]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/kernel_stat.h> | |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
e129b5c2 | 22 | #include <linux/vmstat.h> |
1da177e4 LT |
23 | #include <linux/file.h> |
24 | #include <linux/writeback.h> | |
25 | #include <linux/blkdev.h> | |
26 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
27 | buffer_heads_over_limit */ | |
28 | #include <linux/mm_inline.h> | |
29 | #include <linux/pagevec.h> | |
30 | #include <linux/backing-dev.h> | |
31 | #include <linux/rmap.h> | |
32 | #include <linux/topology.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/notifier.h> | |
36 | #include <linux/rwsem.h> | |
248a0301 | 37 | #include <linux/delay.h> |
3218ae14 | 38 | #include <linux/kthread.h> |
1da177e4 LT |
39 | |
40 | #include <asm/tlbflush.h> | |
41 | #include <asm/div64.h> | |
42 | ||
43 | #include <linux/swapops.h> | |
44 | ||
0f8053a5 NP |
45 | #include "internal.h" |
46 | ||
1da177e4 | 47 | struct scan_control { |
1da177e4 LT |
48 | /* Incremented by the number of inactive pages that were scanned */ |
49 | unsigned long nr_scanned; | |
50 | ||
1da177e4 | 51 | /* This context's GFP mask */ |
6daa0e28 | 52 | gfp_t gfp_mask; |
1da177e4 LT |
53 | |
54 | int may_writepage; | |
55 | ||
f1fd1067 CL |
56 | /* Can pages be swapped as part of reclaim? */ |
57 | int may_swap; | |
58 | ||
1da177e4 LT |
59 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for |
60 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | |
61 | * In this context, it doesn't matter that we scan the | |
62 | * whole list at once. */ | |
63 | int swap_cluster_max; | |
d6277db4 RW |
64 | |
65 | int swappiness; | |
408d8544 NP |
66 | |
67 | int all_unreclaimable; | |
1da177e4 LT |
68 | }; |
69 | ||
70 | /* | |
71 | * The list of shrinker callbacks used by to apply pressure to | |
72 | * ageable caches. | |
73 | */ | |
74 | struct shrinker { | |
75 | shrinker_t shrinker; | |
76 | struct list_head list; | |
77 | int seeks; /* seeks to recreate an obj */ | |
78 | long nr; /* objs pending delete */ | |
79 | }; | |
80 | ||
81 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | |
82 | ||
83 | #ifdef ARCH_HAS_PREFETCH | |
84 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
85 | do { \ | |
86 | if ((_page)->lru.prev != _base) { \ | |
87 | struct page *prev; \ | |
88 | \ | |
89 | prev = lru_to_page(&(_page->lru)); \ | |
90 | prefetch(&prev->_field); \ | |
91 | } \ | |
92 | } while (0) | |
93 | #else | |
94 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
95 | #endif | |
96 | ||
97 | #ifdef ARCH_HAS_PREFETCHW | |
98 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
99 | do { \ | |
100 | if ((_page)->lru.prev != _base) { \ | |
101 | struct page *prev; \ | |
102 | \ | |
103 | prev = lru_to_page(&(_page->lru)); \ | |
104 | prefetchw(&prev->_field); \ | |
105 | } \ | |
106 | } while (0) | |
107 | #else | |
108 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
109 | #endif | |
110 | ||
111 | /* | |
112 | * From 0 .. 100. Higher means more swappy. | |
113 | */ | |
114 | int vm_swappiness = 60; | |
bd1e22b8 | 115 | long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
116 | |
117 | static LIST_HEAD(shrinker_list); | |
118 | static DECLARE_RWSEM(shrinker_rwsem); | |
119 | ||
120 | /* | |
121 | * Add a shrinker callback to be called from the vm | |
122 | */ | |
123 | struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker) | |
124 | { | |
125 | struct shrinker *shrinker; | |
126 | ||
127 | shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL); | |
128 | if (shrinker) { | |
129 | shrinker->shrinker = theshrinker; | |
130 | shrinker->seeks = seeks; | |
131 | shrinker->nr = 0; | |
132 | down_write(&shrinker_rwsem); | |
133 | list_add_tail(&shrinker->list, &shrinker_list); | |
134 | up_write(&shrinker_rwsem); | |
135 | } | |
136 | return shrinker; | |
137 | } | |
138 | EXPORT_SYMBOL(set_shrinker); | |
139 | ||
140 | /* | |
141 | * Remove one | |
142 | */ | |
143 | void remove_shrinker(struct shrinker *shrinker) | |
144 | { | |
145 | down_write(&shrinker_rwsem); | |
146 | list_del(&shrinker->list); | |
147 | up_write(&shrinker_rwsem); | |
148 | kfree(shrinker); | |
149 | } | |
150 | EXPORT_SYMBOL(remove_shrinker); | |
151 | ||
152 | #define SHRINK_BATCH 128 | |
153 | /* | |
154 | * Call the shrink functions to age shrinkable caches | |
155 | * | |
156 | * Here we assume it costs one seek to replace a lru page and that it also | |
157 | * takes a seek to recreate a cache object. With this in mind we age equal | |
158 | * percentages of the lru and ageable caches. This should balance the seeks | |
159 | * generated by these structures. | |
160 | * | |
161 | * If the vm encounted mapped pages on the LRU it increase the pressure on | |
162 | * slab to avoid swapping. | |
163 | * | |
164 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
165 | * | |
166 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
167 | * are eligible for the caller's allocation attempt. It is used for balancing | |
168 | * slab reclaim versus page reclaim. | |
b15e0905 | 169 | * |
170 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 171 | */ |
69e05944 AM |
172 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
173 | unsigned long lru_pages) | |
1da177e4 LT |
174 | { |
175 | struct shrinker *shrinker; | |
69e05944 | 176 | unsigned long ret = 0; |
1da177e4 LT |
177 | |
178 | if (scanned == 0) | |
179 | scanned = SWAP_CLUSTER_MAX; | |
180 | ||
181 | if (!down_read_trylock(&shrinker_rwsem)) | |
b15e0905 | 182 | return 1; /* Assume we'll be able to shrink next time */ |
1da177e4 LT |
183 | |
184 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
185 | unsigned long long delta; | |
186 | unsigned long total_scan; | |
ea164d73 | 187 | unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask); |
1da177e4 LT |
188 | |
189 | delta = (4 * scanned) / shrinker->seeks; | |
ea164d73 | 190 | delta *= max_pass; |
1da177e4 LT |
191 | do_div(delta, lru_pages + 1); |
192 | shrinker->nr += delta; | |
ea164d73 AA |
193 | if (shrinker->nr < 0) { |
194 | printk(KERN_ERR "%s: nr=%ld\n", | |
195 | __FUNCTION__, shrinker->nr); | |
196 | shrinker->nr = max_pass; | |
197 | } | |
198 | ||
199 | /* | |
200 | * Avoid risking looping forever due to too large nr value: | |
201 | * never try to free more than twice the estimate number of | |
202 | * freeable entries. | |
203 | */ | |
204 | if (shrinker->nr > max_pass * 2) | |
205 | shrinker->nr = max_pass * 2; | |
1da177e4 LT |
206 | |
207 | total_scan = shrinker->nr; | |
208 | shrinker->nr = 0; | |
209 | ||
210 | while (total_scan >= SHRINK_BATCH) { | |
211 | long this_scan = SHRINK_BATCH; | |
212 | int shrink_ret; | |
b15e0905 | 213 | int nr_before; |
1da177e4 | 214 | |
b15e0905 | 215 | nr_before = (*shrinker->shrinker)(0, gfp_mask); |
1da177e4 LT |
216 | shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask); |
217 | if (shrink_ret == -1) | |
218 | break; | |
b15e0905 | 219 | if (shrink_ret < nr_before) |
220 | ret += nr_before - shrink_ret; | |
f8891e5e | 221 | count_vm_events(SLABS_SCANNED, this_scan); |
1da177e4 LT |
222 | total_scan -= this_scan; |
223 | ||
224 | cond_resched(); | |
225 | } | |
226 | ||
227 | shrinker->nr += total_scan; | |
228 | } | |
229 | up_read(&shrinker_rwsem); | |
b15e0905 | 230 | return ret; |
1da177e4 LT |
231 | } |
232 | ||
233 | /* Called without lock on whether page is mapped, so answer is unstable */ | |
234 | static inline int page_mapping_inuse(struct page *page) | |
235 | { | |
236 | struct address_space *mapping; | |
237 | ||
238 | /* Page is in somebody's page tables. */ | |
239 | if (page_mapped(page)) | |
240 | return 1; | |
241 | ||
242 | /* Be more reluctant to reclaim swapcache than pagecache */ | |
243 | if (PageSwapCache(page)) | |
244 | return 1; | |
245 | ||
246 | mapping = page_mapping(page); | |
247 | if (!mapping) | |
248 | return 0; | |
249 | ||
250 | /* File is mmap'd by somebody? */ | |
251 | return mapping_mapped(mapping); | |
252 | } | |
253 | ||
254 | static inline int is_page_cache_freeable(struct page *page) | |
255 | { | |
256 | return page_count(page) - !!PagePrivate(page) == 2; | |
257 | } | |
258 | ||
259 | static int may_write_to_queue(struct backing_dev_info *bdi) | |
260 | { | |
930d9152 | 261 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
262 | return 1; |
263 | if (!bdi_write_congested(bdi)) | |
264 | return 1; | |
265 | if (bdi == current->backing_dev_info) | |
266 | return 1; | |
267 | return 0; | |
268 | } | |
269 | ||
270 | /* | |
271 | * We detected a synchronous write error writing a page out. Probably | |
272 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
273 | * fsync(), msync() or close(). | |
274 | * | |
275 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
276 | * prevents it from being freed up. But we have a ref on the page and once | |
277 | * that page is locked, the mapping is pinned. | |
278 | * | |
279 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
280 | * __GFP_FS. | |
281 | */ | |
282 | static void handle_write_error(struct address_space *mapping, | |
283 | struct page *page, int error) | |
284 | { | |
285 | lock_page(page); | |
286 | if (page_mapping(page) == mapping) { | |
287 | if (error == -ENOSPC) | |
288 | set_bit(AS_ENOSPC, &mapping->flags); | |
289 | else | |
290 | set_bit(AS_EIO, &mapping->flags); | |
291 | } | |
292 | unlock_page(page); | |
293 | } | |
294 | ||
04e62a29 CL |
295 | /* possible outcome of pageout() */ |
296 | typedef enum { | |
297 | /* failed to write page out, page is locked */ | |
298 | PAGE_KEEP, | |
299 | /* move page to the active list, page is locked */ | |
300 | PAGE_ACTIVATE, | |
301 | /* page has been sent to the disk successfully, page is unlocked */ | |
302 | PAGE_SUCCESS, | |
303 | /* page is clean and locked */ | |
304 | PAGE_CLEAN, | |
305 | } pageout_t; | |
306 | ||
1da177e4 | 307 | /* |
1742f19f AM |
308 | * pageout is called by shrink_page_list() for each dirty page. |
309 | * Calls ->writepage(). | |
1da177e4 | 310 | */ |
04e62a29 | 311 | static pageout_t pageout(struct page *page, struct address_space *mapping) |
1da177e4 LT |
312 | { |
313 | /* | |
314 | * If the page is dirty, only perform writeback if that write | |
315 | * will be non-blocking. To prevent this allocation from being | |
316 | * stalled by pagecache activity. But note that there may be | |
317 | * stalls if we need to run get_block(). We could test | |
318 | * PagePrivate for that. | |
319 | * | |
320 | * If this process is currently in generic_file_write() against | |
321 | * this page's queue, we can perform writeback even if that | |
322 | * will block. | |
323 | * | |
324 | * If the page is swapcache, write it back even if that would | |
325 | * block, for some throttling. This happens by accident, because | |
326 | * swap_backing_dev_info is bust: it doesn't reflect the | |
327 | * congestion state of the swapdevs. Easy to fix, if needed. | |
328 | * See swapfile.c:page_queue_congested(). | |
329 | */ | |
330 | if (!is_page_cache_freeable(page)) | |
331 | return PAGE_KEEP; | |
332 | if (!mapping) { | |
333 | /* | |
334 | * Some data journaling orphaned pages can have | |
335 | * page->mapping == NULL while being dirty with clean buffers. | |
336 | */ | |
323aca6c | 337 | if (PagePrivate(page)) { |
1da177e4 LT |
338 | if (try_to_free_buffers(page)) { |
339 | ClearPageDirty(page); | |
340 | printk("%s: orphaned page\n", __FUNCTION__); | |
341 | return PAGE_CLEAN; | |
342 | } | |
343 | } | |
344 | return PAGE_KEEP; | |
345 | } | |
346 | if (mapping->a_ops->writepage == NULL) | |
347 | return PAGE_ACTIVATE; | |
348 | if (!may_write_to_queue(mapping->backing_dev_info)) | |
349 | return PAGE_KEEP; | |
350 | ||
351 | if (clear_page_dirty_for_io(page)) { | |
352 | int res; | |
353 | struct writeback_control wbc = { | |
354 | .sync_mode = WB_SYNC_NONE, | |
355 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
356 | .range_start = 0, |
357 | .range_end = LLONG_MAX, | |
1da177e4 LT |
358 | .nonblocking = 1, |
359 | .for_reclaim = 1, | |
360 | }; | |
361 | ||
362 | SetPageReclaim(page); | |
363 | res = mapping->a_ops->writepage(page, &wbc); | |
364 | if (res < 0) | |
365 | handle_write_error(mapping, page, res); | |
994fc28c | 366 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
367 | ClearPageReclaim(page); |
368 | return PAGE_ACTIVATE; | |
369 | } | |
370 | if (!PageWriteback(page)) { | |
371 | /* synchronous write or broken a_ops? */ | |
372 | ClearPageReclaim(page); | |
373 | } | |
e129b5c2 | 374 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
375 | return PAGE_SUCCESS; |
376 | } | |
377 | ||
378 | return PAGE_CLEAN; | |
379 | } | |
380 | ||
a649fd92 AM |
381 | /* |
382 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
383 | * someone else has a ref on the page, abort and return 0. If it was | |
384 | * successfully detached, return 1. Assumes the caller has a single ref on | |
385 | * this page. | |
386 | */ | |
b20a3503 | 387 | int remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 388 | { |
28e4d965 NP |
389 | BUG_ON(!PageLocked(page)); |
390 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc CL |
391 | |
392 | write_lock_irq(&mapping->tree_lock); | |
49d2e9cc | 393 | /* |
0fd0e6b0 NP |
394 | * The non racy check for a busy page. |
395 | * | |
396 | * Must be careful with the order of the tests. When someone has | |
397 | * a ref to the page, it may be possible that they dirty it then | |
398 | * drop the reference. So if PageDirty is tested before page_count | |
399 | * here, then the following race may occur: | |
400 | * | |
401 | * get_user_pages(&page); | |
402 | * [user mapping goes away] | |
403 | * write_to(page); | |
404 | * !PageDirty(page) [good] | |
405 | * SetPageDirty(page); | |
406 | * put_page(page); | |
407 | * !page_count(page) [good, discard it] | |
408 | * | |
409 | * [oops, our write_to data is lost] | |
410 | * | |
411 | * Reversing the order of the tests ensures such a situation cannot | |
412 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
413 | * load is not satisfied before that of page->_count. | |
414 | * | |
415 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
416 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc CL |
417 | */ |
418 | if (unlikely(page_count(page) != 2)) | |
419 | goto cannot_free; | |
420 | smp_rmb(); | |
421 | if (unlikely(PageDirty(page))) | |
422 | goto cannot_free; | |
423 | ||
424 | if (PageSwapCache(page)) { | |
425 | swp_entry_t swap = { .val = page_private(page) }; | |
426 | __delete_from_swap_cache(page); | |
427 | write_unlock_irq(&mapping->tree_lock); | |
428 | swap_free(swap); | |
429 | __put_page(page); /* The pagecache ref */ | |
430 | return 1; | |
431 | } | |
432 | ||
433 | __remove_from_page_cache(page); | |
434 | write_unlock_irq(&mapping->tree_lock); | |
435 | __put_page(page); | |
436 | return 1; | |
437 | ||
438 | cannot_free: | |
439 | write_unlock_irq(&mapping->tree_lock); | |
440 | return 0; | |
441 | } | |
442 | ||
1da177e4 | 443 | /* |
1742f19f | 444 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 445 | */ |
1742f19f AM |
446 | static unsigned long shrink_page_list(struct list_head *page_list, |
447 | struct scan_control *sc) | |
1da177e4 LT |
448 | { |
449 | LIST_HEAD(ret_pages); | |
450 | struct pagevec freed_pvec; | |
451 | int pgactivate = 0; | |
05ff5137 | 452 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
453 | |
454 | cond_resched(); | |
455 | ||
456 | pagevec_init(&freed_pvec, 1); | |
457 | while (!list_empty(page_list)) { | |
458 | struct address_space *mapping; | |
459 | struct page *page; | |
460 | int may_enter_fs; | |
461 | int referenced; | |
462 | ||
463 | cond_resched(); | |
464 | ||
465 | page = lru_to_page(page_list); | |
466 | list_del(&page->lru); | |
467 | ||
468 | if (TestSetPageLocked(page)) | |
469 | goto keep; | |
470 | ||
725d704e | 471 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
472 | |
473 | sc->nr_scanned++; | |
80e43426 CL |
474 | |
475 | if (!sc->may_swap && page_mapped(page)) | |
476 | goto keep_locked; | |
477 | ||
1da177e4 LT |
478 | /* Double the slab pressure for mapped and swapcache pages */ |
479 | if (page_mapped(page) || PageSwapCache(page)) | |
480 | sc->nr_scanned++; | |
481 | ||
482 | if (PageWriteback(page)) | |
483 | goto keep_locked; | |
484 | ||
f7b7fd8f | 485 | referenced = page_referenced(page, 1); |
1da177e4 LT |
486 | /* In active use or really unfreeable? Activate it. */ |
487 | if (referenced && page_mapping_inuse(page)) | |
488 | goto activate_locked; | |
489 | ||
490 | #ifdef CONFIG_SWAP | |
491 | /* | |
492 | * Anonymous process memory has backing store? | |
493 | * Try to allocate it some swap space here. | |
494 | */ | |
6e5ef1a9 | 495 | if (PageAnon(page) && !PageSwapCache(page)) |
1480a540 | 496 | if (!add_to_swap(page, GFP_ATOMIC)) |
1da177e4 | 497 | goto activate_locked; |
1da177e4 LT |
498 | #endif /* CONFIG_SWAP */ |
499 | ||
500 | mapping = page_mapping(page); | |
501 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || | |
502 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
503 | ||
504 | /* | |
505 | * The page is mapped into the page tables of one or more | |
506 | * processes. Try to unmap it here. | |
507 | */ | |
508 | if (page_mapped(page) && mapping) { | |
a48d07af | 509 | switch (try_to_unmap(page, 0)) { |
1da177e4 LT |
510 | case SWAP_FAIL: |
511 | goto activate_locked; | |
512 | case SWAP_AGAIN: | |
513 | goto keep_locked; | |
514 | case SWAP_SUCCESS: | |
515 | ; /* try to free the page below */ | |
516 | } | |
517 | } | |
518 | ||
519 | if (PageDirty(page)) { | |
520 | if (referenced) | |
521 | goto keep_locked; | |
522 | if (!may_enter_fs) | |
523 | goto keep_locked; | |
52a8363e | 524 | if (!sc->may_writepage) |
1da177e4 LT |
525 | goto keep_locked; |
526 | ||
527 | /* Page is dirty, try to write it out here */ | |
528 | switch(pageout(page, mapping)) { | |
529 | case PAGE_KEEP: | |
530 | goto keep_locked; | |
531 | case PAGE_ACTIVATE: | |
532 | goto activate_locked; | |
533 | case PAGE_SUCCESS: | |
534 | if (PageWriteback(page) || PageDirty(page)) | |
535 | goto keep; | |
536 | /* | |
537 | * A synchronous write - probably a ramdisk. Go | |
538 | * ahead and try to reclaim the page. | |
539 | */ | |
540 | if (TestSetPageLocked(page)) | |
541 | goto keep; | |
542 | if (PageDirty(page) || PageWriteback(page)) | |
543 | goto keep_locked; | |
544 | mapping = page_mapping(page); | |
545 | case PAGE_CLEAN: | |
546 | ; /* try to free the page below */ | |
547 | } | |
548 | } | |
549 | ||
550 | /* | |
551 | * If the page has buffers, try to free the buffer mappings | |
552 | * associated with this page. If we succeed we try to free | |
553 | * the page as well. | |
554 | * | |
555 | * We do this even if the page is PageDirty(). | |
556 | * try_to_release_page() does not perform I/O, but it is | |
557 | * possible for a page to have PageDirty set, but it is actually | |
558 | * clean (all its buffers are clean). This happens if the | |
559 | * buffers were written out directly, with submit_bh(). ext3 | |
560 | * will do this, as well as the blockdev mapping. | |
561 | * try_to_release_page() will discover that cleanness and will | |
562 | * drop the buffers and mark the page clean - it can be freed. | |
563 | * | |
564 | * Rarely, pages can have buffers and no ->mapping. These are | |
565 | * the pages which were not successfully invalidated in | |
566 | * truncate_complete_page(). We try to drop those buffers here | |
567 | * and if that worked, and the page is no longer mapped into | |
568 | * process address space (page_count == 1) it can be freed. | |
569 | * Otherwise, leave the page on the LRU so it is swappable. | |
570 | */ | |
571 | if (PagePrivate(page)) { | |
572 | if (!try_to_release_page(page, sc->gfp_mask)) | |
573 | goto activate_locked; | |
574 | if (!mapping && page_count(page) == 1) | |
575 | goto free_it; | |
576 | } | |
577 | ||
28e4d965 | 578 | if (!mapping || !remove_mapping(mapping, page)) |
49d2e9cc | 579 | goto keep_locked; |
1da177e4 LT |
580 | |
581 | free_it: | |
582 | unlock_page(page); | |
05ff5137 | 583 | nr_reclaimed++; |
1da177e4 LT |
584 | if (!pagevec_add(&freed_pvec, page)) |
585 | __pagevec_release_nonlru(&freed_pvec); | |
586 | continue; | |
587 | ||
588 | activate_locked: | |
589 | SetPageActive(page); | |
590 | pgactivate++; | |
591 | keep_locked: | |
592 | unlock_page(page); | |
593 | keep: | |
594 | list_add(&page->lru, &ret_pages); | |
725d704e | 595 | VM_BUG_ON(PageLRU(page)); |
1da177e4 LT |
596 | } |
597 | list_splice(&ret_pages, page_list); | |
598 | if (pagevec_count(&freed_pvec)) | |
599 | __pagevec_release_nonlru(&freed_pvec); | |
f8891e5e | 600 | count_vm_events(PGACTIVATE, pgactivate); |
05ff5137 | 601 | return nr_reclaimed; |
1da177e4 LT |
602 | } |
603 | ||
604 | /* | |
605 | * zone->lru_lock is heavily contended. Some of the functions that | |
606 | * shrink the lists perform better by taking out a batch of pages | |
607 | * and working on them outside the LRU lock. | |
608 | * | |
609 | * For pagecache intensive workloads, this function is the hottest | |
610 | * spot in the kernel (apart from copy_*_user functions). | |
611 | * | |
612 | * Appropriate locks must be held before calling this function. | |
613 | * | |
614 | * @nr_to_scan: The number of pages to look through on the list. | |
615 | * @src: The LRU list to pull pages off. | |
616 | * @dst: The temp list to put pages on to. | |
617 | * @scanned: The number of pages that were scanned. | |
618 | * | |
619 | * returns how many pages were moved onto *@dst. | |
620 | */ | |
69e05944 AM |
621 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
622 | struct list_head *src, struct list_head *dst, | |
623 | unsigned long *scanned) | |
1da177e4 | 624 | { |
69e05944 | 625 | unsigned long nr_taken = 0; |
1da177e4 | 626 | struct page *page; |
c9b02d97 | 627 | unsigned long scan; |
1da177e4 | 628 | |
c9b02d97 | 629 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
7c8ee9a8 | 630 | struct list_head *target; |
1da177e4 LT |
631 | page = lru_to_page(src); |
632 | prefetchw_prev_lru_page(page, src, flags); | |
633 | ||
725d704e | 634 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 635 | |
053837fc | 636 | list_del(&page->lru); |
7c8ee9a8 NP |
637 | target = src; |
638 | if (likely(get_page_unless_zero(page))) { | |
053837fc | 639 | /* |
7c8ee9a8 NP |
640 | * Be careful not to clear PageLRU until after we're |
641 | * sure the page is not being freed elsewhere -- the | |
642 | * page release code relies on it. | |
053837fc | 643 | */ |
7c8ee9a8 NP |
644 | ClearPageLRU(page); |
645 | target = dst; | |
646 | nr_taken++; | |
647 | } /* else it is being freed elsewhere */ | |
46453a6e | 648 | |
7c8ee9a8 | 649 | list_add(&page->lru, target); |
1da177e4 LT |
650 | } |
651 | ||
652 | *scanned = scan; | |
653 | return nr_taken; | |
654 | } | |
655 | ||
656 | /* | |
1742f19f AM |
657 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
658 | * of reclaimed pages | |
1da177e4 | 659 | */ |
1742f19f AM |
660 | static unsigned long shrink_inactive_list(unsigned long max_scan, |
661 | struct zone *zone, struct scan_control *sc) | |
1da177e4 LT |
662 | { |
663 | LIST_HEAD(page_list); | |
664 | struct pagevec pvec; | |
69e05944 | 665 | unsigned long nr_scanned = 0; |
05ff5137 | 666 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
667 | |
668 | pagevec_init(&pvec, 1); | |
669 | ||
670 | lru_add_drain(); | |
671 | spin_lock_irq(&zone->lru_lock); | |
69e05944 | 672 | do { |
1da177e4 | 673 | struct page *page; |
69e05944 AM |
674 | unsigned long nr_taken; |
675 | unsigned long nr_scan; | |
676 | unsigned long nr_freed; | |
1da177e4 LT |
677 | |
678 | nr_taken = isolate_lru_pages(sc->swap_cluster_max, | |
679 | &zone->inactive_list, | |
680 | &page_list, &nr_scan); | |
681 | zone->nr_inactive -= nr_taken; | |
682 | zone->pages_scanned += nr_scan; | |
683 | spin_unlock_irq(&zone->lru_lock); | |
684 | ||
69e05944 | 685 | nr_scanned += nr_scan; |
1742f19f | 686 | nr_freed = shrink_page_list(&page_list, sc); |
05ff5137 | 687 | nr_reclaimed += nr_freed; |
a74609fa NP |
688 | local_irq_disable(); |
689 | if (current_is_kswapd()) { | |
f8891e5e CL |
690 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); |
691 | __count_vm_events(KSWAPD_STEAL, nr_freed); | |
a74609fa | 692 | } else |
f8891e5e CL |
693 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); |
694 | __count_vm_events(PGACTIVATE, nr_freed); | |
a74609fa | 695 | |
fb8d14e1 WF |
696 | if (nr_taken == 0) |
697 | goto done; | |
698 | ||
a74609fa | 699 | spin_lock(&zone->lru_lock); |
1da177e4 LT |
700 | /* |
701 | * Put back any unfreeable pages. | |
702 | */ | |
703 | while (!list_empty(&page_list)) { | |
704 | page = lru_to_page(&page_list); | |
725d704e | 705 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 706 | SetPageLRU(page); |
1da177e4 LT |
707 | list_del(&page->lru); |
708 | if (PageActive(page)) | |
709 | add_page_to_active_list(zone, page); | |
710 | else | |
711 | add_page_to_inactive_list(zone, page); | |
712 | if (!pagevec_add(&pvec, page)) { | |
713 | spin_unlock_irq(&zone->lru_lock); | |
714 | __pagevec_release(&pvec); | |
715 | spin_lock_irq(&zone->lru_lock); | |
716 | } | |
717 | } | |
69e05944 | 718 | } while (nr_scanned < max_scan); |
fb8d14e1 | 719 | spin_unlock(&zone->lru_lock); |
1da177e4 | 720 | done: |
fb8d14e1 | 721 | local_irq_enable(); |
1da177e4 | 722 | pagevec_release(&pvec); |
05ff5137 | 723 | return nr_reclaimed; |
1da177e4 LT |
724 | } |
725 | ||
3bb1a852 MB |
726 | /* |
727 | * We are about to scan this zone at a certain priority level. If that priority | |
728 | * level is smaller (ie: more urgent) than the previous priority, then note | |
729 | * that priority level within the zone. This is done so that when the next | |
730 | * process comes in to scan this zone, it will immediately start out at this | |
731 | * priority level rather than having to build up its own scanning priority. | |
732 | * Here, this priority affects only the reclaim-mapped threshold. | |
733 | */ | |
734 | static inline void note_zone_scanning_priority(struct zone *zone, int priority) | |
735 | { | |
736 | if (priority < zone->prev_priority) | |
737 | zone->prev_priority = priority; | |
738 | } | |
739 | ||
4ff1ffb4 NP |
740 | static inline int zone_is_near_oom(struct zone *zone) |
741 | { | |
742 | return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3; | |
743 | } | |
744 | ||
1da177e4 LT |
745 | /* |
746 | * This moves pages from the active list to the inactive list. | |
747 | * | |
748 | * We move them the other way if the page is referenced by one or more | |
749 | * processes, from rmap. | |
750 | * | |
751 | * If the pages are mostly unmapped, the processing is fast and it is | |
752 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
753 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
754 | * should drop zone->lru_lock around each page. It's impossible to balance | |
755 | * this, so instead we remove the pages from the LRU while processing them. | |
756 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
757 | * nobody will play with that bit on a non-LRU page. | |
758 | * | |
759 | * The downside is that we have to touch page->_count against each page. | |
760 | * But we had to alter page->flags anyway. | |
761 | */ | |
1742f19f | 762 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, |
bbdb396a | 763 | struct scan_control *sc, int priority) |
1da177e4 | 764 | { |
69e05944 | 765 | unsigned long pgmoved; |
1da177e4 | 766 | int pgdeactivate = 0; |
69e05944 | 767 | unsigned long pgscanned; |
1da177e4 LT |
768 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
769 | LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ | |
770 | LIST_HEAD(l_active); /* Pages to go onto the active_list */ | |
771 | struct page *page; | |
772 | struct pagevec pvec; | |
773 | int reclaim_mapped = 0; | |
2903fb16 | 774 | |
6e5ef1a9 | 775 | if (sc->may_swap) { |
2903fb16 CL |
776 | long mapped_ratio; |
777 | long distress; | |
778 | long swap_tendency; | |
779 | ||
4ff1ffb4 NP |
780 | if (zone_is_near_oom(zone)) |
781 | goto force_reclaim_mapped; | |
782 | ||
2903fb16 CL |
783 | /* |
784 | * `distress' is a measure of how much trouble we're having | |
785 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | |
786 | */ | |
bbdb396a | 787 | distress = 100 >> min(zone->prev_priority, priority); |
2903fb16 CL |
788 | |
789 | /* | |
790 | * The point of this algorithm is to decide when to start | |
791 | * reclaiming mapped memory instead of just pagecache. Work out | |
792 | * how much memory | |
793 | * is mapped. | |
794 | */ | |
f3dbd344 CL |
795 | mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + |
796 | global_page_state(NR_ANON_PAGES)) * 100) / | |
bf02cf4b | 797 | vm_total_pages; |
2903fb16 CL |
798 | |
799 | /* | |
800 | * Now decide how much we really want to unmap some pages. The | |
801 | * mapped ratio is downgraded - just because there's a lot of | |
802 | * mapped memory doesn't necessarily mean that page reclaim | |
803 | * isn't succeeding. | |
804 | * | |
805 | * The distress ratio is important - we don't want to start | |
806 | * going oom. | |
807 | * | |
808 | * A 100% value of vm_swappiness overrides this algorithm | |
809 | * altogether. | |
810 | */ | |
d6277db4 | 811 | swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; |
2903fb16 CL |
812 | |
813 | /* | |
814 | * Now use this metric to decide whether to start moving mapped | |
815 | * memory onto the inactive list. | |
816 | */ | |
817 | if (swap_tendency >= 100) | |
4ff1ffb4 | 818 | force_reclaim_mapped: |
2903fb16 CL |
819 | reclaim_mapped = 1; |
820 | } | |
1da177e4 LT |
821 | |
822 | lru_add_drain(); | |
823 | spin_lock_irq(&zone->lru_lock); | |
824 | pgmoved = isolate_lru_pages(nr_pages, &zone->active_list, | |
825 | &l_hold, &pgscanned); | |
826 | zone->pages_scanned += pgscanned; | |
827 | zone->nr_active -= pgmoved; | |
828 | spin_unlock_irq(&zone->lru_lock); | |
829 | ||
1da177e4 LT |
830 | while (!list_empty(&l_hold)) { |
831 | cond_resched(); | |
832 | page = lru_to_page(&l_hold); | |
833 | list_del(&page->lru); | |
834 | if (page_mapped(page)) { | |
835 | if (!reclaim_mapped || | |
836 | (total_swap_pages == 0 && PageAnon(page)) || | |
f7b7fd8f | 837 | page_referenced(page, 0)) { |
1da177e4 LT |
838 | list_add(&page->lru, &l_active); |
839 | continue; | |
840 | } | |
841 | } | |
842 | list_add(&page->lru, &l_inactive); | |
843 | } | |
844 | ||
845 | pagevec_init(&pvec, 1); | |
846 | pgmoved = 0; | |
847 | spin_lock_irq(&zone->lru_lock); | |
848 | while (!list_empty(&l_inactive)) { | |
849 | page = lru_to_page(&l_inactive); | |
850 | prefetchw_prev_lru_page(page, &l_inactive, flags); | |
725d704e | 851 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 852 | SetPageLRU(page); |
725d704e | 853 | VM_BUG_ON(!PageActive(page)); |
4c84cacf NP |
854 | ClearPageActive(page); |
855 | ||
1da177e4 LT |
856 | list_move(&page->lru, &zone->inactive_list); |
857 | pgmoved++; | |
858 | if (!pagevec_add(&pvec, page)) { | |
859 | zone->nr_inactive += pgmoved; | |
860 | spin_unlock_irq(&zone->lru_lock); | |
861 | pgdeactivate += pgmoved; | |
862 | pgmoved = 0; | |
863 | if (buffer_heads_over_limit) | |
864 | pagevec_strip(&pvec); | |
865 | __pagevec_release(&pvec); | |
866 | spin_lock_irq(&zone->lru_lock); | |
867 | } | |
868 | } | |
869 | zone->nr_inactive += pgmoved; | |
870 | pgdeactivate += pgmoved; | |
871 | if (buffer_heads_over_limit) { | |
872 | spin_unlock_irq(&zone->lru_lock); | |
873 | pagevec_strip(&pvec); | |
874 | spin_lock_irq(&zone->lru_lock); | |
875 | } | |
876 | ||
877 | pgmoved = 0; | |
878 | while (!list_empty(&l_active)) { | |
879 | page = lru_to_page(&l_active); | |
880 | prefetchw_prev_lru_page(page, &l_active, flags); | |
725d704e | 881 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 882 | SetPageLRU(page); |
725d704e | 883 | VM_BUG_ON(!PageActive(page)); |
1da177e4 LT |
884 | list_move(&page->lru, &zone->active_list); |
885 | pgmoved++; | |
886 | if (!pagevec_add(&pvec, page)) { | |
887 | zone->nr_active += pgmoved; | |
888 | pgmoved = 0; | |
889 | spin_unlock_irq(&zone->lru_lock); | |
890 | __pagevec_release(&pvec); | |
891 | spin_lock_irq(&zone->lru_lock); | |
892 | } | |
893 | } | |
894 | zone->nr_active += pgmoved; | |
a74609fa | 895 | |
f8891e5e CL |
896 | __count_zone_vm_events(PGREFILL, zone, pgscanned); |
897 | __count_vm_events(PGDEACTIVATE, pgdeactivate); | |
898 | spin_unlock_irq(&zone->lru_lock); | |
1da177e4 | 899 | |
a74609fa | 900 | pagevec_release(&pvec); |
1da177e4 LT |
901 | } |
902 | ||
903 | /* | |
904 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
905 | */ | |
05ff5137 AM |
906 | static unsigned long shrink_zone(int priority, struct zone *zone, |
907 | struct scan_control *sc) | |
1da177e4 LT |
908 | { |
909 | unsigned long nr_active; | |
910 | unsigned long nr_inactive; | |
8695949a | 911 | unsigned long nr_to_scan; |
05ff5137 | 912 | unsigned long nr_reclaimed = 0; |
1da177e4 | 913 | |
53e9a615 MH |
914 | atomic_inc(&zone->reclaim_in_progress); |
915 | ||
1da177e4 LT |
916 | /* |
917 | * Add one to `nr_to_scan' just to make sure that the kernel will | |
918 | * slowly sift through the active list. | |
919 | */ | |
8695949a | 920 | zone->nr_scan_active += (zone->nr_active >> priority) + 1; |
1da177e4 LT |
921 | nr_active = zone->nr_scan_active; |
922 | if (nr_active >= sc->swap_cluster_max) | |
923 | zone->nr_scan_active = 0; | |
924 | else | |
925 | nr_active = 0; | |
926 | ||
8695949a | 927 | zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1; |
1da177e4 LT |
928 | nr_inactive = zone->nr_scan_inactive; |
929 | if (nr_inactive >= sc->swap_cluster_max) | |
930 | zone->nr_scan_inactive = 0; | |
931 | else | |
932 | nr_inactive = 0; | |
933 | ||
1da177e4 LT |
934 | while (nr_active || nr_inactive) { |
935 | if (nr_active) { | |
8695949a | 936 | nr_to_scan = min(nr_active, |
1da177e4 | 937 | (unsigned long)sc->swap_cluster_max); |
8695949a | 938 | nr_active -= nr_to_scan; |
bbdb396a | 939 | shrink_active_list(nr_to_scan, zone, sc, priority); |
1da177e4 LT |
940 | } |
941 | ||
942 | if (nr_inactive) { | |
8695949a | 943 | nr_to_scan = min(nr_inactive, |
1da177e4 | 944 | (unsigned long)sc->swap_cluster_max); |
8695949a | 945 | nr_inactive -= nr_to_scan; |
1742f19f AM |
946 | nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, |
947 | sc); | |
1da177e4 LT |
948 | } |
949 | } | |
950 | ||
951 | throttle_vm_writeout(); | |
53e9a615 MH |
952 | |
953 | atomic_dec(&zone->reclaim_in_progress); | |
05ff5137 | 954 | return nr_reclaimed; |
1da177e4 LT |
955 | } |
956 | ||
957 | /* | |
958 | * This is the direct reclaim path, for page-allocating processes. We only | |
959 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
960 | * request. | |
961 | * | |
962 | * We reclaim from a zone even if that zone is over pages_high. Because: | |
963 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | |
964 | * allocation or | |
965 | * b) The zones may be over pages_high but they must go *over* pages_high to | |
966 | * satisfy the `incremental min' zone defense algorithm. | |
967 | * | |
968 | * Returns the number of reclaimed pages. | |
969 | * | |
970 | * If a zone is deemed to be full of pinned pages then just give it a light | |
971 | * scan then give up on it. | |
972 | */ | |
1742f19f | 973 | static unsigned long shrink_zones(int priority, struct zone **zones, |
05ff5137 | 974 | struct scan_control *sc) |
1da177e4 | 975 | { |
05ff5137 | 976 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
977 | int i; |
978 | ||
408d8544 | 979 | sc->all_unreclaimable = 1; |
1da177e4 LT |
980 | for (i = 0; zones[i] != NULL; i++) { |
981 | struct zone *zone = zones[i]; | |
982 | ||
f3fe6512 | 983 | if (!populated_zone(zone)) |
1da177e4 LT |
984 | continue; |
985 | ||
9bf2229f | 986 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
987 | continue; |
988 | ||
3bb1a852 | 989 | note_zone_scanning_priority(zone, priority); |
1da177e4 | 990 | |
8695949a | 991 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
1da177e4 LT |
992 | continue; /* Let kswapd poll it */ |
993 | ||
408d8544 NP |
994 | sc->all_unreclaimable = 0; |
995 | ||
05ff5137 | 996 | nr_reclaimed += shrink_zone(priority, zone, sc); |
1da177e4 | 997 | } |
05ff5137 | 998 | return nr_reclaimed; |
1da177e4 LT |
999 | } |
1000 | ||
1001 | /* | |
1002 | * This is the main entry point to direct page reclaim. | |
1003 | * | |
1004 | * If a full scan of the inactive list fails to free enough memory then we | |
1005 | * are "out of memory" and something needs to be killed. | |
1006 | * | |
1007 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
1008 | * high - the zone may be full of dirty or under-writeback pages, which this | |
1009 | * caller can't do much about. We kick pdflush and take explicit naps in the | |
1010 | * hope that some of these pages can be written. But if the allocating task | |
1011 | * holds filesystem locks which prevent writeout this might not work, and the | |
1012 | * allocation attempt will fail. | |
1013 | */ | |
69e05944 | 1014 | unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask) |
1da177e4 LT |
1015 | { |
1016 | int priority; | |
1017 | int ret = 0; | |
69e05944 | 1018 | unsigned long total_scanned = 0; |
05ff5137 | 1019 | unsigned long nr_reclaimed = 0; |
1da177e4 | 1020 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1da177e4 LT |
1021 | unsigned long lru_pages = 0; |
1022 | int i; | |
179e9639 AM |
1023 | struct scan_control sc = { |
1024 | .gfp_mask = gfp_mask, | |
1025 | .may_writepage = !laptop_mode, | |
1026 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
1027 | .may_swap = 1, | |
d6277db4 | 1028 | .swappiness = vm_swappiness, |
179e9639 | 1029 | }; |
1da177e4 | 1030 | |
f8891e5e | 1031 | count_vm_event(ALLOCSTALL); |
1da177e4 LT |
1032 | |
1033 | for (i = 0; zones[i] != NULL; i++) { | |
1034 | struct zone *zone = zones[i]; | |
1035 | ||
9bf2229f | 1036 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
1037 | continue; |
1038 | ||
1da177e4 LT |
1039 | lru_pages += zone->nr_active + zone->nr_inactive; |
1040 | } | |
1041 | ||
1042 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
1da177e4 | 1043 | sc.nr_scanned = 0; |
f7b7fd8f RR |
1044 | if (!priority) |
1045 | disable_swap_token(); | |
1742f19f | 1046 | nr_reclaimed += shrink_zones(priority, zones, &sc); |
1da177e4 LT |
1047 | shrink_slab(sc.nr_scanned, gfp_mask, lru_pages); |
1048 | if (reclaim_state) { | |
05ff5137 | 1049 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 LT |
1050 | reclaim_state->reclaimed_slab = 0; |
1051 | } | |
1052 | total_scanned += sc.nr_scanned; | |
05ff5137 | 1053 | if (nr_reclaimed >= sc.swap_cluster_max) { |
1da177e4 LT |
1054 | ret = 1; |
1055 | goto out; | |
1056 | } | |
1057 | ||
1058 | /* | |
1059 | * Try to write back as many pages as we just scanned. This | |
1060 | * tends to cause slow streaming writers to write data to the | |
1061 | * disk smoothly, at the dirtying rate, which is nice. But | |
1062 | * that's undesirable in laptop mode, where we *want* lumpy | |
1063 | * writeout. So in laptop mode, write out the whole world. | |
1064 | */ | |
179e9639 AM |
1065 | if (total_scanned > sc.swap_cluster_max + |
1066 | sc.swap_cluster_max / 2) { | |
687a21ce | 1067 | wakeup_pdflush(laptop_mode ? 0 : total_scanned); |
1da177e4 LT |
1068 | sc.may_writepage = 1; |
1069 | } | |
1070 | ||
1071 | /* Take a nap, wait for some writeback to complete */ | |
1072 | if (sc.nr_scanned && priority < DEF_PRIORITY - 2) | |
3fcfab16 | 1073 | congestion_wait(WRITE, HZ/10); |
1da177e4 | 1074 | } |
408d8544 NP |
1075 | /* top priority shrink_caches still had more to do? don't OOM, then */ |
1076 | if (!sc.all_unreclaimable) | |
1077 | ret = 1; | |
1da177e4 | 1078 | out: |
3bb1a852 MB |
1079 | /* |
1080 | * Now that we've scanned all the zones at this priority level, note | |
1081 | * that level within the zone so that the next thread which performs | |
1082 | * scanning of this zone will immediately start out at this priority | |
1083 | * level. This affects only the decision whether or not to bring | |
1084 | * mapped pages onto the inactive list. | |
1085 | */ | |
1086 | if (priority < 0) | |
1087 | priority = 0; | |
1da177e4 LT |
1088 | for (i = 0; zones[i] != 0; i++) { |
1089 | struct zone *zone = zones[i]; | |
1090 | ||
9bf2229f | 1091 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 LT |
1092 | continue; |
1093 | ||
3bb1a852 | 1094 | zone->prev_priority = priority; |
1da177e4 LT |
1095 | } |
1096 | return ret; | |
1097 | } | |
1098 | ||
1099 | /* | |
1100 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
1101 | * they are all at pages_high. | |
1102 | * | |
1da177e4 LT |
1103 | * Returns the number of pages which were actually freed. |
1104 | * | |
1105 | * There is special handling here for zones which are full of pinned pages. | |
1106 | * This can happen if the pages are all mlocked, or if they are all used by | |
1107 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
1108 | * What we do is to detect the case where all pages in the zone have been | |
1109 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
1110 | * dead and from now on, only perform a short scan. Basically we're polling | |
1111 | * the zone for when the problem goes away. | |
1112 | * | |
1113 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
1114 | * zones which have free_pages > pages_high, but once a zone is found to have | |
1115 | * free_pages <= pages_high, we scan that zone and the lower zones regardless | |
1116 | * of the number of free pages in the lower zones. This interoperates with | |
1117 | * the page allocator fallback scheme to ensure that aging of pages is balanced | |
1118 | * across the zones. | |
1119 | */ | |
d6277db4 | 1120 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order) |
1da177e4 | 1121 | { |
1da177e4 LT |
1122 | int all_zones_ok; |
1123 | int priority; | |
1124 | int i; | |
69e05944 | 1125 | unsigned long total_scanned; |
05ff5137 | 1126 | unsigned long nr_reclaimed; |
1da177e4 | 1127 | struct reclaim_state *reclaim_state = current->reclaim_state; |
179e9639 AM |
1128 | struct scan_control sc = { |
1129 | .gfp_mask = GFP_KERNEL, | |
1130 | .may_swap = 1, | |
d6277db4 RW |
1131 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1132 | .swappiness = vm_swappiness, | |
179e9639 | 1133 | }; |
3bb1a852 MB |
1134 | /* |
1135 | * temp_priority is used to remember the scanning priority at which | |
1136 | * this zone was successfully refilled to free_pages == pages_high. | |
1137 | */ | |
1138 | int temp_priority[MAX_NR_ZONES]; | |
1da177e4 LT |
1139 | |
1140 | loop_again: | |
1141 | total_scanned = 0; | |
05ff5137 | 1142 | nr_reclaimed = 0; |
c0bbbc73 | 1143 | sc.may_writepage = !laptop_mode; |
f8891e5e | 1144 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 1145 | |
3bb1a852 MB |
1146 | for (i = 0; i < pgdat->nr_zones; i++) |
1147 | temp_priority[i] = DEF_PRIORITY; | |
1da177e4 LT |
1148 | |
1149 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
1150 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | |
1151 | unsigned long lru_pages = 0; | |
1152 | ||
f7b7fd8f RR |
1153 | /* The swap token gets in the way of swapout... */ |
1154 | if (!priority) | |
1155 | disable_swap_token(); | |
1156 | ||
1da177e4 LT |
1157 | all_zones_ok = 1; |
1158 | ||
d6277db4 RW |
1159 | /* |
1160 | * Scan in the highmem->dma direction for the highest | |
1161 | * zone which needs scanning | |
1162 | */ | |
1163 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
1164 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 1165 | |
d6277db4 RW |
1166 | if (!populated_zone(zone)) |
1167 | continue; | |
1da177e4 | 1168 | |
d6277db4 RW |
1169 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
1170 | continue; | |
1da177e4 | 1171 | |
d6277db4 RW |
1172 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1173 | 0, 0)) { | |
1174 | end_zone = i; | |
e1dbeda6 | 1175 | break; |
1da177e4 | 1176 | } |
1da177e4 | 1177 | } |
e1dbeda6 AM |
1178 | if (i < 0) |
1179 | goto out; | |
1180 | ||
1da177e4 LT |
1181 | for (i = 0; i <= end_zone; i++) { |
1182 | struct zone *zone = pgdat->node_zones + i; | |
1183 | ||
1184 | lru_pages += zone->nr_active + zone->nr_inactive; | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | * Now scan the zone in the dma->highmem direction, stopping | |
1189 | * at the last zone which needs scanning. | |
1190 | * | |
1191 | * We do this because the page allocator works in the opposite | |
1192 | * direction. This prevents the page allocator from allocating | |
1193 | * pages behind kswapd's direction of progress, which would | |
1194 | * cause too much scanning of the lower zones. | |
1195 | */ | |
1196 | for (i = 0; i <= end_zone; i++) { | |
1197 | struct zone *zone = pgdat->node_zones + i; | |
b15e0905 | 1198 | int nr_slab; |
1da177e4 | 1199 | |
f3fe6512 | 1200 | if (!populated_zone(zone)) |
1da177e4 LT |
1201 | continue; |
1202 | ||
1203 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | |
1204 | continue; | |
1205 | ||
d6277db4 RW |
1206 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1207 | end_zone, 0)) | |
1208 | all_zones_ok = 0; | |
3bb1a852 | 1209 | temp_priority[i] = priority; |
1da177e4 | 1210 | sc.nr_scanned = 0; |
3bb1a852 | 1211 | note_zone_scanning_priority(zone, priority); |
05ff5137 | 1212 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
1da177e4 | 1213 | reclaim_state->reclaimed_slab = 0; |
b15e0905 | 1214 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1215 | lru_pages); | |
05ff5137 | 1216 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 LT |
1217 | total_scanned += sc.nr_scanned; |
1218 | if (zone->all_unreclaimable) | |
1219 | continue; | |
b15e0905 | 1220 | if (nr_slab == 0 && zone->pages_scanned >= |
4ff1ffb4 | 1221 | (zone->nr_active + zone->nr_inactive) * 6) |
1da177e4 LT |
1222 | zone->all_unreclaimable = 1; |
1223 | /* | |
1224 | * If we've done a decent amount of scanning and | |
1225 | * the reclaim ratio is low, start doing writepage | |
1226 | * even in laptop mode | |
1227 | */ | |
1228 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | |
05ff5137 | 1229 | total_scanned > nr_reclaimed + nr_reclaimed / 2) |
1da177e4 LT |
1230 | sc.may_writepage = 1; |
1231 | } | |
1da177e4 LT |
1232 | if (all_zones_ok) |
1233 | break; /* kswapd: all done */ | |
1234 | /* | |
1235 | * OK, kswapd is getting into trouble. Take a nap, then take | |
1236 | * another pass across the zones. | |
1237 | */ | |
1238 | if (total_scanned && priority < DEF_PRIORITY - 2) | |
3fcfab16 | 1239 | congestion_wait(WRITE, HZ/10); |
1da177e4 LT |
1240 | |
1241 | /* | |
1242 | * We do this so kswapd doesn't build up large priorities for | |
1243 | * example when it is freeing in parallel with allocators. It | |
1244 | * matches the direct reclaim path behaviour in terms of impact | |
1245 | * on zone->*_priority. | |
1246 | */ | |
d6277db4 | 1247 | if (nr_reclaimed >= SWAP_CLUSTER_MAX) |
1da177e4 LT |
1248 | break; |
1249 | } | |
1250 | out: | |
3bb1a852 MB |
1251 | /* |
1252 | * Note within each zone the priority level at which this zone was | |
1253 | * brought into a happy state. So that the next thread which scans this | |
1254 | * zone will start out at that priority level. | |
1255 | */ | |
1da177e4 LT |
1256 | for (i = 0; i < pgdat->nr_zones; i++) { |
1257 | struct zone *zone = pgdat->node_zones + i; | |
1258 | ||
3bb1a852 | 1259 | zone->prev_priority = temp_priority[i]; |
1da177e4 LT |
1260 | } |
1261 | if (!all_zones_ok) { | |
1262 | cond_resched(); | |
1263 | goto loop_again; | |
1264 | } | |
1265 | ||
05ff5137 | 1266 | return nr_reclaimed; |
1da177e4 LT |
1267 | } |
1268 | ||
1269 | /* | |
1270 | * The background pageout daemon, started as a kernel thread | |
1271 | * from the init process. | |
1272 | * | |
1273 | * This basically trickles out pages so that we have _some_ | |
1274 | * free memory available even if there is no other activity | |
1275 | * that frees anything up. This is needed for things like routing | |
1276 | * etc, where we otherwise might have all activity going on in | |
1277 | * asynchronous contexts that cannot page things out. | |
1278 | * | |
1279 | * If there are applications that are active memory-allocators | |
1280 | * (most normal use), this basically shouldn't matter. | |
1281 | */ | |
1282 | static int kswapd(void *p) | |
1283 | { | |
1284 | unsigned long order; | |
1285 | pg_data_t *pgdat = (pg_data_t*)p; | |
1286 | struct task_struct *tsk = current; | |
1287 | DEFINE_WAIT(wait); | |
1288 | struct reclaim_state reclaim_state = { | |
1289 | .reclaimed_slab = 0, | |
1290 | }; | |
1291 | cpumask_t cpumask; | |
1292 | ||
1da177e4 LT |
1293 | cpumask = node_to_cpumask(pgdat->node_id); |
1294 | if (!cpus_empty(cpumask)) | |
1295 | set_cpus_allowed(tsk, cpumask); | |
1296 | current->reclaim_state = &reclaim_state; | |
1297 | ||
1298 | /* | |
1299 | * Tell the memory management that we're a "memory allocator", | |
1300 | * and that if we need more memory we should get access to it | |
1301 | * regardless (see "__alloc_pages()"). "kswapd" should | |
1302 | * never get caught in the normal page freeing logic. | |
1303 | * | |
1304 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
1305 | * you need a small amount of memory in order to be able to | |
1306 | * page out something else, and this flag essentially protects | |
1307 | * us from recursively trying to free more memory as we're | |
1308 | * trying to free the first piece of memory in the first place). | |
1309 | */ | |
930d9152 | 1310 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
1da177e4 LT |
1311 | |
1312 | order = 0; | |
1313 | for ( ; ; ) { | |
1314 | unsigned long new_order; | |
3e1d1d28 CL |
1315 | |
1316 | try_to_freeze(); | |
1da177e4 LT |
1317 | |
1318 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
1319 | new_order = pgdat->kswapd_max_order; | |
1320 | pgdat->kswapd_max_order = 0; | |
1321 | if (order < new_order) { | |
1322 | /* | |
1323 | * Don't sleep if someone wants a larger 'order' | |
1324 | * allocation | |
1325 | */ | |
1326 | order = new_order; | |
1327 | } else { | |
1328 | schedule(); | |
1329 | order = pgdat->kswapd_max_order; | |
1330 | } | |
1331 | finish_wait(&pgdat->kswapd_wait, &wait); | |
1332 | ||
d6277db4 | 1333 | balance_pgdat(pgdat, order); |
1da177e4 LT |
1334 | } |
1335 | return 0; | |
1336 | } | |
1337 | ||
1338 | /* | |
1339 | * A zone is low on free memory, so wake its kswapd task to service it. | |
1340 | */ | |
1341 | void wakeup_kswapd(struct zone *zone, int order) | |
1342 | { | |
1343 | pg_data_t *pgdat; | |
1344 | ||
f3fe6512 | 1345 | if (!populated_zone(zone)) |
1da177e4 LT |
1346 | return; |
1347 | ||
1348 | pgdat = zone->zone_pgdat; | |
7fb1d9fc | 1349 | if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) |
1da177e4 LT |
1350 | return; |
1351 | if (pgdat->kswapd_max_order < order) | |
1352 | pgdat->kswapd_max_order = order; | |
9bf2229f | 1353 | if (!cpuset_zone_allowed(zone, __GFP_HARDWALL)) |
1da177e4 | 1354 | return; |
8d0986e2 | 1355 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 1356 | return; |
8d0986e2 | 1357 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
1358 | } |
1359 | ||
1360 | #ifdef CONFIG_PM | |
1361 | /* | |
d6277db4 RW |
1362 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages |
1363 | * from LRU lists system-wide, for given pass and priority, and returns the | |
1364 | * number of reclaimed pages | |
1365 | * | |
1366 | * For pass > 3 we also try to shrink the LRU lists that contain a few pages | |
1367 | */ | |
1368 | static unsigned long shrink_all_zones(unsigned long nr_pages, int pass, | |
1369 | int prio, struct scan_control *sc) | |
1370 | { | |
1371 | struct zone *zone; | |
1372 | unsigned long nr_to_scan, ret = 0; | |
1373 | ||
1374 | for_each_zone(zone) { | |
1375 | ||
1376 | if (!populated_zone(zone)) | |
1377 | continue; | |
1378 | ||
1379 | if (zone->all_unreclaimable && prio != DEF_PRIORITY) | |
1380 | continue; | |
1381 | ||
1382 | /* For pass = 0 we don't shrink the active list */ | |
1383 | if (pass > 0) { | |
1384 | zone->nr_scan_active += (zone->nr_active >> prio) + 1; | |
1385 | if (zone->nr_scan_active >= nr_pages || pass > 3) { | |
1386 | zone->nr_scan_active = 0; | |
1387 | nr_to_scan = min(nr_pages, zone->nr_active); | |
bbdb396a | 1388 | shrink_active_list(nr_to_scan, zone, sc, prio); |
d6277db4 RW |
1389 | } |
1390 | } | |
1391 | ||
1392 | zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1; | |
1393 | if (zone->nr_scan_inactive >= nr_pages || pass > 3) { | |
1394 | zone->nr_scan_inactive = 0; | |
1395 | nr_to_scan = min(nr_pages, zone->nr_inactive); | |
1396 | ret += shrink_inactive_list(nr_to_scan, zone, sc); | |
1397 | if (ret >= nr_pages) | |
1398 | return ret; | |
1399 | } | |
1400 | } | |
1401 | ||
1402 | return ret; | |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | * Try to free `nr_pages' of memory, system-wide, and return the number of | |
1407 | * freed pages. | |
1408 | * | |
1409 | * Rather than trying to age LRUs the aim is to preserve the overall | |
1410 | * LRU order by reclaiming preferentially | |
1411 | * inactive > active > active referenced > active mapped | |
1da177e4 | 1412 | */ |
69e05944 | 1413 | unsigned long shrink_all_memory(unsigned long nr_pages) |
1da177e4 | 1414 | { |
d6277db4 | 1415 | unsigned long lru_pages, nr_slab; |
69e05944 | 1416 | unsigned long ret = 0; |
d6277db4 RW |
1417 | int pass; |
1418 | struct reclaim_state reclaim_state; | |
1419 | struct zone *zone; | |
1420 | struct scan_control sc = { | |
1421 | .gfp_mask = GFP_KERNEL, | |
1422 | .may_swap = 0, | |
1423 | .swap_cluster_max = nr_pages, | |
1424 | .may_writepage = 1, | |
1425 | .swappiness = vm_swappiness, | |
1da177e4 LT |
1426 | }; |
1427 | ||
1428 | current->reclaim_state = &reclaim_state; | |
69e05944 | 1429 | |
d6277db4 RW |
1430 | lru_pages = 0; |
1431 | for_each_zone(zone) | |
1432 | lru_pages += zone->nr_active + zone->nr_inactive; | |
1433 | ||
972d1a7b | 1434 | nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); |
d6277db4 RW |
1435 | /* If slab caches are huge, it's better to hit them first */ |
1436 | while (nr_slab >= lru_pages) { | |
1437 | reclaim_state.reclaimed_slab = 0; | |
1438 | shrink_slab(nr_pages, sc.gfp_mask, lru_pages); | |
1439 | if (!reclaim_state.reclaimed_slab) | |
1da177e4 | 1440 | break; |
d6277db4 RW |
1441 | |
1442 | ret += reclaim_state.reclaimed_slab; | |
1443 | if (ret >= nr_pages) | |
1444 | goto out; | |
1445 | ||
1446 | nr_slab -= reclaim_state.reclaimed_slab; | |
1da177e4 | 1447 | } |
d6277db4 RW |
1448 | |
1449 | /* | |
1450 | * We try to shrink LRUs in 5 passes: | |
1451 | * 0 = Reclaim from inactive_list only | |
1452 | * 1 = Reclaim from active list but don't reclaim mapped | |
1453 | * 2 = 2nd pass of type 1 | |
1454 | * 3 = Reclaim mapped (normal reclaim) | |
1455 | * 4 = 2nd pass of type 3 | |
1456 | */ | |
1457 | for (pass = 0; pass < 5; pass++) { | |
1458 | int prio; | |
1459 | ||
1460 | /* Needed for shrinking slab caches later on */ | |
1461 | if (!lru_pages) | |
1462 | for_each_zone(zone) { | |
1463 | lru_pages += zone->nr_active; | |
1464 | lru_pages += zone->nr_inactive; | |
1465 | } | |
1466 | ||
1467 | /* Force reclaiming mapped pages in the passes #3 and #4 */ | |
1468 | if (pass > 2) { | |
1469 | sc.may_swap = 1; | |
1470 | sc.swappiness = 100; | |
1471 | } | |
1472 | ||
1473 | for (prio = DEF_PRIORITY; prio >= 0; prio--) { | |
1474 | unsigned long nr_to_scan = nr_pages - ret; | |
1475 | ||
d6277db4 | 1476 | sc.nr_scanned = 0; |
d6277db4 RW |
1477 | ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); |
1478 | if (ret >= nr_pages) | |
1479 | goto out; | |
1480 | ||
1481 | reclaim_state.reclaimed_slab = 0; | |
1482 | shrink_slab(sc.nr_scanned, sc.gfp_mask, lru_pages); | |
1483 | ret += reclaim_state.reclaimed_slab; | |
1484 | if (ret >= nr_pages) | |
1485 | goto out; | |
1486 | ||
1487 | if (sc.nr_scanned && prio < DEF_PRIORITY - 2) | |
3fcfab16 | 1488 | congestion_wait(WRITE, HZ / 10); |
d6277db4 RW |
1489 | } |
1490 | ||
1491 | lru_pages = 0; | |
248a0301 | 1492 | } |
d6277db4 RW |
1493 | |
1494 | /* | |
1495 | * If ret = 0, we could not shrink LRUs, but there may be something | |
1496 | * in slab caches | |
1497 | */ | |
1498 | if (!ret) | |
1499 | do { | |
1500 | reclaim_state.reclaimed_slab = 0; | |
1501 | shrink_slab(nr_pages, sc.gfp_mask, lru_pages); | |
1502 | ret += reclaim_state.reclaimed_slab; | |
1503 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); | |
1504 | ||
1505 | out: | |
1da177e4 | 1506 | current->reclaim_state = NULL; |
d6277db4 | 1507 | |
1da177e4 LT |
1508 | return ret; |
1509 | } | |
1510 | #endif | |
1511 | ||
1512 | #ifdef CONFIG_HOTPLUG_CPU | |
1513 | /* It's optimal to keep kswapds on the same CPUs as their memory, but | |
1514 | not required for correctness. So if the last cpu in a node goes | |
1515 | away, we get changed to run anywhere: as the first one comes back, | |
1516 | restore their cpu bindings. */ | |
9c7b216d | 1517 | static int __devinit cpu_callback(struct notifier_block *nfb, |
69e05944 | 1518 | unsigned long action, void *hcpu) |
1da177e4 LT |
1519 | { |
1520 | pg_data_t *pgdat; | |
1521 | cpumask_t mask; | |
1522 | ||
1523 | if (action == CPU_ONLINE) { | |
ec936fc5 | 1524 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
1525 | mask = node_to_cpumask(pgdat->node_id); |
1526 | if (any_online_cpu(mask) != NR_CPUS) | |
1527 | /* One of our CPUs online: restore mask */ | |
1528 | set_cpus_allowed(pgdat->kswapd, mask); | |
1529 | } | |
1530 | } | |
1531 | return NOTIFY_OK; | |
1532 | } | |
1533 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1534 | ||
3218ae14 YG |
1535 | /* |
1536 | * This kswapd start function will be called by init and node-hot-add. | |
1537 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
1538 | */ | |
1539 | int kswapd_run(int nid) | |
1540 | { | |
1541 | pg_data_t *pgdat = NODE_DATA(nid); | |
1542 | int ret = 0; | |
1543 | ||
1544 | if (pgdat->kswapd) | |
1545 | return 0; | |
1546 | ||
1547 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
1548 | if (IS_ERR(pgdat->kswapd)) { | |
1549 | /* failure at boot is fatal */ | |
1550 | BUG_ON(system_state == SYSTEM_BOOTING); | |
1551 | printk("Failed to start kswapd on node %d\n",nid); | |
1552 | ret = -1; | |
1553 | } | |
1554 | return ret; | |
1555 | } | |
1556 | ||
1da177e4 LT |
1557 | static int __init kswapd_init(void) |
1558 | { | |
3218ae14 | 1559 | int nid; |
69e05944 | 1560 | |
1da177e4 | 1561 | swap_setup(); |
3218ae14 YG |
1562 | for_each_online_node(nid) |
1563 | kswapd_run(nid); | |
1da177e4 LT |
1564 | hotcpu_notifier(cpu_callback, 0); |
1565 | return 0; | |
1566 | } | |
1567 | ||
1568 | module_init(kswapd_init) | |
9eeff239 CL |
1569 | |
1570 | #ifdef CONFIG_NUMA | |
1571 | /* | |
1572 | * Zone reclaim mode | |
1573 | * | |
1574 | * If non-zero call zone_reclaim when the number of free pages falls below | |
1575 | * the watermarks. | |
9eeff239 CL |
1576 | */ |
1577 | int zone_reclaim_mode __read_mostly; | |
1578 | ||
1b2ffb78 CL |
1579 | #define RECLAIM_OFF 0 |
1580 | #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ | |
1581 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | |
1582 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
1583 | ||
a92f7126 CL |
1584 | /* |
1585 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
1586 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
1587 | * a zone. | |
1588 | */ | |
1589 | #define ZONE_RECLAIM_PRIORITY 4 | |
1590 | ||
9614634f CL |
1591 | /* |
1592 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
1593 | * occur. | |
1594 | */ | |
1595 | int sysctl_min_unmapped_ratio = 1; | |
1596 | ||
0ff38490 CL |
1597 | /* |
1598 | * If the number of slab pages in a zone grows beyond this percentage then | |
1599 | * slab reclaim needs to occur. | |
1600 | */ | |
1601 | int sysctl_min_slab_ratio = 5; | |
1602 | ||
9eeff239 CL |
1603 | /* |
1604 | * Try to free up some pages from this zone through reclaim. | |
1605 | */ | |
179e9639 | 1606 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 1607 | { |
7fb2d46d | 1608 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 1609 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
1610 | struct task_struct *p = current; |
1611 | struct reclaim_state reclaim_state; | |
8695949a | 1612 | int priority; |
05ff5137 | 1613 | unsigned long nr_reclaimed = 0; |
179e9639 AM |
1614 | struct scan_control sc = { |
1615 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
1616 | .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), | |
69e05944 AM |
1617 | .swap_cluster_max = max_t(unsigned long, nr_pages, |
1618 | SWAP_CLUSTER_MAX), | |
179e9639 | 1619 | .gfp_mask = gfp_mask, |
d6277db4 | 1620 | .swappiness = vm_swappiness, |
179e9639 | 1621 | }; |
83e33a47 | 1622 | unsigned long slab_reclaimable; |
9eeff239 CL |
1623 | |
1624 | disable_swap_token(); | |
9eeff239 | 1625 | cond_resched(); |
d4f7796e CL |
1626 | /* |
1627 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
1628 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
1629 | * and RECLAIM_SWAP. | |
1630 | */ | |
1631 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
9eeff239 CL |
1632 | reclaim_state.reclaimed_slab = 0; |
1633 | p->reclaim_state = &reclaim_state; | |
c84db23c | 1634 | |
0ff38490 CL |
1635 | if (zone_page_state(zone, NR_FILE_PAGES) - |
1636 | zone_page_state(zone, NR_FILE_MAPPED) > | |
1637 | zone->min_unmapped_pages) { | |
1638 | /* | |
1639 | * Free memory by calling shrink zone with increasing | |
1640 | * priorities until we have enough memory freed. | |
1641 | */ | |
1642 | priority = ZONE_RECLAIM_PRIORITY; | |
1643 | do { | |
3bb1a852 | 1644 | note_zone_scanning_priority(zone, priority); |
0ff38490 CL |
1645 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
1646 | priority--; | |
1647 | } while (priority >= 0 && nr_reclaimed < nr_pages); | |
1648 | } | |
c84db23c | 1649 | |
83e33a47 CL |
1650 | slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
1651 | if (slab_reclaimable > zone->min_slab_pages) { | |
2a16e3f4 | 1652 | /* |
7fb2d46d | 1653 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
1654 | * many pages were freed in this zone. So we take the current |
1655 | * number of slab pages and shake the slab until it is reduced | |
1656 | * by the same nr_pages that we used for reclaiming unmapped | |
1657 | * pages. | |
2a16e3f4 | 1658 | * |
0ff38490 CL |
1659 | * Note that shrink_slab will free memory on all zones and may |
1660 | * take a long time. | |
2a16e3f4 | 1661 | */ |
0ff38490 | 1662 | while (shrink_slab(sc.nr_scanned, gfp_mask, order) && |
83e33a47 CL |
1663 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) > |
1664 | slab_reclaimable - nr_pages) | |
0ff38490 | 1665 | ; |
83e33a47 CL |
1666 | |
1667 | /* | |
1668 | * Update nr_reclaimed by the number of slab pages we | |
1669 | * reclaimed from this zone. | |
1670 | */ | |
1671 | nr_reclaimed += slab_reclaimable - | |
1672 | zone_page_state(zone, NR_SLAB_RECLAIMABLE); | |
2a16e3f4 CL |
1673 | } |
1674 | ||
9eeff239 | 1675 | p->reclaim_state = NULL; |
d4f7796e | 1676 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
05ff5137 | 1677 | return nr_reclaimed >= nr_pages; |
9eeff239 | 1678 | } |
179e9639 AM |
1679 | |
1680 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
1681 | { | |
1682 | cpumask_t mask; | |
1683 | int node_id; | |
1684 | ||
1685 | /* | |
0ff38490 CL |
1686 | * Zone reclaim reclaims unmapped file backed pages and |
1687 | * slab pages if we are over the defined limits. | |
34aa1330 | 1688 | * |
9614634f CL |
1689 | * A small portion of unmapped file backed pages is needed for |
1690 | * file I/O otherwise pages read by file I/O will be immediately | |
1691 | * thrown out if the zone is overallocated. So we do not reclaim | |
1692 | * if less than a specified percentage of the zone is used by | |
1693 | * unmapped file backed pages. | |
179e9639 | 1694 | */ |
34aa1330 | 1695 | if (zone_page_state(zone, NR_FILE_PAGES) - |
0ff38490 CL |
1696 | zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages |
1697 | && zone_page_state(zone, NR_SLAB_RECLAIMABLE) | |
1698 | <= zone->min_slab_pages) | |
9614634f | 1699 | return 0; |
179e9639 AM |
1700 | |
1701 | /* | |
1702 | * Avoid concurrent zone reclaims, do not reclaim in a zone that does | |
1703 | * not have reclaimable pages and if we should not delay the allocation | |
1704 | * then do not scan. | |
1705 | */ | |
1706 | if (!(gfp_mask & __GFP_WAIT) || | |
1707 | zone->all_unreclaimable || | |
1708 | atomic_read(&zone->reclaim_in_progress) > 0 || | |
1709 | (current->flags & PF_MEMALLOC)) | |
1710 | return 0; | |
1711 | ||
1712 | /* | |
1713 | * Only run zone reclaim on the local zone or on zones that do not | |
1714 | * have associated processors. This will favor the local processor | |
1715 | * over remote processors and spread off node memory allocations | |
1716 | * as wide as possible. | |
1717 | */ | |
89fa3024 | 1718 | node_id = zone_to_nid(zone); |
179e9639 AM |
1719 | mask = node_to_cpumask(node_id); |
1720 | if (!cpus_empty(mask) && node_id != numa_node_id()) | |
1721 | return 0; | |
1722 | return __zone_reclaim(zone, gfp_mask, order); | |
1723 | } | |
9eeff239 | 1724 | #endif |