]>
Commit | Line | Data |
---|---|---|
7ec94453 A |
1 | /* |
2 | * EMIF driver | |
3 | * | |
4 | * Copyright (C) 2012 Texas Instruments, Inc. | |
5 | * | |
6 | * Aneesh V <[email protected]> | |
7 | * Santosh Shilimkar <[email protected]> | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify | |
10 | * it under the terms of the GNU General Public License version 2 as | |
11 | * published by the Free Software Foundation. | |
12 | */ | |
13 | #include <linux/kernel.h> | |
14 | #include <linux/reboot.h> | |
15 | #include <linux/platform_data/emif_plat.h> | |
16 | #include <linux/io.h> | |
17 | #include <linux/device.h> | |
18 | #include <linux/platform_device.h> | |
19 | #include <linux/interrupt.h> | |
20 | #include <linux/slab.h> | |
aac10aaa | 21 | #include <linux/debugfs.h> |
7ec94453 A |
22 | #include <linux/seq_file.h> |
23 | #include <linux/module.h> | |
24 | #include <linux/list.h> | |
a93de288 | 25 | #include <linux/spinlock.h> |
7ec94453 A |
26 | #include <memory/jedec_ddr.h> |
27 | #include "emif.h" | |
28 | ||
29 | /** | |
30 | * struct emif_data - Per device static data for driver's use | |
31 | * @duplicate: Whether the DDR devices attached to this EMIF | |
32 | * instance are exactly same as that on EMIF1. In | |
33 | * this case we can save some memory and processing | |
34 | * @temperature_level: Maximum temperature of LPDDR2 devices attached | |
35 | * to this EMIF - read from MR4 register. If there | |
36 | * are two devices attached to this EMIF, this | |
37 | * value is the maximum of the two temperature | |
38 | * levels. | |
39 | * @node: node in the device list | |
40 | * @base: base address of memory-mapped IO registers. | |
41 | * @dev: device pointer. | |
a93de288 A |
42 | * @addressing table with addressing information from the spec |
43 | * @regs_cache: An array of 'struct emif_regs' that stores | |
44 | * calculated register values for different | |
45 | * frequencies, to avoid re-calculating them on | |
46 | * each DVFS transition. | |
47 | * @curr_regs: The set of register values used in the last | |
48 | * frequency change (i.e. corresponding to the | |
49 | * frequency in effect at the moment) | |
7ec94453 | 50 | * @plat_data: Pointer to saved platform data. |
aac10aaa | 51 | * @debugfs_root: dentry to the root folder for EMIF in debugfs |
7ec94453 A |
52 | */ |
53 | struct emif_data { | |
54 | u8 duplicate; | |
55 | u8 temperature_level; | |
a93de288 | 56 | u8 lpmode; |
7ec94453 | 57 | struct list_head node; |
a93de288 | 58 | unsigned long irq_state; |
7ec94453 A |
59 | void __iomem *base; |
60 | struct device *dev; | |
a93de288 A |
61 | const struct lpddr2_addressing *addressing; |
62 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; | |
63 | struct emif_regs *curr_regs; | |
7ec94453 | 64 | struct emif_platform_data *plat_data; |
aac10aaa | 65 | struct dentry *debugfs_root; |
7ec94453 A |
66 | }; |
67 | ||
68 | static struct emif_data *emif1; | |
a93de288 A |
69 | static spinlock_t emif_lock; |
70 | static unsigned long irq_state; | |
71 | static u32 t_ck; /* DDR clock period in ps */ | |
7ec94453 A |
72 | static LIST_HEAD(device_list); |
73 | ||
aac10aaa A |
74 | static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, |
75 | struct emif_regs *regs) | |
76 | { | |
77 | u32 type = emif->plat_data->device_info->type; | |
78 | u32 ip_rev = emif->plat_data->ip_rev; | |
79 | ||
80 | seq_printf(s, "EMIF register cache dump for %dMHz\n", | |
81 | regs->freq/1000000); | |
82 | ||
83 | seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); | |
84 | seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); | |
85 | seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); | |
86 | seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); | |
87 | ||
88 | if (ip_rev == EMIF_4D) { | |
89 | seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", | |
90 | regs->read_idle_ctrl_shdw_normal); | |
91 | seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", | |
92 | regs->read_idle_ctrl_shdw_volt_ramp); | |
93 | } else if (ip_rev == EMIF_4D5) { | |
94 | seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", | |
95 | regs->dll_calib_ctrl_shdw_normal); | |
96 | seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", | |
97 | regs->dll_calib_ctrl_shdw_volt_ramp); | |
98 | } | |
99 | ||
100 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | |
101 | seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", | |
102 | regs->ref_ctrl_shdw_derated); | |
103 | seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", | |
104 | regs->sdram_tim1_shdw_derated); | |
105 | seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", | |
106 | regs->sdram_tim3_shdw_derated); | |
107 | } | |
108 | } | |
109 | ||
110 | static int emif_regdump_show(struct seq_file *s, void *unused) | |
111 | { | |
112 | struct emif_data *emif = s->private; | |
113 | struct emif_regs **regs_cache; | |
114 | int i; | |
115 | ||
116 | if (emif->duplicate) | |
117 | regs_cache = emif1->regs_cache; | |
118 | else | |
119 | regs_cache = emif->regs_cache; | |
120 | ||
121 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | |
122 | do_emif_regdump_show(s, emif, regs_cache[i]); | |
123 | seq_printf(s, "\n"); | |
124 | } | |
125 | ||
126 | return 0; | |
127 | } | |
128 | ||
129 | static int emif_regdump_open(struct inode *inode, struct file *file) | |
130 | { | |
131 | return single_open(file, emif_regdump_show, inode->i_private); | |
132 | } | |
133 | ||
134 | static const struct file_operations emif_regdump_fops = { | |
135 | .open = emif_regdump_open, | |
136 | .read = seq_read, | |
137 | .release = single_release, | |
138 | }; | |
139 | ||
140 | static int emif_mr4_show(struct seq_file *s, void *unused) | |
141 | { | |
142 | struct emif_data *emif = s->private; | |
143 | ||
144 | seq_printf(s, "MR4=%d\n", emif->temperature_level); | |
145 | return 0; | |
146 | } | |
147 | ||
148 | static int emif_mr4_open(struct inode *inode, struct file *file) | |
149 | { | |
150 | return single_open(file, emif_mr4_show, inode->i_private); | |
151 | } | |
152 | ||
153 | static const struct file_operations emif_mr4_fops = { | |
154 | .open = emif_mr4_open, | |
155 | .read = seq_read, | |
156 | .release = single_release, | |
157 | }; | |
158 | ||
159 | static int __init_or_module emif_debugfs_init(struct emif_data *emif) | |
160 | { | |
161 | struct dentry *dentry; | |
162 | int ret; | |
163 | ||
164 | dentry = debugfs_create_dir(dev_name(emif->dev), NULL); | |
165 | if (IS_ERR(dentry)) { | |
166 | ret = PTR_ERR(dentry); | |
167 | goto err0; | |
168 | } | |
169 | emif->debugfs_root = dentry; | |
170 | ||
171 | dentry = debugfs_create_file("regcache_dump", S_IRUGO, | |
172 | emif->debugfs_root, emif, &emif_regdump_fops); | |
173 | if (IS_ERR(dentry)) { | |
174 | ret = PTR_ERR(dentry); | |
175 | goto err1; | |
176 | } | |
177 | ||
178 | dentry = debugfs_create_file("mr4", S_IRUGO, | |
179 | emif->debugfs_root, emif, &emif_mr4_fops); | |
180 | if (IS_ERR(dentry)) { | |
181 | ret = PTR_ERR(dentry); | |
182 | goto err1; | |
183 | } | |
184 | ||
185 | return 0; | |
186 | err1: | |
187 | debugfs_remove_recursive(emif->debugfs_root); | |
188 | err0: | |
189 | return ret; | |
190 | } | |
191 | ||
192 | static void __exit emif_debugfs_exit(struct emif_data *emif) | |
193 | { | |
194 | debugfs_remove_recursive(emif->debugfs_root); | |
195 | emif->debugfs_root = NULL; | |
196 | } | |
197 | ||
a93de288 A |
198 | /* |
199 | * Calculate the period of DDR clock from frequency value | |
200 | */ | |
201 | static void set_ddr_clk_period(u32 freq) | |
202 | { | |
203 | /* Divide 10^12 by frequency to get period in ps */ | |
204 | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); | |
205 | } | |
206 | ||
98231c4f A |
207 | /* |
208 | * Get bus width used by EMIF. Note that this may be different from the | |
209 | * bus width of the DDR devices used. For instance two 16-bit DDR devices | |
210 | * may be connected to a given CS of EMIF. In this case bus width as far | |
211 | * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. | |
212 | */ | |
213 | static u32 get_emif_bus_width(struct emif_data *emif) | |
214 | { | |
215 | u32 width; | |
216 | void __iomem *base = emif->base; | |
217 | ||
218 | width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) | |
219 | >> NARROW_MODE_SHIFT; | |
220 | width = width == 0 ? 32 : 16; | |
221 | ||
222 | return width; | |
223 | } | |
224 | ||
a93de288 A |
225 | /* |
226 | * Get the CL from SDRAM_CONFIG register | |
227 | */ | |
228 | static u32 get_cl(struct emif_data *emif) | |
229 | { | |
230 | u32 cl; | |
231 | void __iomem *base = emif->base; | |
232 | ||
233 | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; | |
234 | ||
235 | return cl; | |
236 | } | |
237 | ||
238 | static void set_lpmode(struct emif_data *emif, u8 lpmode) | |
239 | { | |
240 | u32 temp; | |
241 | void __iomem *base = emif->base; | |
242 | ||
243 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); | |
244 | temp &= ~LP_MODE_MASK; | |
245 | temp |= (lpmode << LP_MODE_SHIFT); | |
246 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); | |
247 | } | |
248 | ||
249 | static void do_freq_update(void) | |
250 | { | |
251 | struct emif_data *emif; | |
252 | ||
253 | /* | |
254 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE | |
255 | * | |
256 | * i728 DESCRIPTION: | |
257 | * The EMIF automatically puts the SDRAM into self-refresh mode | |
258 | * after the EMIF has not performed accesses during | |
259 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles | |
260 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set | |
261 | * to 0x2. If during a small window the following three events | |
262 | * occur: | |
263 | * - The SR_TIMING counter expires | |
264 | * - And frequency change is requested | |
265 | * - And OCP access is requested | |
266 | * Then it causes instable clock on the DDR interface. | |
267 | * | |
268 | * WORKAROUND | |
269 | * To avoid the occurrence of the three events, the workaround | |
270 | * is to disable the self-refresh when requesting a frequency | |
271 | * change. Before requesting a frequency change the software must | |
272 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the | |
273 | * frequency change has been done, the software can reprogram | |
274 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 | |
275 | */ | |
276 | list_for_each_entry(emif, &device_list, node) { | |
277 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | |
278 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | |
279 | } | |
280 | ||
281 | /* | |
282 | * TODO: Do FREQ_UPDATE here when an API | |
283 | * is available for this as part of the new | |
284 | * clock framework | |
285 | */ | |
286 | ||
287 | list_for_each_entry(emif, &device_list, node) { | |
288 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | |
289 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | |
290 | } | |
291 | } | |
292 | ||
293 | /* Find addressing table entry based on the device's type and density */ | |
294 | static const struct lpddr2_addressing *get_addressing_table( | |
295 | const struct ddr_device_info *device_info) | |
296 | { | |
297 | u32 index, type, density; | |
298 | ||
299 | type = device_info->type; | |
300 | density = device_info->density; | |
301 | ||
302 | switch (type) { | |
303 | case DDR_TYPE_LPDDR2_S4: | |
304 | index = density - 1; | |
305 | break; | |
306 | case DDR_TYPE_LPDDR2_S2: | |
307 | switch (density) { | |
308 | case DDR_DENSITY_1Gb: | |
309 | case DDR_DENSITY_2Gb: | |
310 | index = density + 3; | |
311 | break; | |
312 | default: | |
313 | index = density - 1; | |
314 | } | |
315 | break; | |
316 | default: | |
317 | return NULL; | |
318 | } | |
319 | ||
320 | return &lpddr2_jedec_addressing_table[index]; | |
321 | } | |
322 | ||
323 | /* | |
324 | * Find the the right timing table from the array of timing | |
325 | * tables of the device using DDR clock frequency | |
326 | */ | |
327 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, | |
328 | u32 freq) | |
329 | { | |
330 | u32 i, min, max, freq_nearest; | |
331 | const struct lpddr2_timings *timings = NULL; | |
332 | const struct lpddr2_timings *timings_arr = emif->plat_data->timings; | |
333 | struct device *dev = emif->dev; | |
334 | ||
335 | /* Start with a very high frequency - 1GHz */ | |
336 | freq_nearest = 1000000000; | |
337 | ||
338 | /* | |
339 | * Find the timings table such that: | |
340 | * 1. the frequency range covers the required frequency(safe) AND | |
341 | * 2. the max_freq is closest to the required frequency(optimal) | |
342 | */ | |
343 | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { | |
344 | max = timings_arr[i].max_freq; | |
345 | min = timings_arr[i].min_freq; | |
346 | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { | |
347 | freq_nearest = max; | |
348 | timings = &timings_arr[i]; | |
349 | } | |
350 | } | |
351 | ||
352 | if (!timings) | |
353 | dev_err(dev, "%s: couldn't find timings for - %dHz\n", | |
354 | __func__, freq); | |
355 | ||
356 | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", | |
357 | __func__, freq, freq_nearest); | |
358 | ||
359 | return timings; | |
360 | } | |
361 | ||
362 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, | |
363 | const struct lpddr2_addressing *addressing) | |
364 | { | |
365 | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; | |
366 | ||
367 | /* Scale down frequency and t_refi to avoid overflow */ | |
368 | freq_khz = freq / 1000; | |
369 | t_refi = addressing->tREFI_ns / 100; | |
370 | ||
371 | /* | |
372 | * refresh rate to be set is 'tREFI(in us) * freq in MHz | |
373 | * division by 10000 to account for change in units | |
374 | */ | |
375 | val = t_refi * freq_khz / 10000; | |
376 | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; | |
377 | ||
378 | return ref_ctrl_shdw; | |
379 | } | |
380 | ||
381 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, | |
382 | const struct lpddr2_min_tck *min_tck, | |
383 | const struct lpddr2_addressing *addressing) | |
384 | { | |
385 | u32 tim1 = 0, val = 0; | |
386 | ||
387 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | |
388 | tim1 |= val << T_WTR_SHIFT; | |
389 | ||
390 | if (addressing->num_banks == B8) | |
391 | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); | |
392 | else | |
393 | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); | |
394 | tim1 |= (val - 1) << T_RRD_SHIFT; | |
395 | ||
396 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; | |
397 | tim1 |= val << T_RC_SHIFT; | |
398 | ||
399 | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); | |
400 | tim1 |= (val - 1) << T_RAS_SHIFT; | |
401 | ||
402 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | |
403 | tim1 |= val << T_WR_SHIFT; | |
404 | ||
405 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; | |
406 | tim1 |= val << T_RCD_SHIFT; | |
407 | ||
408 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; | |
409 | tim1 |= val << T_RP_SHIFT; | |
410 | ||
411 | return tim1; | |
412 | } | |
413 | ||
414 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, | |
415 | const struct lpddr2_min_tck *min_tck, | |
416 | const struct lpddr2_addressing *addressing) | |
417 | { | |
418 | u32 tim1 = 0, val = 0; | |
419 | ||
420 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; | |
421 | tim1 = val << T_WTR_SHIFT; | |
422 | ||
423 | /* | |
424 | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps | |
425 | * to tFAW for de-rating | |
426 | */ | |
427 | if (addressing->num_banks == B8) { | |
428 | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; | |
429 | } else { | |
430 | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); | |
431 | val = max(min_tck->tRRD, val) - 1; | |
432 | } | |
433 | tim1 |= val << T_RRD_SHIFT; | |
434 | ||
435 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); | |
436 | tim1 |= (val - 1) << T_RC_SHIFT; | |
437 | ||
438 | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); | |
439 | val = max(min_tck->tRASmin, val) - 1; | |
440 | tim1 |= val << T_RAS_SHIFT; | |
441 | ||
442 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; | |
443 | tim1 |= val << T_WR_SHIFT; | |
444 | ||
445 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); | |
446 | tim1 |= (val - 1) << T_RCD_SHIFT; | |
447 | ||
448 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); | |
449 | tim1 |= (val - 1) << T_RP_SHIFT; | |
450 | ||
451 | return tim1; | |
452 | } | |
453 | ||
454 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, | |
455 | const struct lpddr2_min_tck *min_tck, | |
456 | const struct lpddr2_addressing *addressing, | |
457 | u32 type) | |
458 | { | |
459 | u32 tim2 = 0, val = 0; | |
460 | ||
461 | val = min_tck->tCKE - 1; | |
462 | tim2 |= val << T_CKE_SHIFT; | |
463 | ||
464 | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; | |
465 | tim2 |= val << T_RTP_SHIFT; | |
466 | ||
467 | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ | |
468 | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; | |
469 | tim2 |= val << T_XSNR_SHIFT; | |
470 | ||
471 | /* XSRD same as XSNR for LPDDR2 */ | |
472 | tim2 |= val << T_XSRD_SHIFT; | |
473 | ||
474 | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; | |
475 | tim2 |= val << T_XP_SHIFT; | |
476 | ||
477 | return tim2; | |
478 | } | |
479 | ||
480 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, | |
481 | const struct lpddr2_min_tck *min_tck, | |
482 | const struct lpddr2_addressing *addressing, | |
483 | u32 type, u32 ip_rev, u32 derated) | |
484 | { | |
485 | u32 tim3 = 0, val = 0, t_dqsck; | |
486 | ||
487 | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; | |
488 | val = val > 0xF ? 0xF : val; | |
489 | tim3 |= val << T_RAS_MAX_SHIFT; | |
490 | ||
491 | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; | |
492 | tim3 |= val << T_RFC_SHIFT; | |
493 | ||
494 | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? | |
495 | timings->tDQSCK_max_derated : timings->tDQSCK_max; | |
496 | if (ip_rev == EMIF_4D5) | |
497 | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; | |
498 | else | |
499 | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; | |
500 | ||
501 | tim3 |= val << T_TDQSCKMAX_SHIFT; | |
502 | ||
503 | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; | |
504 | tim3 |= val << ZQ_ZQCS_SHIFT; | |
505 | ||
506 | val = DIV_ROUND_UP(timings->tCKESR, t_ck); | |
507 | val = max(min_tck->tCKESR, val) - 1; | |
508 | tim3 |= val << T_CKESR_SHIFT; | |
509 | ||
510 | if (ip_rev == EMIF_4D5) { | |
511 | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; | |
512 | ||
513 | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; | |
514 | tim3 |= val << T_PDLL_UL_SHIFT; | |
515 | } | |
516 | ||
517 | return tim3; | |
518 | } | |
519 | ||
98231c4f A |
520 | static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, |
521 | bool cs1_used, bool cal_resistors_per_cs) | |
522 | { | |
523 | u32 zq = 0, val = 0; | |
524 | ||
525 | val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; | |
526 | zq |= val << ZQ_REFINTERVAL_SHIFT; | |
527 | ||
528 | val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; | |
529 | zq |= val << ZQ_ZQCL_MULT_SHIFT; | |
530 | ||
531 | val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; | |
532 | zq |= val << ZQ_ZQINIT_MULT_SHIFT; | |
533 | ||
534 | zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; | |
535 | ||
536 | if (cal_resistors_per_cs) | |
537 | zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; | |
538 | else | |
539 | zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; | |
540 | ||
541 | zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ | |
542 | ||
543 | val = cs1_used ? 1 : 0; | |
544 | zq |= val << ZQ_CS1EN_SHIFT; | |
545 | ||
546 | return zq; | |
547 | } | |
548 | ||
549 | static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, | |
550 | const struct emif_custom_configs *custom_configs, bool cs1_used, | |
551 | u32 sdram_io_width, u32 emif_bus_width) | |
552 | { | |
553 | u32 alert = 0, interval, devcnt; | |
554 | ||
555 | if (custom_configs && (custom_configs->mask & | |
556 | EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) | |
557 | interval = custom_configs->temp_alert_poll_interval_ms; | |
558 | else | |
559 | interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; | |
560 | ||
561 | interval *= 1000000; /* Convert to ns */ | |
562 | interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ | |
563 | alert |= (interval << TA_REFINTERVAL_SHIFT); | |
564 | ||
565 | /* | |
566 | * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width | |
567 | * also to this form and subtract to get TA_DEVCNT, which is | |
568 | * in log2(x) form. | |
569 | */ | |
570 | emif_bus_width = __fls(emif_bus_width) - 1; | |
571 | devcnt = emif_bus_width - sdram_io_width; | |
572 | alert |= devcnt << TA_DEVCNT_SHIFT; | |
573 | ||
574 | /* DEVWDT is in 'log2(x) - 3' form */ | |
575 | alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; | |
576 | ||
577 | alert |= 1 << TA_SFEXITEN_SHIFT; | |
578 | alert |= 1 << TA_CS0EN_SHIFT; | |
579 | alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; | |
580 | ||
581 | return alert; | |
582 | } | |
583 | ||
a93de288 A |
584 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) |
585 | { | |
586 | u32 idle = 0, val = 0; | |
587 | ||
588 | /* | |
589 | * Maximum value in normal conditions and increased frequency | |
590 | * when voltage is ramping | |
591 | */ | |
592 | if (volt_ramp) | |
593 | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; | |
594 | else | |
595 | val = 0x1FF; | |
596 | ||
597 | /* | |
598 | * READ_IDLE_CTRL register in EMIF4D has same offset and fields | |
599 | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts | |
600 | */ | |
601 | idle |= val << DLL_CALIB_INTERVAL_SHIFT; | |
602 | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; | |
603 | ||
604 | return idle; | |
605 | } | |
606 | ||
607 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) | |
608 | { | |
609 | u32 calib = 0, val = 0; | |
610 | ||
611 | if (volt_ramp == DDR_VOLTAGE_RAMPING) | |
612 | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; | |
613 | else | |
614 | val = 0; /* Disabled when voltage is stable */ | |
615 | ||
616 | calib |= val << DLL_CALIB_INTERVAL_SHIFT; | |
617 | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; | |
618 | ||
619 | return calib; | |
620 | } | |
621 | ||
622 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, | |
623 | u32 freq, u8 RL) | |
624 | { | |
625 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; | |
626 | ||
627 | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; | |
628 | phy |= val << READ_LATENCY_SHIFT_4D; | |
629 | ||
630 | if (freq <= 100000000) | |
631 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; | |
632 | else if (freq <= 200000000) | |
633 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; | |
634 | else | |
635 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; | |
636 | ||
637 | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; | |
638 | ||
639 | return phy; | |
640 | } | |
641 | ||
642 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) | |
643 | { | |
644 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; | |
645 | ||
646 | /* | |
647 | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, | |
648 | * half-delay is not needed else set half-delay | |
649 | */ | |
650 | if (freq >= 265000000 && freq < 267000000) | |
651 | half_delay = 0; | |
652 | else | |
653 | half_delay = 1; | |
654 | ||
655 | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; | |
656 | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, | |
657 | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); | |
658 | ||
659 | return phy; | |
660 | } | |
661 | ||
662 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) | |
663 | { | |
664 | u32 fifo_we_slave_ratio; | |
665 | ||
666 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | |
667 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | |
668 | ||
669 | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | | |
670 | fifo_we_slave_ratio << 22; | |
671 | } | |
672 | ||
673 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) | |
674 | { | |
675 | u32 fifo_we_slave_ratio; | |
676 | ||
677 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | |
678 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | |
679 | ||
680 | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | | |
681 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; | |
682 | } | |
683 | ||
684 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) | |
685 | { | |
686 | u32 fifo_we_slave_ratio; | |
687 | ||
688 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( | |
689 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); | |
690 | ||
691 | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | | |
692 | fifo_we_slave_ratio << 13; | |
693 | } | |
694 | ||
695 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) | |
696 | { | |
697 | u32 pwr_mgmt_ctrl = 0, timeout; | |
698 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; | |
699 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; | |
700 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; | |
701 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; | |
702 | ||
703 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; | |
704 | ||
705 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { | |
706 | lpmode = cust_cfgs->lpmode; | |
707 | timeout_perf = cust_cfgs->lpmode_timeout_performance; | |
708 | timeout_pwr = cust_cfgs->lpmode_timeout_power; | |
709 | freq_threshold = cust_cfgs->lpmode_freq_threshold; | |
710 | } | |
711 | ||
712 | /* Timeout based on DDR frequency */ | |
713 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; | |
714 | ||
715 | /* The value to be set in register is "log2(timeout) - 3" */ | |
716 | if (timeout < 16) { | |
717 | timeout = 0; | |
718 | } else { | |
719 | timeout = __fls(timeout) - 3; | |
720 | if (timeout & (timeout - 1)) | |
721 | timeout++; | |
722 | } | |
723 | ||
724 | switch (lpmode) { | |
725 | case EMIF_LP_MODE_CLOCK_STOP: | |
726 | pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | | |
727 | SR_TIM_MASK | PD_TIM_MASK; | |
728 | break; | |
729 | case EMIF_LP_MODE_SELF_REFRESH: | |
730 | /* Workaround for errata i735 */ | |
731 | if (timeout < 6) | |
732 | timeout = 6; | |
733 | ||
734 | pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | | |
735 | CS_TIM_MASK | PD_TIM_MASK; | |
736 | break; | |
737 | case EMIF_LP_MODE_PWR_DN: | |
738 | pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | | |
739 | CS_TIM_MASK | SR_TIM_MASK; | |
740 | break; | |
741 | case EMIF_LP_MODE_DISABLE: | |
742 | default: | |
743 | pwr_mgmt_ctrl = CS_TIM_MASK | | |
744 | PD_TIM_MASK | SR_TIM_MASK; | |
745 | } | |
746 | ||
747 | /* No CS_TIM in EMIF_4D5 */ | |
748 | if (ip_rev == EMIF_4D5) | |
749 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; | |
750 | ||
751 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; | |
752 | ||
753 | return pwr_mgmt_ctrl; | |
754 | } | |
755 | ||
68b4aee3 A |
756 | /* |
757 | * Get the temperature level of the EMIF instance: | |
758 | * Reads the MR4 register of attached SDRAM parts to find out the temperature | |
759 | * level. If there are two parts attached(one on each CS), then the temperature | |
760 | * level for the EMIF instance is the higher of the two temperatures. | |
761 | */ | |
762 | static void get_temperature_level(struct emif_data *emif) | |
763 | { | |
764 | u32 temp, temperature_level; | |
765 | void __iomem *base; | |
766 | ||
767 | base = emif->base; | |
768 | ||
769 | /* Read mode register 4 */ | |
770 | writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); | |
771 | temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | |
772 | temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> | |
773 | MR4_SDRAM_REF_RATE_SHIFT; | |
774 | ||
775 | if (emif->plat_data->device_info->cs1_used) { | |
776 | writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); | |
777 | temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); | |
778 | temp = (temp & MR4_SDRAM_REF_RATE_MASK) | |
779 | >> MR4_SDRAM_REF_RATE_SHIFT; | |
780 | temperature_level = max(temp, temperature_level); | |
781 | } | |
782 | ||
783 | /* treat everything less than nominal(3) in MR4 as nominal */ | |
784 | if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) | |
785 | temperature_level = SDRAM_TEMP_NOMINAL; | |
786 | ||
787 | /* if we get reserved value in MR4 persist with the existing value */ | |
788 | if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) | |
789 | emif->temperature_level = temperature_level; | |
790 | } | |
791 | ||
a93de288 A |
792 | /* |
793 | * Program EMIF shadow registers that are not dependent on temperature | |
794 | * or voltage | |
795 | */ | |
796 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) | |
797 | { | |
798 | void __iomem *base = emif->base; | |
799 | ||
800 | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); | |
801 | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); | |
802 | ||
803 | /* Settings specific for EMIF4D5 */ | |
804 | if (emif->plat_data->ip_rev != EMIF_4D5) | |
805 | return; | |
806 | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); | |
807 | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); | |
808 | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); | |
809 | } | |
810 | ||
811 | /* | |
812 | * When voltage ramps dll calibration and forced read idle should | |
813 | * happen more often | |
814 | */ | |
815 | static void setup_volt_sensitive_regs(struct emif_data *emif, | |
816 | struct emif_regs *regs, u32 volt_state) | |
817 | { | |
818 | u32 calib_ctrl; | |
819 | void __iomem *base = emif->base; | |
820 | ||
821 | /* | |
822 | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as | |
823 | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* | |
824 | * is an alias of the respective read_idle_ctrl_shdw_* (members of | |
825 | * a union). So, the below code takes care of both cases | |
826 | */ | |
827 | if (volt_state == DDR_VOLTAGE_RAMPING) | |
828 | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; | |
829 | else | |
830 | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; | |
831 | ||
832 | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); | |
833 | } | |
834 | ||
835 | /* | |
836 | * setup_temperature_sensitive_regs() - set the timings for temperature | |
837 | * sensitive registers. This happens once at initialisation time based | |
838 | * on the temperature at boot time and subsequently based on the temperature | |
839 | * alert interrupt. Temperature alert can happen when the temperature | |
840 | * increases or drops. So this function can have the effect of either | |
841 | * derating the timings or going back to nominal values. | |
842 | */ | |
843 | static void setup_temperature_sensitive_regs(struct emif_data *emif, | |
844 | struct emif_regs *regs) | |
845 | { | |
846 | u32 tim1, tim3, ref_ctrl, type; | |
847 | void __iomem *base = emif->base; | |
848 | u32 temperature; | |
849 | ||
850 | type = emif->plat_data->device_info->type; | |
851 | ||
852 | tim1 = regs->sdram_tim1_shdw; | |
853 | tim3 = regs->sdram_tim3_shdw; | |
854 | ref_ctrl = regs->ref_ctrl_shdw; | |
855 | ||
856 | /* No de-rating for non-lpddr2 devices */ | |
857 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) | |
858 | goto out; | |
859 | ||
860 | temperature = emif->temperature_level; | |
861 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { | |
862 | ref_ctrl = regs->ref_ctrl_shdw_derated; | |
863 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { | |
864 | tim1 = regs->sdram_tim1_shdw_derated; | |
865 | tim3 = regs->sdram_tim3_shdw_derated; | |
866 | ref_ctrl = regs->ref_ctrl_shdw_derated; | |
867 | } | |
868 | ||
869 | out: | |
870 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); | |
871 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); | |
872 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); | |
873 | } | |
874 | ||
68b4aee3 A |
875 | static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) |
876 | { | |
877 | u32 old_temp_level; | |
878 | irqreturn_t ret = IRQ_HANDLED; | |
879 | ||
880 | spin_lock_irqsave(&emif_lock, irq_state); | |
881 | old_temp_level = emif->temperature_level; | |
882 | get_temperature_level(emif); | |
883 | ||
884 | if (unlikely(emif->temperature_level == old_temp_level)) { | |
885 | goto out; | |
886 | } else if (!emif->curr_regs) { | |
887 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | |
888 | goto out; | |
889 | } | |
890 | ||
891 | if (emif->temperature_level < old_temp_level || | |
892 | emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | |
893 | /* | |
894 | * Temperature coming down - defer handling to thread OR | |
895 | * Temperature far too high - do kernel_power_off() from | |
896 | * thread context | |
897 | */ | |
898 | ret = IRQ_WAKE_THREAD; | |
899 | } else { | |
900 | /* Temperature is going up - handle immediately */ | |
901 | setup_temperature_sensitive_regs(emif, emif->curr_regs); | |
902 | do_freq_update(); | |
903 | } | |
904 | ||
905 | out: | |
906 | spin_unlock_irqrestore(&emif_lock, irq_state); | |
907 | return ret; | |
908 | } | |
909 | ||
910 | static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) | |
911 | { | |
912 | u32 interrupts; | |
913 | struct emif_data *emif = dev_id; | |
914 | void __iomem *base = emif->base; | |
915 | struct device *dev = emif->dev; | |
916 | irqreturn_t ret = IRQ_HANDLED; | |
917 | ||
918 | /* Save the status and clear it */ | |
919 | interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | |
920 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | |
921 | ||
922 | /* | |
923 | * Handle temperature alert | |
924 | * Temperature alert should be same for all ports | |
925 | * So, it's enough to process it only for one of the ports | |
926 | */ | |
927 | if (interrupts & TA_SYS_MASK) | |
928 | ret = handle_temp_alert(base, emif); | |
929 | ||
930 | if (interrupts & ERR_SYS_MASK) | |
931 | dev_err(dev, "Access error from SYS port - %x\n", interrupts); | |
932 | ||
933 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | |
934 | /* Save the status and clear it */ | |
935 | interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); | |
936 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); | |
937 | ||
938 | if (interrupts & ERR_LL_MASK) | |
939 | dev_err(dev, "Access error from LL port - %x\n", | |
940 | interrupts); | |
941 | } | |
942 | ||
943 | return ret; | |
944 | } | |
945 | ||
946 | static irqreturn_t emif_threaded_isr(int irq, void *dev_id) | |
947 | { | |
948 | struct emif_data *emif = dev_id; | |
949 | ||
950 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { | |
951 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | |
952 | kernel_power_off(); | |
953 | return IRQ_HANDLED; | |
954 | } | |
955 | ||
956 | spin_lock_irqsave(&emif_lock, irq_state); | |
957 | ||
958 | if (emif->curr_regs) { | |
959 | setup_temperature_sensitive_regs(emif, emif->curr_regs); | |
960 | do_freq_update(); | |
961 | } else { | |
962 | dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); | |
963 | } | |
964 | ||
965 | spin_unlock_irqrestore(&emif_lock, irq_state); | |
966 | ||
967 | return IRQ_HANDLED; | |
968 | } | |
969 | ||
970 | static void clear_all_interrupts(struct emif_data *emif) | |
971 | { | |
972 | void __iomem *base = emif->base; | |
973 | ||
974 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), | |
975 | base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); | |
976 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | |
977 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), | |
978 | base + EMIF_LL_OCP_INTERRUPT_STATUS); | |
979 | } | |
980 | ||
981 | static void disable_and_clear_all_interrupts(struct emif_data *emif) | |
982 | { | |
983 | void __iomem *base = emif->base; | |
984 | ||
985 | /* Disable all interrupts */ | |
986 | writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), | |
987 | base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); | |
988 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) | |
989 | writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), | |
990 | base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); | |
991 | ||
992 | /* Clear all interrupts */ | |
993 | clear_all_interrupts(emif); | |
994 | } | |
995 | ||
996 | static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) | |
997 | { | |
998 | u32 interrupts, type; | |
999 | void __iomem *base = emif->base; | |
1000 | ||
1001 | type = emif->plat_data->device_info->type; | |
1002 | ||
1003 | clear_all_interrupts(emif); | |
1004 | ||
1005 | /* Enable interrupts for SYS interface */ | |
1006 | interrupts = EN_ERR_SYS_MASK; | |
1007 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) | |
1008 | interrupts |= EN_TA_SYS_MASK; | |
1009 | writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); | |
1010 | ||
1011 | /* Enable interrupts for LL interface */ | |
1012 | if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { | |
1013 | /* TA need not be enabled for LL */ | |
1014 | interrupts = EN_ERR_LL_MASK; | |
1015 | writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); | |
1016 | } | |
1017 | ||
1018 | /* setup IRQ handlers */ | |
1019 | return devm_request_threaded_irq(emif->dev, irq, | |
1020 | emif_interrupt_handler, | |
1021 | emif_threaded_isr, | |
1022 | 0, dev_name(emif->dev), | |
1023 | emif); | |
1024 | ||
1025 | } | |
1026 | ||
98231c4f A |
1027 | static void __init_or_module emif_onetime_settings(struct emif_data *emif) |
1028 | { | |
1029 | u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; | |
1030 | void __iomem *base = emif->base; | |
1031 | const struct lpddr2_addressing *addressing; | |
1032 | const struct ddr_device_info *device_info; | |
1033 | ||
1034 | device_info = emif->plat_data->device_info; | |
1035 | addressing = get_addressing_table(device_info); | |
1036 | ||
1037 | /* | |
1038 | * Init power management settings | |
1039 | * We don't know the frequency yet. Use a high frequency | |
1040 | * value for a conservative timeout setting | |
1041 | */ | |
1042 | pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, | |
1043 | emif->plat_data->ip_rev); | |
1044 | emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; | |
1045 | writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); | |
1046 | ||
1047 | /* Init ZQ calibration settings */ | |
1048 | zq = get_zq_config_reg(addressing, device_info->cs1_used, | |
1049 | device_info->cal_resistors_per_cs); | |
1050 | writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); | |
1051 | ||
1052 | /* Check temperature level temperature level*/ | |
1053 | get_temperature_level(emif); | |
1054 | if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) | |
1055 | dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); | |
1056 | ||
1057 | /* Init temperature polling */ | |
1058 | temp_alert_cfg = get_temp_alert_config(addressing, | |
1059 | emif->plat_data->custom_configs, device_info->cs1_used, | |
1060 | device_info->io_width, get_emif_bus_width(emif)); | |
1061 | writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); | |
1062 | ||
1063 | /* | |
1064 | * Program external PHY control registers that are not frequency | |
1065 | * dependent | |
1066 | */ | |
1067 | if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) | |
1068 | return; | |
1069 | writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); | |
1070 | writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); | |
1071 | writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); | |
1072 | writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); | |
1073 | writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); | |
1074 | writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); | |
1075 | writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); | |
1076 | writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); | |
1077 | writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); | |
1078 | writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); | |
1079 | writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); | |
1080 | writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); | |
1081 | writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); | |
1082 | writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); | |
1083 | writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); | |
1084 | writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); | |
1085 | writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); | |
1086 | writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); | |
1087 | writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); | |
1088 | writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); | |
1089 | writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); | |
1090 | } | |
1091 | ||
7ec94453 A |
1092 | static void get_default_timings(struct emif_data *emif) |
1093 | { | |
1094 | struct emif_platform_data *pd = emif->plat_data; | |
1095 | ||
1096 | pd->timings = lpddr2_jedec_timings; | |
1097 | pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); | |
1098 | ||
1099 | dev_warn(emif->dev, "%s: using default timings\n", __func__); | |
1100 | } | |
1101 | ||
1102 | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, | |
1103 | u32 ip_rev, struct device *dev) | |
1104 | { | |
1105 | int valid; | |
1106 | ||
1107 | valid = (type == DDR_TYPE_LPDDR2_S4 || | |
1108 | type == DDR_TYPE_LPDDR2_S2) | |
1109 | && (density >= DDR_DENSITY_64Mb | |
1110 | && density <= DDR_DENSITY_8Gb) | |
1111 | && (io_width >= DDR_IO_WIDTH_8 | |
1112 | && io_width <= DDR_IO_WIDTH_32); | |
1113 | ||
1114 | /* Combinations of EMIF and PHY revisions that we support today */ | |
1115 | switch (ip_rev) { | |
1116 | case EMIF_4D: | |
1117 | valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); | |
1118 | break; | |
1119 | case EMIF_4D5: | |
1120 | valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); | |
1121 | break; | |
1122 | default: | |
1123 | valid = 0; | |
1124 | } | |
1125 | ||
1126 | if (!valid) | |
1127 | dev_err(dev, "%s: invalid DDR details\n", __func__); | |
1128 | return valid; | |
1129 | } | |
1130 | ||
1131 | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, | |
1132 | struct device *dev) | |
1133 | { | |
1134 | int valid = 1; | |
1135 | ||
1136 | if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && | |
1137 | (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) | |
1138 | valid = cust_cfgs->lpmode_freq_threshold && | |
1139 | cust_cfgs->lpmode_timeout_performance && | |
1140 | cust_cfgs->lpmode_timeout_power; | |
1141 | ||
1142 | if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) | |
1143 | valid = valid && cust_cfgs->temp_alert_poll_interval_ms; | |
1144 | ||
1145 | if (!valid) | |
1146 | dev_warn(dev, "%s: invalid custom configs\n", __func__); | |
1147 | ||
1148 | return valid; | |
1149 | } | |
1150 | ||
1151 | static struct emif_data *__init_or_module get_device_details( | |
1152 | struct platform_device *pdev) | |
1153 | { | |
1154 | u32 size; | |
1155 | struct emif_data *emif = NULL; | |
1156 | struct ddr_device_info *dev_info; | |
1157 | struct emif_custom_configs *cust_cfgs; | |
1158 | struct emif_platform_data *pd; | |
1159 | struct device *dev; | |
1160 | void *temp; | |
1161 | ||
1162 | pd = pdev->dev.platform_data; | |
1163 | dev = &pdev->dev; | |
1164 | ||
1165 | if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, | |
1166 | pd->device_info->density, pd->device_info->io_width, | |
1167 | pd->phy_type, pd->ip_rev, dev))) { | |
1168 | dev_err(dev, "%s: invalid device data\n", __func__); | |
1169 | goto error; | |
1170 | } | |
1171 | ||
1172 | emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); | |
1173 | temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); | |
1174 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); | |
1175 | ||
1176 | if (!emif || !pd || !dev_info) { | |
1177 | dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); | |
1178 | goto error; | |
1179 | } | |
1180 | ||
1181 | memcpy(temp, pd, sizeof(*pd)); | |
1182 | pd = temp; | |
1183 | memcpy(dev_info, pd->device_info, sizeof(*dev_info)); | |
1184 | ||
1185 | pd->device_info = dev_info; | |
1186 | emif->plat_data = pd; | |
1187 | emif->dev = dev; | |
1188 | emif->temperature_level = SDRAM_TEMP_NOMINAL; | |
1189 | ||
1190 | /* | |
1191 | * For EMIF instances other than EMIF1 see if the devices connected | |
1192 | * are exactly same as on EMIF1(which is typically the case). If so, | |
1193 | * mark it as a duplicate of EMIF1 and skip copying timings data. | |
1194 | * This will save some memory and some computation later. | |
1195 | */ | |
1196 | emif->duplicate = emif1 && (memcmp(dev_info, | |
1197 | emif1->plat_data->device_info, | |
1198 | sizeof(struct ddr_device_info)) == 0); | |
1199 | ||
1200 | if (emif->duplicate) { | |
1201 | pd->timings = NULL; | |
1202 | pd->min_tck = NULL; | |
1203 | goto out; | |
1204 | } else if (emif1) { | |
1205 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", | |
1206 | __func__); | |
1207 | } | |
1208 | ||
1209 | /* | |
1210 | * Copy custom configs - ignore allocation error, if any, as | |
1211 | * custom_configs is not very critical | |
1212 | */ | |
1213 | cust_cfgs = pd->custom_configs; | |
1214 | if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { | |
1215 | temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); | |
1216 | if (temp) | |
1217 | memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); | |
1218 | else | |
1219 | dev_warn(dev, "%s:%d: allocation error\n", __func__, | |
1220 | __LINE__); | |
1221 | pd->custom_configs = temp; | |
1222 | } | |
1223 | ||
1224 | /* | |
1225 | * Copy timings and min-tck values from platform data. If it is not | |
1226 | * available or if memory allocation fails, use JEDEC defaults | |
1227 | */ | |
1228 | size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; | |
1229 | if (pd->timings) { | |
1230 | temp = devm_kzalloc(dev, size, GFP_KERNEL); | |
1231 | if (temp) { | |
1232 | memcpy(temp, pd->timings, sizeof(*pd->timings)); | |
1233 | pd->timings = temp; | |
1234 | } else { | |
1235 | dev_warn(dev, "%s:%d: allocation error\n", __func__, | |
1236 | __LINE__); | |
1237 | get_default_timings(emif); | |
1238 | } | |
1239 | } else { | |
1240 | get_default_timings(emif); | |
1241 | } | |
1242 | ||
1243 | if (pd->min_tck) { | |
1244 | temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); | |
1245 | if (temp) { | |
1246 | memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); | |
1247 | pd->min_tck = temp; | |
1248 | } else { | |
1249 | dev_warn(dev, "%s:%d: allocation error\n", __func__, | |
1250 | __LINE__); | |
1251 | pd->min_tck = &lpddr2_jedec_min_tck; | |
1252 | } | |
1253 | } else { | |
1254 | pd->min_tck = &lpddr2_jedec_min_tck; | |
1255 | } | |
1256 | ||
1257 | out: | |
1258 | return emif; | |
1259 | ||
1260 | error: | |
1261 | return NULL; | |
1262 | } | |
1263 | ||
1264 | static int __init_or_module emif_probe(struct platform_device *pdev) | |
1265 | { | |
1266 | struct emif_data *emif; | |
1267 | struct resource *res; | |
68b4aee3 | 1268 | int irq; |
7ec94453 A |
1269 | |
1270 | emif = get_device_details(pdev); | |
1271 | if (!emif) { | |
1272 | pr_err("%s: error getting device data\n", __func__); | |
1273 | goto error; | |
1274 | } | |
1275 | ||
7ec94453 | 1276 | list_add(&emif->node, &device_list); |
a93de288 | 1277 | emif->addressing = get_addressing_table(emif->plat_data->device_info); |
7ec94453 A |
1278 | |
1279 | /* Save pointers to each other in emif and device structures */ | |
1280 | emif->dev = &pdev->dev; | |
1281 | platform_set_drvdata(pdev, emif); | |
1282 | ||
1283 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | |
1284 | if (!res) { | |
1285 | dev_err(emif->dev, "%s: error getting memory resource\n", | |
1286 | __func__); | |
1287 | goto error; | |
1288 | } | |
1289 | ||
1290 | emif->base = devm_request_and_ioremap(emif->dev, res); | |
1291 | if (!emif->base) { | |
1292 | dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", | |
1293 | __func__); | |
1294 | goto error; | |
1295 | } | |
1296 | ||
68b4aee3 A |
1297 | irq = platform_get_irq(pdev, 0); |
1298 | if (irq < 0) { | |
1299 | dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", | |
1300 | __func__, irq); | |
1301 | goto error; | |
1302 | } | |
1303 | ||
98231c4f | 1304 | emif_onetime_settings(emif); |
aac10aaa | 1305 | emif_debugfs_init(emif); |
68b4aee3 A |
1306 | disable_and_clear_all_interrupts(emif); |
1307 | setup_interrupts(emif, irq); | |
1308 | ||
a93de288 A |
1309 | /* One-time actions taken on probing the first device */ |
1310 | if (!emif1) { | |
1311 | emif1 = emif; | |
1312 | spin_lock_init(&emif_lock); | |
1313 | ||
1314 | /* | |
1315 | * TODO: register notifiers for frequency and voltage | |
1316 | * change here once the respective frameworks are | |
1317 | * available | |
1318 | */ | |
1319 | } | |
1320 | ||
68b4aee3 A |
1321 | dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", |
1322 | __func__, emif->base, irq); | |
7ec94453 A |
1323 | |
1324 | return 0; | |
1325 | error: | |
1326 | return -ENODEV; | |
1327 | } | |
1328 | ||
aac10aaa A |
1329 | static int __exit emif_remove(struct platform_device *pdev) |
1330 | { | |
1331 | struct emif_data *emif = platform_get_drvdata(pdev); | |
1332 | ||
1333 | emif_debugfs_exit(emif); | |
1334 | ||
1335 | return 0; | |
1336 | } | |
1337 | ||
68b4aee3 A |
1338 | static void emif_shutdown(struct platform_device *pdev) |
1339 | { | |
1340 | struct emif_data *emif = platform_get_drvdata(pdev); | |
1341 | ||
1342 | disable_and_clear_all_interrupts(emif); | |
1343 | } | |
1344 | ||
a93de288 A |
1345 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, |
1346 | struct emif_regs *regs) | |
1347 | { | |
1348 | u32 cs1_used, ip_rev, phy_type; | |
1349 | u32 cl, type; | |
1350 | const struct lpddr2_timings *timings; | |
1351 | const struct lpddr2_min_tck *min_tck; | |
1352 | const struct ddr_device_info *device_info; | |
1353 | const struct lpddr2_addressing *addressing; | |
1354 | struct emif_data *emif_for_calc; | |
1355 | struct device *dev; | |
1356 | const struct emif_custom_configs *custom_configs; | |
1357 | ||
1358 | dev = emif->dev; | |
1359 | /* | |
1360 | * If the devices on this EMIF instance is duplicate of EMIF1, | |
1361 | * use EMIF1 details for the calculation | |
1362 | */ | |
1363 | emif_for_calc = emif->duplicate ? emif1 : emif; | |
1364 | timings = get_timings_table(emif_for_calc, freq); | |
1365 | addressing = emif_for_calc->addressing; | |
1366 | if (!timings || !addressing) { | |
1367 | dev_err(dev, "%s: not enough data available for %dHz", | |
1368 | __func__, freq); | |
1369 | return -1; | |
1370 | } | |
1371 | ||
1372 | device_info = emif_for_calc->plat_data->device_info; | |
1373 | type = device_info->type; | |
1374 | cs1_used = device_info->cs1_used; | |
1375 | ip_rev = emif_for_calc->plat_data->ip_rev; | |
1376 | phy_type = emif_for_calc->plat_data->phy_type; | |
1377 | ||
1378 | min_tck = emif_for_calc->plat_data->min_tck; | |
1379 | custom_configs = emif_for_calc->plat_data->custom_configs; | |
1380 | ||
1381 | set_ddr_clk_period(freq); | |
1382 | ||
1383 | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); | |
1384 | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, | |
1385 | addressing); | |
1386 | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, | |
1387 | addressing, type); | |
1388 | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, | |
1389 | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); | |
1390 | ||
1391 | cl = get_cl(emif); | |
1392 | ||
1393 | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { | |
1394 | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( | |
1395 | timings, freq, cl); | |
1396 | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { | |
1397 | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); | |
1398 | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); | |
1399 | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); | |
1400 | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); | |
1401 | } else { | |
1402 | return -1; | |
1403 | } | |
1404 | ||
1405 | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ | |
1406 | regs->pwr_mgmt_ctrl_shdw = | |
1407 | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & | |
1408 | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); | |
1409 | ||
1410 | if (ip_rev & EMIF_4D) { | |
1411 | regs->read_idle_ctrl_shdw_normal = | |
1412 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); | |
1413 | ||
1414 | regs->read_idle_ctrl_shdw_volt_ramp = | |
1415 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); | |
1416 | } else if (ip_rev & EMIF_4D5) { | |
1417 | regs->dll_calib_ctrl_shdw_normal = | |
1418 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); | |
1419 | ||
1420 | regs->dll_calib_ctrl_shdw_volt_ramp = | |
1421 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); | |
1422 | } | |
1423 | ||
1424 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { | |
1425 | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, | |
1426 | addressing); | |
1427 | ||
1428 | regs->sdram_tim1_shdw_derated = | |
1429 | get_sdram_tim_1_shdw_derated(timings, min_tck, | |
1430 | addressing); | |
1431 | ||
1432 | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, | |
1433 | min_tck, addressing, type, ip_rev, | |
1434 | EMIF_DERATED_TIMINGS); | |
1435 | } | |
1436 | ||
1437 | regs->freq = freq; | |
1438 | ||
1439 | return 0; | |
1440 | } | |
1441 | ||
1442 | /* | |
1443 | * get_regs() - gets the cached emif_regs structure for a given EMIF instance | |
1444 | * given frequency(freq): | |
1445 | * | |
1446 | * As an optimisation, every EMIF instance other than EMIF1 shares the | |
1447 | * register cache with EMIF1 if the devices connected on this instance | |
1448 | * are same as that on EMIF1(indicated by the duplicate flag) | |
1449 | * | |
1450 | * If we do not have an entry corresponding to the frequency given, we | |
1451 | * allocate a new entry and calculate the values | |
1452 | * | |
1453 | * Upon finding the right reg dump, save it in curr_regs. It can be | |
1454 | * directly used for thermal de-rating and voltage ramping changes. | |
1455 | */ | |
1456 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) | |
1457 | { | |
1458 | int i; | |
1459 | struct emif_regs **regs_cache; | |
1460 | struct emif_regs *regs = NULL; | |
1461 | struct device *dev; | |
1462 | ||
1463 | dev = emif->dev; | |
1464 | if (emif->curr_regs && emif->curr_regs->freq == freq) { | |
1465 | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); | |
1466 | return emif->curr_regs; | |
1467 | } | |
1468 | ||
1469 | if (emif->duplicate) | |
1470 | regs_cache = emif1->regs_cache; | |
1471 | else | |
1472 | regs_cache = emif->regs_cache; | |
1473 | ||
1474 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { | |
1475 | if (regs_cache[i]->freq == freq) { | |
1476 | regs = regs_cache[i]; | |
1477 | dev_dbg(dev, | |
1478 | "%s: reg dump found in reg cache for %u Hz\n", | |
1479 | __func__, freq); | |
1480 | break; | |
1481 | } | |
1482 | } | |
1483 | ||
1484 | /* | |
1485 | * If we don't have an entry for this frequency in the cache create one | |
1486 | * and calculate the values | |
1487 | */ | |
1488 | if (!regs) { | |
1489 | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); | |
1490 | if (!regs) | |
1491 | return NULL; | |
1492 | ||
1493 | if (get_emif_reg_values(emif, freq, regs)) { | |
1494 | devm_kfree(emif->dev, regs); | |
1495 | return NULL; | |
1496 | } | |
1497 | ||
1498 | /* | |
1499 | * Now look for an un-used entry in the cache and save the | |
1500 | * newly created struct. If there are no free entries | |
1501 | * over-write the last entry | |
1502 | */ | |
1503 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) | |
1504 | ; | |
1505 | ||
1506 | if (i >= EMIF_MAX_NUM_FREQUENCIES) { | |
1507 | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", | |
1508 | __func__); | |
1509 | i = EMIF_MAX_NUM_FREQUENCIES - 1; | |
1510 | devm_kfree(emif->dev, regs_cache[i]); | |
1511 | } | |
1512 | regs_cache[i] = regs; | |
1513 | } | |
1514 | ||
1515 | return regs; | |
1516 | } | |
1517 | ||
1518 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) | |
1519 | { | |
1520 | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, | |
1521 | volt_state); | |
1522 | ||
1523 | if (!emif->curr_regs) { | |
1524 | dev_err(emif->dev, | |
1525 | "%s: volt-notify before registers are ready: %d\n", | |
1526 | __func__, volt_state); | |
1527 | return; | |
1528 | } | |
1529 | ||
1530 | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); | |
1531 | } | |
1532 | ||
1533 | /* | |
1534 | * TODO: voltage notify handling should be hooked up to | |
1535 | * regulator framework as soon as the necessary support | |
1536 | * is available in mainline kernel. This function is un-used | |
1537 | * right now. | |
1538 | */ | |
1539 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) | |
1540 | { | |
1541 | struct emif_data *emif; | |
1542 | ||
1543 | spin_lock_irqsave(&emif_lock, irq_state); | |
1544 | ||
1545 | list_for_each_entry(emif, &device_list, node) | |
1546 | do_volt_notify_handling(emif, volt_state); | |
1547 | do_freq_update(); | |
1548 | ||
1549 | spin_unlock_irqrestore(&emif_lock, irq_state); | |
1550 | } | |
1551 | ||
1552 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) | |
1553 | { | |
1554 | struct emif_regs *regs; | |
1555 | ||
1556 | regs = get_regs(emif, new_freq); | |
1557 | if (!regs) | |
1558 | return; | |
1559 | ||
1560 | emif->curr_regs = regs; | |
1561 | ||
1562 | /* | |
1563 | * Update the shadow registers: | |
1564 | * Temperature and voltage-ramp sensitive settings are also configured | |
1565 | * in terms of DDR cycles. So, we need to update them too when there | |
1566 | * is a freq change | |
1567 | */ | |
1568 | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", | |
1569 | __func__, new_freq); | |
1570 | setup_registers(emif, regs); | |
1571 | setup_temperature_sensitive_regs(emif, regs); | |
1572 | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); | |
1573 | ||
1574 | /* | |
1575 | * Part of workaround for errata i728. See do_freq_update() | |
1576 | * for more details | |
1577 | */ | |
1578 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | |
1579 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); | |
1580 | } | |
1581 | ||
1582 | /* | |
1583 | * TODO: frequency notify handling should be hooked up to | |
1584 | * clock framework as soon as the necessary support is | |
1585 | * available in mainline kernel. This function is un-used | |
1586 | * right now. | |
1587 | */ | |
1588 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) | |
1589 | { | |
1590 | struct emif_data *emif; | |
1591 | ||
1592 | /* | |
1593 | * NOTE: we are taking the spin-lock here and releases it | |
1594 | * only in post-notifier. This doesn't look good and | |
1595 | * Sparse complains about it, but this seems to be | |
1596 | * un-avoidable. We need to lock a sequence of events | |
1597 | * that is split between EMIF and clock framework. | |
1598 | * | |
1599 | * 1. EMIF driver updates EMIF timings in shadow registers in the | |
1600 | * frequency pre-notify callback from clock framework | |
1601 | * 2. clock framework sets up the registers for the new frequency | |
1602 | * 3. clock framework initiates a hw-sequence that updates | |
1603 | * the frequency EMIF timings synchronously. | |
1604 | * | |
1605 | * All these 3 steps should be performed as an atomic operation | |
1606 | * vis-a-vis similar sequence in the EMIF interrupt handler | |
1607 | * for temperature events. Otherwise, there could be race | |
1608 | * conditions that could result in incorrect EMIF timings for | |
1609 | * a given frequency | |
1610 | */ | |
1611 | spin_lock_irqsave(&emif_lock, irq_state); | |
1612 | ||
1613 | list_for_each_entry(emif, &device_list, node) | |
1614 | do_freq_pre_notify_handling(emif, new_freq); | |
1615 | } | |
1616 | ||
1617 | static void do_freq_post_notify_handling(struct emif_data *emif) | |
1618 | { | |
1619 | /* | |
1620 | * Part of workaround for errata i728. See do_freq_update() | |
1621 | * for more details | |
1622 | */ | |
1623 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) | |
1624 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); | |
1625 | } | |
1626 | ||
1627 | /* | |
1628 | * TODO: frequency notify handling should be hooked up to | |
1629 | * clock framework as soon as the necessary support is | |
1630 | * available in mainline kernel. This function is un-used | |
1631 | * right now. | |
1632 | */ | |
1633 | static void __attribute__((unused)) freq_post_notify_handling(void) | |
1634 | { | |
1635 | struct emif_data *emif; | |
1636 | ||
1637 | list_for_each_entry(emif, &device_list, node) | |
1638 | do_freq_post_notify_handling(emif); | |
1639 | ||
1640 | /* | |
1641 | * Lock is done in pre-notify handler. See freq_pre_notify_handling() | |
1642 | * for more details | |
1643 | */ | |
1644 | spin_unlock_irqrestore(&emif_lock, irq_state); | |
1645 | } | |
1646 | ||
7ec94453 | 1647 | static struct platform_driver emif_driver = { |
aac10aaa | 1648 | .remove = __exit_p(emif_remove), |
68b4aee3 | 1649 | .shutdown = emif_shutdown, |
7ec94453 A |
1650 | .driver = { |
1651 | .name = "emif", | |
1652 | }, | |
1653 | }; | |
1654 | ||
1655 | static int __init_or_module emif_register(void) | |
1656 | { | |
1657 | return platform_driver_probe(&emif_driver, emif_probe); | |
1658 | } | |
1659 | ||
1660 | static void __exit emif_unregister(void) | |
1661 | { | |
1662 | platform_driver_unregister(&emif_driver); | |
1663 | } | |
1664 | ||
1665 | module_init(emif_register); | |
1666 | module_exit(emif_unregister); | |
1667 | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); | |
1668 | MODULE_LICENSE("GPL"); | |
1669 | MODULE_ALIAS("platform:emif"); | |
1670 | MODULE_AUTHOR("Texas Instruments Inc"); |