfs_timings_open(struct inode *inode, struct file *file) | |
1785 | { | |
1786 | struct kvm_vcpu *vcpu = inode->i_private; | |
1787 | struct debugfs_timings_state *p; | |
1788 | ||
1789 | p = kzalloc(sizeof(*p), GFP_KERNEL); | |
1790 | if (!p) | |
1791 | return -ENOMEM; | |
1792 | ||
1793 | kvm_get_kvm(vcpu->kvm); | |
1794 | p->vcpu = vcpu; | |
1795 | file->private_data = p; | |
1796 | ||
1797 | return nonseekable_open(inode, file); | |
1798 | } | |
1799 | ||
1800 | static int debugfs_timings_release(struct inode *inode, struct file *file) | |
1801 | { | |
1802 | struct debugfs_timings_state *p = file->private_data; | |
1803 | ||
1804 | kvm_put_kvm(p->vcpu->kvm); | |
1805 | kfree(p); | |
1806 | return 0; | |
1807 | } | |
1808 | ||
1809 | static ssize_t debugfs_timings_read(struct file *file, char __user *buf, | |
1810 | size_t len, loff_t *ppos) | |
1811 | { | |
1812 | struct debugfs_timings_state *p = file->private_data; | |
1813 | struct kvm_vcpu *vcpu = p->vcpu; | |
1814 | char *s, *buf_end; | |
1815 | struct kvmhv_tb_accumulator tb; | |
1816 | u64 count; | |
1817 | loff_t pos; | |
1818 | ssize_t n; | |
1819 | int i, loops; | |
1820 | bool ok; | |
1821 | ||
1822 | if (!p->buflen) { | |
1823 | s = p->buf; | |
1824 | buf_end = s + sizeof(p->buf); | |
1825 | for (i = 0; i < N_TIMINGS; ++i) { | |
1826 | struct kvmhv_tb_accumulator *acc; | |
1827 | ||
1828 | acc = (struct kvmhv_tb_accumulator *) | |
1829 | ((unsigned long)vcpu + timings[i].offset); | |
1830 | ok = false; | |
1831 | for (loops = 0; loops < 1000; ++loops) { | |
1832 | count = acc->seqcount; | |
1833 | if (!(count & 1)) { | |
1834 | smp_rmb(); | |
1835 | tb = *acc; | |
1836 | smp_rmb(); | |
1837 | if (count == acc->seqcount) { | |
1838 | ok = true; | |
1839 | break; | |
1840 | } | |
1841 | } | |
1842 | udelay(1); | |
1843 | } | |
1844 | if (!ok) | |
1845 | snprintf(s, buf_end - s, "%s: stuck\n", | |
1846 | timings[i].name); | |
1847 | else | |
1848 | snprintf(s, buf_end - s, | |
1849 | "%s: %llu %llu %llu %llu\n", | |
1850 | timings[i].name, count / 2, | |
1851 | tb_to_ns(tb.tb_total), | |
1852 | tb_to_ns(tb.tb_min), | |
1853 | tb_to_ns(tb.tb_max)); | |
1854 | s += strlen(s); | |
1855 | } | |
1856 | p->buflen = s - p->buf; | |
1857 | } | |
1858 | ||
1859 | pos = *ppos; | |
1860 | if (pos >= p->buflen) | |
1861 | return 0; | |
1862 | if (len > p->buflen - pos) | |
1863 | len = p->buflen - pos; | |
1864 | n = copy_to_user(buf, p->buf + pos, len); | |
1865 | if (n) { | |
1866 | if (n == len) | |
1867 | return -EFAULT; | |
1868 | len -= n; | |
1869 | } | |
1870 | *ppos = pos + len; | |
1871 | return len; | |
1872 | } | |
1873 | ||
1874 | static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, | |
1875 | size_t len, loff_t *ppos) | |
1876 | { | |
1877 | return -EACCES; | |
1878 | } | |
1879 | ||
1880 | static const struct file_operations debugfs_timings_ops = { | |
1881 | .owner = THIS_MODULE, | |
1882 | .open = debugfs_timings_open, | |
1883 | .release = debugfs_timings_release, | |
1884 | .read = debugfs_timings_read, | |
1885 | .write = debugfs_timings_write, | |
1886 | .llseek = generic_file_llseek, | |
1887 | }; | |
1888 | ||
1889 | /* Create a debugfs directory for the vcpu */ | |
1890 | static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) | |
1891 | { | |
1892 | char buf[16]; | |
1893 | struct kvm *kvm = vcpu->kvm; | |
1894 | ||
1895 | snprintf(buf, sizeof(buf), "vcpu%u", id); | |
1896 | if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) | |
1897 | return; | |
1898 | vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); | |
1899 | if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) | |
1900 | return; | |
1901 | vcpu->arch.debugfs_timings = | |
1902 | debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, | |
1903 | vcpu, &debugfs_timings_ops); | |
1904 | } | |
1905 | ||
1906 | #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ | |
1907 | static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) | |
1908 | { | |
1909 | } | |
1910 | #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ | |
1911 | ||
3a167bea AK |
1912 | static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, |
1913 | unsigned int id) | |
de56a948 PM |
1914 | { |
1915 | struct kvm_vcpu *vcpu; | |
3c313524 | 1916 | int err; |
371fefd6 PM |
1917 | int core; |
1918 | struct kvmppc_vcore *vcore; | |
de56a948 | 1919 | |
371fefd6 | 1920 | err = -ENOMEM; |
6b75e6bf | 1921 | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
de56a948 PM |
1922 | if (!vcpu) |
1923 | goto out; | |
1924 | ||
1925 | err = kvm_vcpu_init(vcpu, kvm, id); | |
1926 | if (err) | |
1927 | goto free_vcpu; | |
1928 | ||
1929 | vcpu->arch.shared = &vcpu->arch.shregs; | |
5deb8e7a AG |
1930 | #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE |
1931 | /* | |
1932 | * The shared struct is never shared on HV, | |
1933 | * so we can always use host endianness | |
1934 | */ | |
1935 | #ifdef __BIG_ENDIAN__ | |
1936 | vcpu->arch.shared_big_endian = true; | |
1937 | #else | |
1938 | vcpu->arch.shared_big_endian = false; | |
1939 | #endif | |
1940 | #endif | |
de56a948 PM |
1941 | vcpu->arch.mmcr[0] = MMCR0_FC; |
1942 | vcpu->arch.ctrl = CTRL_RUNLATCH; | |
1943 | /* default to host PVR, since we can't spoof it */ | |
3a167bea | 1944 | kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); |
2e25aa5f | 1945 | spin_lock_init(&vcpu->arch.vpa_update_lock); |
c7b67670 PM |
1946 | spin_lock_init(&vcpu->arch.tbacct_lock); |
1947 | vcpu->arch.busy_preempt = TB_NIL; | |
d682916a | 1948 | vcpu->arch.intr_msr = MSR_SF | MSR_ME; |
de56a948 | 1949 | |
769377f7 PM |
1950 | /* |
1951 | * Set the default HFSCR for the guest from the host value. | |
1952 | * This value is only used on POWER9. | |
1953 | * On POWER9 DD1, TM doesn't work, so we make sure to | |
1954 | * prevent the guest from using it. | |
57900694 PM |
1955 | * On POWER9, we want to virtualize the doorbell facility, so we |
1956 | * turn off the HFSCR bit, which causes those instructions to trap. | |
769377f7 PM |
1957 | */ |
1958 | vcpu->arch.hfscr = mfspr(SPRN_HFSCR); | |
1959 | if (!cpu_has_feature(CPU_FTR_TM)) | |
1960 | vcpu->arch.hfscr &= ~HFSCR_TM; | |
57900694 PM |
1961 | if (cpu_has_feature(CPU_FTR_ARCH_300)) |
1962 | vcpu->arch.hfscr &= ~HFSCR_MSGP; | |
769377f7 | 1963 | |
de56a948 PM |
1964 | kvmppc_mmu_book3s_hv_init(vcpu); |
1965 | ||
8455d79e | 1966 | vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
371fefd6 PM |
1967 | |
1968 | init_waitqueue_head(&vcpu->arch.cpu_run); | |
1969 | ||
1970 | mutex_lock(&kvm->lock); | |
3c313524 PM |
1971 | vcore = NULL; |
1972 | err = -EINVAL; | |
1973 | core = id / kvm->arch.smt_mode; | |
1974 | if (core < KVM_MAX_VCORES) { | |
1975 | vcore = kvm->arch.vcores[core]; | |
1976 | if (!vcore) { | |
1977 | err = -ENOMEM; | |
1978 | vcore = kvmppc_vcore_create(kvm, core); | |
1979 | kvm->arch.vcores[core] = vcore; | |
1980 | kvm->arch.online_vcores++; | |
1981 | } | |
371fefd6 PM |
1982 | } |
1983 | mutex_unlock(&kvm->lock); | |
1984 | ||
1985 | if (!vcore) | |
1986 | goto free_vcpu; | |
1987 | ||
1988 | spin_lock(&vcore->lock); | |
1989 | ++vcore->num_threads; | |
371fefd6 PM |
1990 | spin_unlock(&vcore->lock); |
1991 | vcpu->arch.vcore = vcore; | |
e0b7ec05 | 1992 | vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; |
ec257165 | 1993 | vcpu->arch.thread_cpu = -1; |
a29ebeaf | 1994 | vcpu->arch.prev_cpu = -1; |
371fefd6 | 1995 | |
af8f38b3 AG |
1996 | vcpu->arch.cpu_type = KVM_CPU_3S_64; |
1997 | kvmppc_sanity_check(vcpu); | |
1998 | ||
b6c295df PM |
1999 | debugfs_vcpu_init(vcpu, id); |
2000 | ||
de56a948 PM |
2001 | return vcpu; |
2002 | ||
2003 | free_vcpu: | |
6b75e6bf | 2004 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
de56a948 PM |
2005 | out: |
2006 | return ERR_PTR(err); | |
2007 | } | |
2008 | ||
3c313524 PM |
2009 | static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, |
2010 | unsigned long flags) | |
2011 | { | |
2012 | int err; | |
57900694 | 2013 | int esmt = 0; |
3c313524 PM |
2014 | |
2015 | if (flags) | |
2016 | return -EINVAL; | |
2017 | if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) | |
2018 | return -EINVAL; | |
2019 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) { | |
2020 | /* | |
2021 | * On POWER8 (or POWER7), the threading mode is "strict", | |
2022 | * so we pack smt_mode vcpus per vcore. | |
2023 | */ | |
2024 | if (smt_mode > threads_per_subcore) | |
2025 | return -EINVAL; | |
2026 | } else { | |
2027 | /* | |
2028 | * On POWER9, the threading mode is "loose", | |
2029 | * so each vcpu gets its own vcore. | |
2030 | */ | |
57900694 | 2031 | esmt = smt_mode; |
3c313524 PM |
2032 | smt_mode = 1; |
2033 | } | |
2034 | mutex_lock(&kvm->lock); | |
2035 | err = -EBUSY; | |
2036 | if (!kvm->arch.online_vcores) { | |
2037 | kvm->arch.smt_mode = smt_mode; | |
57900694 | 2038 | kvm->arch.emul_smt_mode = esmt; |
3c313524 PM |
2039 | err = 0; |
2040 | } | |
2041 | mutex_unlock(&kvm->lock); | |
2042 | ||
2043 | return err; | |
2044 | } | |
2045 | ||
c35635ef PM |
2046 | static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) |
2047 | { | |
2048 | if (vpa->pinned_addr) | |
2049 | kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, | |
2050 | vpa->dirty); | |
2051 | } | |
2052 | ||
3a167bea | 2053 | static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) |
de56a948 | 2054 | { |
2e25aa5f | 2055 | spin_lock(&vcpu->arch.vpa_update_lock); |
c35635ef PM |
2056 | unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); |
2057 | unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); | |
2058 | unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); | |
2e25aa5f | 2059 | spin_unlock(&vcpu->arch.vpa_update_lock); |
de56a948 | 2060 | kvm_vcpu_uninit(vcpu); |
6b75e6bf | 2061 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
de56a948 PM |
2062 | } |
2063 | ||
3a167bea AK |
2064 | static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) |
2065 | { | |
2066 | /* Indicate we want to get back into the guest */ | |
2067 | return 1; | |
2068 | } | |
2069 | ||
19ccb76a | 2070 | static void kvmppc_set_timer(struct kvm_vcpu *vcpu) |
371fefd6 | 2071 | { |
19ccb76a | 2072 | unsigned long dec_nsec, now; |
371fefd6 | 2073 | |
19ccb76a PM |
2074 | now = get_tb(); |
2075 | if (now > vcpu->arch.dec_expires) { | |
2076 | /* decrementer has already gone negative */ | |
2077 | kvmppc_core_queue_dec(vcpu); | |
7e28e60e | 2078 | kvmppc_core_prepare_to_enter(vcpu); |
19ccb76a | 2079 | return; |
371fefd6 | 2080 | } |
19ccb76a PM |
2081 | dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC |
2082 | / tb_ticks_per_sec; | |
8b0e1953 | 2083 | hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); |
19ccb76a | 2084 | vcpu->arch.timer_running = 1; |
371fefd6 PM |
2085 | } |
2086 | ||
19ccb76a | 2087 | static void kvmppc_end_cede(struct kvm_vcpu *vcpu) |
371fefd6 | 2088 | { |
19ccb76a PM |
2089 | vcpu->arch.ceded = 0; |
2090 | if (vcpu->arch.timer_running) { | |
2091 | hrtimer_try_to_cancel(&vcpu->arch.dec_timer); | |
2092 | vcpu->arch.timer_running = 0; | |
2093 | } | |
371fefd6 PM |
2094 | } |
2095 | ||
8b24e69f | 2096 | extern int __kvmppc_vcore_entry(void); |
de56a948 | 2097 | |
371fefd6 PM |
2098 | static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, |
2099 | struct kvm_vcpu *vcpu) | |
de56a948 | 2100 | { |
c7b67670 PM |
2101 | u64 now; |
2102 | ||
371fefd6 PM |
2103 | if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
2104 | return; | |
bf3d32e1 | 2105 | spin_lock_irq(&vcpu->arch.tbacct_lock); |
c7b67670 PM |
2106 | now = mftb(); |
2107 | vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - | |
2108 | vcpu->arch.stolen_logged; | |
2109 | vcpu->arch.busy_preempt = now; | |
2110 | vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; | |
bf3d32e1 | 2111 | spin_unlock_irq(&vcpu->arch.tbacct_lock); |
371fefd6 | 2112 | --vc->n_runnable; |
7b5f8272 | 2113 | WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); |
371fefd6 PM |
2114 | } |
2115 | ||
f0888f70 PM |
2116 | static int kvmppc_grab_hwthread(int cpu) |
2117 | { | |
2118 | struct paca_struct *tpaca; | |
b754c739 | 2119 | long timeout = 10000; |
f0888f70 PM |
2120 | |
2121 | tpaca = &paca[cpu]; | |
2122 | ||
2123 | /* Ensure the thread won't go into the kernel if it wakes */ | |
7b444c67 | 2124 | tpaca->kvm_hstate.kvm_vcpu = NULL; |
b4deba5c | 2125 | tpaca->kvm_hstate.kvm_vcore = NULL; |
5d5b99cd PM |
2126 | tpaca->kvm_hstate.napping = 0; |
2127 | smp_wmb(); | |
2128 | tpaca->kvm_hstate.hwthread_req = 1; | |
f0888f70 PM |
2129 | |
2130 | /* | |
2131 | * If the thread is already executing in the kernel (e.g. handling | |
2132 | * a stray interrupt), wait for it to get back to nap mode. | |
2133 | * The smp_mb() is to ensure that our setting of hwthread_req | |
2134 | * is visible before we look at hwthread_state, so if this | |
2135 | * races with the code at system_reset_pSeries and the thread | |
2136 | * misses our setting of hwthread_req, we are sure to see its | |
2137 | * setting of hwthread_state, and vice versa. | |
2138 | */ | |
2139 | smp_mb(); | |
2140 | while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { | |
2141 | if (--timeout <= 0) { | |
2142 | pr_err("KVM: couldn't grab cpu %d\n", cpu); | |
2143 | return -EBUSY; | |
2144 | } | |
2145 | udelay(1); | |
2146 | } | |
2147 | return 0; | |
2148 | } | |
2149 | ||
2150 | static void kvmppc_release_hwthread(int cpu) | |
2151 | { | |
2152 | struct paca_struct *tpaca; | |
2153 | ||
2154 | tpaca = &paca[cpu]; | |
31a4d448 | 2155 | tpaca->kvm_hstate.hwthread_req = 0; |
f0888f70 | 2156 | tpaca->kvm_hstate.kvm_vcpu = NULL; |
b4deba5c PM |
2157 | tpaca->kvm_hstate.kvm_vcore = NULL; |
2158 | tpaca->kvm_hstate.kvm_split_mode = NULL; | |
f0888f70 PM |
2159 | } |
2160 | ||
a29ebeaf PM |
2161 | static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) |
2162 | { | |
2163 | int i; | |
2164 | ||
2165 | cpu = cpu_first_thread_sibling(cpu); | |
2166 | cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); | |
2167 | /* | |
2168 | * Make sure setting of bit in need_tlb_flush precedes | |
2169 | * testing of cpu_in_guest bits. The matching barrier on | |
2170 | * the other side is the first smp_mb() in kvmppc_run_core(). | |
2171 | */ | |
2172 | smp_mb(); | |
2173 | for (i = 0; i < threads_per_core; ++i) | |
2174 | if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) | |
2175 | smp_call_function_single(cpu + i, do_nothing, NULL, 1); | |
2176 | } | |
2177 | ||
8b24e69f PM |
2178 | static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) |
2179 | { | |
2180 | struct kvm *kvm = vcpu->kvm; | |
2181 | ||
2182 | /* | |
2183 | * With radix, the guest can do TLB invalidations itself, | |
2184 | * and it could choose to use the local form (tlbiel) if | |
2185 | * it is invalidating a translation that has only ever been | |
2186 | * used on one vcpu. However, that doesn't mean it has | |
2187 | * only ever been used on one physical cpu, since vcpus | |
2188 | * can move around between pcpus. To cope with this, when | |
2189 | * a vcpu moves from one pcpu to another, we need to tell | |
2190 | * any vcpus running on the same core as this vcpu previously | |
2191 | * ran to flush the TLB. The TLB is shared between threads, | |
2192 | * so we use a single bit in .need_tlb_flush for all 4 threads. | |
2193 | */ | |
2194 | if (vcpu->arch.prev_cpu != pcpu) { | |
2195 | if (vcpu->arch.prev_cpu >= 0 && | |
2196 | cpu_first_thread_sibling(vcpu->arch.prev_cpu) != | |
2197 | cpu_first_thread_sibling(pcpu)) | |
2198 | radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); | |
2199 | vcpu->arch.prev_cpu = pcpu; | |
2200 | } | |
2201 | } | |
2202 | ||
b4deba5c | 2203 | static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) |
371fefd6 PM |
2204 | { |
2205 | int cpu; | |
2206 | struct paca_struct *tpaca; | |
a29ebeaf | 2207 | struct kvm *kvm = vc->kvm; |
371fefd6 | 2208 | |
b4deba5c PM |
2209 | cpu = vc->pcpu; |
2210 | if (vcpu) { | |
2211 | if (vcpu->arch.timer_running) { | |
2212 | hrtimer_try_to_cancel(&vcpu->arch.dec_timer); | |
2213 | vcpu->arch.timer_running = 0; | |
2214 | } | |
2215 | cpu += vcpu->arch.ptid; | |
898b25b2 | 2216 | vcpu->cpu = vc->pcpu; |
b4deba5c | 2217 | vcpu->arch.thread_cpu = cpu; |
a29ebeaf | 2218 | cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); |
19ccb76a | 2219 | } |
371fefd6 | 2220 | tpaca = &paca[cpu]; |
5d5b99cd | 2221 | tpaca->kvm_hstate.kvm_vcpu = vcpu; |
898b25b2 | 2222 | tpaca->kvm_hstate.ptid = cpu - vc->pcpu; |
ec257165 | 2223 | /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ |
371fefd6 | 2224 | smp_wmb(); |
898b25b2 | 2225 | tpaca->kvm_hstate.kvm_vcore = vc; |
5d5b99cd | 2226 | if (cpu != smp_processor_id()) |
66feed61 | 2227 | kvmppc_ipi_thread(cpu); |
371fefd6 | 2228 | } |
de56a948 | 2229 | |
5d5b99cd | 2230 | static void kvmppc_wait_for_nap(void) |
371fefd6 | 2231 | { |
5d5b99cd PM |
2232 | int cpu = smp_processor_id(); |
2233 | int i, loops; | |
45c940ba | 2234 | int n_threads = threads_per_vcore(); |
371fefd6 | 2235 | |
45c940ba PM |
2236 | if (n_threads <= 1) |
2237 | return; | |
5d5b99cd PM |
2238 | for (loops = 0; loops < 1000000; ++loops) { |
2239 | /* | |
2240 | * Check if all threads are finished. | |
b4deba5c | 2241 | * We set the vcore pointer when starting a thread |
5d5b99cd | 2242 | * and the thread clears it when finished, so we look |
b4deba5c | 2243 | * for any threads that still have a non-NULL vcore ptr. |
5d5b99cd | 2244 | */ |
45c940ba | 2245 | for (i = 1; i < n_threads; ++i) |
b4deba5c | 2246 | if (paca[cpu + i].kvm_hstate.kvm_vcore) |
5d5b99cd | 2247 | break; |
45c940ba | 2248 | if (i == n_threads) { |
5d5b99cd PM |
2249 | HMT_medium(); |
2250 | return; | |
371fefd6 | 2251 | } |
5d5b99cd | 2252 | HMT_low(); |
371fefd6 PM |
2253 | } |
2254 | HMT_medium(); | |
45c940ba | 2255 | for (i = 1; i < n_threads; ++i) |
b4deba5c | 2256 | if (paca[cpu + i].kvm_hstate.kvm_vcore) |
5d5b99cd | 2257 | pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); |
371fefd6 PM |
2258 | } |
2259 | ||
2260 | /* | |
2261 | * Check that we are on thread 0 and that any other threads in | |
7b444c67 PM |
2262 | * this core are off-line. Then grab the threads so they can't |
2263 | * enter the kernel. | |
371fefd6 PM |
2264 | */ |
2265 | static int on_primary_thread(void) | |
2266 | { | |
2267 | int cpu = smp_processor_id(); | |
3102f784 | 2268 | int thr; |
371fefd6 | 2269 | |
3102f784 ME |
2270 | /* Are we on a primary subcore? */ |
2271 | if (cpu_thread_in_subcore(cpu)) | |
371fefd6 | 2272 | return 0; |
3102f784 ME |
2273 | |
2274 | thr = 0; | |
2275 | while (++thr < threads_per_subcore) | |
371fefd6 PM |
2276 | if (cpu_online(cpu + thr)) |
2277 | return 0; | |
7b444c67 PM |
2278 | |
2279 | /* Grab all hw threads so they can't go into the kernel */ | |
3102f784 | 2280 | for (thr = 1; thr < threads_per_subcore; ++thr) { |
7b444c67 PM |
2281 | if (kvmppc_grab_hwthread(cpu + thr)) { |
2282 | /* Couldn't grab one; let the others go */ | |
2283 | do { | |
2284 | kvmppc_release_hwthread(cpu + thr); | |
2285 | } while (--thr > 0); | |
2286 | return 0; | |
2287 | } | |
2288 | } | |
371fefd6 PM |
2289 | return 1; |
2290 | } | |
2291 | ||
ec257165 PM |
2292 | /* |
2293 | * A list of virtual cores for each physical CPU. | |
2294 | * These are vcores that could run but their runner VCPU tasks are | |
2295 | * (or may be) preempted. | |
2296 | */ | |
2297 | struct preempted_vcore_list { | |
2298 | struct list_head list; | |
2299 | spinlock_t lock; | |
2300 | }; | |
2301 | ||
2302 | static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); | |
2303 | ||
2304 | static void init_vcore_lists(void) | |
2305 | { | |
2306 | int cpu; | |
2307 | ||
2308 | for_each_possible_cpu(cpu) { | |
2309 | struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); | |
2310 | spin_lock_init(&lp->lock); | |
2311 | INIT_LIST_HEAD(&lp->list); | |
2312 | } | |
2313 | } | |
2314 | ||
2315 | static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) | |
2316 | { | |
2317 | struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); | |
2318 | ||
2319 | vc->vcore_state = VCORE_PREEMPT; | |
2320 | vc->pcpu = smp_processor_id(); | |
45c940ba | 2321 | if (vc->num_threads < threads_per_vcore()) { |
ec257165 PM |
2322 | spin_lock(&lp->lock); |
2323 | list_add_tail(&vc->preempt_list, &lp->list); | |
2324 | spin_unlock(&lp->lock); | |
2325 | } | |
2326 | ||
2327 | /* Start accumulating stolen time */ | |
2328 | kvmppc_core_start_stolen(vc); | |
2329 | } | |
2330 | ||
2331 | static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) | |
2332 | { | |
402813fe | 2333 | struct preempted_vcore_list *lp; |
ec257165 PM |
2334 | |
2335 | kvmppc_core_end_stolen(vc); | |
2336 | if (!list_empty(&vc->preempt_list)) { | |
402813fe | 2337 | lp = &per_cpu(preempted_vcores, vc->pcpu); |
ec257165 PM |
2338 | spin_lock(&lp->lock); |
2339 | list_del_init(&vc->preempt_list); | |
2340 | spin_unlock(&lp->lock); | |
2341 | } | |
2342 | vc->vcore_state = VCORE_INACTIVE; | |
2343 | } | |
2344 | ||
b4deba5c PM |
2345 | /* |
2346 | * This stores information about the virtual cores currently | |
2347 | * assigned to a physical core. | |
2348 | */ | |
ec257165 | 2349 | struct core_info { |
b4deba5c PM |
2350 | int n_subcores; |
2351 | int max_subcore_threads; | |
ec257165 | 2352 | int total_threads; |
b4deba5c | 2353 | int subcore_threads[MAX_SUBCORES]; |
898b25b2 | 2354 | struct kvmppc_vcore *vc[MAX_SUBCORES]; |
ec257165 PM |
2355 | }; |
2356 | ||
b4deba5c PM |
2357 | /* |
2358 | * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 | |
2359 | * respectively in 2-way micro-threading (split-core) mode. | |
2360 | */ | |
2361 | static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; | |
2362 | ||
ec257165 PM |
2363 | static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) |
2364 | { | |
2365 | memset(cip, 0, sizeof(*cip)); | |
b4deba5c PM |
2366 | cip->n_subcores = 1; |
2367 | cip->max_subcore_threads = vc->num_threads; | |
ec257165 | 2368 | cip->total_threads = vc->num_threads; |
b4deba5c | 2369 | cip->subcore_threads[0] = vc->num_threads; |
898b25b2 | 2370 | cip->vc[0] = vc; |
b4deba5c PM |
2371 | } |
2372 | ||
2373 | static bool subcore_config_ok(int n_subcores, int n_threads) | |
2374 | { | |
2375 | /* Can only dynamically split if unsplit to begin with */ | |
2376 | if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) | |
2377 | return false; | |
2378 | if (n_subcores > MAX_SUBCORES) | |
2379 | return false; | |
2380 | if (n_subcores > 1) { | |
2381 | if (!(dynamic_mt_modes & 2)) | |
2382 | n_subcores = 4; | |
2383 | if (n_subcores > 2 && !(dynamic_mt_modes & 4)) | |
2384 | return false; | |
2385 | } | |
2386 | ||
2387 | return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; | |
ec257165 PM |
2388 | } |
2389 | ||
898b25b2 | 2390 | static void init_vcore_to_run(struct kvmppc_vcore *vc) |
ec257165 | 2391 | { |
ec257165 PM |
2392 | vc->entry_exit_map = 0; |
2393 | vc->in_guest = 0; | |
2394 | vc->napping_threads = 0; | |
2395 | vc->conferring_threads = 0; | |
2396 | } | |
2397 | ||
b4deba5c PM |
2398 | static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) |
2399 | { | |
2400 | int n_threads = vc->num_threads; | |
2401 | int sub; | |
2402 | ||
2403 | if (!cpu_has_feature(CPU_FTR_ARCH_207S)) | |
2404 | return false; | |
2405 | ||
2406 | if (n_threads < cip->max_subcore_threads) | |
2407 | n_threads = cip->max_subcore_threads; | |
b009031f | 2408 | if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) |
b4deba5c | 2409 | return false; |
b009031f | 2410 | cip->max_subcore_threads = n_threads; |
b4deba5c PM |
2411 | |
2412 | sub = cip->n_subcores; | |
2413 | ++cip->n_subcores; | |
2414 | cip->total_threads += vc->num_threads; | |
2415 | cip->subcore_threads[sub] = vc->num_threads; | |
898b25b2 PM |
2416 | cip->vc[sub] = vc; |
2417 | init_vcore_to_run(vc); | |
2418 | list_del_init(&vc->preempt_list); | |
b4deba5c PM |
2419 | |
2420 | return true; | |
2421 | } | |
2422 | ||
b4deba5c PM |
2423 | /* |
2424 | * Work out whether it is possible to piggyback the execution of | |
2425 | * vcore *pvc onto the execution of the other vcores described in *cip. | |
2426 | */ | |
2427 | static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, | |
2428 | int target_threads) | |
2429 | { | |
b4deba5c PM |
2430 | if (cip->total_threads + pvc->num_threads > target_threads) |
2431 | return false; | |
b4deba5c | 2432 | |
b009031f | 2433 | return can_dynamic_split(pvc, cip); |
b4deba5c PM |
2434 | } |
2435 | ||
d911f0be PM |
2436 | static void prepare_threads(struct kvmppc_vcore *vc) |
2437 | { | |
7b5f8272 SJS |
2438 | int i; |
2439 | struct kvm_vcpu *vcpu; | |
d911f0be | 2440 | |
7b5f8272 | 2441 | for_each_runnable_thread(i, vcpu, vc) { |
d911f0be PM |
2442 | if (signal_pending(vcpu->arch.run_task)) |
2443 | vcpu->arch.ret = -EINTR; | |
2444 | else if (vcpu->arch.vpa.update_pending || | |
2445 | vcpu->arch.slb_shadow.update_pending || | |
2446 | vcpu->arch.dtl.update_pending) | |
2447 | vcpu->arch.ret = RESUME_GUEST; | |
2448 | else | |
2449 | continue; | |
2450 | kvmppc_remove_runnable(vc, vcpu); | |
2451 | wake_up(&vcpu->arch.cpu_run); | |
2452 | } | |
2453 | } | |
2454 | ||
ec257165 PM |
2455 | static void collect_piggybacks(struct core_info *cip, int target_threads) |
2456 | { | |
2457 | struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); | |
2458 | struct kvmppc_vcore *pvc, *vcnext; | |
2459 | ||
2460 | spin_lock(&lp->lock); | |
2461 | list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { | |
2462 | if (!spin_trylock(&pvc->lock)) | |
2463 | continue; | |
2464 | prepare_threads(pvc); | |
2465 | if (!pvc->n_runnable) { | |
2466 | list_del_init(&pvc->preempt_list); | |
2467 | if (pvc->runner == NULL) { | |
2468 | pvc->vcore_state = VCORE_INACTIVE; | |
2469 | kvmppc_core_end_stolen(pvc); | |
2470 | } | |
2471 | spin_unlock(&pvc->lock); | |
2472 | continue; | |
2473 | } | |
2474 | if (!can_piggyback(pvc, cip, target_threads)) { | |
2475 | spin_unlock(&pvc->lock); | |
2476 | continue; | |
2477 | } | |
2478 | kvmppc_core_end_stolen(pvc); | |
2479 | pvc->vcore_state = VCORE_PIGGYBACK; | |
2480 | if (cip->total_threads >= target_threads) | |
2481 | break; | |
2482 | } | |
2483 | spin_unlock(&lp->lock); | |
2484 | } | |
2485 | ||
8b24e69f PM |
2486 | static bool recheck_signals(struct core_info *cip) |
2487 | { | |
2488 | int sub, i; | |
2489 | struct kvm_vcpu *vcpu; | |
2490 | ||
2491 | for (sub = 0; sub < cip->n_subcores; ++sub) | |
2492 | for_each_runnable_thread(i, vcpu, cip->vc[sub]) | |
2493 | if (signal_pending(vcpu->arch.run_task)) | |
2494 | return true; | |
2495 | return false; | |
2496 | } | |
2497 | ||
ec257165 | 2498 | static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) |
25fedfca | 2499 | { |
7b5f8272 | 2500 | int still_running = 0, i; |
25fedfca PM |
2501 | u64 now; |
2502 | long ret; | |
7b5f8272 | 2503 | struct kvm_vcpu *vcpu; |
25fedfca | 2504 | |
ec257165 | 2505 | spin_lock(&vc->lock); |
25fedfca | 2506 | now = get_tb(); |
7b5f8272 | 2507 | for_each_runnable_thread(i, vcpu, vc) { |
25fedfca PM |
2508 | /* cancel pending dec exception if dec is positive */ |
2509 | if (now < vcpu->arch.dec_expires && | |
2510 | kvmppc_core_pending_dec(vcpu)) | |
2511 | kvmppc_core_dequeue_dec(vcpu); | |
2512 | ||
2513 | trace_kvm_guest_exit(vcpu); | |
2514 | ||
2515 | ret = RESUME_GUEST; | |
2516 | if (vcpu->arch.trap) | |
2517 | ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, | |
2518 | vcpu->arch.run_task); | |
2519 | ||
2520 | vcpu->arch.ret = ret; | |
2521 | vcpu->arch.trap = 0; | |
2522 | ||
ec257165 PM |
2523 | if (is_kvmppc_resume_guest(vcpu->arch.ret)) { |
2524 | if (vcpu->arch.pending_exceptions) | |
2525 | kvmppc_core_prepare_to_enter(vcpu); | |
2526 | if (vcpu->arch.ceded) | |
25fedfca | 2527 | kvmppc_set_timer(vcpu); |
ec257165 PM |
2528 | else |
2529 | ++still_running; | |
2530 | } else { | |
25fedfca PM |
2531 | kvmppc_remove_runnable(vc, vcpu); |
2532 | wake_up(&vcpu->arch.cpu_run); | |
2533 | } | |
2534 | } | |
ec257165 | 2535 | if (!is_master) { |
563a1e93 | 2536 | if (still_running > 0) { |
ec257165 | 2537 | kvmppc_vcore_preempt(vc); |
563a1e93 PM |
2538 | } else if (vc->runner) { |
2539 | vc->vcore_state = VCORE_PREEMPT; | |
2540 | kvmppc_core_start_stolen(vc); | |
2541 | } else { | |
2542 | vc->vcore_state = VCORE_INACTIVE; | |
2543 | } | |
ec257165 PM |
2544 | if (vc->n_runnable > 0 && vc->runner == NULL) { |
2545 | /* make sure there's a candidate runner awake */ | |
7b5f8272 SJS |
2546 | i = -1; |
2547 | vcpu = next_runnable_thread(vc, &i); | |
ec257165 PM |
2548 | wake_up(&vcpu->arch.cpu_run); |
2549 | } | |
2550 | } | |
2551 | spin_unlock(&vc->lock); | |
25fedfca PM |
2552 | } |
2553 | ||
b8e6a87c SW |
2554 | /* |
2555 | * Clear core from the list of active host cores as we are about to | |
2556 | * enter the guest. Only do this if it is the primary thread of the | |
2557 | * core (not if a subcore) that is entering the guest. | |
2558 | */ | |
3f7cd919 | 2559 | static inline int kvmppc_clear_host_core(unsigned int cpu) |
b8e6a87c SW |
2560 | { |
2561 | int core; | |
2562 | ||
2563 | if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) | |
3f7cd919 | 2564 | return 0; |
b8e6a87c SW |
2565 | /* |
2566 | * Memory barrier can be omitted here as we will do a smp_wmb() | |
2567 | * later in kvmppc_start_thread and we need ensure that state is | |
2568 | * visible to other CPUs only after we enter guest. | |
2569 | */ | |
2570 | core = cpu >> threads_shift; | |
2571 | kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; | |
3f7cd919 | 2572 | return 0; |
b8e6a87c SW |
2573 | } |
2574 | ||
2575 | /* | |
2576 | * Advertise this core as an active host core since we exited the guest | |
2577 | * Only need to do this if it is the primary thread of the core that is | |
2578 | * exiting. | |
2579 | */ | |
3f7cd919 | 2580 | static inline int kvmppc_set_host_core(unsigned int cpu) |
b8e6a87c SW |
2581 | { |
2582 | int core; | |
2583 | ||
2584 | if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) | |
3f7cd919 | 2585 | return 0; |
b8e6a87c SW |
2586 | |
2587 | /* | |
2588 | * Memory barrier can be omitted here because we do a spin_unlock | |
2589 | * immediately after this which provides the memory barrier. | |
2590 | */ | |
2591 | core = cpu >> threads_shift; | |
2592 | kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; | |
3f7cd919 | 2593 | return 0; |
b8e6a87c SW |
2594 | } |
2595 | ||
8b24e69f PM |
2596 | static void set_irq_happened(int trap) |
2597 | { | |
2598 | switch (trap) { | |
2599 | case BOOK3S_INTERRUPT_EXTERNAL: | |
2600 | local_paca->irq_happened |= PACA_IRQ_EE; | |
2601 | break; | |
2602 | case BOOK3S_INTERRUPT_H_DOORBELL: | |
2603 | local_paca->irq_happened |= PACA_IRQ_DBELL; | |
2604 | break; | |
2605 | case BOOK3S_INTERRUPT_HMI: | |
2606 | local_paca->irq_happened |= PACA_IRQ_HMI; | |
2607 | break; | |
2608 | } | |
2609 | } | |
2610 | ||
371fefd6 PM |
2611 | /* |
2612 | * Run a set of guest threads on a physical core. | |
2613 | * Called with vc->lock held. | |
2614 | */ | |
66feed61 | 2615 | static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) |
371fefd6 | 2616 | { |
7b5f8272 | 2617 | struct kvm_vcpu *vcpu; |
d911f0be | 2618 | int i; |
2c9097e4 | 2619 | int srcu_idx; |
ec257165 | 2620 | struct core_info core_info; |
898b25b2 | 2621 | struct kvmppc_vcore *pvc; |
b4deba5c PM |
2622 | struct kvm_split_mode split_info, *sip; |
2623 | int split, subcore_size, active; | |
2624 | int sub; | |
2625 | bool thr0_done; | |
2626 | unsigned long cmd_bit, stat_bit; | |
ec257165 PM |
2627 | int pcpu, thr; |
2628 | int target_threads; | |
45c940ba | 2629 | int controlled_threads; |
8b24e69f | 2630 | int trap; |
371fefd6 | 2631 | |
d911f0be PM |
2632 | /* |
2633 | * Remove from the list any threads that have a signal pending | |
2634 | * or need a VPA update done | |
2635 | */ | |
2636 | prepare_threads(vc); | |
2637 | ||
2638 | /* if the runner is no longer runnable, let the caller pick a new one */ | |
2639 | if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) | |
2640 | return; | |
081f323b PM |
2641 | |
2642 | /* | |
d911f0be | 2643 | * Initialize *vc. |
081f323b | 2644 | */ |
898b25b2 | 2645 | init_vcore_to_run(vc); |
2711e248 | 2646 | vc->preempt_tb = TB_NIL; |
081f323b | 2647 | |
45c940ba PM |
2648 | /* |
2649 | * Number of threads that we will be controlling: the same as | |
2650 | * the number of threads per subcore, except on POWER9, | |
2651 | * where it's 1 because the threads are (mostly) independent. | |
2652 | */ | |
2653 | controlled_threads = threads_per_vcore(); | |
2654 | ||
7b444c67 | 2655 | /* |
3102f784 ME |
2656 | * Make sure we are running on primary threads, and that secondary |
2657 | * threads are offline. Also check if the number of threads in this | |
2658 | * guest are greater than the current system threads per guest. | |
7b444c67 | 2659 | */ |
45c940ba | 2660 | if ((controlled_threads > 1) && |
3102f784 | 2661 | ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { |
7b5f8272 | 2662 | for_each_runnable_thread(i, vcpu, vc) { |
7b444c67 | 2663 | vcpu->arch.ret = -EBUSY; |
25fedfca PM |
2664 | kvmppc_remove_runnable(vc, vcpu); |
2665 | wake_up(&vcpu->arch.cpu_run); | |
2666 | } | |
7b444c67 PM |
2667 | goto out; |
2668 | } | |
2669 | ||
ec257165 PM |
2670 | /* |
2671 | * See if we could run any other vcores on the physical core | |
2672 | * along with this one. | |
2673 | */ | |
2674 | init_core_info(&core_info, vc); | |
2675 | pcpu = smp_processor_id(); | |
45c940ba | 2676 | target_threads = controlled_threads; |
ec257165 PM |
2677 | if (target_smt_mode && target_smt_mode < target_threads) |
2678 | target_threads = target_smt_mode; | |
2679 | if (vc->num_threads < target_threads) | |
2680 | collect_piggybacks(&core_info, target_threads); | |
3102f784 | 2681 | |
8b24e69f PM |
2682 | /* |
2683 | * On radix, arrange for TLB flushing if necessary. | |
2684 | * This has to be done before disabling interrupts since | |
2685 | * it uses smp_call_function(). | |
2686 | */ | |
2687 | pcpu = smp_processor_id(); | |
2688 | if (kvm_is_radix(vc->kvm)) { | |
2689 | for (sub = 0; sub < core_info.n_subcores; ++sub) | |
2690 | for_each_runnable_thread(i, vcpu, core_info.vc[sub]) | |
2691 | kvmppc_prepare_radix_vcpu(vcpu, pcpu); | |
2692 | } | |
2693 | ||
2694 | /* | |
2695 | * Hard-disable interrupts, and check resched flag and signals. | |
2696 | * If we need to reschedule or deliver a signal, clean up | |
2697 | * and return without going into the guest(s). | |
2698 | */ | |
2699 | local_irq_disable(); | |
2700 | hard_irq_disable(); | |
2701 | if (lazy_irq_pending() || need_resched() || | |
2702 | recheck_signals(&core_info)) { | |
2703 | local_irq_enable(); | |
2704 | vc->vcore_state = VCORE_INACTIVE; | |
2705 | /* Unlock all except the primary vcore */ | |
2706 | for (sub = 1; sub < core_info.n_subcores; ++sub) { | |
2707 | pvc = core_info.vc[sub]; | |
2708 | /* Put back on to the preempted vcores list */ | |
2709 | kvmppc_vcore_preempt(pvc); | |
2710 | spin_unlock(&pvc->lock); | |
2711 | } | |
2712 | for (i = 0; i < controlled_threads; ++i) | |
2713 | kvmppc_release_hwthread(pcpu + i); | |
2714 | return; | |
2715 | } | |
2716 | ||
2717 | kvmppc_clear_host_core(pcpu); | |
2718 | ||
b4deba5c PM |
2719 | /* Decide on micro-threading (split-core) mode */ |
2720 | subcore_size = threads_per_subcore; | |
2721 | cmd_bit = stat_bit = 0; | |
2722 | split = core_info.n_subcores; | |
2723 | sip = NULL; | |
2724 | if (split > 1) { | |
2725 | /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ | |
2726 | if (split == 2 && (dynamic_mt_modes & 2)) { | |
2727 | cmd_bit = HID0_POWER8_1TO2LPAR; | |
2728 | stat_bit = HID0_POWER8_2LPARMODE; | |
2729 | } else { | |
2730 | split = 4; | |
2731 | cmd_bit = HID0_POWER8_1TO4LPAR; | |
2732 | stat_bit = HID0_POWER8_4LPARMODE; | |
2733 | } | |
2734 | subcore_size = MAX_SMT_THREADS / split; | |
2735 | sip = &split_info; | |
2736 | memset(&split_info, 0, sizeof(split_info)); | |
2737 | split_info.rpr = mfspr(SPRN_RPR); | |
2738 | split_info.pmmar = mfspr(SPRN_PMMAR); | |
2739 | split_info.ldbar = mfspr(SPRN_LDBAR); | |
2740 | split_info.subcore_size = subcore_size; | |
2741 | for (sub = 0; sub < core_info.n_subcores; ++sub) | |
898b25b2 | 2742 | split_info.vc[sub] = core_info.vc[sub]; |
b4deba5c PM |
2743 | /* order writes to split_info before kvm_split_mode pointer */ |
2744 | smp_wmb(); | |
2745 | } | |
45c940ba | 2746 | for (thr = 0; thr < controlled_threads; ++thr) |
b4deba5c PM |
2747 | paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; |
2748 | ||
2749 | /* Initiate micro-threading (split-core) if required */ | |
2750 | if (cmd_bit) { | |
2751 | unsigned long hid0 = mfspr(SPRN_HID0); | |
2752 | ||
2753 | hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; | |
2754 | mb(); | |
2755 | mtspr(SPRN_HID0, hid0); | |
2756 | isync(); | |
2757 | for (;;) { | |
2758 | hid0 = mfspr(SPRN_HID0); | |
2759 | if (hid0 & stat_bit) | |
2760 | break; | |
2761 | cpu_relax(); | |
ec257165 | 2762 | } |
2e25aa5f | 2763 | } |
3102f784 | 2764 | |
b4deba5c PM |
2765 | /* Start all the threads */ |
2766 | active = 0; | |
2767 | for (sub = 0; sub < core_info.n_subcores; ++sub) { | |
2768 | thr = subcore_thread_map[sub]; | |
2769 | thr0_done = false; | |
2770 | active |= 1 << thr; | |
898b25b2 PM |
2771 | pvc = core_info.vc[sub]; |
2772 | pvc->pcpu = pcpu + thr; | |
2773 | for_each_runnable_thread(i, vcpu, pvc) { | |
2774 | kvmppc_start_thread(vcpu, pvc); | |
2775 | kvmppc_create_dtl_entry(vcpu, pvc); | |
2776 | trace_kvm_guest_enter(vcpu); | |
2777 | if (!vcpu->arch.ptid) | |
2778 | thr0_done = true; | |
2779 | active |= 1 << (thr + vcpu->arch.ptid); | |
b4deba5c | 2780 | } |
898b25b2 PM |
2781 | /* |
2782 | * We need to start the first thread of each subcore | |
2783 | * even if it doesn't have a vcpu. | |
2784 | */ | |
2785 | if (!thr0_done) | |
2786 | kvmppc_start_thread(NULL, pvc); | |
2787 | thr += pvc->num_threads; | |
2e25aa5f | 2788 | } |
371fefd6 | 2789 | |
7f235328 GS |
2790 | /* |
2791 | * Ensure that split_info.do_nap is set after setting | |
2792 | * the vcore pointer in the PACA of the secondaries. | |
2793 | */ | |
2794 | smp_mb(); | |
2795 | if (cmd_bit) | |
2796 | split_info.do_nap = 1; /* ask secondaries to nap when done */ | |
2797 | ||
b4deba5c PM |
2798 | /* |
2799 | * When doing micro-threading, poke the inactive threads as well. | |
2800 | * This gets them to the nap instruction after kvm_do_nap, | |
2801 | * which reduces the time taken to unsplit later. | |
2802 | */ | |
2803 | if (split > 1) | |
2804 | for (thr = 1; thr < threads_per_subcore; ++thr) | |
2805 | if (!(active & (1 << thr))) | |
2806 | kvmppc_ipi_thread(pcpu + thr); | |
e0b7ec05 | 2807 | |
2f12f034 | 2808 | vc->vcore_state = VCORE_RUNNING; |
19ccb76a | 2809 | preempt_disable(); |
3c78f78a SW |
2810 | |
2811 | trace_kvmppc_run_core(vc, 0); | |
2812 | ||
b4deba5c | 2813 | for (sub = 0; sub < core_info.n_subcores; ++sub) |
898b25b2 | 2814 | spin_unlock(&core_info.vc[sub]->lock); |
de56a948 | 2815 | |
8b24e69f PM |
2816 | /* |
2817 | * Interrupts will be enabled once we get into the guest, | |
2818 | * so tell lockdep that we're about to enable interrupts. | |
2819 | */ | |
2820 | trace_hardirqs_on(); | |
de56a948 | 2821 | |
6edaa530 | 2822 | guest_enter(); |
2c9097e4 | 2823 | |
e0b7ec05 | 2824 | srcu_idx = srcu_read_lock(&vc->kvm->srcu); |
2c9097e4 | 2825 | |
8b24e69f | 2826 | trap = __kvmppc_vcore_entry(); |
de56a948 | 2827 | |
ec257165 PM |
2828 | srcu_read_unlock(&vc->kvm->srcu, srcu_idx); |
2829 | ||
8b24e69f PM |
2830 | guest_exit(); |
2831 | ||
2832 | trace_hardirqs_off(); | |
2833 | set_irq_happened(trap); | |
2834 | ||
ec257165 | 2835 | spin_lock(&vc->lock); |
371fefd6 | 2836 | /* prevent other vcpu threads from doing kvmppc_start_thread() now */ |
19ccb76a | 2837 | vc->vcore_state = VCORE_EXITING; |
371fefd6 | 2838 | |
19ccb76a | 2839 | /* wait for secondary threads to finish writing their state to memory */ |
5d5b99cd | 2840 | kvmppc_wait_for_nap(); |
b4deba5c PM |
2841 | |
2842 | /* Return to whole-core mode if we split the core earlier */ | |
2843 | if (split > 1) { | |
2844 | unsigned long hid0 = mfspr(SPRN_HID0); | |
2845 | unsigned long loops = 0; | |
2846 | ||
2847 | hid0 &= ~HID0_POWER8_DYNLPARDIS; | |
2848 | stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; | |
2849 | mb(); | |
2850 | mtspr(SPRN_HID0, hid0); | |
2851 | isync(); | |
2852 | for (;;) { | |
2853 | hid0 = mfspr(SPRN_HID0); | |
2854 | if (!(hid0 & stat_bit)) | |
2855 | break; | |
2856 | cpu_relax(); | |
2857 | ++loops; | |
2858 | } | |
2859 | split_info.do_nap = 0; | |
2860 | } | |
2861 | ||
8b24e69f PM |
2862 | kvmppc_set_host_core(pcpu); |
2863 | ||
2864 | local_irq_enable(); | |
2865 | ||
b4deba5c | 2866 | /* Let secondaries go back to the offline loop */ |
45c940ba | 2867 | for (i = 0; i < controlled_threads; ++i) { |
b4deba5c PM |
2868 | kvmppc_release_hwthread(pcpu + i); |
2869 | if (sip && sip->napped[i]) | |
2870 | kvmppc_ipi_thread(pcpu + i); | |
a29ebeaf | 2871 | cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); |
b4deba5c PM |
2872 | } |
2873 | ||
371fefd6 | 2874 | spin_unlock(&vc->lock); |
2c9097e4 | 2875 | |
371fefd6 PM |
2876 | /* make sure updates to secondary vcpu structs are visible now */ |
2877 | smp_mb(); | |
de56a948 | 2878 | |
898b25b2 PM |
2879 | for (sub = 0; sub < core_info.n_subcores; ++sub) { |
2880 | pvc = core_info.vc[sub]; | |
2881 | post_guest_process(pvc, pvc == vc); | |
2882 | } | |
de56a948 | 2883 | |
913d3ff9 | 2884 | spin_lock(&vc->lock); |
ec257165 | 2885 | preempt_enable(); |
de56a948 PM |
2886 | |
2887 | out: | |
19ccb76a | 2888 | vc->vcore_state = VCORE_INACTIVE; |
3c78f78a | 2889 | trace_kvmppc_run_core(vc, 1); |
371fefd6 PM |
2890 | } |
2891 | ||
19ccb76a PM |
2892 | /* |
2893 | * Wait for some other vcpu thread to execute us, and | |
2894 | * wake us up when we need to handle something in the host. | |
2895 | */ | |
ec257165 PM |
2896 | static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, |
2897 | struct kvm_vcpu *vcpu, int wait_state) | |
371fefd6 | 2898 | { |
371fefd6 PM |
2899 | DEFINE_WAIT(wait); |
2900 | ||
19ccb76a | 2901 | prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); |
ec257165 PM |
2902 | if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
2903 | spin_unlock(&vc->lock); | |
19ccb76a | 2904 | schedule(); |
ec257165 PM |
2905 | spin_lock(&vc->lock); |
2906 | } | |
19ccb76a PM |
2907 | finish_wait(&vcpu->arch.cpu_run, &wait); |
2908 | } | |
2909 | ||
0cda69dd SJS |
2910 | static void grow_halt_poll_ns(struct kvmppc_vcore *vc) |
2911 | { | |
2912 | /* 10us base */ | |
2913 | if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) | |
2914 | vc->halt_poll_ns = 10000; | |
2915 | else | |
2916 | vc->halt_poll_ns *= halt_poll_ns_grow; | |
0cda69dd SJS |
2917 | } |
2918 | ||
2919 | static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) | |
2920 | { | |
2921 | if (halt_poll_ns_shrink == 0) | |
2922 | vc->halt_poll_ns = 0; | |
2923 | else | |
2924 | vc->halt_poll_ns /= halt_poll_ns_shrink; | |
2925 | } | |
2926 | ||
ee3308a2 PM |
2927 | #ifdef CONFIG_KVM_XICS |
2928 | static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) | |
2929 | { | |
2930 | if (!xive_enabled()) | |
2931 | return false; | |
2932 | return vcpu->arch.xive_saved_state.pipr < | |
2933 | vcpu->arch.xive_saved_state.cppr; | |
2934 | } | |
2935 | #else | |
2936 | static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) | |
2937 | { | |
2938 | return false; | |
2939 | } | |
2940 | #endif /* CONFIG_KVM_XICS */ | |
2941 | ||
1da4e2f4 PM |
2942 | static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) |
2943 | { | |
2944 | if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || | |
ee3308a2 | 2945 | kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) |
1da4e2f4 PM |
2946 | return true; |
2947 | ||
2948 | return false; | |
2949 | } | |
2950 | ||
908a0935 SJS |
2951 | /* |
2952 | * Check to see if any of the runnable vcpus on the vcore have pending | |
0cda69dd SJS |
2953 | * exceptions or are no longer ceded |
2954 | */ | |
2955 | static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) | |
2956 | { | |
2957 | struct kvm_vcpu *vcpu; | |
2958 | int i; | |
2959 | ||
2960 | for_each_runnable_thread(i, vcpu, vc) { | |
1da4e2f4 | 2961 | if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) |
0cda69dd SJS |
2962 | return 1; |
2963 | } | |
2964 | ||
2965 | return 0; | |
2966 | } | |
2967 | ||
19ccb76a PM |
2968 | /* |
2969 | * All the vcpus in this vcore are idle, so wait for a decrementer | |
2970 | * or external interrupt to one of the vcpus. vc->lock is held. | |
2971 | */ | |
2972 | static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) | |
2973 | { | |
2a27f514 | 2974 | ktime_t cur, start_poll, start_wait; |
0cda69dd | 2975 | int do_sleep = 1; |
0cda69dd | 2976 | u64 block_ns; |
8577370f | 2977 | DECLARE_SWAITQUEUE(wait); |
1bc5d59c | 2978 | |
0cda69dd | 2979 | /* Poll for pending exceptions and ceded state */ |
2a27f514 | 2980 | cur = start_poll = ktime_get(); |
0cda69dd | 2981 | if (vc->halt_poll_ns) { |
2a27f514 SJS |
2982 | ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); |
2983 | ++vc->runner->stat.halt_attempted_poll; | |
1bc5d59c | 2984 | |
0cda69dd SJS |
2985 | vc->vcore_state = VCORE_POLLING; |
2986 | spin_unlock(&vc->lock); | |
2987 | ||
2988 | do { | |
2989 | if (kvmppc_vcore_check_block(vc)) { | |
2990 | do_sleep = 0; | |
2991 | break; | |
2992 | } | |
2993 | cur = ktime_get(); | |
2994 | } while (single_task_running() && ktime_before(cur, stop)); | |
2995 | ||
2996 | spin_lock(&vc->lock); | |
2997 | vc->vcore_state = VCORE_INACTIVE; | |
2998 | ||
2a27f514 SJS |
2999 | if (!do_sleep) { |
3000 | ++vc->runner->stat.halt_successful_poll; | |
0cda69dd | 3001 | goto out; |
2a27f514 | 3002 | } |
1bc5d59c SW |
3003 | } |
3004 | ||
0cda69dd SJS |
3005 | prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); |
3006 | ||
3007 | if (kvmppc_vcore_check_block(vc)) { | |
8577370f | 3008 | finish_swait(&vc->wq, &wait); |
0cda69dd | 3009 | do_sleep = 0; |
2a27f514 SJS |
3010 | /* If we polled, count this as a successful poll */ |
3011 | if (vc->halt_poll_ns) | |
3012 | ++vc->runner->stat.halt_successful_poll; | |
0cda69dd | 3013 | goto out; |
1bc5d59c SW |
3014 | } |
3015 | ||
2a27f514 SJS |
3016 | start_wait = ktime_get(); |
3017 | ||
19ccb76a | 3018 | vc->vcore_state = VCORE_SLEEPING; |
3c78f78a | 3019 | trace_kvmppc_vcore_blocked(vc, 0); |
19ccb76a | 3020 | spin_unlock(&vc->lock); |
913d3ff9 | 3021 | schedule(); |
8577370f | 3022 | finish_swait(&vc->wq, &wait); |
19ccb76a PM |
3023 | spin_lock(&vc->lock); |
3024 | vc->vcore_state = VCORE_INACTIVE; | |
3c78f78a | 3025 | trace_kvmppc_vcore_blocked(vc, 1); |
2a27f514 | 3026 | ++vc->runner->stat.halt_successful_wait; |
0cda69dd SJS |
3027 | |
3028 | cur = ktime_get(); | |
3029 | ||
3030 | out: | |
2a27f514 SJS |
3031 | block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); |
3032 | ||
3033 | /* Attribute wait time */ | |
3034 | if (do_sleep) { | |
3035 | vc->runner->stat.halt_wait_ns += | |
3036 | ktime_to_ns(cur) - ktime_to_ns(start_wait); | |
3037 | /* Attribute failed poll time */ | |
3038 | if (vc->halt_poll_ns) | |
3039 | vc->runner->stat.halt_poll_fail_ns += | |
3040 | ktime_to_ns(start_wait) - | |
3041 | ktime_to_ns(start_poll); | |
3042 | } else { | |
3043 | /* Attribute successful poll time */ | |
3044 | if (vc->halt_poll_ns) | |
3045 | vc->runner->stat.halt_poll_success_ns += | |
3046 | ktime_to_ns(cur) - | |
3047 | ktime_to_ns(start_poll); | |
3048 | } | |
0cda69dd SJS |
3049 | |
3050 | /* Adjust poll time */ | |
307d93e4 | 3051 | if (halt_poll_ns) { |
0cda69dd SJS |
3052 | if (block_ns <= vc->halt_poll_ns) |
3053 | ; | |
3054 | /* We slept and blocked for longer than the max halt time */ | |
307d93e4 | 3055 | else if (vc->halt_poll_ns && block_ns > halt_poll_ns) |
0cda69dd SJS |
3056 | shrink_halt_poll_ns(vc); |
3057 | /* We slept and our poll time is too small */ | |
307d93e4 SJS |
3058 | else if (vc->halt_poll_ns < halt_poll_ns && |
3059 | block_ns < halt_poll_ns) | |
0cda69dd | 3060 | grow_halt_poll_ns(vc); |
e03f3921 SJS |
3061 | if (vc->halt_poll_ns > halt_poll_ns) |
3062 | vc->halt_poll_ns = halt_poll_ns; | |
0cda69dd SJS |
3063 | } else |
3064 | vc->halt_poll_ns = 0; | |
3065 | ||
3066 | trace_kvmppc_vcore_wakeup(do_sleep, block_ns); | |
19ccb76a | 3067 | } |
371fefd6 | 3068 | |
19ccb76a PM |
3069 | static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
3070 | { | |
7b5f8272 | 3071 | int n_ceded, i; |
19ccb76a | 3072 | struct kvmppc_vcore *vc; |
7b5f8272 | 3073 | struct kvm_vcpu *v; |
9e368f29 | 3074 | |
3c78f78a SW |
3075 | trace_kvmppc_run_vcpu_enter(vcpu); |
3076 | ||
371fefd6 PM |
3077 | kvm_run->exit_reason = 0; |
3078 | vcpu->arch.ret = RESUME_GUEST; | |
3079 | vcpu->arch.trap = 0; | |
2f12f034 | 3080 | kvmppc_update_vpas(vcpu); |
371fefd6 | 3081 | |
371fefd6 PM |
3082 | /* |
3083 | * Synchronize with other threads in this virtual core | |
3084 | */ | |
3085 | vc = vcpu->arch.vcore; | |
3086 | spin_lock(&vc->lock); | |
19ccb76a | 3087 | vcpu->arch.ceded = 0; |
371fefd6 PM |
3088 | vcpu->arch.run_task = current; |
3089 | vcpu->arch.kvm_run = kvm_run; | |
c7b67670 | 3090 | vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); |
19ccb76a | 3091 | vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; |
c7b67670 | 3092 | vcpu->arch.busy_preempt = TB_NIL; |
7b5f8272 | 3093 | WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); |
371fefd6 PM |
3094 | ++vc->n_runnable; |
3095 | ||
19ccb76a PM |
3096 | /* |
3097 | * This happens the first time this is called for a vcpu. | |
3098 | * If the vcore is already running, we may be able to start | |
3099 | * this thread straight away and have it join in. | |
3100 | */ | |
8455d79e | 3101 | if (!signal_pending(current)) { |
ec257165 | 3102 | if (vc->vcore_state == VCORE_PIGGYBACK) { |
898b25b2 PM |
3103 | if (spin_trylock(&vc->lock)) { |
3104 | if (vc->vcore_state == VCORE_RUNNING && | |
3105 | !VCORE_IS_EXITING(vc)) { | |
ec257165 | 3106 | kvmppc_create_dtl_entry(vcpu, vc); |
b4deba5c | 3107 | kvmppc_start_thread(vcpu, vc); |
ec257165 PM |
3108 | trace_kvm_guest_enter(vcpu); |
3109 | } | |
898b25b2 | 3110 | spin_unlock(&vc->lock); |
ec257165 PM |
3111 | } |
3112 | } else if (vc->vcore_state == VCORE_RUNNING && | |
3113 | !VCORE_IS_EXITING(vc)) { | |
2f12f034 | 3114 | kvmppc_create_dtl_entry(vcpu, vc); |
b4deba5c | 3115 | kvmppc_start_thread(vcpu, vc); |
3c78f78a | 3116 | trace_kvm_guest_enter(vcpu); |
8455d79e | 3117 | } else if (vc->vcore_state == VCORE_SLEEPING) { |
8577370f | 3118 | swake_up(&vc->wq); |
371fefd6 PM |
3119 | } |
3120 | ||
8455d79e | 3121 | } |
371fefd6 | 3122 | |
19ccb76a PM |
3123 | while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
3124 | !signal_pending(current)) { | |
ec257165 PM |
3125 | if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) |
3126 | kvmppc_vcore_end_preempt(vc); | |
3127 | ||
8455d79e | 3128 | if (vc->vcore_state != VCORE_INACTIVE) { |
ec257165 | 3129 | kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); |
19ccb76a PM |
3130 | continue; |
3131 | } | |
7b5f8272 | 3132 | for_each_runnable_thread(i, v, vc) { |
7e28e60e | 3133 | kvmppc_core_prepare_to_enter(v); |
19ccb76a PM |
3134 | if (signal_pending(v->arch.run_task)) { |
3135 | kvmppc_remove_runnable(vc, v); | |
3136 | v->stat.signal_exits++; | |
3137 | v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; | |
3138 | v->arch.ret = -EINTR; | |
3139 | wake_up(&v->arch.cpu_run); | |
3140 | } | |
3141 | } | |
8455d79e PM |
3142 | if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) |
3143 | break; | |
8455d79e | 3144 | n_ceded = 0; |
7b5f8272 | 3145 | for_each_runnable_thread(i, v, vc) { |
1da4e2f4 | 3146 | if (!kvmppc_vcpu_woken(v)) |
8455d79e | 3147 | n_ceded += v->arch.ceded; |
4619ac88 PM |
3148 | else |
3149 | v->arch.ceded = 0; | |
3150 | } | |
25fedfca PM |
3151 | vc->runner = vcpu; |
3152 | if (n_ceded == vc->n_runnable) { | |
8455d79e | 3153 | kvmppc_vcore_blocked(vc); |
c56dadf3 | 3154 | } else if (need_resched()) { |
ec257165 | 3155 | kvmppc_vcore_preempt(vc); |
25fedfca PM |
3156 | /* Let something else run */ |
3157 | cond_resched_lock(&vc->lock); | |
ec257165 PM |
3158 | if (vc->vcore_state == VCORE_PREEMPT) |
3159 | kvmppc_vcore_end_preempt(vc); | |
25fedfca | 3160 | } else { |
8455d79e | 3161 | kvmppc_run_core(vc); |
25fedfca | 3162 | } |
0456ec4f | 3163 | vc->runner = NULL; |
19ccb76a | 3164 | } |
371fefd6 | 3165 | |
8455d79e PM |
3166 | while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && |
3167 | (vc->vcore_state == VCORE_RUNNING || | |
5fc3e64f PM |
3168 | vc->vcore_state == VCORE_EXITING || |
3169 | vc->vcore_state == VCORE_PIGGYBACK)) | |
ec257165 | 3170 | kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); |
8455d79e | 3171 | |
5fc3e64f PM |
3172 | if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) |
3173 | kvmppc_vcore_end_preempt(vc); | |
3174 | ||
8455d79e PM |
3175 | if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { |
3176 | kvmppc_remove_runnable(vc, vcpu); | |
3177 | vcpu->stat.signal_exits++; | |
3178 | kvm_run->exit_reason = KVM_EXIT_INTR; | |
3179 | vcpu->arch.ret = -EINTR; | |
3180 | } | |
3181 | ||
3182 | if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { | |
3183 | /* Wake up some vcpu to run the core */ | |
7b5f8272 SJS |
3184 | i = -1; |
3185 | v = next_runnable_thread(vc, &i); | |
8455d79e | 3186 | wake_up(&v->arch.cpu_run); |
371fefd6 PM |
3187 | } |
3188 | ||
3c78f78a | 3189 | trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); |
371fefd6 | 3190 | spin_unlock(&vc->lock); |
371fefd6 | 3191 | return vcpu->arch.ret; |
de56a948 PM |
3192 | } |
3193 | ||
3a167bea | 3194 | static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) |
a8606e20 PM |
3195 | { |
3196 | int r; | |
913d3ff9 | 3197 | int srcu_idx; |
ca8efa1d | 3198 | unsigned long ebb_regs[3] = {}; /* shut up GCC */ |
4c3bb4cc PM |
3199 | unsigned long user_tar = 0; |
3200 | unsigned int user_vrsave; | |
a8606e20 | 3201 | |
af8f38b3 AG |
3202 | if (!vcpu->arch.sane) { |
3203 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
3204 | return -EINVAL; | |
3205 | } | |
3206 | ||
46a704f8 PM |
3207 | /* |
3208 | * Don't allow entry with a suspended transaction, because | |
3209 | * the guest entry/exit code will lose it. | |
3210 | * If the guest has TM enabled, save away their TM-related SPRs | |
3211 | * (they will get restored by the TM unavailable interrupt). | |
3212 | */ | |
3213 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM | |
3214 | if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && | |
3215 | (current->thread.regs->msr & MSR_TM)) { | |
3216 | if (MSR_TM_ACTIVE(current->thread.regs->msr)) { | |
3217 | run->exit_reason = KVM_EXIT_FAIL_ENTRY; | |
3218 | run->fail_entry.hardware_entry_failure_reason = 0; | |
3219 | return -EINVAL; | |
3220 | } | |
e4705715 PM |
3221 | /* Enable TM so we can read the TM SPRs */ |
3222 | mtmsr(mfmsr() | MSR_TM); | |
46a704f8 PM |
3223 | current->thread.tm_tfhar = mfspr(SPRN_TFHAR); |
3224 | current->thread.tm_tfiar = mfspr(SPRN_TFIAR); | |
3225 | current->thread.tm_texasr = mfspr(SPRN_TEXASR); | |
3226 | current->thread.regs->msr &= ~MSR_TM; | |
3227 | } | |
3228 | #endif | |
3229 | ||
25051b5a SW |
3230 | kvmppc_core_prepare_to_enter(vcpu); |
3231 | ||
19ccb76a PM |
3232 | /* No need to go into the guest when all we'll do is come back out */ |
3233 | if (signal_pending(current)) { | |
3234 | run->exit_reason = KVM_EXIT_INTR; | |
3235 | return -EINTR; | |
3236 | } | |
3237 | ||
32fad281 | 3238 | atomic_inc(&vcpu->kvm->arch.vcpus_running); |
31037eca | 3239 | /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ |
32fad281 PM |
3240 | smp_mb(); |
3241 | ||
c17b98cf | 3242 | /* On the first time here, set up HTAB and VRMA */ |
8cf4ecc0 | 3243 | if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) { |
32fad281 | 3244 | r = kvmppc_hv_setup_htab_rma(vcpu); |
c77162de | 3245 | if (r) |
32fad281 | 3246 | goto out; |
c77162de | 3247 | } |
19ccb76a | 3248 | |
579e633e AB |
3249 | flush_all_to_thread(current); |
3250 | ||
4c3bb4cc | 3251 | /* Save userspace EBB and other register values */ |
ca8efa1d PM |
3252 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
3253 | ebb_regs[0] = mfspr(SPRN_EBBHR); | |
3254 | ebb_regs[1] = mfspr(SPRN_EBBRR); | |
3255 | ebb_regs[2] = mfspr(SPRN_BESCR); | |
4c3bb4cc | 3256 | user_tar = mfspr(SPRN_TAR); |
ca8efa1d | 3257 | } |
4c3bb4cc | 3258 | user_vrsave = mfspr(SPRN_VRSAVE); |
ca8efa1d | 3259 | |
19ccb76a | 3260 | vcpu->arch.wqp = &vcpu->arch.vcore->wq; |
342d3db7 | 3261 | vcpu->arch.pgdir = current->mm->pgd; |
c7b67670 | 3262 | vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; |
19ccb76a | 3263 | |
a8606e20 PM |
3264 | do { |
3265 | r = kvmppc_run_vcpu(run, vcpu); | |
3266 | ||
3267 | if (run->exit_reason == KVM_EXIT_PAPR_HCALL && | |
3268 | !(vcpu->arch.shregs.msr & MSR_PR)) { | |
3c78f78a | 3269 | trace_kvm_hcall_enter(vcpu); |
a8606e20 | 3270 | r = kvmppc_pseries_do_hcall(vcpu); |
3c78f78a | 3271 | trace_kvm_hcall_exit(vcpu, r); |
7e28e60e | 3272 | kvmppc_core_prepare_to_enter(vcpu); |
913d3ff9 PM |
3273 | } else if (r == RESUME_PAGE_FAULT) { |
3274 | srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | |
3275 | r = kvmppc_book3s_hv_page_fault(run, vcpu, | |
3276 | vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); | |
3277 | srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); | |
5af50993 BH |
3278 | } else if (r == RESUME_PASSTHROUGH) { |
3279 | if (WARN_ON(xive_enabled())) | |
3280 | r = H_SUCCESS; | |
3281 | else | |
3282 | r = kvmppc_xics_rm_complete(vcpu, 0); | |
3283 | } | |
e59d24e6 | 3284 | } while (is_kvmppc_resume_guest(r)); |
32fad281 | 3285 | |
4c3bb4cc | 3286 | /* Restore userspace EBB and other register values */ |
ca8efa1d PM |
3287 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) { |
3288 | mtspr(SPRN_EBBHR, ebb_regs[0]); | |
3289 | mtspr(SPRN_EBBRR, ebb_regs[1]); | |
3290 | mtspr(SPRN_BESCR, ebb_regs[2]); | |
4c3bb4cc PM |
3291 | mtspr(SPRN_TAR, user_tar); |
3292 | mtspr(SPRN_FSCR, current->thread.fscr); | |
ca8efa1d | 3293 | } |
4c3bb4cc | 3294 | mtspr(SPRN_VRSAVE, user_vrsave); |
ca8efa1d | 3295 | |
32fad281 | 3296 | out: |
c7b67670 | 3297 | vcpu->arch.state = KVMPPC_VCPU_NOTREADY; |
32fad281 | 3298 | atomic_dec(&vcpu->kvm->arch.vcpus_running); |
a8606e20 PM |
3299 | return r; |
3300 | } | |
3301 | ||
5b74716e BH |
3302 | static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, |
3303 | int linux_psize) | |
3304 | { | |
3305 | struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; | |
3306 | ||
3307 | if (!def->shift) | |
3308 | return; | |
3309 | (*sps)->page_shift = def->shift; | |
3310 | (*sps)->slb_enc = def->sllp; | |
3311 | (*sps)->enc[0].page_shift = def->shift; | |
b1022fbd | 3312 | (*sps)->enc[0].pte_enc = def->penc[linux_psize]; |
1f365bb0 AK |
3313 | /* |
3314 | * Add 16MB MPSS support if host supports it | |
3315 | */ | |
3316 | if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { | |
3317 | (*sps)->enc[1].page_shift = 24; | |
3318 | (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; | |
3319 | } | |
5b74716e BH |
3320 | (*sps)++; |
3321 | } | |
3322 | ||
3a167bea AK |
3323 | static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, |
3324 | struct kvm_ppc_smmu_info *info) | |
5b74716e BH |
3325 | { |
3326 | struct kvm_ppc_one_seg_page_size *sps; | |
3327 | ||
8cf4ecc0 PM |
3328 | /* |
3329 | * Since we don't yet support HPT guests on a radix host, | |
3330 | * return an error if the host uses radix. | |
3331 | */ | |
3332 | if (radix_enabled()) | |
3333 | return -EINVAL; | |
3334 | ||
e3bfed1d PM |
3335 | /* |
3336 | * POWER7, POWER8 and POWER9 all support 32 storage keys for data. | |
3337 | * POWER7 doesn't support keys for instruction accesses, | |
3338 | * POWER8 and POWER9 do. | |
3339 | */ | |
3340 | info->data_keys = 32; | |
3341 | info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; | |
3342 | ||
5b74716e BH |
3343 | info->flags = KVM_PPC_PAGE_SIZES_REAL; |
3344 | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) | |
3345 | info->flags |= KVM_PPC_1T_SEGMENTS; | |
3346 | info->slb_size = mmu_slb_size; | |
3347 | ||
3348 | /* We only support these sizes for now, and no muti-size segments */ | |
3349 | sps = &info->sps[0]; | |
3350 | kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); | |
3351 | kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); | |
3352 | kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); | |
3353 | ||
3354 | return 0; | |
3355 | } | |
3356 | ||
82ed3616 PM |
3357 | /* |
3358 | * Get (and clear) the dirty memory log for a memory slot. | |
3359 | */ | |
3a167bea AK |
3360 | static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, |
3361 | struct kvm_dirty_log *log) | |
82ed3616 | 3362 | { |
9f6b8029 | 3363 | struct kvm_memslots *slots; |
82ed3616 | 3364 | struct kvm_memory_slot *memslot; |
8f7b79b8 | 3365 | int i, r; |
82ed3616 | 3366 | unsigned long n; |
8f7b79b8 PM |
3367 | unsigned long *buf; |
3368 | struct kvm_vcpu *vcpu; | |
82ed3616 PM |
3369 | |
3370 | mutex_lock(&kvm->slots_lock); | |
3371 | ||
3372 | r = -EINVAL; | |
bbacc0c1 | 3373 | if (log->slot >= KVM_USER_MEM_SLOTS) |
82ed3616 PM |
3374 | goto out; |
3375 | ||
9f6b8029 PB |
3376 | slots = kvm_memslots(kvm); |
3377 | memslot = id_to_memslot(slots, log->slot); | |
82ed3616 PM |
3378 | r = -ENOENT; |
3379 | if (!memslot->dirty_bitmap) | |
3380 | goto out; | |
3381 | ||
8f7b79b8 PM |
3382 | /* |
3383 | * Use second half of bitmap area because radix accumulates | |
3384 | * bits in the first half. | |
3385 | */ | |
82ed3616 | 3386 | n = kvm_dirty_bitmap_bytes(memslot); |
8f7b79b8 PM |
3387 | buf = memslot->dirty_bitmap + n / sizeof(long); |
3388 | memset(buf, 0, n); | |
82ed3616 | 3389 | |
8f7b79b8 PM |
3390 | if (kvm_is_radix(kvm)) |
3391 | r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); | |
3392 | else | |
3393 | r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); | |
82ed3616 PM |
3394 | if (r) |
3395 | goto out; | |
3396 | ||
8f7b79b8 PM |
3397 | /* Harvest dirty bits from VPA and DTL updates */ |
3398 | /* Note: we never modify the SLB shadow buffer areas */ | |
3399 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
3400 | spin_lock(&vcpu->arch.vpa_update_lock); | |
3401 | kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); | |
3402 | kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); | |
3403 | spin_unlock(&vcpu->arch.vpa_update_lock); | |
3404 | } | |
3405 | ||
82ed3616 | 3406 | r = -EFAULT; |
8f7b79b8 | 3407 | if (copy_to_user(log->dirty_bitmap, buf, n)) |
82ed3616 PM |
3408 | goto out; |
3409 | ||
3410 | r = 0; | |
3411 | out: | |
3412 | mutex_unlock(&kvm->slots_lock); | |
3413 | return r; | |
3414 | } | |
3415 | ||
3a167bea AK |
3416 | static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, |
3417 | struct kvm_memory_slot *dont) | |
a66b48c3 PM |
3418 | { |
3419 | if (!dont || free->arch.rmap != dont->arch.rmap) { | |
3420 | vfree(free->arch.rmap); | |
3421 | free->arch.rmap = NULL; | |
b2b2f165 | 3422 | } |
a66b48c3 PM |
3423 | } |
3424 | ||
3a167bea AK |
3425 | static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, |
3426 | unsigned long npages) | |
a66b48c3 | 3427 | { |
8cf4ecc0 PM |
3428 | /* |
3429 | * For now, if radix_enabled() then we only support radix guests, | |
3430 | * and in that case we don't need the rmap array. | |
3431 | */ | |
3432 | if (radix_enabled()) { | |
3433 | slot->arch.rmap = NULL; | |
3434 | return 0; | |
3435 | } | |
3436 | ||
a66b48c3 PM |
3437 | slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); |
3438 | if (!slot->arch.rmap) | |
3439 | return -ENOMEM; | |
aa04b4cc | 3440 | |
c77162de PM |
3441 | return 0; |
3442 | } | |
aa04b4cc | 3443 | |
3a167bea AK |
3444 | static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, |
3445 | struct kvm_memory_slot *memslot, | |
09170a49 | 3446 | const struct kvm_userspace_memory_region *mem) |
c77162de | 3447 | { |
a66b48c3 | 3448 | return 0; |
c77162de PM |
3449 | } |
3450 | ||
3a167bea | 3451 | static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, |
09170a49 | 3452 | const struct kvm_userspace_memory_region *mem, |
f36f3f28 PB |
3453 | const struct kvm_memory_slot *old, |
3454 | const struct kvm_memory_slot *new) | |
c77162de | 3455 | { |
dfe49dbd | 3456 | unsigned long npages = mem->memory_size >> PAGE_SHIFT; |
9f6b8029 | 3457 | struct kvm_memslots *slots; |
dfe49dbd PM |
3458 | struct kvm_memory_slot *memslot; |
3459 | ||
a56ee9f8 YX |
3460 | /* |
3461 | * If we are making a new memslot, it might make | |
3462 | * some address that was previously cached as emulated | |
3463 | * MMIO be no longer emulated MMIO, so invalidate | |
3464 | * all the caches of emulated MMIO translations. | |
3465 | */ | |
3466 | if (npages) | |
3467 | atomic64_inc(&kvm->arch.mmio_update); | |
3468 | ||
8f7b79b8 | 3469 | if (npages && old->npages && !kvm_is_radix(kvm)) { |
dfe49dbd PM |
3470 | /* |
3471 | * If modifying a memslot, reset all the rmap dirty bits. | |
3472 | * If this is a new memslot, we don't need to do anything | |
3473 | * since the rmap array starts out as all zeroes, | |
3474 | * i.e. no pages are dirty. | |
3475 | */ | |
9f6b8029 PB |
3476 | slots = kvm_memslots(kvm); |
3477 | memslot = id_to_memslot(slots, mem->slot); | |
8f7b79b8 | 3478 | kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL); |
dfe49dbd | 3479 | } |
c77162de PM |
3480 | } |
3481 | ||
a0144e2a PM |
3482 | /* |
3483 | * Update LPCR values in kvm->arch and in vcores. | |
3484 | * Caller must hold kvm->lock. | |
3485 | */ | |
3486 | void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) | |
3487 | { | |
3488 | long int i; | |
3489 | u32 cores_done = 0; | |
3490 | ||
3491 | if ((kvm->arch.lpcr & mask) == lpcr) | |
3492 | return; | |
3493 | ||
3494 | kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; | |
3495 | ||
3496 | for (i = 0; i < KVM_MAX_VCORES; ++i) { | |
3497 | struct kvmppc_vcore *vc = kvm->arch.vcores[i]; | |
3498 | if (!vc) | |
3499 | continue; | |
3500 | spin_lock(&vc->lock); | |
3501 | vc->lpcr = (vc->lpcr & ~mask) | lpcr; | |
3502 | spin_unlock(&vc->lock); | |
3503 | if (++cores_done >= kvm->arch.online_vcores) | |
3504 | break; | |
3505 | } | |
3506 | } | |
3507 | ||
3a167bea AK |
3508 | static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) |
3509 | { | |
3510 | return; | |
3511 | } | |
3512 | ||
7a84084c PM |
3513 | static void kvmppc_setup_partition_table(struct kvm *kvm) |
3514 | { | |
3515 | unsigned long dw0, dw1; | |
3516 | ||
8cf4ecc0 PM |
3517 | if (!kvm_is_radix(kvm)) { |
3518 | /* PS field - page size for VRMA */ | |
3519 | dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | | |
3520 | ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); | |
3521 | /* HTABSIZE and HTABORG fields */ | |
3522 | dw0 |= kvm->arch.sdr1; | |
7a84084c | 3523 | |
8cf4ecc0 PM |
3524 | /* Second dword as set by userspace */ |
3525 | dw1 = kvm->arch.process_table; | |
3526 | } else { | |
3527 | dw0 = PATB_HR | radix__get_tree_size() | | |
3528 | __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; | |
3529 | dw1 = PATB_GR | kvm->arch.process_table; | |
3530 | } | |
7a84084c PM |
3531 | |
3532 | mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); | |
3533 | } | |
3534 | ||
32fad281 | 3535 | static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) |
c77162de PM |
3536 | { |
3537 | int err = 0; | |
3538 | struct kvm *kvm = vcpu->kvm; | |
c77162de PM |
3539 | unsigned long hva; |
3540 | struct kvm_memory_slot *memslot; | |
3541 | struct vm_area_struct *vma; | |
a0144e2a | 3542 | unsigned long lpcr = 0, senc; |
c77162de | 3543 | unsigned long psize, porder; |
2c9097e4 | 3544 | int srcu_idx; |
c77162de PM |
3545 | |
3546 | mutex_lock(&kvm->lock); | |
31037eca | 3547 | if (kvm->arch.hpte_setup_done) |
c77162de | 3548 | goto out; /* another vcpu beat us to it */ |
aa04b4cc | 3549 | |
32fad281 | 3550 | /* Allocate hashed page table (if not done already) and reset it */ |
3f9d4f5a | 3551 | if (!kvm->arch.hpt.virt) { |
aae0777f DG |
3552 | int order = KVM_DEFAULT_HPT_ORDER; |
3553 | struct kvm_hpt_info info; | |
3554 | ||
3555 | err = kvmppc_allocate_hpt(&info, order); | |
3556 | /* If we get here, it means userspace didn't specify a | |
3557 | * size explicitly. So, try successively smaller | |
3558 | * sizes if the default failed. */ | |
3559 | while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) | |
3560 | err = kvmppc_allocate_hpt(&info, order); | |
3561 | ||
3562 | if (err < 0) { | |
32fad281 PM |
3563 | pr_err("KVM: Couldn't alloc HPT\n"); |
3564 | goto out; | |
3565 | } | |
aae0777f DG |
3566 | |
3567 | kvmppc_set_hpt(kvm, &info); | |
32fad281 PM |
3568 | } |
3569 | ||
c77162de | 3570 | /* Look up the memslot for guest physical address 0 */ |
2c9097e4 | 3571 | srcu_idx = srcu_read_lock(&kvm->srcu); |
c77162de | 3572 | memslot = gfn_to_memslot(kvm, 0); |
aa04b4cc | 3573 | |
c77162de PM |
3574 | /* We must have some memory at 0 by now */ |
3575 | err = -EINVAL; | |
3576 | if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | |
2c9097e4 | 3577 | goto out_srcu; |
c77162de PM |
3578 | |
3579 | /* Look up the VMA for the start of this memory slot */ | |
3580 | hva = memslot->userspace_addr; | |
3581 | down_read(¤t->mm->mmap_sem); | |
3582 | vma = find_vma(current->mm, hva); | |
3583 | if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) | |
3584 | goto up_out; | |
3585 | ||
3586 | psize = vma_kernel_pagesize(vma); | |
da9d1d7f | 3587 | porder = __ilog2(psize); |
c77162de | 3588 | |
c77162de PM |
3589 | up_read(¤t->mm->mmap_sem); |
3590 | ||
c17b98cf PM |
3591 | /* We can handle 4k, 64k or 16M pages in the VRMA */ |
3592 | err = -EINVAL; | |
3593 | if (!(psize == 0x1000 || psize == 0x10000 || | |
3594 | psize == 0x1000000)) | |
3595 | goto out_srcu; | |
c77162de | 3596 | |
c17b98cf PM |
3597 | senc = slb_pgsize_encoding(psize); |
3598 | kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | | |
3599 | (VRMA_VSID << SLB_VSID_SHIFT_1T); | |
c17b98cf PM |
3600 | /* Create HPTEs in the hash page table for the VRMA */ |
3601 | kvmppc_map_vrma(vcpu, memslot, porder); | |
aa04b4cc | 3602 | |
7a84084c PM |
3603 | /* Update VRMASD field in the LPCR */ |
3604 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) { | |
3605 | /* the -4 is to account for senc values starting at 0x10 */ | |
3606 | lpcr = senc << (LPCR_VRMASD_SH - 4); | |
3607 | kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); | |
3608 | } else { | |
3609 | kvmppc_setup_partition_table(kvm); | |
3610 | } | |
a0144e2a | 3611 | |
31037eca | 3612 | /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ |
c77162de | 3613 | smp_wmb(); |
31037eca | 3614 | kvm->arch.hpte_setup_done = 1; |
c77162de | 3615 | err = 0; |
2c9097e4 PM |
3616 | out_srcu: |
3617 | srcu_read_unlock(&kvm->srcu, srcu_idx); | |
c77162de PM |
3618 | out: |
3619 | mutex_unlock(&kvm->lock); | |
3620 | return err; | |
b2b2f165 | 3621 | |
c77162de PM |
3622 | up_out: |
3623 | up_read(¤t->mm->mmap_sem); | |
505d6421 | 3624 | goto out_srcu; |
de56a948 PM |
3625 | } |
3626 | ||
79b6c247 SW |
3627 | #ifdef CONFIG_KVM_XICS |
3628 | /* | |
3629 | * Allocate a per-core structure for managing state about which cores are | |
3630 | * running in the host versus the guest and for exchanging data between | |
3631 | * real mode KVM and CPU running in the host. | |
3632 | * This is only done for the first VM. | |
3633 | * The allocated structure stays even if all VMs have stopped. | |
3634 | * It is only freed when the kvm-hv module is unloaded. | |
3635 | * It's OK for this routine to fail, we just don't support host | |
3636 | * core operations like redirecting H_IPI wakeups. | |
3637 | */ | |
3638 | void kvmppc_alloc_host_rm_ops(void) | |
3639 | { | |
3640 | struct kvmppc_host_rm_ops *ops; | |
3641 | unsigned long l_ops; | |
3642 | int cpu, core; | |
3643 | int size; | |
3644 | ||
3645 | /* Not the first time here ? */ | |
3646 | if (kvmppc_host_rm_ops_hv != NULL) | |
3647 | return; | |
3648 | ||
3649 | ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); | |
3650 | if (!ops) | |
3651 | return; | |
3652 | ||
3653 | size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); | |
3654 | ops->rm_core = kzalloc(size, GFP_KERNEL); | |
3655 | ||
3656 | if (!ops->rm_core) { | |
3657 | kfree(ops); | |
3658 | return; | |
3659 | } | |
3660 | ||
419af25f | 3661 | cpus_read_lock(); |
6f3bb809 | 3662 | |
79b6c247 SW |
3663 | for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { |
3664 | if (!cpu_online(cpu)) | |
3665 | continue; | |
3666 | ||
3667 | core = cpu >> threads_shift; | |
3668 | ops->rm_core[core].rm_state.in_host = 1; | |
3669 | } | |
3670 | ||
0c2a6606 SW |
3671 | ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; |
3672 | ||
79b6c247 SW |
3673 | /* |
3674 | * Make the contents of the kvmppc_host_rm_ops structure visible | |
3675 | * to other CPUs before we assign it to the global variable. | |
3676 | * Do an atomic assignment (no locks used here), but if someone | |
3677 | * beats us to it, just free our copy and return. | |
3678 | */ | |
3679 | smp_wmb(); | |
3680 | l_ops = (unsigned long) ops; | |
3681 | ||
3682 | if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { | |
419af25f | 3683 | cpus_read_unlock(); |
79b6c247 SW |
3684 | kfree(ops->rm_core); |
3685 | kfree(ops); | |
6f3bb809 | 3686 | return; |
79b6c247 | 3687 | } |
6f3bb809 | 3688 | |
419af25f SAS |
3689 | cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, |
3690 | "ppc/kvm_book3s:prepare", | |
3691 | kvmppc_set_host_core, | |
3692 | kvmppc_clear_host_core); | |
3693 | cpus_read_unlock(); | |
79b6c247 SW |
3694 | } |
3695 | ||
3696 | void kvmppc_free_host_rm_ops(void) | |
3697 | { | |
3698 | if (kvmppc_host_rm_ops_hv) { | |
3f7cd919 | 3699 | cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); |
79b6c247 SW |
3700 | kfree(kvmppc_host_rm_ops_hv->rm_core); |
3701 | kfree(kvmppc_host_rm_ops_hv); | |
3702 | kvmppc_host_rm_ops_hv = NULL; | |
3703 | } | |
3704 | } | |
3705 | #endif | |
3706 | ||
3a167bea | 3707 | static int kvmppc_core_init_vm_hv(struct kvm *kvm) |
de56a948 | 3708 | { |
32fad281 | 3709 | unsigned long lpcr, lpid; |
e23a808b | 3710 | char buf[32]; |
8cf4ecc0 | 3711 | int ret; |
de56a948 | 3712 | |
32fad281 PM |
3713 | /* Allocate the guest's logical partition ID */ |
3714 | ||
3715 | lpid = kvmppc_alloc_lpid(); | |
5d226ae5 | 3716 | if ((long)lpid < 0) |
32fad281 PM |
3717 | return -ENOMEM; |
3718 | kvm->arch.lpid = lpid; | |
de56a948 | 3719 | |
79b6c247 SW |
3720 | kvmppc_alloc_host_rm_ops(); |
3721 | ||
1b400ba0 PM |
3722 | /* |
3723 | * Since we don't flush the TLB when tearing down a VM, | |
3724 | * and this lpid might have previously been used, | |
3725 | * make sure we flush on each core before running the new VM. | |
7c5b06ca PM |
3726 | * On POWER9, the tlbie in mmu_partition_table_set_entry() |
3727 | * does this flush for us. | |
1b400ba0 | 3728 | */ |
7c5b06ca PM |
3729 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
3730 | cpumask_setall(&kvm->arch.need_tlb_flush); | |
1b400ba0 | 3731 | |
699a0ea0 PM |
3732 | /* Start out with the default set of hcalls enabled */ |
3733 | memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, | |
3734 | sizeof(kvm->arch.enabled_hcalls)); | |
3735 | ||
7a84084c PM |
3736 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
3737 | kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); | |
aa04b4cc | 3738 | |
c17b98cf PM |
3739 | /* Init LPCR for virtual RMA mode */ |
3740 | kvm->arch.host_lpid = mfspr(SPRN_LPID); | |
3741 | kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); | |
3742 | lpcr &= LPCR_PECE | LPCR_LPES; | |
3743 | lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | | |
3744 | LPCR_VPM0 | LPCR_VPM1; | |
3745 | kvm->arch.vrma_slb_v = SLB_VSID_B_1T | | |
3746 | (VRMA_VSID << SLB_VSID_SHIFT_1T); | |
3747 | /* On POWER8 turn on online bit to enable PURR/SPURR */ | |
3748 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) | |
3749 | lpcr |= LPCR_ONL; | |
84f7139c PM |
3750 | /* |
3751 | * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) | |
3752 | * Set HVICE bit to enable hypervisor virtualization interrupts. | |
5af50993 BH |
3753 | * Set HEIC to prevent OS interrupts to go to hypervisor (should |
3754 | * be unnecessary but better safe than sorry in case we re-enable | |
3755 | * EE in HV mode with this LPCR still set) | |
84f7139c PM |
3756 | */ |
3757 | if (cpu_has_feature(CPU_FTR_ARCH_300)) { | |
7a84084c | 3758 | lpcr &= ~LPCR_VPM0; |
5af50993 BH |
3759 | lpcr |= LPCR_HVICE | LPCR_HEIC; |
3760 | ||
3761 | /* | |
3762 | * If xive is enabled, we route 0x500 interrupts directly | |
3763 | * to the guest. | |
3764 | */ | |
3765 | if (xive_enabled()) | |
3766 | lpcr |= LPCR_LPES; | |
84f7139c PM |
3767 | } |
3768 | ||
8cf4ecc0 PM |
3769 | /* |
3770 | * For now, if the host uses radix, the guest must be radix. | |
3771 | */ | |
3772 | if (radix_enabled()) { | |
3773 | kvm->arch.radix = 1; | |
3774 | lpcr &= ~LPCR_VPM1; | |
3775 | lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; | |
3776 | ret = kvmppc_init_vm_radix(kvm); | |
3777 | if (ret) { | |
3778 | kvmppc_free_lpid(kvm->arch.lpid); | |
3779 | return ret; | |
3780 | } | |
3781 | kvmppc_setup_partition_table(kvm); | |
3782 | } | |
3783 | ||
9e368f29 | 3784 | kvm->arch.lpcr = lpcr; |
aa04b4cc | 3785 | |
5e985969 DG |
3786 | /* Initialization for future HPT resizes */ |
3787 | kvm->arch.resize_hpt = NULL; | |
3788 | ||
7c5b06ca PM |
3789 | /* |
3790 | * Work out how many sets the TLB has, for the use of | |
3791 | * the TLB invalidation loop in book3s_hv_rmhandlers.S. | |
3792 | */ | |
8cf4ecc0 PM |
3793 | if (kvm_is_radix(kvm)) |
3794 | kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ | |
3795 | else if (cpu_has_feature(CPU_FTR_ARCH_300)) | |
7c5b06ca PM |
3796 | kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ |
3797 | else if (cpu_has_feature(CPU_FTR_ARCH_207S)) | |
3798 | kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ | |
3799 | else | |
3800 | kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ | |
3801 | ||
512691d4 | 3802 | /* |
441c19c8 ME |
3803 | * Track that we now have a HV mode VM active. This blocks secondary |
3804 | * CPU threads from coming online. | |
8cf4ecc0 PM |
3805 | * On POWER9, we only need to do this for HPT guests on a radix |
3806 | * host, which is not yet supported. | |
512691d4 | 3807 | */ |
8cf4ecc0 PM |
3808 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
3809 | kvm_hv_vm_activated(); | |
512691d4 | 3810 | |
3c313524 PM |
3811 | /* |
3812 | * Initialize smt_mode depending on processor. | |
3813 | * POWER8 and earlier have to use "strict" threading, where | |
3814 | * all vCPUs in a vcore have to run on the same (sub)core, | |
3815 | * whereas on POWER9 the threads can each run a different | |
3816 | * guest. | |
3817 | */ | |
3818 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | |
3819 | kvm->arch.smt_mode = threads_per_subcore; | |
3820 | else | |
3821 | kvm->arch.smt_mode = 1; | |
57900694 | 3822 | kvm->arch.emul_smt_mode = 1; |
3c313524 | 3823 | |
e23a808b PM |
3824 | /* |
3825 | * Create a debugfs directory for the VM | |
3826 | */ | |
3827 | snprintf(buf, sizeof(buf), "vm%d", current->pid); | |
3828 | kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); | |
3829 | if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) | |
3830 | kvmppc_mmu_debugfs_init(kvm); | |
3831 | ||
54738c09 | 3832 | return 0; |
de56a948 PM |
3833 | } |
3834 | ||
f1378b1c PM |
3835 | static void kvmppc_free_vcores(struct kvm *kvm) |
3836 | { | |
3837 | long int i; | |
3838 | ||
23316316 | 3839 | for (i = 0; i < KVM_MAX_VCORES; ++i) |
f1378b1c PM |
3840 | kfree(kvm->arch.vcores[i]); |
3841 | kvm->arch.online_vcores = 0; | |
3842 | } | |
3843 | ||
3a167bea | 3844 | static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) |
de56a948 | 3845 | { |
e23a808b PM |
3846 | debugfs_remove_recursive(kvm->arch.debugfs_dir); |
3847 | ||
8cf4ecc0 PM |
3848 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
3849 | kvm_hv_vm_deactivated(); | |
512691d4 | 3850 | |
f1378b1c | 3851 | kvmppc_free_vcores(kvm); |
aa04b4cc | 3852 | |
8cf4ecc0 PM |
3853 | kvmppc_free_lpid(kvm->arch.lpid); |
3854 | ||
5a319350 PM |
3855 | if (kvm_is_radix(kvm)) |
3856 | kvmppc_free_radix(kvm); | |
3857 | else | |
aae0777f | 3858 | kvmppc_free_hpt(&kvm->arch.hpt); |
c57875f5 SW |
3859 | |
3860 | kvmppc_free_pimap(kvm); | |
de56a948 PM |
3861 | } |
3862 | ||
3a167bea AK |
3863 | /* We don't need to emulate any privileged instructions or dcbz */ |
3864 | static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, | |
3865 | unsigned int inst, int *advance) | |
de56a948 | 3866 | { |
3a167bea | 3867 | return EMULATE_FAIL; |
de56a948 PM |
3868 | } |
3869 | ||
3a167bea AK |
3870 | static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, |
3871 | ulong spr_val) | |
de56a948 PM |
3872 | { |
3873 | return EMULATE_FAIL; | |
3874 | } | |
3875 | ||
3a167bea AK |
3876 | static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, |
3877 | ulong *spr_val) | |
de56a948 PM |
3878 | { |
3879 | return EMULATE_FAIL; | |
3880 | } | |
3881 | ||
3a167bea | 3882 | static int kvmppc_core_check_processor_compat_hv(void) |
de56a948 | 3883 | { |
c17b98cf PM |
3884 | if (!cpu_has_feature(CPU_FTR_HVMODE) || |
3885 | !cpu_has_feature(CPU_FTR_ARCH_206)) | |
3a167bea | 3886 | return -EIO; |
50de596d | 3887 | |
3a167bea | 3888 | return 0; |
de56a948 PM |
3889 | } |
3890 | ||
8daaafc8 SW |
3891 | #ifdef CONFIG_KVM_XICS |
3892 | ||
3893 | void kvmppc_free_pimap(struct kvm *kvm) | |
3894 | { | |
3895 | kfree(kvm->arch.pimap); | |
3896 | } | |
3897 | ||
c57875f5 | 3898 | static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) |
8daaafc8 SW |
3899 | { |
3900 | return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); | |
3901 | } | |
c57875f5 SW |
3902 | |
3903 | static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) | |
3904 | { | |
3905 | struct irq_desc *desc; | |
3906 | struct kvmppc_irq_map *irq_map; | |
3907 | struct kvmppc_passthru_irqmap *pimap; | |
3908 | struct irq_chip *chip; | |
5af50993 | 3909 | int i, rc = 0; |
c57875f5 | 3910 | |
644abbb2 SW |
3911 | if (!kvm_irq_bypass) |
3912 | return 1; | |
3913 | ||
c57875f5 SW |
3914 | desc = irq_to_desc(host_irq); |
3915 | if (!desc) | |
3916 | return -EIO; | |
3917 | ||
3918 | mutex_lock(&kvm->lock); | |
3919 | ||
3920 | pimap = kvm->arch.pimap; | |
3921 | if (pimap == NULL) { | |
3922 | /* First call, allocate structure to hold IRQ map */ | |
3923 | pimap = kvmppc_alloc_pimap(); | |
3924 | if (pimap == NULL) { | |
3925 | mutex_unlock(&kvm->lock); | |
3926 | return -ENOMEM; | |
3927 | } | |
3928 | kvm->arch.pimap = pimap; | |
3929 | } | |
3930 | ||
3931 | /* | |
3932 | * For now, we only support interrupts for which the EOI operation | |
3933 | * is an OPAL call followed by a write to XIRR, since that's | |
5af50993 | 3934 | * what our real-mode EOI code does, or a XIVE interrupt |
c57875f5 SW |
3935 | */ |
3936 | chip = irq_data_get_irq_chip(&desc->irq_data); | |
5af50993 | 3937 | if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { |
c57875f5 SW |
3938 | pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", |
3939 | host_irq, guest_gsi); | |
3940 | mutex_unlock(&kvm->lock); | |
3941 | return -ENOENT; | |
3942 | } | |
3943 | ||
3944 | /* | |
3945 | * See if we already have an entry for this guest IRQ number. | |
3946 | * If it's mapped to a hardware IRQ number, that's an error, | |
3947 | * otherwise re-use this entry. | |
3948 | */ | |
3949 | for (i = 0; i < pimap->n_mapped; i++) { | |
3950 | if (guest_gsi == pimap->mapped[i].v_hwirq) { | |
3951 | if (pimap->mapped[i].r_hwirq) { | |
3952 | mutex_unlock(&kvm->lock); | |
3953 | return -EINVAL; | |
3954 | } | |
3955 | break; | |
3956 | } | |
3957 | } | |
3958 | ||
3959 | if (i == KVMPPC_PIRQ_MAPPED) { | |
3960 | mutex_unlock(&kvm->lock); | |
3961 | return -EAGAIN; /* table is full */ | |
3962 | } | |
3963 | ||
3964 | irq_map = &pimap->mapped[i]; | |
3965 | ||
3966 | irq_map->v_hwirq = guest_gsi; | |
c57875f5 SW |
3967 | irq_map->desc = desc; |
3968 | ||
e3c13e56 SW |
3969 | /* |
3970 | * Order the above two stores before the next to serialize with | |
3971 | * the KVM real mode handler. | |
3972 | */ | |
3973 | smp_wmb(); | |
3974 | irq_map->r_hwirq = desc->irq_data.hwirq; | |
3975 | ||
c57875f5 SW |
3976 | if (i == pimap->n_mapped) |
3977 | pimap->n_mapped++; | |
3978 | ||
5af50993 BH |
3979 | if (xive_enabled()) |
3980 | rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); | |
3981 | else | |
3982 | kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); | |
3983 | if (rc) | |
3984 | irq_map->r_hwirq = 0; | |
5d375199 | 3985 | |
c57875f5 SW |
3986 | mutex_unlock(&kvm->lock); |
3987 | ||
3988 | return 0; | |
3989 | } | |
3990 | ||
3991 | static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) | |
3992 | { | |
3993 | struct irq_desc *desc; | |
3994 | struct kvmppc_passthru_irqmap *pimap; | |
5af50993 | 3995 | int i, rc = 0; |
c57875f5 | 3996 | |
644abbb2 SW |
3997 | if (!kvm_irq_bypass) |
3998 | return 0; | |
3999 | ||
c57875f5 SW |
4000 | desc = irq_to_desc(host_irq); |
4001 | if (!desc) | |
4002 | return -EIO; | |
4003 | ||
4004 | mutex_lock(&kvm->lock); | |
a1c52e1c ME |
4005 | if (!kvm->arch.pimap) |
4006 | goto unlock; | |
c57875f5 | 4007 | |
c57875f5 SW |
4008 | pimap = kvm->arch.pimap; |
4009 | ||
4010 | for (i = 0; i < pimap->n_mapped; i++) { | |
4011 | if (guest_gsi == pimap->mapped[i].v_hwirq) | |
4012 | break; | |
4013 | } | |
4014 | ||
4015 | if (i == pimap->n_mapped) { | |
4016 | mutex_unlock(&kvm->lock); | |
4017 | return -ENODEV; | |
4018 | } | |
4019 | ||
5af50993 BH |
4020 | if (xive_enabled()) |
4021 | rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); | |
4022 | else | |
4023 | kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); | |
5d375199 | 4024 | |
5af50993 | 4025 | /* invalidate the entry (what do do on error from the above ?) */ |
c57875f5 SW |
4026 | pimap->mapped[i].r_hwirq = 0; |
4027 | ||
4028 | /* | |
4029 | * We don't free this structure even when the count goes to | |
4030 | * zero. The structure is freed when we destroy the VM. | |
4031 | */ | |
a1c52e1c | 4032 | unlock: |
c57875f5 | 4033 | mutex_unlock(&kvm->lock); |
5af50993 | 4034 | return rc; |
c57875f5 SW |
4035 | } |
4036 | ||
4037 | static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, | |
4038 | struct irq_bypass_producer *prod) | |
4039 | { | |
4040 | int ret = 0; | |
4041 | struct kvm_kernel_irqfd *irqfd = | |
4042 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
4043 | ||
4044 | irqfd->producer = prod; | |
4045 | ||
4046 | ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); | |
4047 | if (ret) | |
4048 | pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", | |
4049 | prod->irq, irqfd->gsi, ret); | |
4050 | ||
4051 | return ret; | |
4052 | } | |
4053 | ||
4054 | static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, | |
4055 | struct irq_bypass_producer *prod) | |
4056 | { | |
4057 | int ret; | |
4058 | struct kvm_kernel_irqfd *irqfd = | |
4059 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
4060 | ||
4061 | irqfd->producer = NULL; | |
4062 | ||
4063 | /* | |
4064 | * When producer of consumer is unregistered, we change back to | |
4065 | * default external interrupt handling mode - KVM real mode | |
4066 | * will switch back to host. | |
4067 | */ | |
4068 | ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); | |
4069 | if (ret) | |
4070 | pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", | |
4071 | prod->irq, irqfd->gsi, ret); | |
4072 | } | |
8daaafc8 SW |
4073 | #endif |
4074 | ||
3a167bea AK |
4075 | static long kvm_arch_vm_ioctl_hv(struct file *filp, |
4076 | unsigned int ioctl, unsigned long arg) | |
4077 | { | |
4078 | struct kvm *kvm __maybe_unused = filp->private_data; | |
4079 | void __user *argp = (void __user *)arg; | |
4080 | long r; | |
4081 | ||
4082 | switch (ioctl) { | |
4083 | ||
3a167bea AK |
4084 | case KVM_PPC_ALLOCATE_HTAB: { |
4085 | u32 htab_order; | |
4086 | ||
4087 | r = -EFAULT; | |
4088 | if (get_user(htab_order, (u32 __user *)argp)) | |
4089 | break; | |
f98a8bf9 | 4090 | r = kvmppc_alloc_reset_hpt(kvm, htab_order); |
3a167bea AK |
4091 | if (r) |
4092 | break; | |
3a167bea AK |
4093 | r = 0; |
4094 | break; | |
4095 | } | |
4096 | ||
4097 | case KVM_PPC_GET_HTAB_FD: { | |
4098 | struct kvm_get_htab_fd ghf; | |
4099 | ||
4100 | r = -EFAULT; | |
4101 | if (copy_from_user(&ghf, argp, sizeof(ghf))) | |
4102 | break; | |
4103 | r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); | |
4104 | break; | |
4105 | } | |
4106 | ||
5e985969 DG |
4107 | case KVM_PPC_RESIZE_HPT_PREPARE: { |
4108 | struct kvm_ppc_resize_hpt rhpt; | |
4109 | ||
4110 | r = -EFAULT; | |
4111 | if (copy_from_user(&rhpt, argp, sizeof(rhpt))) | |
4112 | break; | |
4113 | ||
4114 | r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); | |
4115 | break; | |
4116 | } | |
4117 | ||
4118 | case KVM_PPC_RESIZE_HPT_COMMIT: { | |
4119 | struct kvm_ppc_resize_hpt rhpt; | |
4120 | ||
4121 | r = -EFAULT; | |
4122 | if (copy_from_user(&rhpt, argp, sizeof(rhpt))) | |
4123 | break; | |
4124 | ||
4125 | r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); | |
4126 | break; | |
4127 | } | |
4128 | ||
3a167bea AK |
4129 | default: |
4130 | r = -ENOTTY; | |
4131 | } | |
4132 | ||
4133 | return r; | |
4134 | } | |
4135 | ||
699a0ea0 PM |
4136 | /* |
4137 | * List of hcall numbers to enable by default. | |
4138 | * For compatibility with old userspace, we enable by default | |
4139 | * all hcalls that were implemented before the hcall-enabling | |
4140 | * facility was added. Note this list should not include H_RTAS. | |
4141 | */ | |
4142 | static unsigned int default_hcall_list[] = { | |
4143 | H_REMOVE, | |
4144 | H_ENTER, | |
4145 | H_READ, | |
4146 | H_PROTECT, | |
4147 | H_BULK_REMOVE, | |
4148 | H_GET_TCE, | |
4149 | H_PUT_TCE, | |
4150 | H_SET_DABR, | |
4151 | H_SET_XDABR, | |
4152 | H_CEDE, | |
4153 | H_PROD, | |
4154 | H_CONFER, | |
4155 | H_REGISTER_VPA, | |
4156 | #ifdef CONFIG_KVM_XICS | |
4157 | H_EOI, | |
4158 | H_CPPR, | |
4159 | H_IPI, | |
4160 | H_IPOLL, | |
4161 | H_XIRR, | |
4162 | H_XIRR_X, | |
4163 | #endif | |
4164 | 0 | |
4165 | }; | |
4166 | ||
4167 | static void init_default_hcalls(void) | |
4168 | { | |
4169 | int i; | |
ae2113a4 | 4170 | unsigned int hcall; |
699a0ea0 | 4171 | |
ae2113a4 PM |
4172 | for (i = 0; default_hcall_list[i]; ++i) { |
4173 | hcall = default_hcall_list[i]; | |
4174 | WARN_ON(!kvmppc_hcall_impl_hv(hcall)); | |
4175 | __set_bit(hcall / 4, default_enabled_hcalls); | |
4176 | } | |
699a0ea0 PM |
4177 | } |
4178 | ||
c9270132 PM |
4179 | static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) |
4180 | { | |
468808bd | 4181 | unsigned long lpcr; |
8cf4ecc0 | 4182 | int radix; |
468808bd PM |
4183 | |
4184 | /* If not on a POWER9, reject it */ | |
4185 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) | |
4186 | return -ENODEV; | |
4187 | ||
4188 | /* If any unknown flags set, reject it */ | |
4189 | if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) | |
4190 | return -EINVAL; | |
4191 | ||
8cf4ecc0 PM |
4192 | /* We can't change a guest to/from radix yet */ |
4193 | radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); | |
4194 | if (radix != kvm_is_radix(kvm)) | |
468808bd PM |
4195 | return -EINVAL; |
4196 | ||
4197 | /* GR (guest radix) bit in process_table field must match */ | |
8cf4ecc0 | 4198 | if (!!(cfg->process_table & PATB_GR) != radix) |
468808bd PM |
4199 | return -EINVAL; |
4200 | ||
4201 | /* Process table size field must be reasonable, i.e. <= 24 */ | |
4202 | if ((cfg->process_table & PRTS_MASK) > 24) | |
4203 | return -EINVAL; | |
4204 | ||
cf5f6f31 | 4205 | mutex_lock(&kvm->lock); |
468808bd PM |
4206 | kvm->arch.process_table = cfg->process_table; |
4207 | kvmppc_setup_partition_table(kvm); | |
4208 | ||
4209 | lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; | |
4210 | kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); | |
cf5f6f31 | 4211 | mutex_unlock(&kvm->lock); |
468808bd PM |
4212 | |
4213 | return 0; | |
c9270132 PM |
4214 | } |
4215 | ||
cbbc58d4 | 4216 | static struct kvmppc_ops kvm_ops_hv = { |
3a167bea AK |
4217 | .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, |
4218 | .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, | |
4219 | .get_one_reg = kvmppc_get_one_reg_hv, | |
4220 | .set_one_reg = kvmppc_set_one_reg_hv, | |
4221 | .vcpu_load = kvmppc_core_vcpu_load_hv, | |
4222 | .vcpu_put = kvmppc_core_vcpu_put_hv, | |
4223 | .set_msr = kvmppc_set_msr_hv, | |
4224 | .vcpu_run = kvmppc_vcpu_run_hv, | |
4225 | .vcpu_create = kvmppc_core_vcpu_create_hv, | |
4226 | .vcpu_free = kvmppc_core_vcpu_free_hv, | |
4227 | .check_requests = kvmppc_core_check_requests_hv, | |
4228 | .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, | |
4229 | .flush_memslot = kvmppc_core_flush_memslot_hv, | |
4230 | .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, | |
4231 | .commit_memory_region = kvmppc_core_commit_memory_region_hv, | |
4232 | .unmap_hva = kvm_unmap_hva_hv, | |
4233 | .unmap_hva_range = kvm_unmap_hva_range_hv, | |
4234 | .age_hva = kvm_age_hva_hv, | |
4235 | .test_age_hva = kvm_test_age_hva_hv, | |
4236 | .set_spte_hva = kvm_set_spte_hva_hv, | |
4237 | .mmu_destroy = kvmppc_mmu_destroy_hv, | |
4238 | .free_memslot = kvmppc_core_free_memslot_hv, | |
4239 | .create_memslot = kvmppc_core_create_memslot_hv, | |
4240 | .init_vm = kvmppc_core_init_vm_hv, | |
4241 | .destroy_vm = kvmppc_core_destroy_vm_hv, | |
3a167bea AK |
4242 | .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, |
4243 | .emulate_op = kvmppc_core_emulate_op_hv, | |
4244 | .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, | |
4245 | .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, | |
4246 | .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, | |
4247 | .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, | |
ae2113a4 | 4248 | .hcall_implemented = kvmppc_hcall_impl_hv, |
c57875f5 SW |
4249 | #ifdef CONFIG_KVM_XICS |
4250 | .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, | |
4251 | .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, | |
4252 | #endif | |
c9270132 PM |
4253 | .configure_mmu = kvmhv_configure_mmu, |
4254 | .get_rmmu_info = kvmhv_get_rmmu_info, | |
3c313524 | 4255 | .set_smt_mode = kvmhv_set_smt_mode, |
3a167bea AK |
4256 | }; |
4257 | ||
fd7bacbc MS |
4258 | static int kvm_init_subcore_bitmap(void) |
4259 | { | |
4260 | int i, j; | |
4261 | int nr_cores = cpu_nr_cores(); | |
4262 | struct sibling_subcore_state *sibling_subcore_state; | |
4263 | ||
4264 | for (i = 0; i < nr_cores; i++) { | |
4265 | int first_cpu = i * threads_per_core; | |
4266 | int node = cpu_to_node(first_cpu); | |
4267 | ||
4268 | /* Ignore if it is already allocated. */ | |
4269 | if (paca[first_cpu].sibling_subcore_state) | |
4270 | continue; | |
4271 | ||
4272 | sibling_subcore_state = | |
4273 | kmalloc_node(sizeof(struct sibling_subcore_state), | |
4274 | GFP_KERNEL, node); | |
4275 | if (!sibling_subcore_state) | |
4276 | return -ENOMEM; | |
4277 | ||
4278 | memset(sibling_subcore_state, 0, | |
4279 | sizeof(struct sibling_subcore_state)); | |
4280 | ||
4281 | for (j = 0; j < threads_per_core; j++) { | |
4282 | int cpu = first_cpu + j; | |
4283 | ||
4284 | paca[cpu].sibling_subcore_state = sibling_subcore_state; | |
4285 | } | |
4286 | } | |
4287 | return 0; | |
4288 | } | |
4289 | ||
5a319350 PM |
4290 | static int kvmppc_radix_possible(void) |
4291 | { | |
4292 | return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); | |
4293 | } | |
4294 | ||
3a167bea | 4295 | static int kvmppc_book3s_init_hv(void) |
de56a948 PM |
4296 | { |
4297 | int r; | |
cbbc58d4 AK |
4298 | /* |
4299 | * FIXME!! Do we need to check on all cpus ? | |
4300 | */ | |
4301 | r = kvmppc_core_check_processor_compat_hv(); | |
4302 | if (r < 0) | |
739e2425 | 4303 | return -ENODEV; |
de56a948 | 4304 | |
fd7bacbc MS |
4305 | r = kvm_init_subcore_bitmap(); |
4306 | if (r) | |
4307 | return r; | |
4308 | ||
f725758b PM |
4309 | /* |
4310 | * We need a way of accessing the XICS interrupt controller, | |
4311 | * either directly, via paca[cpu].kvm_hstate.xics_phys, or | |
4312 | * indirectly, via OPAL. | |
4313 | */ | |
4314 | #ifdef CONFIG_SMP | |
fb7dcf72 | 4315 | if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { |
f725758b PM |
4316 | struct device_node *np; |
4317 | ||
4318 | np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); | |
4319 | if (!np) { | |
4320 | pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); | |
4321 | return -ENODEV; | |
4322 | } | |
4323 | } | |
4324 | #endif | |
4325 | ||
cbbc58d4 AK |
4326 | kvm_ops_hv.owner = THIS_MODULE; |
4327 | kvmppc_hv_ops = &kvm_ops_hv; | |
de56a948 | 4328 | |
699a0ea0 PM |
4329 | init_default_hcalls(); |
4330 | ||
ec257165 PM |
4331 | init_vcore_lists(); |
4332 | ||
cbbc58d4 | 4333 | r = kvmppc_mmu_hv_init(); |
5a319350 PM |
4334 | if (r) |
4335 | return r; | |
4336 | ||
4337 | if (kvmppc_radix_possible()) | |
4338 | r = kvmppc_radix_init(); | |
de56a948 PM |
4339 | return r; |
4340 | } | |
4341 | ||
3a167bea | 4342 | static void kvmppc_book3s_exit_hv(void) |
de56a948 | 4343 | { |
79b6c247 | 4344 | kvmppc_free_host_rm_ops(); |
5a319350 PM |
4345 | if (kvmppc_radix_possible()) |
4346 | kvmppc_radix_exit(); | |
cbbc58d4 | 4347 | kvmppc_hv_ops = NULL; |
de56a948 PM |
4348 | } |
4349 | ||
3a167bea AK |
4350 | module_init(kvmppc_book3s_init_hv); |
4351 | module_exit(kvmppc_book3s_exit_hv); | |
2ba9f0d8 | 4352 | MODULE_LICENSE("GPL"); |
398a76c6 AG |
4353 | MODULE_ALIAS_MISCDEV(KVM_MINOR); |
4354 | MODULE_ALIAS("devname:kvm"); | |
7c5b06ca | 4355 |