]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | |
3 | * and other Tigon based cards. | |
4 | * | |
5 | * Copyright 1998-2002 by Jes Sorensen, <[email protected]>. | |
6 | * | |
7 | * Thanks to Alteon and 3Com for providing hardware and documentation | |
8 | * enabling me to write this driver. | |
9 | * | |
10 | * A mailing list for discussing the use of this driver has been | |
11 | * setup, please subscribe to the lists if you have any questions | |
12 | * about the driver. Send mail to [email protected] to | |
13 | * see how to subscribe. | |
14 | * | |
15 | * This program is free software; you can redistribute it and/or modify | |
16 | * it under the terms of the GNU General Public License as published by | |
17 | * the Free Software Foundation; either version 2 of the License, or | |
18 | * (at your option) any later version. | |
19 | * | |
20 | * Additional credits: | |
21 | * Pete Wyckoff <[email protected]>: Initial Linux/Alpha and trace | |
22 | * dump support. The trace dump support has not been | |
23 | * integrated yet however. | |
24 | * Troy Benjegerdes: Big Endian (PPC) patches. | |
25 | * Nate Stahl: Better out of memory handling and stats support. | |
26 | * Aman Singla: Nasty race between interrupt handler and tx code dealing | |
27 | * with 'testing the tx_ret_csm and setting tx_full' | |
28 | * David S. Miller <[email protected]>: conversion to new PCI dma mapping | |
29 | * infrastructure and Sparc support | |
30 | * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | |
31 | * driver under Linux/Sparc64 | |
32 | * Matt Domsch <[email protected]>: Detect Alteon 1000baseT cards | |
33 | * ETHTOOL_GDRVINFO support | |
34 | * Chip Salzenberg <[email protected]>: Fix race condition between tx | |
35 | * handler and close() cleanup. | |
36 | * Ken Aaker <[email protected]>: Correct check for whether | |
37 | * memory mapped IO is enabled to | |
38 | * make the driver work on RS/6000. | |
39 | * Takayoshi Kouchi <[email protected]>: Identifying problem | |
40 | * where the driver would disable | |
41 | * bus master mode if it had to disable | |
42 | * write and invalidate. | |
43 | * Stephen Hack <[email protected]>: Fixed ace_set_mac_addr for little | |
44 | * endian systems. | |
45 | * Val Henson <[email protected]>: Reset Jumbo skb producer and | |
46 | * rx producer index when | |
47 | * flushing the Jumbo ring. | |
48 | * Hans Grobler <[email protected]>: Memory leak fixes in the | |
49 | * driver init path. | |
50 | * Grant Grundler <[email protected]>: PCI write posting fixes. | |
51 | */ | |
52 | ||
1da177e4 LT |
53 | #include <linux/module.h> |
54 | #include <linux/moduleparam.h> | |
55 | #include <linux/version.h> | |
56 | #include <linux/types.h> | |
57 | #include <linux/errno.h> | |
58 | #include <linux/ioport.h> | |
59 | #include <linux/pci.h> | |
1e7f0bd8 | 60 | #include <linux/dma-mapping.h> |
1da177e4 LT |
61 | #include <linux/kernel.h> |
62 | #include <linux/netdevice.h> | |
63 | #include <linux/etherdevice.h> | |
64 | #include <linux/skbuff.h> | |
65 | #include <linux/init.h> | |
66 | #include <linux/delay.h> | |
67 | #include <linux/mm.h> | |
68 | #include <linux/highmem.h> | |
69 | #include <linux/sockios.h> | |
70 | ||
71 | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | |
72 | #include <linux/if_vlan.h> | |
73 | #endif | |
74 | ||
75 | #ifdef SIOCETHTOOL | |
76 | #include <linux/ethtool.h> | |
77 | #endif | |
78 | ||
79 | #include <net/sock.h> | |
80 | #include <net/ip.h> | |
81 | ||
82 | #include <asm/system.h> | |
83 | #include <asm/io.h> | |
84 | #include <asm/irq.h> | |
85 | #include <asm/byteorder.h> | |
86 | #include <asm/uaccess.h> | |
87 | ||
88 | ||
89 | #define DRV_NAME "acenic" | |
90 | ||
91 | #undef INDEX_DEBUG | |
92 | ||
93 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | |
94 | #define ACE_IS_TIGON_I(ap) 0 | |
95 | #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES | |
96 | #else | |
97 | #define ACE_IS_TIGON_I(ap) (ap->version == 1) | |
98 | #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries | |
99 | #endif | |
100 | ||
101 | #ifndef PCI_VENDOR_ID_ALTEON | |
102 | #define PCI_VENDOR_ID_ALTEON 0x12ae | |
103 | #endif | |
104 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | |
105 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 | |
106 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | |
107 | #endif | |
108 | #ifndef PCI_DEVICE_ID_3COM_3C985 | |
109 | #define PCI_DEVICE_ID_3COM_3C985 0x0001 | |
110 | #endif | |
111 | #ifndef PCI_VENDOR_ID_NETGEAR | |
112 | #define PCI_VENDOR_ID_NETGEAR 0x1385 | |
113 | #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a | |
114 | #endif | |
115 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | |
116 | #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a | |
117 | #endif | |
118 | ||
119 | ||
120 | /* | |
121 | * Farallon used the DEC vendor ID by mistake and they seem not | |
122 | * to care - stinky! | |
123 | */ | |
124 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | |
125 | #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a | |
126 | #endif | |
127 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | |
128 | #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa | |
129 | #endif | |
130 | #ifndef PCI_VENDOR_ID_SGI | |
131 | #define PCI_VENDOR_ID_SGI 0x10a9 | |
132 | #endif | |
133 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | |
134 | #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 | |
135 | #endif | |
136 | ||
137 | static struct pci_device_id acenic_pci_tbl[] = { | |
138 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | |
139 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
140 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | |
141 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
142 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | |
143 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
144 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | |
145 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
146 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | |
147 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
148 | /* | |
149 | * Farallon used the DEC vendor ID on their cards incorrectly, | |
150 | * then later Alteon's ID. | |
151 | */ | |
152 | { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | |
153 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
154 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | |
155 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
156 | { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | |
157 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | |
158 | { } | |
159 | }; | |
160 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | |
161 | ||
162 | #ifndef SET_NETDEV_DEV | |
163 | #define SET_NETDEV_DEV(net, pdev) do{} while(0) | |
164 | #endif | |
165 | ||
166 | #if LINUX_VERSION_CODE >= 0x2051c | |
167 | #define ace_sync_irq(irq) synchronize_irq(irq) | |
168 | #else | |
169 | #define ace_sync_irq(irq) synchronize_irq() | |
170 | #endif | |
171 | ||
172 | #ifndef offset_in_page | |
173 | #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) | |
174 | #endif | |
175 | ||
176 | #define ACE_MAX_MOD_PARMS 8 | |
177 | #define BOARD_IDX_STATIC 0 | |
178 | #define BOARD_IDX_OVERFLOW -1 | |
179 | ||
180 | #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ | |
181 | defined(NETIF_F_HW_VLAN_RX) | |
182 | #define ACENIC_DO_VLAN 1 | |
183 | #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST | |
184 | #else | |
185 | #define ACENIC_DO_VLAN 0 | |
186 | #define ACE_RCB_VLAN_FLAG 0 | |
187 | #endif | |
188 | ||
189 | #include "acenic.h" | |
190 | ||
191 | /* | |
192 | * These must be defined before the firmware is included. | |
193 | */ | |
194 | #define MAX_TEXT_LEN 96*1024 | |
195 | #define MAX_RODATA_LEN 8*1024 | |
196 | #define MAX_DATA_LEN 2*1024 | |
197 | ||
198 | #include "acenic_firmware.h" | |
199 | ||
200 | #ifndef tigon2FwReleaseLocal | |
201 | #define tigon2FwReleaseLocal 0 | |
202 | #endif | |
203 | ||
204 | /* | |
205 | * This driver currently supports Tigon I and Tigon II based cards | |
206 | * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | |
207 | * GA620. The driver should also work on the SGI, DEC and Farallon | |
208 | * versions of the card, however I have not been able to test that | |
209 | * myself. | |
210 | * | |
211 | * This card is really neat, it supports receive hardware checksumming | |
212 | * and jumbo frames (up to 9000 bytes) and does a lot of work in the | |
213 | * firmware. Also the programming interface is quite neat, except for | |
214 | * the parts dealing with the i2c eeprom on the card ;-) | |
215 | * | |
216 | * Using jumbo frames: | |
217 | * | |
218 | * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | |
219 | * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | |
220 | * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | |
221 | * interface number and <MTU> being the MTU value. | |
222 | * | |
223 | * Module parameters: | |
224 | * | |
225 | * When compiled as a loadable module, the driver allows for a number | |
226 | * of module parameters to be specified. The driver supports the | |
227 | * following module parameters: | |
228 | * | |
229 | * trace=<val> - Firmware trace level. This requires special traced | |
230 | * firmware to replace the firmware supplied with | |
231 | * the driver - for debugging purposes only. | |
232 | * | |
233 | * link=<val> - Link state. Normally you want to use the default link | |
234 | * parameters set by the driver. This can be used to | |
235 | * override these in case your switch doesn't negotiate | |
236 | * the link properly. Valid values are: | |
237 | * 0x0001 - Force half duplex link. | |
238 | * 0x0002 - Do not negotiate line speed with the other end. | |
239 | * 0x0010 - 10Mbit/sec link. | |
240 | * 0x0020 - 100Mbit/sec link. | |
241 | * 0x0040 - 1000Mbit/sec link. | |
242 | * 0x0100 - Do not negotiate flow control. | |
243 | * 0x0200 - Enable RX flow control Y | |
244 | * 0x0400 - Enable TX flow control Y (Tigon II NICs only). | |
245 | * Default value is 0x0270, ie. enable link+flow | |
246 | * control negotiation. Negotiating the highest | |
247 | * possible link speed with RX flow control enabled. | |
248 | * | |
249 | * When disabling link speed negotiation, only one link | |
250 | * speed is allowed to be specified! | |
251 | * | |
252 | * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | |
253 | * to wait for more packets to arive before | |
254 | * interrupting the host, from the time the first | |
255 | * packet arrives. | |
256 | * | |
257 | * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | |
258 | * to wait for more packets to arive in the transmit ring, | |
259 | * before interrupting the host, after transmitting the | |
260 | * first packet in the ring. | |
261 | * | |
262 | * max_tx_desc=<val> - maximum number of transmit descriptors | |
263 | * (packets) transmitted before interrupting the host. | |
264 | * | |
265 | * max_rx_desc=<val> - maximum number of receive descriptors | |
266 | * (packets) received before interrupting the host. | |
267 | * | |
268 | * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | |
269 | * increments of the NIC's on board memory to be used for | |
270 | * transmit and receive buffers. For the 1MB NIC app. 800KB | |
271 | * is available, on the 1/2MB NIC app. 300KB is available. | |
272 | * 68KB will always be available as a minimum for both | |
273 | * directions. The default value is a 50/50 split. | |
274 | * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | |
275 | * operations, default (1) is to always disable this as | |
276 | * that is what Alteon does on NT. I have not been able | |
277 | * to measure any real performance differences with | |
278 | * this on my systems. Set <val>=0 if you want to | |
279 | * enable these operations. | |
280 | * | |
281 | * If you use more than one NIC, specify the parameters for the | |
282 | * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | |
283 | * run tracing on NIC #2 but not on NIC #1 and #3. | |
284 | * | |
285 | * TODO: | |
286 | * | |
287 | * - Proper multicast support. | |
288 | * - NIC dump support. | |
289 | * - More tuning parameters. | |
290 | * | |
291 | * The mini ring is not used under Linux and I am not sure it makes sense | |
292 | * to actually use it. | |
293 | * | |
294 | * New interrupt handler strategy: | |
295 | * | |
296 | * The old interrupt handler worked using the traditional method of | |
297 | * replacing an skbuff with a new one when a packet arrives. However | |
298 | * the rx rings do not need to contain a static number of buffer | |
299 | * descriptors, thus it makes sense to move the memory allocation out | |
300 | * of the main interrupt handler and do it in a bottom half handler | |
301 | * and only allocate new buffers when the number of buffers in the | |
302 | * ring is below a certain threshold. In order to avoid starving the | |
303 | * NIC under heavy load it is however necessary to force allocation | |
304 | * when hitting a minimum threshold. The strategy for alloction is as | |
305 | * follows: | |
306 | * | |
307 | * RX_LOW_BUF_THRES - allocate buffers in the bottom half | |
308 | * RX_PANIC_LOW_THRES - we are very low on buffers, allocate | |
309 | * the buffers in the interrupt handler | |
310 | * RX_RING_THRES - maximum number of buffers in the rx ring | |
311 | * RX_MINI_THRES - maximum number of buffers in the mini ring | |
312 | * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring | |
313 | * | |
314 | * One advantagous side effect of this allocation approach is that the | |
315 | * entire rx processing can be done without holding any spin lock | |
316 | * since the rx rings and registers are totally independent of the tx | |
317 | * ring and its registers. This of course includes the kmalloc's of | |
318 | * new skb's. Thus start_xmit can run in parallel with rx processing | |
319 | * and the memory allocation on SMP systems. | |
320 | * | |
321 | * Note that running the skb reallocation in a bottom half opens up | |
322 | * another can of races which needs to be handled properly. In | |
323 | * particular it can happen that the interrupt handler tries to run | |
324 | * the reallocation while the bottom half is either running on another | |
325 | * CPU or was interrupted on the same CPU. To get around this the | |
326 | * driver uses bitops to prevent the reallocation routines from being | |
327 | * reentered. | |
328 | * | |
329 | * TX handling can also be done without holding any spin lock, wheee | |
330 | * this is fun! since tx_ret_csm is only written to by the interrupt | |
331 | * handler. The case to be aware of is when shutting down the device | |
332 | * and cleaning up where it is necessary to make sure that | |
333 | * start_xmit() is not running while this is happening. Well DaveM | |
334 | * informs me that this case is already protected against ... bye bye | |
335 | * Mr. Spin Lock, it was nice to know you. | |
336 | * | |
337 | * TX interrupts are now partly disabled so the NIC will only generate | |
338 | * TX interrupts for the number of coal ticks, not for the number of | |
339 | * TX packets in the queue. This should reduce the number of TX only, | |
340 | * ie. when no RX processing is done, interrupts seen. | |
341 | */ | |
342 | ||
343 | /* | |
344 | * Threshold values for RX buffer allocation - the low water marks for | |
345 | * when to start refilling the rings are set to 75% of the ring | |
346 | * sizes. It seems to make sense to refill the rings entirely from the | |
347 | * intrrupt handler once it gets below the panic threshold, that way | |
348 | * we don't risk that the refilling is moved to another CPU when the | |
349 | * one running the interrupt handler just got the slab code hot in its | |
350 | * cache. | |
351 | */ | |
352 | #define RX_RING_SIZE 72 | |
353 | #define RX_MINI_SIZE 64 | |
354 | #define RX_JUMBO_SIZE 48 | |
355 | ||
356 | #define RX_PANIC_STD_THRES 16 | |
357 | #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 | |
358 | #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 | |
359 | #define RX_PANIC_MINI_THRES 12 | |
360 | #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 | |
361 | #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 | |
362 | #define RX_PANIC_JUMBO_THRES 6 | |
363 | #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 | |
364 | #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 | |
365 | ||
366 | ||
367 | /* | |
368 | * Size of the mini ring entries, basically these just should be big | |
369 | * enough to take TCP ACKs | |
370 | */ | |
371 | #define ACE_MINI_SIZE 100 | |
372 | ||
373 | #define ACE_MINI_BUFSIZE ACE_MINI_SIZE | |
374 | #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) | |
375 | #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) | |
376 | ||
377 | /* | |
378 | * There seems to be a magic difference in the effect between 995 and 996 | |
379 | * but little difference between 900 and 995 ... no idea why. | |
380 | * | |
381 | * There is now a default set of tuning parameters which is set, depending | |
382 | * on whether or not the user enables Jumbo frames. It's assumed that if | |
383 | * Jumbo frames are enabled, the user wants optimal tuning for that case. | |
384 | */ | |
385 | #define DEF_TX_COAL 400 /* 996 */ | |
386 | #define DEF_TX_MAX_DESC 60 /* was 40 */ | |
387 | #define DEF_RX_COAL 120 /* 1000 */ | |
388 | #define DEF_RX_MAX_DESC 25 | |
389 | #define DEF_TX_RATIO 21 /* 24 */ | |
390 | ||
391 | #define DEF_JUMBO_TX_COAL 20 | |
392 | #define DEF_JUMBO_TX_MAX_DESC 60 | |
393 | #define DEF_JUMBO_RX_COAL 30 | |
394 | #define DEF_JUMBO_RX_MAX_DESC 6 | |
395 | #define DEF_JUMBO_TX_RATIO 21 | |
396 | ||
397 | #if tigon2FwReleaseLocal < 20001118 | |
398 | /* | |
399 | * Standard firmware and early modifications duplicate | |
400 | * IRQ load without this flag (coal timer is never reset). | |
401 | * Note that with this flag tx_coal should be less than | |
402 | * time to xmit full tx ring. | |
403 | * 400usec is not so bad for tx ring size of 128. | |
404 | */ | |
405 | #define TX_COAL_INTS_ONLY 1 /* worth it */ | |
406 | #else | |
407 | /* | |
408 | * With modified firmware, this is not necessary, but still useful. | |
409 | */ | |
410 | #define TX_COAL_INTS_ONLY 1 | |
411 | #endif | |
412 | ||
413 | #define DEF_TRACE 0 | |
414 | #define DEF_STAT (2 * TICKS_PER_SEC) | |
415 | ||
416 | ||
417 | static int link[ACE_MAX_MOD_PARMS]; | |
418 | static int trace[ACE_MAX_MOD_PARMS]; | |
419 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | |
420 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | |
421 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | |
422 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | |
423 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | |
424 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | |
425 | ||
426 | MODULE_AUTHOR("Jes Sorensen <[email protected]>"); | |
427 | MODULE_LICENSE("GPL"); | |
428 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | |
429 | ||
430 | module_param_array(link, int, NULL, 0); | |
431 | module_param_array(trace, int, NULL, 0); | |
432 | module_param_array(tx_coal_tick, int, NULL, 0); | |
433 | module_param_array(max_tx_desc, int, NULL, 0); | |
434 | module_param_array(rx_coal_tick, int, NULL, 0); | |
435 | module_param_array(max_rx_desc, int, NULL, 0); | |
436 | module_param_array(tx_ratio, int, NULL, 0); | |
437 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | |
438 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | |
439 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | |
440 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | |
441 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | |
442 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | |
443 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | |
444 | ||
445 | ||
446 | static char version[] __devinitdata = | |
447 | "acenic.c: v0.92 08/05/2002 Jes Sorensen, [email protected]\n" | |
448 | " http://home.cern.ch/~jes/gige/acenic.html\n"; | |
449 | ||
450 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | |
451 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | |
452 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | |
453 | ||
454 | static struct ethtool_ops ace_ethtool_ops = { | |
455 | .get_settings = ace_get_settings, | |
456 | .set_settings = ace_set_settings, | |
457 | .get_drvinfo = ace_get_drvinfo, | |
458 | }; | |
459 | ||
460 | static void ace_watchdog(struct net_device *dev); | |
461 | ||
462 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | |
463 | const struct pci_device_id *id) | |
464 | { | |
465 | struct net_device *dev; | |
466 | struct ace_private *ap; | |
467 | static int boards_found; | |
468 | ||
469 | dev = alloc_etherdev(sizeof(struct ace_private)); | |
470 | if (dev == NULL) { | |
471 | printk(KERN_ERR "acenic: Unable to allocate " | |
472 | "net_device structure!\n"); | |
473 | return -ENOMEM; | |
474 | } | |
475 | ||
476 | SET_MODULE_OWNER(dev); | |
477 | SET_NETDEV_DEV(dev, &pdev->dev); | |
478 | ||
479 | ap = dev->priv; | |
480 | ap->pdev = pdev; | |
481 | ap->name = pci_name(pdev); | |
482 | ||
483 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | |
484 | #if ACENIC_DO_VLAN | |
485 | dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | |
486 | dev->vlan_rx_register = ace_vlan_rx_register; | |
487 | dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid; | |
488 | #endif | |
489 | if (1) { | |
490 | dev->tx_timeout = &ace_watchdog; | |
491 | dev->watchdog_timeo = 5*HZ; | |
492 | } | |
493 | ||
494 | dev->open = &ace_open; | |
495 | dev->stop = &ace_close; | |
496 | dev->hard_start_xmit = &ace_start_xmit; | |
497 | dev->get_stats = &ace_get_stats; | |
498 | dev->set_multicast_list = &ace_set_multicast_list; | |
499 | SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | |
500 | dev->set_mac_address = &ace_set_mac_addr; | |
501 | dev->change_mtu = &ace_change_mtu; | |
502 | ||
503 | /* we only display this string ONCE */ | |
504 | if (!boards_found) | |
505 | printk(version); | |
506 | ||
507 | if (pci_enable_device(pdev)) | |
508 | goto fail_free_netdev; | |
509 | ||
510 | /* | |
511 | * Enable master mode before we start playing with the | |
512 | * pci_command word since pci_set_master() will modify | |
513 | * it. | |
514 | */ | |
515 | pci_set_master(pdev); | |
516 | ||
517 | pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | |
518 | ||
519 | /* OpenFirmware on Mac's does not set this - DOH.. */ | |
520 | if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | |
521 | printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | |
522 | "access - was not enabled by BIOS/Firmware\n", | |
523 | ap->name); | |
524 | ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | |
525 | pci_write_config_word(ap->pdev, PCI_COMMAND, | |
526 | ap->pci_command); | |
527 | wmb(); | |
528 | } | |
529 | ||
530 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | |
531 | if (ap->pci_latency <= 0x40) { | |
532 | ap->pci_latency = 0x40; | |
533 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | |
534 | } | |
535 | ||
536 | /* | |
537 | * Remap the regs into kernel space - this is abuse of | |
538 | * dev->base_addr since it was means for I/O port | |
539 | * addresses but who gives a damn. | |
540 | */ | |
541 | dev->base_addr = pci_resource_start(pdev, 0); | |
542 | ap->regs = ioremap(dev->base_addr, 0x4000); | |
543 | if (!ap->regs) { | |
544 | printk(KERN_ERR "%s: Unable to map I/O register, " | |
545 | "AceNIC %i will be disabled.\n", | |
546 | ap->name, boards_found); | |
547 | goto fail_free_netdev; | |
548 | } | |
549 | ||
550 | switch(pdev->vendor) { | |
551 | case PCI_VENDOR_ID_ALTEON: | |
552 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | |
553 | printk(KERN_INFO "%s: Farallon PN9100-T ", | |
554 | ap->name); | |
555 | } else { | |
556 | printk(KERN_INFO "%s: Alteon AceNIC ", | |
557 | ap->name); | |
558 | } | |
559 | break; | |
560 | case PCI_VENDOR_ID_3COM: | |
561 | printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | |
562 | break; | |
563 | case PCI_VENDOR_ID_NETGEAR: | |
564 | printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | |
565 | break; | |
566 | case PCI_VENDOR_ID_DEC: | |
567 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | |
568 | printk(KERN_INFO "%s: Farallon PN9000-SX ", | |
569 | ap->name); | |
570 | break; | |
571 | } | |
572 | case PCI_VENDOR_ID_SGI: | |
573 | printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | |
574 | break; | |
575 | default: | |
576 | printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | |
577 | break; | |
578 | } | |
579 | ||
580 | printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | |
c6387a48 | 581 | printk("irq %d\n", pdev->irq); |
1da177e4 LT |
582 | |
583 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | |
584 | if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | |
585 | printk(KERN_ERR "%s: Driver compiled without Tigon I" | |
586 | " support - NIC disabled\n", dev->name); | |
587 | goto fail_uninit; | |
588 | } | |
589 | #endif | |
590 | ||
591 | if (ace_allocate_descriptors(dev)) | |
592 | goto fail_free_netdev; | |
593 | ||
594 | #ifdef MODULE | |
595 | if (boards_found >= ACE_MAX_MOD_PARMS) | |
596 | ap->board_idx = BOARD_IDX_OVERFLOW; | |
597 | else | |
598 | ap->board_idx = boards_found; | |
599 | #else | |
600 | ap->board_idx = BOARD_IDX_STATIC; | |
601 | #endif | |
602 | ||
603 | if (ace_init(dev)) | |
604 | goto fail_free_netdev; | |
605 | ||
606 | if (register_netdev(dev)) { | |
607 | printk(KERN_ERR "acenic: device registration failed\n"); | |
608 | goto fail_uninit; | |
609 | } | |
610 | ap->name = dev->name; | |
611 | ||
612 | if (ap->pci_using_dac) | |
613 | dev->features |= NETIF_F_HIGHDMA; | |
614 | ||
615 | pci_set_drvdata(pdev, dev); | |
616 | ||
617 | boards_found++; | |
618 | return 0; | |
619 | ||
620 | fail_uninit: | |
621 | ace_init_cleanup(dev); | |
622 | fail_free_netdev: | |
623 | free_netdev(dev); | |
624 | return -ENODEV; | |
625 | } | |
626 | ||
627 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | |
628 | { | |
629 | struct net_device *dev = pci_get_drvdata(pdev); | |
630 | struct ace_private *ap = netdev_priv(dev); | |
631 | struct ace_regs __iomem *regs = ap->regs; | |
632 | short i; | |
633 | ||
634 | unregister_netdev(dev); | |
635 | ||
636 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
637 | if (ap->version >= 2) | |
638 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | |
639 | ||
640 | /* | |
641 | * This clears any pending interrupts | |
642 | */ | |
643 | writel(1, ®s->Mb0Lo); | |
644 | readl(®s->CpuCtrl); /* flush */ | |
645 | ||
646 | /* | |
647 | * Make sure no other CPUs are processing interrupts | |
648 | * on the card before the buffers are being released. | |
649 | * Otherwise one might experience some `interesting' | |
650 | * effects. | |
651 | * | |
652 | * Then release the RX buffers - jumbo buffers were | |
653 | * already released in ace_close(). | |
654 | */ | |
655 | ace_sync_irq(dev->irq); | |
656 | ||
657 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | |
658 | struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | |
659 | ||
660 | if (skb) { | |
661 | struct ring_info *ringp; | |
662 | dma_addr_t mapping; | |
663 | ||
664 | ringp = &ap->skb->rx_std_skbuff[i]; | |
665 | mapping = pci_unmap_addr(ringp, mapping); | |
666 | pci_unmap_page(ap->pdev, mapping, | |
667 | ACE_STD_BUFSIZE, | |
668 | PCI_DMA_FROMDEVICE); | |
669 | ||
670 | ap->rx_std_ring[i].size = 0; | |
671 | ap->skb->rx_std_skbuff[i].skb = NULL; | |
672 | dev_kfree_skb(skb); | |
673 | } | |
674 | } | |
675 | ||
676 | if (ap->version >= 2) { | |
677 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | |
678 | struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | |
679 | ||
680 | if (skb) { | |
681 | struct ring_info *ringp; | |
682 | dma_addr_t mapping; | |
683 | ||
684 | ringp = &ap->skb->rx_mini_skbuff[i]; | |
685 | mapping = pci_unmap_addr(ringp,mapping); | |
686 | pci_unmap_page(ap->pdev, mapping, | |
687 | ACE_MINI_BUFSIZE, | |
688 | PCI_DMA_FROMDEVICE); | |
689 | ||
690 | ap->rx_mini_ring[i].size = 0; | |
691 | ap->skb->rx_mini_skbuff[i].skb = NULL; | |
692 | dev_kfree_skb(skb); | |
693 | } | |
694 | } | |
695 | } | |
696 | ||
697 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | |
698 | struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | |
699 | if (skb) { | |
700 | struct ring_info *ringp; | |
701 | dma_addr_t mapping; | |
702 | ||
703 | ringp = &ap->skb->rx_jumbo_skbuff[i]; | |
704 | mapping = pci_unmap_addr(ringp, mapping); | |
705 | pci_unmap_page(ap->pdev, mapping, | |
706 | ACE_JUMBO_BUFSIZE, | |
707 | PCI_DMA_FROMDEVICE); | |
708 | ||
709 | ap->rx_jumbo_ring[i].size = 0; | |
710 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | |
711 | dev_kfree_skb(skb); | |
712 | } | |
713 | } | |
714 | ||
715 | ace_init_cleanup(dev); | |
716 | free_netdev(dev); | |
717 | } | |
718 | ||
719 | static struct pci_driver acenic_pci_driver = { | |
720 | .name = "acenic", | |
721 | .id_table = acenic_pci_tbl, | |
722 | .probe = acenic_probe_one, | |
723 | .remove = __devexit_p(acenic_remove_one), | |
724 | }; | |
725 | ||
726 | static int __init acenic_init(void) | |
727 | { | |
728 | return pci_module_init(&acenic_pci_driver); | |
729 | } | |
730 | ||
731 | static void __exit acenic_exit(void) | |
732 | { | |
733 | pci_unregister_driver(&acenic_pci_driver); | |
734 | } | |
735 | ||
736 | module_init(acenic_init); | |
737 | module_exit(acenic_exit); | |
738 | ||
739 | static void ace_free_descriptors(struct net_device *dev) | |
740 | { | |
741 | struct ace_private *ap = netdev_priv(dev); | |
742 | int size; | |
743 | ||
744 | if (ap->rx_std_ring != NULL) { | |
745 | size = (sizeof(struct rx_desc) * | |
746 | (RX_STD_RING_ENTRIES + | |
747 | RX_JUMBO_RING_ENTRIES + | |
748 | RX_MINI_RING_ENTRIES + | |
749 | RX_RETURN_RING_ENTRIES)); | |
750 | pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | |
751 | ap->rx_ring_base_dma); | |
752 | ap->rx_std_ring = NULL; | |
753 | ap->rx_jumbo_ring = NULL; | |
754 | ap->rx_mini_ring = NULL; | |
755 | ap->rx_return_ring = NULL; | |
756 | } | |
757 | if (ap->evt_ring != NULL) { | |
758 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | |
759 | pci_free_consistent(ap->pdev, size, ap->evt_ring, | |
760 | ap->evt_ring_dma); | |
761 | ap->evt_ring = NULL; | |
762 | } | |
763 | if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | |
764 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | |
765 | pci_free_consistent(ap->pdev, size, ap->tx_ring, | |
766 | ap->tx_ring_dma); | |
767 | } | |
768 | ap->tx_ring = NULL; | |
769 | ||
770 | if (ap->evt_prd != NULL) { | |
771 | pci_free_consistent(ap->pdev, sizeof(u32), | |
772 | (void *)ap->evt_prd, ap->evt_prd_dma); | |
773 | ap->evt_prd = NULL; | |
774 | } | |
775 | if (ap->rx_ret_prd != NULL) { | |
776 | pci_free_consistent(ap->pdev, sizeof(u32), | |
777 | (void *)ap->rx_ret_prd, | |
778 | ap->rx_ret_prd_dma); | |
779 | ap->rx_ret_prd = NULL; | |
780 | } | |
781 | if (ap->tx_csm != NULL) { | |
782 | pci_free_consistent(ap->pdev, sizeof(u32), | |
783 | (void *)ap->tx_csm, ap->tx_csm_dma); | |
784 | ap->tx_csm = NULL; | |
785 | } | |
786 | } | |
787 | ||
788 | ||
789 | static int ace_allocate_descriptors(struct net_device *dev) | |
790 | { | |
791 | struct ace_private *ap = netdev_priv(dev); | |
792 | int size; | |
793 | ||
794 | size = (sizeof(struct rx_desc) * | |
795 | (RX_STD_RING_ENTRIES + | |
796 | RX_JUMBO_RING_ENTRIES + | |
797 | RX_MINI_RING_ENTRIES + | |
798 | RX_RETURN_RING_ENTRIES)); | |
799 | ||
800 | ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | |
801 | &ap->rx_ring_base_dma); | |
802 | if (ap->rx_std_ring == NULL) | |
803 | goto fail; | |
804 | ||
805 | ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | |
806 | ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | |
807 | ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | |
808 | ||
809 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | |
810 | ||
811 | ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | |
812 | ||
813 | if (ap->evt_ring == NULL) | |
814 | goto fail; | |
815 | ||
816 | /* | |
817 | * Only allocate a host TX ring for the Tigon II, the Tigon I | |
818 | * has to use PCI registers for this ;-( | |
819 | */ | |
820 | if (!ACE_IS_TIGON_I(ap)) { | |
821 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | |
822 | ||
823 | ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | |
824 | &ap->tx_ring_dma); | |
825 | ||
826 | if (ap->tx_ring == NULL) | |
827 | goto fail; | |
828 | } | |
829 | ||
830 | ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
831 | &ap->evt_prd_dma); | |
832 | if (ap->evt_prd == NULL) | |
833 | goto fail; | |
834 | ||
835 | ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
836 | &ap->rx_ret_prd_dma); | |
837 | if (ap->rx_ret_prd == NULL) | |
838 | goto fail; | |
839 | ||
840 | ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | |
841 | &ap->tx_csm_dma); | |
842 | if (ap->tx_csm == NULL) | |
843 | goto fail; | |
844 | ||
845 | return 0; | |
846 | ||
847 | fail: | |
848 | /* Clean up. */ | |
849 | ace_init_cleanup(dev); | |
850 | return 1; | |
851 | } | |
852 | ||
853 | ||
854 | /* | |
855 | * Generic cleanup handling data allocated during init. Used when the | |
856 | * module is unloaded or if an error occurs during initialization | |
857 | */ | |
858 | static void ace_init_cleanup(struct net_device *dev) | |
859 | { | |
860 | struct ace_private *ap; | |
861 | ||
862 | ap = netdev_priv(dev); | |
863 | ||
864 | ace_free_descriptors(dev); | |
865 | ||
866 | if (ap->info) | |
867 | pci_free_consistent(ap->pdev, sizeof(struct ace_info), | |
868 | ap->info, ap->info_dma); | |
b4558ea9 JJ |
869 | kfree(ap->skb); |
870 | kfree(ap->trace_buf); | |
1da177e4 LT |
871 | |
872 | if (dev->irq) | |
873 | free_irq(dev->irq, dev); | |
874 | ||
875 | iounmap(ap->regs); | |
876 | } | |
877 | ||
878 | ||
879 | /* | |
880 | * Commands are considered to be slow. | |
881 | */ | |
882 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | |
883 | { | |
884 | u32 idx; | |
885 | ||
886 | idx = readl(®s->CmdPrd); | |
887 | ||
888 | writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | |
889 | idx = (idx + 1) % CMD_RING_ENTRIES; | |
890 | ||
891 | writel(idx, ®s->CmdPrd); | |
892 | } | |
893 | ||
894 | ||
895 | static int __devinit ace_init(struct net_device *dev) | |
896 | { | |
897 | struct ace_private *ap; | |
898 | struct ace_regs __iomem *regs; | |
899 | struct ace_info *info = NULL; | |
900 | struct pci_dev *pdev; | |
901 | unsigned long myjif; | |
902 | u64 tmp_ptr; | |
903 | u32 tig_ver, mac1, mac2, tmp, pci_state; | |
904 | int board_idx, ecode = 0; | |
905 | short i; | |
906 | unsigned char cache_size; | |
907 | ||
908 | ap = netdev_priv(dev); | |
909 | regs = ap->regs; | |
910 | ||
911 | board_idx = ap->board_idx; | |
912 | ||
913 | /* | |
914 | * [email protected] - its useful to do a NIC reset here to | |
915 | * address the `Firmware not running' problem subsequent | |
916 | * to any crashes involving the NIC | |
917 | */ | |
918 | writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | |
919 | readl(®s->HostCtrl); /* PCI write posting */ | |
920 | udelay(5); | |
921 | ||
922 | /* | |
923 | * Don't access any other registers before this point! | |
924 | */ | |
925 | #ifdef __BIG_ENDIAN | |
926 | /* | |
927 | * This will most likely need BYTE_SWAP once we switch | |
928 | * to using __raw_writel() | |
929 | */ | |
930 | writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | |
931 | ®s->HostCtrl); | |
932 | #else | |
933 | writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | |
934 | ®s->HostCtrl); | |
935 | #endif | |
936 | readl(®s->HostCtrl); /* PCI write posting */ | |
937 | ||
938 | /* | |
939 | * Stop the NIC CPU and clear pending interrupts | |
940 | */ | |
941 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
942 | readl(®s->CpuCtrl); /* PCI write posting */ | |
943 | writel(0, ®s->Mb0Lo); | |
944 | ||
945 | tig_ver = readl(®s->HostCtrl) >> 28; | |
946 | ||
947 | switch(tig_ver){ | |
948 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | |
949 | case 4: | |
950 | case 5: | |
951 | printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", | |
952 | tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, | |
953 | tigonFwReleaseFix); | |
954 | writel(0, ®s->LocalCtrl); | |
955 | ap->version = 1; | |
956 | ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | |
957 | break; | |
958 | #endif | |
959 | case 6: | |
960 | printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | |
961 | tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, | |
962 | tigon2FwReleaseFix); | |
963 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | |
964 | readl(®s->CpuBCtrl); /* PCI write posting */ | |
965 | /* | |
966 | * The SRAM bank size does _not_ indicate the amount | |
967 | * of memory on the card, it controls the _bank_ size! | |
968 | * Ie. a 1MB AceNIC will have two banks of 512KB. | |
969 | */ | |
970 | writel(SRAM_BANK_512K, ®s->LocalCtrl); | |
971 | writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | |
972 | ap->version = 2; | |
973 | ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | |
974 | break; | |
975 | default: | |
976 | printk(KERN_WARNING " Unsupported Tigon version detected " | |
977 | "(%i)\n", tig_ver); | |
978 | ecode = -ENODEV; | |
979 | goto init_error; | |
980 | } | |
981 | ||
982 | /* | |
983 | * ModeStat _must_ be set after the SRAM settings as this change | |
984 | * seems to corrupt the ModeStat and possible other registers. | |
985 | * The SRAM settings survive resets and setting it to the same | |
986 | * value a second time works as well. This is what caused the | |
987 | * `Firmware not running' problem on the Tigon II. | |
988 | */ | |
989 | #ifdef __BIG_ENDIAN | |
990 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | |
991 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | |
992 | #else | |
993 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | |
994 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | |
995 | #endif | |
996 | readl(®s->ModeStat); /* PCI write posting */ | |
997 | ||
998 | mac1 = 0; | |
999 | for(i = 0; i < 4; i++) { | |
6f9d4722 ES |
1000 | int tmp; |
1001 | ||
1da177e4 LT |
1002 | mac1 = mac1 << 8; |
1003 | tmp = read_eeprom_byte(dev, 0x8c+i); | |
1004 | if (tmp < 0) { | |
1005 | ecode = -EIO; | |
1006 | goto init_error; | |
1007 | } else | |
1008 | mac1 |= (tmp & 0xff); | |
1009 | } | |
1010 | mac2 = 0; | |
1011 | for(i = 4; i < 8; i++) { | |
6f9d4722 ES |
1012 | int tmp; |
1013 | ||
1da177e4 LT |
1014 | mac2 = mac2 << 8; |
1015 | tmp = read_eeprom_byte(dev, 0x8c+i); | |
1016 | if (tmp < 0) { | |
1017 | ecode = -EIO; | |
1018 | goto init_error; | |
1019 | } else | |
1020 | mac2 |= (tmp & 0xff); | |
1021 | } | |
1022 | ||
1023 | writel(mac1, ®s->MacAddrHi); | |
1024 | writel(mac2, ®s->MacAddrLo); | |
1025 | ||
1026 | printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", | |
1027 | (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, | |
1028 | (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); | |
1029 | ||
1030 | dev->dev_addr[0] = (mac1 >> 8) & 0xff; | |
1031 | dev->dev_addr[1] = mac1 & 0xff; | |
1032 | dev->dev_addr[2] = (mac2 >> 24) & 0xff; | |
1033 | dev->dev_addr[3] = (mac2 >> 16) & 0xff; | |
1034 | dev->dev_addr[4] = (mac2 >> 8) & 0xff; | |
1035 | dev->dev_addr[5] = mac2 & 0xff; | |
1036 | ||
1037 | /* | |
1038 | * Looks like this is necessary to deal with on all architectures, | |
1039 | * even this %$#%$# N440BX Intel based thing doesn't get it right. | |
1040 | * Ie. having two NICs in the machine, one will have the cache | |
1041 | * line set at boot time, the other will not. | |
1042 | */ | |
1043 | pdev = ap->pdev; | |
1044 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | |
1045 | cache_size <<= 2; | |
1046 | if (cache_size != SMP_CACHE_BYTES) { | |
1047 | printk(KERN_INFO " PCI cache line size set incorrectly " | |
1048 | "(%i bytes) by BIOS/FW, ", cache_size); | |
1049 | if (cache_size > SMP_CACHE_BYTES) | |
1050 | printk("expecting %i\n", SMP_CACHE_BYTES); | |
1051 | else { | |
1052 | printk("correcting to %i\n", SMP_CACHE_BYTES); | |
1053 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | |
1054 | SMP_CACHE_BYTES >> 2); | |
1055 | } | |
1056 | } | |
1057 | ||
1058 | pci_state = readl(®s->PciState); | |
1059 | printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " | |
1060 | "latency: %i clks\n", | |
1061 | (pci_state & PCI_32BIT) ? 32 : 64, | |
1062 | (pci_state & PCI_66MHZ) ? 66 : 33, | |
1063 | ap->pci_latency); | |
1064 | ||
1065 | /* | |
1066 | * Set the max DMA transfer size. Seems that for most systems | |
1067 | * the performance is better when no MAX parameter is | |
1068 | * set. However for systems enabling PCI write and invalidate, | |
1069 | * DMA writes must be set to the L1 cache line size to get | |
1070 | * optimal performance. | |
1071 | * | |
1072 | * The default is now to turn the PCI write and invalidate off | |
1073 | * - that is what Alteon does for NT. | |
1074 | */ | |
1075 | tmp = READ_CMD_MEM | WRITE_CMD_MEM; | |
1076 | if (ap->version >= 2) { | |
1077 | tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | |
1078 | /* | |
1079 | * Tuning parameters only supported for 8 cards | |
1080 | */ | |
1081 | if (board_idx == BOARD_IDX_OVERFLOW || | |
1082 | dis_pci_mem_inval[board_idx]) { | |
1083 | if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | |
1084 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | |
1085 | pci_write_config_word(pdev, PCI_COMMAND, | |
1086 | ap->pci_command); | |
1087 | printk(KERN_INFO " Disabling PCI memory " | |
1088 | "write and invalidate\n"); | |
1089 | } | |
1090 | } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | |
1091 | printk(KERN_INFO " PCI memory write & invalidate " | |
1092 | "enabled by BIOS, enabling counter measures\n"); | |
1093 | ||
1094 | switch(SMP_CACHE_BYTES) { | |
1095 | case 16: | |
1096 | tmp |= DMA_WRITE_MAX_16; | |
1097 | break; | |
1098 | case 32: | |
1099 | tmp |= DMA_WRITE_MAX_32; | |
1100 | break; | |
1101 | case 64: | |
1102 | tmp |= DMA_WRITE_MAX_64; | |
1103 | break; | |
1104 | case 128: | |
1105 | tmp |= DMA_WRITE_MAX_128; | |
1106 | break; | |
1107 | default: | |
1108 | printk(KERN_INFO " Cache line size %i not " | |
1109 | "supported, PCI write and invalidate " | |
1110 | "disabled\n", SMP_CACHE_BYTES); | |
1111 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | |
1112 | pci_write_config_word(pdev, PCI_COMMAND, | |
1113 | ap->pci_command); | |
1114 | } | |
1115 | } | |
1116 | } | |
1117 | ||
1118 | #ifdef __sparc__ | |
1119 | /* | |
1120 | * On this platform, we know what the best dma settings | |
1121 | * are. We use 64-byte maximum bursts, because if we | |
1122 | * burst larger than the cache line size (or even cross | |
1123 | * a 64byte boundary in a single burst) the UltraSparc | |
1124 | * PCI controller will disconnect at 64-byte multiples. | |
1125 | * | |
1126 | * Read-multiple will be properly enabled above, and when | |
1127 | * set will give the PCI controller proper hints about | |
1128 | * prefetching. | |
1129 | */ | |
1130 | tmp &= ~DMA_READ_WRITE_MASK; | |
1131 | tmp |= DMA_READ_MAX_64; | |
1132 | tmp |= DMA_WRITE_MAX_64; | |
1133 | #endif | |
1134 | #ifdef __alpha__ | |
1135 | tmp &= ~DMA_READ_WRITE_MASK; | |
1136 | tmp |= DMA_READ_MAX_128; | |
1137 | /* | |
1138 | * All the docs say MUST NOT. Well, I did. | |
1139 | * Nothing terrible happens, if we load wrong size. | |
1140 | * Bit w&i still works better! | |
1141 | */ | |
1142 | tmp |= DMA_WRITE_MAX_128; | |
1143 | #endif | |
1144 | writel(tmp, ®s->PciState); | |
1145 | ||
1146 | #if 0 | |
1147 | /* | |
1148 | * The Host PCI bus controller driver has to set FBB. | |
1149 | * If all devices on that PCI bus support FBB, then the controller | |
1150 | * can enable FBB support in the Host PCI Bus controller (or on | |
1151 | * the PCI-PCI bridge if that applies). | |
1152 | * -ggg | |
1153 | */ | |
1154 | /* | |
1155 | * I have received reports from people having problems when this | |
1156 | * bit is enabled. | |
1157 | */ | |
1158 | if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | |
1159 | printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); | |
1160 | ap->pci_command |= PCI_COMMAND_FAST_BACK; | |
1161 | pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | |
1162 | } | |
1163 | #endif | |
1164 | ||
1165 | /* | |
1166 | * Configure DMA attributes. | |
1167 | */ | |
1e7f0bd8 | 1168 | if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { |
1da177e4 | 1169 | ap->pci_using_dac = 1; |
1e7f0bd8 | 1170 | } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { |
1da177e4 LT |
1171 | ap->pci_using_dac = 0; |
1172 | } else { | |
1173 | ecode = -ENODEV; | |
1174 | goto init_error; | |
1175 | } | |
1176 | ||
1177 | /* | |
1178 | * Initialize the generic info block and the command+event rings | |
1179 | * and the control blocks for the transmit and receive rings | |
1180 | * as they need to be setup once and for all. | |
1181 | */ | |
1182 | if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | |
1183 | &ap->info_dma))) { | |
1184 | ecode = -EAGAIN; | |
1185 | goto init_error; | |
1186 | } | |
1187 | ap->info = info; | |
1188 | ||
1189 | /* | |
1190 | * Get the memory for the skb rings. | |
1191 | */ | |
1192 | if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | |
1193 | ecode = -EAGAIN; | |
1194 | goto init_error; | |
1195 | } | |
1196 | ||
1fb9df5d | 1197 | ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, |
1da177e4 LT |
1198 | DRV_NAME, dev); |
1199 | if (ecode) { | |
1200 | printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | |
1201 | DRV_NAME, pdev->irq); | |
1202 | goto init_error; | |
1203 | } else | |
1204 | dev->irq = pdev->irq; | |
1205 | ||
1206 | #ifdef INDEX_DEBUG | |
1207 | spin_lock_init(&ap->debug_lock); | |
1208 | ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | |
1209 | ap->last_std_rx = 0; | |
1210 | ap->last_mini_rx = 0; | |
1211 | #endif | |
1212 | ||
1213 | memset(ap->info, 0, sizeof(struct ace_info)); | |
1214 | memset(ap->skb, 0, sizeof(struct ace_skb)); | |
1215 | ||
1216 | ace_load_firmware(dev); | |
1217 | ap->fw_running = 0; | |
1218 | ||
1219 | tmp_ptr = ap->info_dma; | |
1220 | writel(tmp_ptr >> 32, ®s->InfoPtrHi); | |
1221 | writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | |
1222 | ||
1223 | memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | |
1224 | ||
1225 | set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | |
1226 | info->evt_ctrl.flags = 0; | |
1227 | ||
1228 | *(ap->evt_prd) = 0; | |
1229 | wmb(); | |
1230 | set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | |
1231 | writel(0, ®s->EvtCsm); | |
1232 | ||
1233 | set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | |
1234 | info->cmd_ctrl.flags = 0; | |
1235 | info->cmd_ctrl.max_len = 0; | |
1236 | ||
1237 | for (i = 0; i < CMD_RING_ENTRIES; i++) | |
1238 | writel(0, ®s->CmdRng[i]); | |
1239 | ||
1240 | writel(0, ®s->CmdPrd); | |
1241 | writel(0, ®s->CmdCsm); | |
1242 | ||
1243 | tmp_ptr = ap->info_dma; | |
1244 | tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | |
1245 | set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | |
1246 | ||
1247 | set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | |
1248 | info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | |
1249 | info->rx_std_ctrl.flags = | |
1250 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1251 | ||
1252 | memset(ap->rx_std_ring, 0, | |
1253 | RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | |
1254 | ||
1255 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) | |
1256 | ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | |
1257 | ||
1258 | ap->rx_std_skbprd = 0; | |
1259 | atomic_set(&ap->cur_rx_bufs, 0); | |
1260 | ||
1261 | set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | |
1262 | (ap->rx_ring_base_dma + | |
1263 | (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | |
1264 | info->rx_jumbo_ctrl.max_len = 0; | |
1265 | info->rx_jumbo_ctrl.flags = | |
1266 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1267 | ||
1268 | memset(ap->rx_jumbo_ring, 0, | |
1269 | RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | |
1270 | ||
1271 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | |
1272 | ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | |
1273 | ||
1274 | ap->rx_jumbo_skbprd = 0; | |
1275 | atomic_set(&ap->cur_jumbo_bufs, 0); | |
1276 | ||
1277 | memset(ap->rx_mini_ring, 0, | |
1278 | RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | |
1279 | ||
1280 | if (ap->version >= 2) { | |
1281 | set_aceaddr(&info->rx_mini_ctrl.rngptr, | |
1282 | (ap->rx_ring_base_dma + | |
1283 | (sizeof(struct rx_desc) * | |
1284 | (RX_STD_RING_ENTRIES + | |
1285 | RX_JUMBO_RING_ENTRIES)))); | |
1286 | info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | |
1287 | info->rx_mini_ctrl.flags = | |
1288 | RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; | |
1289 | ||
1290 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | |
1291 | ap->rx_mini_ring[i].flags = | |
1292 | BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | |
1293 | } else { | |
1294 | set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | |
1295 | info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | |
1296 | info->rx_mini_ctrl.max_len = 0; | |
1297 | } | |
1298 | ||
1299 | ap->rx_mini_skbprd = 0; | |
1300 | atomic_set(&ap->cur_mini_bufs, 0); | |
1301 | ||
1302 | set_aceaddr(&info->rx_return_ctrl.rngptr, | |
1303 | (ap->rx_ring_base_dma + | |
1304 | (sizeof(struct rx_desc) * | |
1305 | (RX_STD_RING_ENTRIES + | |
1306 | RX_JUMBO_RING_ENTRIES + | |
1307 | RX_MINI_RING_ENTRIES)))); | |
1308 | info->rx_return_ctrl.flags = 0; | |
1309 | info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | |
1310 | ||
1311 | memset(ap->rx_return_ring, 0, | |
1312 | RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | |
1313 | ||
1314 | set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | |
1315 | *(ap->rx_ret_prd) = 0; | |
1316 | ||
1317 | writel(TX_RING_BASE, ®s->WinBase); | |
1318 | ||
1319 | if (ACE_IS_TIGON_I(ap)) { | |
1320 | ap->tx_ring = (struct tx_desc *) regs->Window; | |
1321 | for (i = 0; i < (TIGON_I_TX_RING_ENTRIES | |
1322 | * sizeof(struct tx_desc)) / sizeof(u32); i++) | |
1323 | writel(0, (void __iomem *)ap->tx_ring + i * 4); | |
1324 | ||
1325 | set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | |
1326 | } else { | |
1327 | memset(ap->tx_ring, 0, | |
1328 | MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | |
1329 | ||
1330 | set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | |
1331 | } | |
1332 | ||
1333 | info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | |
1334 | tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | |
1335 | ||
1336 | /* | |
1337 | * The Tigon I does not like having the TX ring in host memory ;-( | |
1338 | */ | |
1339 | if (!ACE_IS_TIGON_I(ap)) | |
1340 | tmp |= RCB_FLG_TX_HOST_RING; | |
1341 | #if TX_COAL_INTS_ONLY | |
1342 | tmp |= RCB_FLG_COAL_INT_ONLY; | |
1343 | #endif | |
1344 | info->tx_ctrl.flags = tmp; | |
1345 | ||
1346 | set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | |
1347 | ||
1348 | /* | |
1349 | * Potential item for tuning parameter | |
1350 | */ | |
1351 | #if 0 /* NO */ | |
1352 | writel(DMA_THRESH_16W, ®s->DmaReadCfg); | |
1353 | writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | |
1354 | #else | |
1355 | writel(DMA_THRESH_8W, ®s->DmaReadCfg); | |
1356 | writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | |
1357 | #endif | |
1358 | ||
1359 | writel(0, ®s->MaskInt); | |
1360 | writel(1, ®s->IfIdx); | |
1361 | #if 0 | |
1362 | /* | |
1363 | * McKinley boxes do not like us fiddling with AssistState | |
1364 | * this early | |
1365 | */ | |
1366 | writel(1, ®s->AssistState); | |
1367 | #endif | |
1368 | ||
1369 | writel(DEF_STAT, ®s->TuneStatTicks); | |
1370 | writel(DEF_TRACE, ®s->TuneTrace); | |
1371 | ||
1372 | ace_set_rxtx_parms(dev, 0); | |
1373 | ||
1374 | if (board_idx == BOARD_IDX_OVERFLOW) { | |
1375 | printk(KERN_WARNING "%s: more than %i NICs detected, " | |
1376 | "ignoring module parameters!\n", | |
1377 | ap->name, ACE_MAX_MOD_PARMS); | |
1378 | } else if (board_idx >= 0) { | |
1379 | if (tx_coal_tick[board_idx]) | |
1380 | writel(tx_coal_tick[board_idx], | |
1381 | ®s->TuneTxCoalTicks); | |
1382 | if (max_tx_desc[board_idx]) | |
1383 | writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | |
1384 | ||
1385 | if (rx_coal_tick[board_idx]) | |
1386 | writel(rx_coal_tick[board_idx], | |
1387 | ®s->TuneRxCoalTicks); | |
1388 | if (max_rx_desc[board_idx]) | |
1389 | writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | |
1390 | ||
1391 | if (trace[board_idx]) | |
1392 | writel(trace[board_idx], ®s->TuneTrace); | |
1393 | ||
1394 | if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | |
1395 | writel(tx_ratio[board_idx], ®s->TxBufRat); | |
1396 | } | |
1397 | ||
1398 | /* | |
1399 | * Default link parameters | |
1400 | */ | |
1401 | tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | |
1402 | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | |
1403 | if(ap->version >= 2) | |
1404 | tmp |= LNK_TX_FLOW_CTL_Y; | |
1405 | ||
1406 | /* | |
1407 | * Override link default parameters | |
1408 | */ | |
1409 | if ((board_idx >= 0) && link[board_idx]) { | |
1410 | int option = link[board_idx]; | |
1411 | ||
1412 | tmp = LNK_ENABLE; | |
1413 | ||
1414 | if (option & 0x01) { | |
1415 | printk(KERN_INFO "%s: Setting half duplex link\n", | |
1416 | ap->name); | |
1417 | tmp &= ~LNK_FULL_DUPLEX; | |
1418 | } | |
1419 | if (option & 0x02) | |
1420 | tmp &= ~LNK_NEGOTIATE; | |
1421 | if (option & 0x10) | |
1422 | tmp |= LNK_10MB; | |
1423 | if (option & 0x20) | |
1424 | tmp |= LNK_100MB; | |
1425 | if (option & 0x40) | |
1426 | tmp |= LNK_1000MB; | |
1427 | if ((option & 0x70) == 0) { | |
1428 | printk(KERN_WARNING "%s: No media speed specified, " | |
1429 | "forcing auto negotiation\n", ap->name); | |
1430 | tmp |= LNK_NEGOTIATE | LNK_1000MB | | |
1431 | LNK_100MB | LNK_10MB; | |
1432 | } | |
1433 | if ((option & 0x100) == 0) | |
1434 | tmp |= LNK_NEG_FCTL; | |
1435 | else | |
1436 | printk(KERN_INFO "%s: Disabling flow control " | |
1437 | "negotiation\n", ap->name); | |
1438 | if (option & 0x200) | |
1439 | tmp |= LNK_RX_FLOW_CTL_Y; | |
1440 | if ((option & 0x400) && (ap->version >= 2)) { | |
1441 | printk(KERN_INFO "%s: Enabling TX flow control\n", | |
1442 | ap->name); | |
1443 | tmp |= LNK_TX_FLOW_CTL_Y; | |
1444 | } | |
1445 | } | |
1446 | ||
1447 | ap->link = tmp; | |
1448 | writel(tmp, ®s->TuneLink); | |
1449 | if (ap->version >= 2) | |
1450 | writel(tmp, ®s->TuneFastLink); | |
1451 | ||
1452 | if (ACE_IS_TIGON_I(ap)) | |
1453 | writel(tigonFwStartAddr, ®s->Pc); | |
1454 | if (ap->version == 2) | |
1455 | writel(tigon2FwStartAddr, ®s->Pc); | |
1456 | ||
1457 | writel(0, ®s->Mb0Lo); | |
1458 | ||
1459 | /* | |
1460 | * Set tx_csm before we start receiving interrupts, otherwise | |
1461 | * the interrupt handler might think it is supposed to process | |
1462 | * tx ints before we are up and running, which may cause a null | |
1463 | * pointer access in the int handler. | |
1464 | */ | |
1465 | ap->cur_rx = 0; | |
1466 | ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | |
1467 | ||
1468 | wmb(); | |
1469 | ace_set_txprd(regs, ap, 0); | |
1470 | writel(0, ®s->RxRetCsm); | |
1471 | ||
1472 | /* | |
1473 | * Zero the stats before starting the interface | |
1474 | */ | |
1475 | memset(&ap->stats, 0, sizeof(ap->stats)); | |
1476 | ||
1477 | /* | |
1478 | * Enable DMA engine now. | |
1479 | * If we do this sooner, Mckinley box pukes. | |
1480 | * I assume it's because Tigon II DMA engine wants to check | |
1481 | * *something* even before the CPU is started. | |
1482 | */ | |
1483 | writel(1, ®s->AssistState); /* enable DMA */ | |
1484 | ||
1485 | /* | |
1486 | * Start the NIC CPU | |
1487 | */ | |
1488 | writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | |
1489 | readl(®s->CpuCtrl); | |
1490 | ||
1491 | /* | |
1492 | * Wait for the firmware to spin up - max 3 seconds. | |
1493 | */ | |
1494 | myjif = jiffies + 3 * HZ; | |
1495 | while (time_before(jiffies, myjif) && !ap->fw_running) | |
1496 | cpu_relax(); | |
1497 | ||
1498 | if (!ap->fw_running) { | |
1499 | printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | |
1500 | ||
1501 | ace_dump_trace(ap); | |
1502 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | |
1503 | readl(®s->CpuCtrl); | |
1504 | ||
1505 | /* [email protected] - account for badly behaving firmware/NIC: | |
1506 | * - have observed that the NIC may continue to generate | |
1507 | * interrupts for some reason; attempt to stop it - halt | |
1508 | * second CPU for Tigon II cards, and also clear Mb0 | |
1509 | * - if we're a module, we'll fail to load if this was | |
1510 | * the only GbE card in the system => if the kernel does | |
1511 | * see an interrupt from the NIC, code to handle it is | |
1512 | * gone and OOps! - so free_irq also | |
1513 | */ | |
1514 | if (ap->version >= 2) | |
1515 | writel(readl(®s->CpuBCtrl) | CPU_HALT, | |
1516 | ®s->CpuBCtrl); | |
1517 | writel(0, ®s->Mb0Lo); | |
1518 | readl(®s->Mb0Lo); | |
1519 | ||
1520 | ecode = -EBUSY; | |
1521 | goto init_error; | |
1522 | } | |
1523 | ||
1524 | /* | |
1525 | * We load the ring here as there seem to be no way to tell the | |
1526 | * firmware to wipe the ring without re-initializing it. | |
1527 | */ | |
1528 | if (!test_and_set_bit(0, &ap->std_refill_busy)) | |
1529 | ace_load_std_rx_ring(ap, RX_RING_SIZE); | |
1530 | else | |
1531 | printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | |
1532 | ap->name); | |
1533 | if (ap->version >= 2) { | |
1534 | if (!test_and_set_bit(0, &ap->mini_refill_busy)) | |
1535 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE); | |
1536 | else | |
1537 | printk(KERN_ERR "%s: Someone is busy refilling " | |
1538 | "the RX mini ring\n", ap->name); | |
1539 | } | |
1540 | return 0; | |
1541 | ||
1542 | init_error: | |
1543 | ace_init_cleanup(dev); | |
1544 | return ecode; | |
1545 | } | |
1546 | ||
1547 | ||
1548 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | |
1549 | { | |
1550 | struct ace_private *ap = netdev_priv(dev); | |
1551 | struct ace_regs __iomem *regs = ap->regs; | |
1552 | int board_idx = ap->board_idx; | |
1553 | ||
1554 | if (board_idx >= 0) { | |
1555 | if (!jumbo) { | |
1556 | if (!tx_coal_tick[board_idx]) | |
1557 | writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | |
1558 | if (!max_tx_desc[board_idx]) | |
1559 | writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | |
1560 | if (!rx_coal_tick[board_idx]) | |
1561 | writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | |
1562 | if (!max_rx_desc[board_idx]) | |
1563 | writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | |
1564 | if (!tx_ratio[board_idx]) | |
1565 | writel(DEF_TX_RATIO, ®s->TxBufRat); | |
1566 | } else { | |
1567 | if (!tx_coal_tick[board_idx]) | |
1568 | writel(DEF_JUMBO_TX_COAL, | |
1569 | ®s->TuneTxCoalTicks); | |
1570 | if (!max_tx_desc[board_idx]) | |
1571 | writel(DEF_JUMBO_TX_MAX_DESC, | |
1572 | ®s->TuneMaxTxDesc); | |
1573 | if (!rx_coal_tick[board_idx]) | |
1574 | writel(DEF_JUMBO_RX_COAL, | |
1575 | ®s->TuneRxCoalTicks); | |
1576 | if (!max_rx_desc[board_idx]) | |
1577 | writel(DEF_JUMBO_RX_MAX_DESC, | |
1578 | ®s->TuneMaxRxDesc); | |
1579 | if (!tx_ratio[board_idx]) | |
1580 | writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | |
1581 | } | |
1582 | } | |
1583 | } | |
1584 | ||
1585 | ||
1586 | static void ace_watchdog(struct net_device *data) | |
1587 | { | |
1588 | struct net_device *dev = data; | |
1589 | struct ace_private *ap = netdev_priv(dev); | |
1590 | struct ace_regs __iomem *regs = ap->regs; | |
1591 | ||
1592 | /* | |
1593 | * We haven't received a stats update event for more than 2.5 | |
1594 | * seconds and there is data in the transmit queue, thus we | |
1595 | * asume the card is stuck. | |
1596 | */ | |
1597 | if (*ap->tx_csm != ap->tx_ret_csm) { | |
1598 | printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | |
1599 | dev->name, (unsigned int)readl(®s->HostCtrl)); | |
1600 | /* This can happen due to ieee flow control. */ | |
1601 | } else { | |
1602 | printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | |
1603 | dev->name); | |
1604 | #if 0 | |
1605 | netif_wake_queue(dev); | |
1606 | #endif | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | ||
1611 | static void ace_tasklet(unsigned long dev) | |
1612 | { | |
1613 | struct ace_private *ap = netdev_priv((struct net_device *)dev); | |
1614 | int cur_size; | |
1615 | ||
1616 | cur_size = atomic_read(&ap->cur_rx_bufs); | |
1617 | if ((cur_size < RX_LOW_STD_THRES) && | |
1618 | !test_and_set_bit(0, &ap->std_refill_busy)) { | |
1619 | #ifdef DEBUG | |
1620 | printk("refilling buffers (current %i)\n", cur_size); | |
1621 | #endif | |
1622 | ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); | |
1623 | } | |
1624 | ||
1625 | if (ap->version >= 2) { | |
1626 | cur_size = atomic_read(&ap->cur_mini_bufs); | |
1627 | if ((cur_size < RX_LOW_MINI_THRES) && | |
1628 | !test_and_set_bit(0, &ap->mini_refill_busy)) { | |
1629 | #ifdef DEBUG | |
1630 | printk("refilling mini buffers (current %i)\n", | |
1631 | cur_size); | |
1632 | #endif | |
1633 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | |
1634 | } | |
1635 | } | |
1636 | ||
1637 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | |
1638 | if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | |
1639 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | |
1640 | #ifdef DEBUG | |
1641 | printk("refilling jumbo buffers (current %i)\n", cur_size); | |
1642 | #endif | |
1643 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | |
1644 | } | |
1645 | ap->tasklet_pending = 0; | |
1646 | } | |
1647 | ||
1648 | ||
1649 | /* | |
1650 | * Copy the contents of the NIC's trace buffer to kernel memory. | |
1651 | */ | |
1652 | static void ace_dump_trace(struct ace_private *ap) | |
1653 | { | |
1654 | #if 0 | |
1655 | if (!ap->trace_buf) | |
1656 | if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | |
1657 | return; | |
1658 | #endif | |
1659 | } | |
1660 | ||
1661 | ||
1662 | /* | |
1663 | * Load the standard rx ring. | |
1664 | * | |
1665 | * Loading rings is safe without holding the spin lock since this is | |
1666 | * done only before the device is enabled, thus no interrupts are | |
1667 | * generated and by the interrupt handler/tasklet handler. | |
1668 | */ | |
1669 | static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) | |
1670 | { | |
1671 | struct ace_regs __iomem *regs = ap->regs; | |
1672 | short i, idx; | |
1673 | ||
1674 | ||
1675 | prefetchw(&ap->cur_rx_bufs); | |
1676 | ||
1677 | idx = ap->rx_std_skbprd; | |
1678 | ||
1679 | for (i = 0; i < nr_bufs; i++) { | |
1680 | struct sk_buff *skb; | |
1681 | struct rx_desc *rd; | |
1682 | dma_addr_t mapping; | |
1683 | ||
1684 | skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1685 | if (!skb) | |
1686 | break; | |
1687 | ||
1688 | skb_reserve(skb, NET_IP_ALIGN); | |
1689 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1690 | offset_in_page(skb->data), | |
1691 | ACE_STD_BUFSIZE, | |
1692 | PCI_DMA_FROMDEVICE); | |
1693 | ap->skb->rx_std_skbuff[idx].skb = skb; | |
1694 | pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | |
1695 | mapping, mapping); | |
1696 | ||
1697 | rd = &ap->rx_std_ring[idx]; | |
1698 | set_aceaddr(&rd->addr, mapping); | |
1699 | rd->size = ACE_STD_BUFSIZE; | |
1700 | rd->idx = idx; | |
1701 | idx = (idx + 1) % RX_STD_RING_ENTRIES; | |
1702 | } | |
1703 | ||
1704 | if (!i) | |
1705 | goto error_out; | |
1706 | ||
1707 | atomic_add(i, &ap->cur_rx_bufs); | |
1708 | ap->rx_std_skbprd = idx; | |
1709 | ||
1710 | if (ACE_IS_TIGON_I(ap)) { | |
1711 | struct cmd cmd; | |
1712 | cmd.evt = C_SET_RX_PRD_IDX; | |
1713 | cmd.code = 0; | |
1714 | cmd.idx = ap->rx_std_skbprd; | |
1715 | ace_issue_cmd(regs, &cmd); | |
1716 | } else { | |
1717 | writel(idx, ®s->RxStdPrd); | |
1718 | wmb(); | |
1719 | } | |
1720 | ||
1721 | out: | |
1722 | clear_bit(0, &ap->std_refill_busy); | |
1723 | return; | |
1724 | ||
1725 | error_out: | |
1726 | printk(KERN_INFO "Out of memory when allocating " | |
1727 | "standard receive buffers\n"); | |
1728 | goto out; | |
1729 | } | |
1730 | ||
1731 | ||
1732 | static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) | |
1733 | { | |
1734 | struct ace_regs __iomem *regs = ap->regs; | |
1735 | short i, idx; | |
1736 | ||
1737 | prefetchw(&ap->cur_mini_bufs); | |
1738 | ||
1739 | idx = ap->rx_mini_skbprd; | |
1740 | for (i = 0; i < nr_bufs; i++) { | |
1741 | struct sk_buff *skb; | |
1742 | struct rx_desc *rd; | |
1743 | dma_addr_t mapping; | |
1744 | ||
1745 | skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1746 | if (!skb) | |
1747 | break; | |
1748 | ||
1749 | skb_reserve(skb, NET_IP_ALIGN); | |
1750 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1751 | offset_in_page(skb->data), | |
1752 | ACE_MINI_BUFSIZE, | |
1753 | PCI_DMA_FROMDEVICE); | |
1754 | ap->skb->rx_mini_skbuff[idx].skb = skb; | |
1755 | pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | |
1756 | mapping, mapping); | |
1757 | ||
1758 | rd = &ap->rx_mini_ring[idx]; | |
1759 | set_aceaddr(&rd->addr, mapping); | |
1760 | rd->size = ACE_MINI_BUFSIZE; | |
1761 | rd->idx = idx; | |
1762 | idx = (idx + 1) % RX_MINI_RING_ENTRIES; | |
1763 | } | |
1764 | ||
1765 | if (!i) | |
1766 | goto error_out; | |
1767 | ||
1768 | atomic_add(i, &ap->cur_mini_bufs); | |
1769 | ||
1770 | ap->rx_mini_skbprd = idx; | |
1771 | ||
1772 | writel(idx, ®s->RxMiniPrd); | |
1773 | wmb(); | |
1774 | ||
1775 | out: | |
1776 | clear_bit(0, &ap->mini_refill_busy); | |
1777 | return; | |
1778 | error_out: | |
1779 | printk(KERN_INFO "Out of memory when allocating " | |
1780 | "mini receive buffers\n"); | |
1781 | goto out; | |
1782 | } | |
1783 | ||
1784 | ||
1785 | /* | |
1786 | * Load the jumbo rx ring, this may happen at any time if the MTU | |
1787 | * is changed to a value > 1500. | |
1788 | */ | |
1789 | static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) | |
1790 | { | |
1791 | struct ace_regs __iomem *regs = ap->regs; | |
1792 | short i, idx; | |
1793 | ||
1794 | idx = ap->rx_jumbo_skbprd; | |
1795 | ||
1796 | for (i = 0; i < nr_bufs; i++) { | |
1797 | struct sk_buff *skb; | |
1798 | struct rx_desc *rd; | |
1799 | dma_addr_t mapping; | |
1800 | ||
1801 | skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | |
1802 | if (!skb) | |
1803 | break; | |
1804 | ||
1805 | skb_reserve(skb, NET_IP_ALIGN); | |
1806 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
1807 | offset_in_page(skb->data), | |
1808 | ACE_JUMBO_BUFSIZE, | |
1809 | PCI_DMA_FROMDEVICE); | |
1810 | ap->skb->rx_jumbo_skbuff[idx].skb = skb; | |
1811 | pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | |
1812 | mapping, mapping); | |
1813 | ||
1814 | rd = &ap->rx_jumbo_ring[idx]; | |
1815 | set_aceaddr(&rd->addr, mapping); | |
1816 | rd->size = ACE_JUMBO_BUFSIZE; | |
1817 | rd->idx = idx; | |
1818 | idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | |
1819 | } | |
1820 | ||
1821 | if (!i) | |
1822 | goto error_out; | |
1823 | ||
1824 | atomic_add(i, &ap->cur_jumbo_bufs); | |
1825 | ap->rx_jumbo_skbprd = idx; | |
1826 | ||
1827 | if (ACE_IS_TIGON_I(ap)) { | |
1828 | struct cmd cmd; | |
1829 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | |
1830 | cmd.code = 0; | |
1831 | cmd.idx = ap->rx_jumbo_skbprd; | |
1832 | ace_issue_cmd(regs, &cmd); | |
1833 | } else { | |
1834 | writel(idx, ®s->RxJumboPrd); | |
1835 | wmb(); | |
1836 | } | |
1837 | ||
1838 | out: | |
1839 | clear_bit(0, &ap->jumbo_refill_busy); | |
1840 | return; | |
1841 | error_out: | |
1842 | if (net_ratelimit()) | |
1843 | printk(KERN_INFO "Out of memory when allocating " | |
1844 | "jumbo receive buffers\n"); | |
1845 | goto out; | |
1846 | } | |
1847 | ||
1848 | ||
1849 | /* | |
1850 | * All events are considered to be slow (RX/TX ints do not generate | |
1851 | * events) and are handled here, outside the main interrupt handler, | |
1852 | * to reduce the size of the handler. | |
1853 | */ | |
1854 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | |
1855 | { | |
1856 | struct ace_private *ap; | |
1857 | ||
1858 | ap = netdev_priv(dev); | |
1859 | ||
1860 | while (evtcsm != evtprd) { | |
1861 | switch (ap->evt_ring[evtcsm].evt) { | |
1862 | case E_FW_RUNNING: | |
1863 | printk(KERN_INFO "%s: Firmware up and running\n", | |
1864 | ap->name); | |
1865 | ap->fw_running = 1; | |
1866 | wmb(); | |
1867 | break; | |
1868 | case E_STATS_UPDATED: | |
1869 | break; | |
1870 | case E_LNK_STATE: | |
1871 | { | |
1872 | u16 code = ap->evt_ring[evtcsm].code; | |
1873 | switch (code) { | |
1874 | case E_C_LINK_UP: | |
1875 | { | |
1876 | u32 state = readl(&ap->regs->GigLnkState); | |
1877 | printk(KERN_WARNING "%s: Optical link UP " | |
1878 | "(%s Duplex, Flow Control: %s%s)\n", | |
1879 | ap->name, | |
1880 | state & LNK_FULL_DUPLEX ? "Full":"Half", | |
1881 | state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | |
1882 | state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | |
1883 | break; | |
1884 | } | |
1885 | case E_C_LINK_DOWN: | |
1886 | printk(KERN_WARNING "%s: Optical link DOWN\n", | |
1887 | ap->name); | |
1888 | break; | |
1889 | case E_C_LINK_10_100: | |
1890 | printk(KERN_WARNING "%s: 10/100BaseT link " | |
1891 | "UP\n", ap->name); | |
1892 | break; | |
1893 | default: | |
1894 | printk(KERN_ERR "%s: Unknown optical link " | |
1895 | "state %02x\n", ap->name, code); | |
1896 | } | |
1897 | break; | |
1898 | } | |
1899 | case E_ERROR: | |
1900 | switch(ap->evt_ring[evtcsm].code) { | |
1901 | case E_C_ERR_INVAL_CMD: | |
1902 | printk(KERN_ERR "%s: invalid command error\n", | |
1903 | ap->name); | |
1904 | break; | |
1905 | case E_C_ERR_UNIMP_CMD: | |
1906 | printk(KERN_ERR "%s: unimplemented command " | |
1907 | "error\n", ap->name); | |
1908 | break; | |
1909 | case E_C_ERR_BAD_CFG: | |
1910 | printk(KERN_ERR "%s: bad config error\n", | |
1911 | ap->name); | |
1912 | break; | |
1913 | default: | |
1914 | printk(KERN_ERR "%s: unknown error %02x\n", | |
1915 | ap->name, ap->evt_ring[evtcsm].code); | |
1916 | } | |
1917 | break; | |
1918 | case E_RESET_JUMBO_RNG: | |
1919 | { | |
1920 | int i; | |
1921 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | |
1922 | if (ap->skb->rx_jumbo_skbuff[i].skb) { | |
1923 | ap->rx_jumbo_ring[i].size = 0; | |
1924 | set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | |
1925 | dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | |
1926 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | |
1927 | } | |
1928 | } | |
1929 | ||
1930 | if (ACE_IS_TIGON_I(ap)) { | |
1931 | struct cmd cmd; | |
1932 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | |
1933 | cmd.code = 0; | |
1934 | cmd.idx = 0; | |
1935 | ace_issue_cmd(ap->regs, &cmd); | |
1936 | } else { | |
1937 | writel(0, &((ap->regs)->RxJumboPrd)); | |
1938 | wmb(); | |
1939 | } | |
1940 | ||
1941 | ap->jumbo = 0; | |
1942 | ap->rx_jumbo_skbprd = 0; | |
1943 | printk(KERN_INFO "%s: Jumbo ring flushed\n", | |
1944 | ap->name); | |
1945 | clear_bit(0, &ap->jumbo_refill_busy); | |
1946 | break; | |
1947 | } | |
1948 | default: | |
1949 | printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | |
1950 | ap->name, ap->evt_ring[evtcsm].evt); | |
1951 | } | |
1952 | evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | |
1953 | } | |
1954 | ||
1955 | return evtcsm; | |
1956 | } | |
1957 | ||
1958 | ||
1959 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | |
1960 | { | |
1961 | struct ace_private *ap = netdev_priv(dev); | |
1962 | u32 idx; | |
1963 | int mini_count = 0, std_count = 0; | |
1964 | ||
1965 | idx = rxretcsm; | |
1966 | ||
1967 | prefetchw(&ap->cur_rx_bufs); | |
1968 | prefetchw(&ap->cur_mini_bufs); | |
1969 | ||
1970 | while (idx != rxretprd) { | |
1971 | struct ring_info *rip; | |
1972 | struct sk_buff *skb; | |
1973 | struct rx_desc *rxdesc, *retdesc; | |
1974 | u32 skbidx; | |
1975 | int bd_flags, desc_type, mapsize; | |
1976 | u16 csum; | |
1977 | ||
1978 | ||
1979 | /* make sure the rx descriptor isn't read before rxretprd */ | |
1980 | if (idx == rxretcsm) | |
1981 | rmb(); | |
1982 | ||
1983 | retdesc = &ap->rx_return_ring[idx]; | |
1984 | skbidx = retdesc->idx; | |
1985 | bd_flags = retdesc->flags; | |
1986 | desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | |
1987 | ||
1988 | switch(desc_type) { | |
1989 | /* | |
1990 | * Normal frames do not have any flags set | |
1991 | * | |
1992 | * Mini and normal frames arrive frequently, | |
1993 | * so use a local counter to avoid doing | |
1994 | * atomic operations for each packet arriving. | |
1995 | */ | |
1996 | case 0: | |
1997 | rip = &ap->skb->rx_std_skbuff[skbidx]; | |
1998 | mapsize = ACE_STD_BUFSIZE; | |
1999 | rxdesc = &ap->rx_std_ring[skbidx]; | |
2000 | std_count++; | |
2001 | break; | |
2002 | case BD_FLG_JUMBO: | |
2003 | rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | |
2004 | mapsize = ACE_JUMBO_BUFSIZE; | |
2005 | rxdesc = &ap->rx_jumbo_ring[skbidx]; | |
2006 | atomic_dec(&ap->cur_jumbo_bufs); | |
2007 | break; | |
2008 | case BD_FLG_MINI: | |
2009 | rip = &ap->skb->rx_mini_skbuff[skbidx]; | |
2010 | mapsize = ACE_MINI_BUFSIZE; | |
2011 | rxdesc = &ap->rx_mini_ring[skbidx]; | |
2012 | mini_count++; | |
2013 | break; | |
2014 | default: | |
2015 | printk(KERN_INFO "%s: unknown frame type (0x%02x) " | |
2016 | "returned by NIC\n", dev->name, | |
2017 | retdesc->flags); | |
2018 | goto error; | |
2019 | } | |
2020 | ||
2021 | skb = rip->skb; | |
2022 | rip->skb = NULL; | |
2023 | pci_unmap_page(ap->pdev, | |
2024 | pci_unmap_addr(rip, mapping), | |
2025 | mapsize, | |
2026 | PCI_DMA_FROMDEVICE); | |
2027 | skb_put(skb, retdesc->size); | |
2028 | ||
2029 | /* | |
2030 | * Fly baby, fly! | |
2031 | */ | |
2032 | csum = retdesc->tcp_udp_csum; | |
2033 | ||
2034 | skb->dev = dev; | |
2035 | skb->protocol = eth_type_trans(skb, dev); | |
2036 | ||
2037 | /* | |
2038 | * Instead of forcing the poor tigon mips cpu to calculate | |
2039 | * pseudo hdr checksum, we do this ourselves. | |
2040 | */ | |
2041 | if (bd_flags & BD_FLG_TCP_UDP_SUM) { | |
2042 | skb->csum = htons(csum); | |
2043 | skb->ip_summed = CHECKSUM_HW; | |
2044 | } else { | |
2045 | skb->ip_summed = CHECKSUM_NONE; | |
2046 | } | |
2047 | ||
2048 | /* send it up */ | |
2049 | #if ACENIC_DO_VLAN | |
2050 | if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { | |
2051 | vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); | |
2052 | } else | |
2053 | #endif | |
2054 | netif_rx(skb); | |
2055 | ||
2056 | dev->last_rx = jiffies; | |
2057 | ap->stats.rx_packets++; | |
2058 | ap->stats.rx_bytes += retdesc->size; | |
2059 | ||
2060 | idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | |
2061 | } | |
2062 | ||
2063 | atomic_sub(std_count, &ap->cur_rx_bufs); | |
2064 | if (!ACE_IS_TIGON_I(ap)) | |
2065 | atomic_sub(mini_count, &ap->cur_mini_bufs); | |
2066 | ||
2067 | out: | |
2068 | /* | |
2069 | * According to the documentation RxRetCsm is obsolete with | |
2070 | * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | |
2071 | */ | |
2072 | if (ACE_IS_TIGON_I(ap)) { | |
2073 | writel(idx, &ap->regs->RxRetCsm); | |
2074 | } | |
2075 | ap->cur_rx = idx; | |
2076 | ||
2077 | return; | |
2078 | error: | |
2079 | idx = rxretprd; | |
2080 | goto out; | |
2081 | } | |
2082 | ||
2083 | ||
2084 | static inline void ace_tx_int(struct net_device *dev, | |
2085 | u32 txcsm, u32 idx) | |
2086 | { | |
2087 | struct ace_private *ap = netdev_priv(dev); | |
2088 | ||
2089 | do { | |
2090 | struct sk_buff *skb; | |
2091 | dma_addr_t mapping; | |
2092 | struct tx_ring_info *info; | |
2093 | ||
2094 | info = ap->skb->tx_skbuff + idx; | |
2095 | skb = info->skb; | |
2096 | mapping = pci_unmap_addr(info, mapping); | |
2097 | ||
2098 | if (mapping) { | |
2099 | pci_unmap_page(ap->pdev, mapping, | |
2100 | pci_unmap_len(info, maplen), | |
2101 | PCI_DMA_TODEVICE); | |
2102 | pci_unmap_addr_set(info, mapping, 0); | |
2103 | } | |
2104 | ||
2105 | if (skb) { | |
2106 | ap->stats.tx_packets++; | |
2107 | ap->stats.tx_bytes += skb->len; | |
2108 | dev_kfree_skb_irq(skb); | |
2109 | info->skb = NULL; | |
2110 | } | |
2111 | ||
2112 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2113 | } while (idx != txcsm); | |
2114 | ||
2115 | if (netif_queue_stopped(dev)) | |
2116 | netif_wake_queue(dev); | |
2117 | ||
2118 | wmb(); | |
2119 | ap->tx_ret_csm = txcsm; | |
2120 | ||
2121 | /* So... tx_ret_csm is advanced _after_ check for device wakeup. | |
2122 | * | |
2123 | * We could try to make it before. In this case we would get | |
2124 | * the following race condition: hard_start_xmit on other cpu | |
2125 | * enters after we advanced tx_ret_csm and fills space, | |
2126 | * which we have just freed, so that we make illegal device wakeup. | |
2127 | * There is no good way to workaround this (at entry | |
2128 | * to ace_start_xmit detects this condition and prevents | |
2129 | * ring corruption, but it is not a good workaround.) | |
2130 | * | |
2131 | * When tx_ret_csm is advanced after, we wake up device _only_ | |
2132 | * if we really have some space in ring (though the core doing | |
2133 | * hard_start_xmit can see full ring for some period and has to | |
2134 | * synchronize.) Superb. | |
2135 | * BUT! We get another subtle race condition. hard_start_xmit | |
2136 | * may think that ring is full between wakeup and advancing | |
2137 | * tx_ret_csm and will stop device instantly! It is not so bad. | |
2138 | * We are guaranteed that there is something in ring, so that | |
2139 | * the next irq will resume transmission. To speedup this we could | |
2140 | * mark descriptor, which closes ring with BD_FLG_COAL_NOW | |
2141 | * (see ace_start_xmit). | |
2142 | * | |
2143 | * Well, this dilemma exists in all lock-free devices. | |
2144 | * We, following scheme used in drivers by Donald Becker, | |
2145 | * select the least dangerous. | |
2146 | * --ANK | |
2147 | */ | |
2148 | } | |
2149 | ||
2150 | ||
2151 | static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) | |
2152 | { | |
2153 | struct net_device *dev = (struct net_device *)dev_id; | |
2154 | struct ace_private *ap = netdev_priv(dev); | |
2155 | struct ace_regs __iomem *regs = ap->regs; | |
2156 | u32 idx; | |
2157 | u32 txcsm, rxretcsm, rxretprd; | |
2158 | u32 evtcsm, evtprd; | |
2159 | ||
2160 | /* | |
2161 | * In case of PCI shared interrupts or spurious interrupts, | |
2162 | * we want to make sure it is actually our interrupt before | |
2163 | * spending any time in here. | |
2164 | */ | |
2165 | if (!(readl(®s->HostCtrl) & IN_INT)) | |
2166 | return IRQ_NONE; | |
2167 | ||
2168 | /* | |
2169 | * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | |
2170 | * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | |
2171 | * writel(0, ®s->Mb0Lo). | |
2172 | * | |
2173 | * "IRQ avoidance" recommended in docs applies to IRQs served | |
2174 | * threads and it is wrong even for that case. | |
2175 | */ | |
2176 | writel(0, ®s->Mb0Lo); | |
2177 | readl(®s->Mb0Lo); | |
2178 | ||
2179 | /* | |
2180 | * There is no conflict between transmit handling in | |
2181 | * start_xmit and receive processing, thus there is no reason | |
2182 | * to take a spin lock for RX handling. Wait until we start | |
2183 | * working on the other stuff - hey we don't need a spin lock | |
2184 | * anymore. | |
2185 | */ | |
2186 | rxretprd = *ap->rx_ret_prd; | |
2187 | rxretcsm = ap->cur_rx; | |
2188 | ||
2189 | if (rxretprd != rxretcsm) | |
2190 | ace_rx_int(dev, rxretprd, rxretcsm); | |
2191 | ||
2192 | txcsm = *ap->tx_csm; | |
2193 | idx = ap->tx_ret_csm; | |
2194 | ||
2195 | if (txcsm != idx) { | |
2196 | /* | |
2197 | * If each skb takes only one descriptor this check degenerates | |
2198 | * to identity, because new space has just been opened. | |
2199 | * But if skbs are fragmented we must check that this index | |
2200 | * update releases enough of space, otherwise we just | |
2201 | * wait for device to make more work. | |
2202 | */ | |
2203 | if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | |
2204 | ace_tx_int(dev, txcsm, idx); | |
2205 | } | |
2206 | ||
2207 | evtcsm = readl(®s->EvtCsm); | |
2208 | evtprd = *ap->evt_prd; | |
2209 | ||
2210 | if (evtcsm != evtprd) { | |
2211 | evtcsm = ace_handle_event(dev, evtcsm, evtprd); | |
2212 | writel(evtcsm, ®s->EvtCsm); | |
2213 | } | |
2214 | ||
2215 | /* | |
2216 | * This has to go last in the interrupt handler and run with | |
2217 | * the spin lock released ... what lock? | |
2218 | */ | |
2219 | if (netif_running(dev)) { | |
2220 | int cur_size; | |
2221 | int run_tasklet = 0; | |
2222 | ||
2223 | cur_size = atomic_read(&ap->cur_rx_bufs); | |
2224 | if (cur_size < RX_LOW_STD_THRES) { | |
2225 | if ((cur_size < RX_PANIC_STD_THRES) && | |
2226 | !test_and_set_bit(0, &ap->std_refill_busy)) { | |
2227 | #ifdef DEBUG | |
2228 | printk("low on std buffers %i\n", cur_size); | |
2229 | #endif | |
2230 | ace_load_std_rx_ring(ap, | |
2231 | RX_RING_SIZE - cur_size); | |
2232 | } else | |
2233 | run_tasklet = 1; | |
2234 | } | |
2235 | ||
2236 | if (!ACE_IS_TIGON_I(ap)) { | |
2237 | cur_size = atomic_read(&ap->cur_mini_bufs); | |
2238 | if (cur_size < RX_LOW_MINI_THRES) { | |
2239 | if ((cur_size < RX_PANIC_MINI_THRES) && | |
2240 | !test_and_set_bit(0, | |
2241 | &ap->mini_refill_busy)) { | |
2242 | #ifdef DEBUG | |
2243 | printk("low on mini buffers %i\n", | |
2244 | cur_size); | |
2245 | #endif | |
2246 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | |
2247 | } else | |
2248 | run_tasklet = 1; | |
2249 | } | |
2250 | } | |
2251 | ||
2252 | if (ap->jumbo) { | |
2253 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | |
2254 | if (cur_size < RX_LOW_JUMBO_THRES) { | |
2255 | if ((cur_size < RX_PANIC_JUMBO_THRES) && | |
2256 | !test_and_set_bit(0, | |
2257 | &ap->jumbo_refill_busy)){ | |
2258 | #ifdef DEBUG | |
2259 | printk("low on jumbo buffers %i\n", | |
2260 | cur_size); | |
2261 | #endif | |
2262 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | |
2263 | } else | |
2264 | run_tasklet = 1; | |
2265 | } | |
2266 | } | |
2267 | if (run_tasklet && !ap->tasklet_pending) { | |
2268 | ap->tasklet_pending = 1; | |
2269 | tasklet_schedule(&ap->ace_tasklet); | |
2270 | } | |
2271 | } | |
2272 | ||
2273 | return IRQ_HANDLED; | |
2274 | } | |
2275 | ||
2276 | ||
2277 | #if ACENIC_DO_VLAN | |
2278 | static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | |
2279 | { | |
2280 | struct ace_private *ap = netdev_priv(dev); | |
2281 | unsigned long flags; | |
2282 | ||
2283 | local_irq_save(flags); | |
2284 | ace_mask_irq(dev); | |
2285 | ||
2286 | ap->vlgrp = grp; | |
2287 | ||
2288 | ace_unmask_irq(dev); | |
2289 | local_irq_restore(flags); | |
2290 | } | |
2291 | ||
2292 | ||
2293 | static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) | |
2294 | { | |
2295 | struct ace_private *ap = netdev_priv(dev); | |
2296 | unsigned long flags; | |
2297 | ||
2298 | local_irq_save(flags); | |
2299 | ace_mask_irq(dev); | |
2300 | ||
2301 | if (ap->vlgrp) | |
2302 | ap->vlgrp->vlan_devices[vid] = NULL; | |
2303 | ||
2304 | ace_unmask_irq(dev); | |
2305 | local_irq_restore(flags); | |
2306 | } | |
2307 | #endif /* ACENIC_DO_VLAN */ | |
2308 | ||
2309 | ||
2310 | static int ace_open(struct net_device *dev) | |
2311 | { | |
2312 | struct ace_private *ap = netdev_priv(dev); | |
2313 | struct ace_regs __iomem *regs = ap->regs; | |
2314 | struct cmd cmd; | |
2315 | ||
2316 | if (!(ap->fw_running)) { | |
2317 | printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | |
2318 | return -EBUSY; | |
2319 | } | |
2320 | ||
2321 | writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | |
2322 | ||
2323 | cmd.evt = C_CLEAR_STATS; | |
2324 | cmd.code = 0; | |
2325 | cmd.idx = 0; | |
2326 | ace_issue_cmd(regs, &cmd); | |
2327 | ||
2328 | cmd.evt = C_HOST_STATE; | |
2329 | cmd.code = C_C_STACK_UP; | |
2330 | cmd.idx = 0; | |
2331 | ace_issue_cmd(regs, &cmd); | |
2332 | ||
2333 | if (ap->jumbo && | |
2334 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) | |
2335 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | |
2336 | ||
2337 | if (dev->flags & IFF_PROMISC) { | |
2338 | cmd.evt = C_SET_PROMISC_MODE; | |
2339 | cmd.code = C_C_PROMISC_ENABLE; | |
2340 | cmd.idx = 0; | |
2341 | ace_issue_cmd(regs, &cmd); | |
2342 | ||
2343 | ap->promisc = 1; | |
2344 | }else | |
2345 | ap->promisc = 0; | |
2346 | ap->mcast_all = 0; | |
2347 | ||
2348 | #if 0 | |
2349 | cmd.evt = C_LNK_NEGOTIATION; | |
2350 | cmd.code = 0; | |
2351 | cmd.idx = 0; | |
2352 | ace_issue_cmd(regs, &cmd); | |
2353 | #endif | |
2354 | ||
2355 | netif_start_queue(dev); | |
2356 | ||
2357 | /* | |
2358 | * Setup the bottom half rx ring refill handler | |
2359 | */ | |
2360 | tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | |
2361 | return 0; | |
2362 | } | |
2363 | ||
2364 | ||
2365 | static int ace_close(struct net_device *dev) | |
2366 | { | |
2367 | struct ace_private *ap = netdev_priv(dev); | |
2368 | struct ace_regs __iomem *regs = ap->regs; | |
2369 | struct cmd cmd; | |
2370 | unsigned long flags; | |
2371 | short i; | |
2372 | ||
2373 | /* | |
2374 | * Without (or before) releasing irq and stopping hardware, this | |
2375 | * is an absolute non-sense, by the way. It will be reset instantly | |
2376 | * by the first irq. | |
2377 | */ | |
2378 | netif_stop_queue(dev); | |
2379 | ||
2380 | ||
2381 | if (ap->promisc) { | |
2382 | cmd.evt = C_SET_PROMISC_MODE; | |
2383 | cmd.code = C_C_PROMISC_DISABLE; | |
2384 | cmd.idx = 0; | |
2385 | ace_issue_cmd(regs, &cmd); | |
2386 | ap->promisc = 0; | |
2387 | } | |
2388 | ||
2389 | cmd.evt = C_HOST_STATE; | |
2390 | cmd.code = C_C_STACK_DOWN; | |
2391 | cmd.idx = 0; | |
2392 | ace_issue_cmd(regs, &cmd); | |
2393 | ||
2394 | tasklet_kill(&ap->ace_tasklet); | |
2395 | ||
2396 | /* | |
2397 | * Make sure one CPU is not processing packets while | |
2398 | * buffers are being released by another. | |
2399 | */ | |
2400 | ||
2401 | local_irq_save(flags); | |
2402 | ace_mask_irq(dev); | |
2403 | ||
2404 | for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | |
2405 | struct sk_buff *skb; | |
2406 | dma_addr_t mapping; | |
2407 | struct tx_ring_info *info; | |
2408 | ||
2409 | info = ap->skb->tx_skbuff + i; | |
2410 | skb = info->skb; | |
2411 | mapping = pci_unmap_addr(info, mapping); | |
2412 | ||
2413 | if (mapping) { | |
2414 | if (ACE_IS_TIGON_I(ap)) { | |
2415 | struct tx_desc __iomem *tx | |
2416 | = (struct tx_desc __iomem *) &ap->tx_ring[i]; | |
2417 | writel(0, &tx->addr.addrhi); | |
2418 | writel(0, &tx->addr.addrlo); | |
2419 | writel(0, &tx->flagsize); | |
2420 | } else | |
2421 | memset(ap->tx_ring + i, 0, | |
2422 | sizeof(struct tx_desc)); | |
2423 | pci_unmap_page(ap->pdev, mapping, | |
2424 | pci_unmap_len(info, maplen), | |
2425 | PCI_DMA_TODEVICE); | |
2426 | pci_unmap_addr_set(info, mapping, 0); | |
2427 | } | |
2428 | if (skb) { | |
2429 | dev_kfree_skb(skb); | |
2430 | info->skb = NULL; | |
2431 | } | |
2432 | } | |
2433 | ||
2434 | if (ap->jumbo) { | |
2435 | cmd.evt = C_RESET_JUMBO_RNG; | |
2436 | cmd.code = 0; | |
2437 | cmd.idx = 0; | |
2438 | ace_issue_cmd(regs, &cmd); | |
2439 | } | |
2440 | ||
2441 | ace_unmask_irq(dev); | |
2442 | local_irq_restore(flags); | |
2443 | ||
2444 | return 0; | |
2445 | } | |
2446 | ||
2447 | ||
2448 | static inline dma_addr_t | |
2449 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | |
2450 | struct sk_buff *tail, u32 idx) | |
2451 | { | |
2452 | dma_addr_t mapping; | |
2453 | struct tx_ring_info *info; | |
2454 | ||
2455 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | |
2456 | offset_in_page(skb->data), | |
2457 | skb->len, PCI_DMA_TODEVICE); | |
2458 | ||
2459 | info = ap->skb->tx_skbuff + idx; | |
2460 | info->skb = tail; | |
2461 | pci_unmap_addr_set(info, mapping, mapping); | |
2462 | pci_unmap_len_set(info, maplen, skb->len); | |
2463 | return mapping; | |
2464 | } | |
2465 | ||
2466 | ||
2467 | static inline void | |
2468 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | |
2469 | u32 flagsize, u32 vlan_tag) | |
2470 | { | |
2471 | #if !USE_TX_COAL_NOW | |
2472 | flagsize &= ~BD_FLG_COAL_NOW; | |
2473 | #endif | |
2474 | ||
2475 | if (ACE_IS_TIGON_I(ap)) { | |
2476 | struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc; | |
2477 | writel(addr >> 32, &io->addr.addrhi); | |
2478 | writel(addr & 0xffffffff, &io->addr.addrlo); | |
2479 | writel(flagsize, &io->flagsize); | |
2480 | #if ACENIC_DO_VLAN | |
2481 | writel(vlan_tag, &io->vlanres); | |
2482 | #endif | |
2483 | } else { | |
2484 | desc->addr.addrhi = addr >> 32; | |
2485 | desc->addr.addrlo = addr; | |
2486 | desc->flagsize = flagsize; | |
2487 | #if ACENIC_DO_VLAN | |
2488 | desc->vlanres = vlan_tag; | |
2489 | #endif | |
2490 | } | |
2491 | } | |
2492 | ||
2493 | ||
2494 | static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) | |
2495 | { | |
2496 | struct ace_private *ap = netdev_priv(dev); | |
2497 | struct ace_regs __iomem *regs = ap->regs; | |
2498 | struct tx_desc *desc; | |
2499 | u32 idx, flagsize; | |
2500 | unsigned long maxjiff = jiffies + 3*HZ; | |
2501 | ||
2502 | restart: | |
2503 | idx = ap->tx_prd; | |
2504 | ||
2505 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2506 | goto overflow; | |
2507 | ||
2508 | if (!skb_shinfo(skb)->nr_frags) { | |
2509 | dma_addr_t mapping; | |
2510 | u32 vlan_tag = 0; | |
2511 | ||
2512 | mapping = ace_map_tx_skb(ap, skb, skb, idx); | |
2513 | flagsize = (skb->len << 16) | (BD_FLG_END); | |
2514 | if (skb->ip_summed == CHECKSUM_HW) | |
2515 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2516 | #if ACENIC_DO_VLAN | |
2517 | if (vlan_tx_tag_present(skb)) { | |
2518 | flagsize |= BD_FLG_VLAN_TAG; | |
2519 | vlan_tag = vlan_tx_tag_get(skb); | |
2520 | } | |
2521 | #endif | |
2522 | desc = ap->tx_ring + idx; | |
2523 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2524 | ||
2525 | /* Look at ace_tx_int for explanations. */ | |
2526 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2527 | flagsize |= BD_FLG_COAL_NOW; | |
2528 | ||
2529 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | |
2530 | } else { | |
2531 | dma_addr_t mapping; | |
2532 | u32 vlan_tag = 0; | |
2533 | int i, len = 0; | |
2534 | ||
2535 | mapping = ace_map_tx_skb(ap, skb, NULL, idx); | |
2536 | flagsize = (skb_headlen(skb) << 16); | |
2537 | if (skb->ip_summed == CHECKSUM_HW) | |
2538 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2539 | #if ACENIC_DO_VLAN | |
2540 | if (vlan_tx_tag_present(skb)) { | |
2541 | flagsize |= BD_FLG_VLAN_TAG; | |
2542 | vlan_tag = vlan_tx_tag_get(skb); | |
2543 | } | |
2544 | #endif | |
2545 | ||
2546 | ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | |
2547 | ||
2548 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2549 | ||
2550 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | |
2551 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | |
2552 | struct tx_ring_info *info; | |
2553 | ||
2554 | len += frag->size; | |
2555 | info = ap->skb->tx_skbuff + idx; | |
2556 | desc = ap->tx_ring + idx; | |
2557 | ||
2558 | mapping = pci_map_page(ap->pdev, frag->page, | |
2559 | frag->page_offset, frag->size, | |
2560 | PCI_DMA_TODEVICE); | |
2561 | ||
2562 | flagsize = (frag->size << 16); | |
2563 | if (skb->ip_summed == CHECKSUM_HW) | |
2564 | flagsize |= BD_FLG_TCP_UDP_SUM; | |
2565 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | |
2566 | ||
2567 | if (i == skb_shinfo(skb)->nr_frags - 1) { | |
2568 | flagsize |= BD_FLG_END; | |
2569 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2570 | flagsize |= BD_FLG_COAL_NOW; | |
2571 | ||
2572 | /* | |
2573 | * Only the last fragment frees | |
2574 | * the skb! | |
2575 | */ | |
2576 | info->skb = skb; | |
2577 | } else { | |
2578 | info->skb = NULL; | |
2579 | } | |
2580 | pci_unmap_addr_set(info, mapping, mapping); | |
2581 | pci_unmap_len_set(info, maplen, frag->size); | |
2582 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | |
2583 | } | |
2584 | } | |
2585 | ||
2586 | wmb(); | |
2587 | ap->tx_prd = idx; | |
2588 | ace_set_txprd(regs, ap, idx); | |
2589 | ||
2590 | if (flagsize & BD_FLG_COAL_NOW) { | |
2591 | netif_stop_queue(dev); | |
2592 | ||
2593 | /* | |
2594 | * A TX-descriptor producer (an IRQ) might have gotten | |
2595 | * inbetween, making the ring free again. Since xmit is | |
2596 | * serialized, this is the only situation we have to | |
2597 | * re-test. | |
2598 | */ | |
2599 | if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | |
2600 | netif_wake_queue(dev); | |
2601 | } | |
2602 | ||
2603 | dev->trans_start = jiffies; | |
2604 | return NETDEV_TX_OK; | |
2605 | ||
2606 | overflow: | |
2607 | /* | |
2608 | * This race condition is unavoidable with lock-free drivers. | |
2609 | * We wake up the queue _before_ tx_prd is advanced, so that we can | |
2610 | * enter hard_start_xmit too early, while tx ring still looks closed. | |
2611 | * This happens ~1-4 times per 100000 packets, so that we can allow | |
2612 | * to loop syncing to other CPU. Probably, we need an additional | |
2613 | * wmb() in ace_tx_intr as well. | |
2614 | * | |
2615 | * Note that this race is relieved by reserving one more entry | |
2616 | * in tx ring than it is necessary (see original non-SG driver). | |
2617 | * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | |
2618 | * is already overkill. | |
2619 | * | |
2620 | * Alternative is to return with 1 not throttling queue. In this | |
2621 | * case loop becomes longer, no more useful effects. | |
2622 | */ | |
2623 | if (time_before(jiffies, maxjiff)) { | |
2624 | barrier(); | |
2625 | cpu_relax(); | |
2626 | goto restart; | |
2627 | } | |
2628 | ||
2629 | /* The ring is stuck full. */ | |
2630 | printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | |
2631 | return NETDEV_TX_BUSY; | |
2632 | } | |
2633 | ||
2634 | ||
2635 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | |
2636 | { | |
2637 | struct ace_private *ap = netdev_priv(dev); | |
2638 | struct ace_regs __iomem *regs = ap->regs; | |
2639 | ||
2640 | if (new_mtu > ACE_JUMBO_MTU) | |
2641 | return -EINVAL; | |
2642 | ||
2643 | writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | |
2644 | dev->mtu = new_mtu; | |
2645 | ||
2646 | if (new_mtu > ACE_STD_MTU) { | |
2647 | if (!(ap->jumbo)) { | |
2648 | printk(KERN_INFO "%s: Enabling Jumbo frame " | |
2649 | "support\n", dev->name); | |
2650 | ap->jumbo = 1; | |
2651 | if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | |
2652 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | |
2653 | ace_set_rxtx_parms(dev, 1); | |
2654 | } | |
2655 | } else { | |
2656 | while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | |
2657 | ace_sync_irq(dev->irq); | |
2658 | ace_set_rxtx_parms(dev, 0); | |
2659 | if (ap->jumbo) { | |
2660 | struct cmd cmd; | |
2661 | ||
2662 | cmd.evt = C_RESET_JUMBO_RNG; | |
2663 | cmd.code = 0; | |
2664 | cmd.idx = 0; | |
2665 | ace_issue_cmd(regs, &cmd); | |
2666 | } | |
2667 | } | |
2668 | ||
2669 | return 0; | |
2670 | } | |
2671 | ||
2672 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
2673 | { | |
2674 | struct ace_private *ap = netdev_priv(dev); | |
2675 | struct ace_regs __iomem *regs = ap->regs; | |
2676 | u32 link; | |
2677 | ||
2678 | memset(ecmd, 0, sizeof(struct ethtool_cmd)); | |
2679 | ecmd->supported = | |
2680 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | |
2681 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | |
2682 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | |
2683 | SUPPORTED_Autoneg | SUPPORTED_FIBRE); | |
2684 | ||
2685 | ecmd->port = PORT_FIBRE; | |
2686 | ecmd->transceiver = XCVR_INTERNAL; | |
2687 | ||
2688 | link = readl(®s->GigLnkState); | |
2689 | if (link & LNK_1000MB) | |
2690 | ecmd->speed = SPEED_1000; | |
2691 | else { | |
2692 | link = readl(®s->FastLnkState); | |
2693 | if (link & LNK_100MB) | |
2694 | ecmd->speed = SPEED_100; | |
2695 | else if (link & LNK_10MB) | |
2696 | ecmd->speed = SPEED_10; | |
2697 | else | |
2698 | ecmd->speed = 0; | |
2699 | } | |
2700 | if (link & LNK_FULL_DUPLEX) | |
2701 | ecmd->duplex = DUPLEX_FULL; | |
2702 | else | |
2703 | ecmd->duplex = DUPLEX_HALF; | |
2704 | ||
2705 | if (link & LNK_NEGOTIATE) | |
2706 | ecmd->autoneg = AUTONEG_ENABLE; | |
2707 | else | |
2708 | ecmd->autoneg = AUTONEG_DISABLE; | |
2709 | ||
2710 | #if 0 | |
2711 | /* | |
2712 | * Current struct ethtool_cmd is insufficient | |
2713 | */ | |
2714 | ecmd->trace = readl(®s->TuneTrace); | |
2715 | ||
2716 | ecmd->txcoal = readl(®s->TuneTxCoalTicks); | |
2717 | ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | |
2718 | #endif | |
2719 | ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | |
2720 | ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | |
2721 | ||
2722 | return 0; | |
2723 | } | |
2724 | ||
2725 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | |
2726 | { | |
2727 | struct ace_private *ap = netdev_priv(dev); | |
2728 | struct ace_regs __iomem *regs = ap->regs; | |
2729 | u32 link, speed; | |
2730 | ||
2731 | link = readl(®s->GigLnkState); | |
2732 | if (link & LNK_1000MB) | |
2733 | speed = SPEED_1000; | |
2734 | else { | |
2735 | link = readl(®s->FastLnkState); | |
2736 | if (link & LNK_100MB) | |
2737 | speed = SPEED_100; | |
2738 | else if (link & LNK_10MB) | |
2739 | speed = SPEED_10; | |
2740 | else | |
2741 | speed = SPEED_100; | |
2742 | } | |
2743 | ||
2744 | link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | |
2745 | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | |
2746 | if (!ACE_IS_TIGON_I(ap)) | |
2747 | link |= LNK_TX_FLOW_CTL_Y; | |
2748 | if (ecmd->autoneg == AUTONEG_ENABLE) | |
2749 | link |= LNK_NEGOTIATE; | |
2750 | if (ecmd->speed != speed) { | |
2751 | link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | |
2752 | switch (speed) { | |
2753 | case SPEED_1000: | |
2754 | link |= LNK_1000MB; | |
2755 | break; | |
2756 | case SPEED_100: | |
2757 | link |= LNK_100MB; | |
2758 | break; | |
2759 | case SPEED_10: | |
2760 | link |= LNK_10MB; | |
2761 | break; | |
2762 | } | |
2763 | } | |
2764 | ||
2765 | if (ecmd->duplex == DUPLEX_FULL) | |
2766 | link |= LNK_FULL_DUPLEX; | |
2767 | ||
2768 | if (link != ap->link) { | |
2769 | struct cmd cmd; | |
2770 | printk(KERN_INFO "%s: Renegotiating link state\n", | |
2771 | dev->name); | |
2772 | ||
2773 | ap->link = link; | |
2774 | writel(link, ®s->TuneLink); | |
2775 | if (!ACE_IS_TIGON_I(ap)) | |
2776 | writel(link, ®s->TuneFastLink); | |
2777 | wmb(); | |
2778 | ||
2779 | cmd.evt = C_LNK_NEGOTIATION; | |
2780 | cmd.code = 0; | |
2781 | cmd.idx = 0; | |
2782 | ace_issue_cmd(regs, &cmd); | |
2783 | } | |
2784 | return 0; | |
2785 | } | |
2786 | ||
2787 | static void ace_get_drvinfo(struct net_device *dev, | |
2788 | struct ethtool_drvinfo *info) | |
2789 | { | |
2790 | struct ace_private *ap = netdev_priv(dev); | |
2791 | ||
2792 | strlcpy(info->driver, "acenic", sizeof(info->driver)); | |
2793 | snprintf(info->version, sizeof(info->version), "%i.%i.%i", | |
2794 | tigonFwReleaseMajor, tigonFwReleaseMinor, | |
2795 | tigonFwReleaseFix); | |
2796 | ||
2797 | if (ap->pdev) | |
2798 | strlcpy(info->bus_info, pci_name(ap->pdev), | |
2799 | sizeof(info->bus_info)); | |
2800 | ||
2801 | } | |
2802 | ||
2803 | /* | |
2804 | * Set the hardware MAC address. | |
2805 | */ | |
2806 | static int ace_set_mac_addr(struct net_device *dev, void *p) | |
2807 | { | |
2808 | struct ace_private *ap = netdev_priv(dev); | |
2809 | struct ace_regs __iomem *regs = ap->regs; | |
2810 | struct sockaddr *addr=p; | |
2811 | u8 *da; | |
2812 | struct cmd cmd; | |
2813 | ||
2814 | if(netif_running(dev)) | |
2815 | return -EBUSY; | |
2816 | ||
2817 | memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | |
2818 | ||
2819 | da = (u8 *)dev->dev_addr; | |
2820 | ||
2821 | writel(da[0] << 8 | da[1], ®s->MacAddrHi); | |
2822 | writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | |
2823 | ®s->MacAddrLo); | |
2824 | ||
2825 | cmd.evt = C_SET_MAC_ADDR; | |
2826 | cmd.code = 0; | |
2827 | cmd.idx = 0; | |
2828 | ace_issue_cmd(regs, &cmd); | |
2829 | ||
2830 | return 0; | |
2831 | } | |
2832 | ||
2833 | ||
2834 | static void ace_set_multicast_list(struct net_device *dev) | |
2835 | { | |
2836 | struct ace_private *ap = netdev_priv(dev); | |
2837 | struct ace_regs __iomem *regs = ap->regs; | |
2838 | struct cmd cmd; | |
2839 | ||
2840 | if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | |
2841 | cmd.evt = C_SET_MULTICAST_MODE; | |
2842 | cmd.code = C_C_MCAST_ENABLE; | |
2843 | cmd.idx = 0; | |
2844 | ace_issue_cmd(regs, &cmd); | |
2845 | ap->mcast_all = 1; | |
2846 | } else if (ap->mcast_all) { | |
2847 | cmd.evt = C_SET_MULTICAST_MODE; | |
2848 | cmd.code = C_C_MCAST_DISABLE; | |
2849 | cmd.idx = 0; | |
2850 | ace_issue_cmd(regs, &cmd); | |
2851 | ap->mcast_all = 0; | |
2852 | } | |
2853 | ||
2854 | if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | |
2855 | cmd.evt = C_SET_PROMISC_MODE; | |
2856 | cmd.code = C_C_PROMISC_ENABLE; | |
2857 | cmd.idx = 0; | |
2858 | ace_issue_cmd(regs, &cmd); | |
2859 | ap->promisc = 1; | |
2860 | }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | |
2861 | cmd.evt = C_SET_PROMISC_MODE; | |
2862 | cmd.code = C_C_PROMISC_DISABLE; | |
2863 | cmd.idx = 0; | |
2864 | ace_issue_cmd(regs, &cmd); | |
2865 | ap->promisc = 0; | |
2866 | } | |
2867 | ||
2868 | /* | |
2869 | * For the time being multicast relies on the upper layers | |
2870 | * filtering it properly. The Firmware does not allow one to | |
2871 | * set the entire multicast list at a time and keeping track of | |
2872 | * it here is going to be messy. | |
2873 | */ | |
2874 | if ((dev->mc_count) && !(ap->mcast_all)) { | |
2875 | cmd.evt = C_SET_MULTICAST_MODE; | |
2876 | cmd.code = C_C_MCAST_ENABLE; | |
2877 | cmd.idx = 0; | |
2878 | ace_issue_cmd(regs, &cmd); | |
2879 | }else if (!ap->mcast_all) { | |
2880 | cmd.evt = C_SET_MULTICAST_MODE; | |
2881 | cmd.code = C_C_MCAST_DISABLE; | |
2882 | cmd.idx = 0; | |
2883 | ace_issue_cmd(regs, &cmd); | |
2884 | } | |
2885 | } | |
2886 | ||
2887 | ||
2888 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | |
2889 | { | |
2890 | struct ace_private *ap = netdev_priv(dev); | |
2891 | struct ace_mac_stats __iomem *mac_stats = | |
2892 | (struct ace_mac_stats __iomem *)ap->regs->Stats; | |
2893 | ||
2894 | ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); | |
2895 | ap->stats.multicast = readl(&mac_stats->kept_mc); | |
2896 | ap->stats.collisions = readl(&mac_stats->coll); | |
2897 | ||
2898 | return &ap->stats; | |
2899 | } | |
2900 | ||
2901 | ||
2902 | static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, | |
2903 | u32 dest, int size) | |
2904 | { | |
2905 | void __iomem *tdest; | |
2906 | u32 *wsrc; | |
2907 | short tsize, i; | |
2908 | ||
2909 | if (size <= 0) | |
2910 | return; | |
2911 | ||
2912 | while (size > 0) { | |
2913 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | |
2914 | min_t(u32, size, ACE_WINDOW_SIZE)); | |
2915 | tdest = (void __iomem *) ®s->Window + | |
2916 | (dest & (ACE_WINDOW_SIZE - 1)); | |
2917 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | |
2918 | /* | |
2919 | * This requires byte swapping on big endian, however | |
2920 | * writel does that for us | |
2921 | */ | |
2922 | wsrc = src; | |
2923 | for (i = 0; i < (tsize / 4); i++) { | |
2924 | writel(wsrc[i], tdest + i*4); | |
2925 | } | |
2926 | dest += tsize; | |
2927 | src += tsize; | |
2928 | size -= tsize; | |
2929 | } | |
2930 | ||
2931 | return; | |
2932 | } | |
2933 | ||
2934 | ||
2935 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | |
2936 | { | |
2937 | void __iomem *tdest; | |
2938 | short tsize = 0, i; | |
2939 | ||
2940 | if (size <= 0) | |
2941 | return; | |
2942 | ||
2943 | while (size > 0) { | |
2944 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | |
2945 | min_t(u32, size, ACE_WINDOW_SIZE)); | |
2946 | tdest = (void __iomem *) ®s->Window + | |
2947 | (dest & (ACE_WINDOW_SIZE - 1)); | |
2948 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | |
2949 | ||
2950 | for (i = 0; i < (tsize / 4); i++) { | |
2951 | writel(0, tdest + i*4); | |
2952 | } | |
2953 | ||
2954 | dest += tsize; | |
2955 | size -= tsize; | |
2956 | } | |
2957 | ||
2958 | return; | |
2959 | } | |
2960 | ||
2961 | ||
2962 | /* | |
2963 | * Download the firmware into the SRAM on the NIC | |
2964 | * | |
2965 | * This operation requires the NIC to be halted and is performed with | |
2966 | * interrupts disabled and with the spinlock hold. | |
2967 | */ | |
2968 | int __devinit ace_load_firmware(struct net_device *dev) | |
2969 | { | |
2970 | struct ace_private *ap = netdev_priv(dev); | |
2971 | struct ace_regs __iomem *regs = ap->regs; | |
2972 | ||
2973 | if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | |
2974 | printk(KERN_ERR "%s: trying to download firmware while the " | |
2975 | "CPU is running!\n", ap->name); | |
2976 | return -EFAULT; | |
2977 | } | |
2978 | ||
2979 | /* | |
2980 | * Do not try to clear more than 512KB or we end up seeing | |
2981 | * funny things on NICs with only 512KB SRAM | |
2982 | */ | |
2983 | ace_clear(regs, 0x2000, 0x80000-0x2000); | |
2984 | if (ACE_IS_TIGON_I(ap)) { | |
2985 | ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); | |
2986 | ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); | |
2987 | ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, | |
2988 | tigonFwRodataLen); | |
2989 | ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); | |
2990 | ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); | |
2991 | }else if (ap->version == 2) { | |
2992 | ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); | |
2993 | ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); | |
2994 | ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); | |
2995 | ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, | |
2996 | tigon2FwRodataLen); | |
2997 | ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); | |
2998 | } | |
2999 | ||
3000 | return 0; | |
3001 | } | |
3002 | ||
3003 | ||
3004 | /* | |
3005 | * The eeprom on the AceNIC is an Atmel i2c EEPROM. | |
3006 | * | |
3007 | * Accessing the EEPROM is `interesting' to say the least - don't read | |
3008 | * this code right after dinner. | |
3009 | * | |
3010 | * This is all about black magic and bit-banging the device .... I | |
3011 | * wonder in what hospital they have put the guy who designed the i2c | |
3012 | * specs. | |
3013 | * | |
3014 | * Oh yes, this is only the beginning! | |
3015 | * | |
3016 | * Thanks to Stevarino Webinski for helping tracking down the bugs in the | |
3017 | * code i2c readout code by beta testing all my hacks. | |
3018 | */ | |
3019 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | |
3020 | { | |
3021 | u32 local; | |
3022 | ||
3023 | readl(®s->LocalCtrl); | |
3024 | udelay(ACE_SHORT_DELAY); | |
3025 | local = readl(®s->LocalCtrl); | |
3026 | local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | |
3027 | writel(local, ®s->LocalCtrl); | |
3028 | readl(®s->LocalCtrl); | |
3029 | mb(); | |
3030 | udelay(ACE_SHORT_DELAY); | |
3031 | local |= EEPROM_CLK_OUT; | |
3032 | writel(local, ®s->LocalCtrl); | |
3033 | readl(®s->LocalCtrl); | |
3034 | mb(); | |
3035 | udelay(ACE_SHORT_DELAY); | |
3036 | local &= ~EEPROM_DATA_OUT; | |
3037 | writel(local, ®s->LocalCtrl); | |
3038 | readl(®s->LocalCtrl); | |
3039 | mb(); | |
3040 | udelay(ACE_SHORT_DELAY); | |
3041 | local &= ~EEPROM_CLK_OUT; | |
3042 | writel(local, ®s->LocalCtrl); | |
3043 | readl(®s->LocalCtrl); | |
3044 | mb(); | |
3045 | } | |
3046 | ||
3047 | ||
3048 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | |
3049 | { | |
3050 | short i; | |
3051 | u32 local; | |
3052 | ||
3053 | udelay(ACE_SHORT_DELAY); | |
3054 | local = readl(®s->LocalCtrl); | |
3055 | local &= ~EEPROM_DATA_OUT; | |
3056 | local |= EEPROM_WRITE_ENABLE; | |
3057 | writel(local, ®s->LocalCtrl); | |
3058 | readl(®s->LocalCtrl); | |
3059 | mb(); | |
3060 | ||
3061 | for (i = 0; i < 8; i++, magic <<= 1) { | |
3062 | udelay(ACE_SHORT_DELAY); | |
3063 | if (magic & 0x80) | |
3064 | local |= EEPROM_DATA_OUT; | |
3065 | else | |
3066 | local &= ~EEPROM_DATA_OUT; | |
3067 | writel(local, ®s->LocalCtrl); | |
3068 | readl(®s->LocalCtrl); | |
3069 | mb(); | |
3070 | ||
3071 | udelay(ACE_SHORT_DELAY); | |
3072 | local |= EEPROM_CLK_OUT; | |
3073 | writel(local, ®s->LocalCtrl); | |
3074 | readl(®s->LocalCtrl); | |
3075 | mb(); | |
3076 | udelay(ACE_SHORT_DELAY); | |
3077 | local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | |
3078 | writel(local, ®s->LocalCtrl); | |
3079 | readl(®s->LocalCtrl); | |
3080 | mb(); | |
3081 | } | |
3082 | } | |
3083 | ||
3084 | ||
3085 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | |
3086 | { | |
3087 | int state; | |
3088 | u32 local; | |
3089 | ||
3090 | local = readl(®s->LocalCtrl); | |
3091 | local &= ~EEPROM_WRITE_ENABLE; | |
3092 | writel(local, ®s->LocalCtrl); | |
3093 | readl(®s->LocalCtrl); | |
3094 | mb(); | |
3095 | udelay(ACE_LONG_DELAY); | |
3096 | local |= EEPROM_CLK_OUT; | |
3097 | writel(local, ®s->LocalCtrl); | |
3098 | readl(®s->LocalCtrl); | |
3099 | mb(); | |
3100 | udelay(ACE_SHORT_DELAY); | |
3101 | /* sample data in middle of high clk */ | |
3102 | state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | |
3103 | udelay(ACE_SHORT_DELAY); | |
3104 | mb(); | |
3105 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3106 | readl(®s->LocalCtrl); | |
3107 | mb(); | |
3108 | ||
3109 | return state; | |
3110 | } | |
3111 | ||
3112 | ||
3113 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | |
3114 | { | |
3115 | u32 local; | |
3116 | ||
3117 | udelay(ACE_SHORT_DELAY); | |
3118 | local = readl(®s->LocalCtrl); | |
3119 | local |= EEPROM_WRITE_ENABLE; | |
3120 | writel(local, ®s->LocalCtrl); | |
3121 | readl(®s->LocalCtrl); | |
3122 | mb(); | |
3123 | udelay(ACE_SHORT_DELAY); | |
3124 | local &= ~EEPROM_DATA_OUT; | |
3125 | writel(local, ®s->LocalCtrl); | |
3126 | readl(®s->LocalCtrl); | |
3127 | mb(); | |
3128 | udelay(ACE_SHORT_DELAY); | |
3129 | local |= EEPROM_CLK_OUT; | |
3130 | writel(local, ®s->LocalCtrl); | |
3131 | readl(®s->LocalCtrl); | |
3132 | mb(); | |
3133 | udelay(ACE_SHORT_DELAY); | |
3134 | local |= EEPROM_DATA_OUT; | |
3135 | writel(local, ®s->LocalCtrl); | |
3136 | readl(®s->LocalCtrl); | |
3137 | mb(); | |
3138 | udelay(ACE_LONG_DELAY); | |
3139 | local &= ~EEPROM_CLK_OUT; | |
3140 | writel(local, ®s->LocalCtrl); | |
3141 | mb(); | |
3142 | } | |
3143 | ||
3144 | ||
3145 | /* | |
3146 | * Read a whole byte from the EEPROM. | |
3147 | */ | |
3148 | static int __devinit read_eeprom_byte(struct net_device *dev, | |
3149 | unsigned long offset) | |
3150 | { | |
3151 | struct ace_private *ap = netdev_priv(dev); | |
3152 | struct ace_regs __iomem *regs = ap->regs; | |
3153 | unsigned long flags; | |
3154 | u32 local; | |
3155 | int result = 0; | |
3156 | short i; | |
3157 | ||
3158 | if (!dev) { | |
3159 | printk(KERN_ERR "No device!\n"); | |
3160 | result = -ENODEV; | |
3161 | goto out; | |
3162 | } | |
3163 | ||
3164 | /* | |
3165 | * Don't take interrupts on this CPU will bit banging | |
3166 | * the %#%#@$ I2C device | |
3167 | */ | |
3168 | local_irq_save(flags); | |
3169 | ||
3170 | eeprom_start(regs); | |
3171 | ||
3172 | eeprom_prep(regs, EEPROM_WRITE_SELECT); | |
3173 | if (eeprom_check_ack(regs)) { | |
3174 | local_irq_restore(flags); | |
3175 | printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | |
3176 | result = -EIO; | |
3177 | goto eeprom_read_error; | |
3178 | } | |
3179 | ||
3180 | eeprom_prep(regs, (offset >> 8) & 0xff); | |
3181 | if (eeprom_check_ack(regs)) { | |
3182 | local_irq_restore(flags); | |
3183 | printk(KERN_ERR "%s: Unable to set address byte 0\n", | |
3184 | ap->name); | |
3185 | result = -EIO; | |
3186 | goto eeprom_read_error; | |
3187 | } | |
3188 | ||
3189 | eeprom_prep(regs, offset & 0xff); | |
3190 | if (eeprom_check_ack(regs)) { | |
3191 | local_irq_restore(flags); | |
3192 | printk(KERN_ERR "%s: Unable to set address byte 1\n", | |
3193 | ap->name); | |
3194 | result = -EIO; | |
3195 | goto eeprom_read_error; | |
3196 | } | |
3197 | ||
3198 | eeprom_start(regs); | |
3199 | eeprom_prep(regs, EEPROM_READ_SELECT); | |
3200 | if (eeprom_check_ack(regs)) { | |
3201 | local_irq_restore(flags); | |
3202 | printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | |
3203 | ap->name); | |
3204 | result = -EIO; | |
3205 | goto eeprom_read_error; | |
3206 | } | |
3207 | ||
3208 | for (i = 0; i < 8; i++) { | |
3209 | local = readl(®s->LocalCtrl); | |
3210 | local &= ~EEPROM_WRITE_ENABLE; | |
3211 | writel(local, ®s->LocalCtrl); | |
3212 | readl(®s->LocalCtrl); | |
3213 | udelay(ACE_LONG_DELAY); | |
3214 | mb(); | |
3215 | local |= EEPROM_CLK_OUT; | |
3216 | writel(local, ®s->LocalCtrl); | |
3217 | readl(®s->LocalCtrl); | |
3218 | mb(); | |
3219 | udelay(ACE_SHORT_DELAY); | |
3220 | /* sample data mid high clk */ | |
3221 | result = (result << 1) | | |
3222 | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | |
3223 | udelay(ACE_SHORT_DELAY); | |
3224 | mb(); | |
3225 | local = readl(®s->LocalCtrl); | |
3226 | local &= ~EEPROM_CLK_OUT; | |
3227 | writel(local, ®s->LocalCtrl); | |
3228 | readl(®s->LocalCtrl); | |
3229 | udelay(ACE_SHORT_DELAY); | |
3230 | mb(); | |
3231 | if (i == 7) { | |
3232 | local |= EEPROM_WRITE_ENABLE; | |
3233 | writel(local, ®s->LocalCtrl); | |
3234 | readl(®s->LocalCtrl); | |
3235 | mb(); | |
3236 | udelay(ACE_SHORT_DELAY); | |
3237 | } | |
3238 | } | |
3239 | ||
3240 | local |= EEPROM_DATA_OUT; | |
3241 | writel(local, ®s->LocalCtrl); | |
3242 | readl(®s->LocalCtrl); | |
3243 | mb(); | |
3244 | udelay(ACE_SHORT_DELAY); | |
3245 | writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3246 | readl(®s->LocalCtrl); | |
3247 | udelay(ACE_LONG_DELAY); | |
3248 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | |
3249 | readl(®s->LocalCtrl); | |
3250 | mb(); | |
3251 | udelay(ACE_SHORT_DELAY); | |
3252 | eeprom_stop(regs); | |
3253 | ||
3254 | local_irq_restore(flags); | |
3255 | out: | |
3256 | return result; | |
3257 | ||
3258 | eeprom_read_error: | |
3259 | printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | |
3260 | ap->name, offset); | |
3261 | goto out; | |
3262 | } | |
3263 | ||
3264 | ||
3265 | /* | |
3266 | * Local variables: | |
3267 | * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c" | |
3268 | * End: | |
3269 | */ |