]>
Commit | Line | Data |
---|---|---|
c0a31329 TG |
1 | /* |
2 | * linux/kernel/hrtimer.c | |
3 | * | |
3c8aa39d | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
7 | * |
8 | * High-resolution kernel timers | |
9 | * | |
10 | * In contrast to the low-resolution timeout API implemented in | |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | |
12 | * depending on system configuration and capabilities. | |
13 | * | |
14 | * These timers are currently used for: | |
15 | * - itimers | |
16 | * - POSIX timers | |
17 | * - nanosleep | |
18 | * - precise in-kernel timing | |
19 | * | |
20 | * Started by: Thomas Gleixner and Ingo Molnar | |
21 | * | |
22 | * Credits: | |
23 | * based on kernel/timer.c | |
24 | * | |
66188fae TG |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: | |
27 | * | |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
29 | * et. al. | |
30 | * | |
c0a31329 TG |
31 | * For licencing details see kernel-base/COPYING |
32 | */ | |
33 | ||
34 | #include <linux/cpu.h> | |
9984de1a | 35 | #include <linux/export.h> |
c0a31329 TG |
36 | #include <linux/percpu.h> |
37 | #include <linux/hrtimer.h> | |
38 | #include <linux/notifier.h> | |
39 | #include <linux/syscalls.h> | |
54cdfdb4 | 40 | #include <linux/kallsyms.h> |
c0a31329 | 41 | #include <linux/interrupt.h> |
79bf2bb3 | 42 | #include <linux/tick.h> |
54cdfdb4 TG |
43 | #include <linux/seq_file.h> |
44 | #include <linux/err.h> | |
237fc6e7 | 45 | #include <linux/debugobjects.h> |
eea08f32 | 46 | #include <linux/sched.h> |
cf4aebc2 | 47 | #include <linux/sched/sysctl.h> |
8bd75c77 | 48 | #include <linux/sched/rt.h> |
eea08f32 | 49 | #include <linux/timer.h> |
c0a31329 TG |
50 | |
51 | #include <asm/uaccess.h> | |
52 | ||
c6a2a177 XG |
53 | #include <trace/events/timer.h> |
54 | ||
c0a31329 TG |
55 | /* |
56 | * The timer bases: | |
7978672c | 57 | * |
e06383db JS |
58 | * There are more clockids then hrtimer bases. Thus, we index |
59 | * into the timer bases by the hrtimer_base_type enum. When trying | |
60 | * to reach a base using a clockid, hrtimer_clockid_to_base() | |
61 | * is used to convert from clockid to the proper hrtimer_base_type. | |
c0a31329 | 62 | */ |
54cdfdb4 | 63 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 64 | { |
3c8aa39d | 65 | |
84cc8fd2 | 66 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
3c8aa39d | 67 | .clock_base = |
c0a31329 | 68 | { |
3c8aa39d | 69 | { |
ab8177bc TG |
70 | .index = HRTIMER_BASE_MONOTONIC, |
71 | .clockid = CLOCK_MONOTONIC, | |
3c8aa39d | 72 | .get_time = &ktime_get, |
54cdfdb4 | 73 | .resolution = KTIME_LOW_RES, |
3c8aa39d | 74 | }, |
68fa61c0 TG |
75 | { |
76 | .index = HRTIMER_BASE_REALTIME, | |
77 | .clockid = CLOCK_REALTIME, | |
78 | .get_time = &ktime_get_real, | |
79 | .resolution = KTIME_LOW_RES, | |
80 | }, | |
70a08cca | 81 | { |
ab8177bc TG |
82 | .index = HRTIMER_BASE_BOOTTIME, |
83 | .clockid = CLOCK_BOOTTIME, | |
70a08cca JS |
84 | .get_time = &ktime_get_boottime, |
85 | .resolution = KTIME_LOW_RES, | |
86 | }, | |
90adda98 JS |
87 | { |
88 | .index = HRTIMER_BASE_TAI, | |
89 | .clockid = CLOCK_TAI, | |
90 | .get_time = &ktime_get_clocktai, | |
91 | .resolution = KTIME_LOW_RES, | |
92 | }, | |
3c8aa39d | 93 | } |
c0a31329 TG |
94 | }; |
95 | ||
942c3c5c | 96 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
ce31332d TG |
97 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
98 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, | |
99 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, | |
90adda98 | 100 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
ce31332d | 101 | }; |
e06383db JS |
102 | |
103 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) | |
104 | { | |
105 | return hrtimer_clock_to_base_table[clock_id]; | |
106 | } | |
107 | ||
108 | ||
92127c7a TG |
109 | /* |
110 | * Get the coarse grained time at the softirq based on xtime and | |
111 | * wall_to_monotonic. | |
112 | */ | |
3c8aa39d | 113 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
92127c7a | 114 | { |
70a08cca | 115 | ktime_t xtim, mono, boot; |
314ac371 | 116 | struct timespec xts, tom, slp; |
90adda98 | 117 | s32 tai_offset; |
92127c7a | 118 | |
314ac371 | 119 | get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); |
90adda98 | 120 | tai_offset = timekeeping_get_tai_offset(); |
92127c7a | 121 | |
f4304ab2 | 122 | xtim = timespec_to_ktime(xts); |
70a08cca JS |
123 | mono = ktime_add(xtim, timespec_to_ktime(tom)); |
124 | boot = ktime_add(mono, timespec_to_ktime(slp)); | |
e06383db | 125 | base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; |
70a08cca JS |
126 | base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; |
127 | base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; | |
90adda98 JS |
128 | base->clock_base[HRTIMER_BASE_TAI].softirq_time = |
129 | ktime_add(xtim, ktime_set(tai_offset, 0)); | |
92127c7a TG |
130 | } |
131 | ||
c0a31329 TG |
132 | /* |
133 | * Functions and macros which are different for UP/SMP systems are kept in a | |
134 | * single place | |
135 | */ | |
136 | #ifdef CONFIG_SMP | |
137 | ||
c0a31329 TG |
138 | /* |
139 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
140 | * means that all timers which are tied to this base via timer->base are | |
141 | * locked, and the base itself is locked too. | |
142 | * | |
143 | * So __run_timers/migrate_timers can safely modify all timers which could | |
144 | * be found on the lists/queues. | |
145 | * | |
146 | * When the timer's base is locked, and the timer removed from list, it is | |
147 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
148 | * locked. | |
149 | */ | |
3c8aa39d TG |
150 | static |
151 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
152 | unsigned long *flags) | |
c0a31329 | 153 | { |
3c8aa39d | 154 | struct hrtimer_clock_base *base; |
c0a31329 TG |
155 | |
156 | for (;;) { | |
157 | base = timer->base; | |
158 | if (likely(base != NULL)) { | |
ecb49d1a | 159 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
160 | if (likely(base == timer->base)) |
161 | return base; | |
162 | /* The timer has migrated to another CPU: */ | |
ecb49d1a | 163 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
164 | } |
165 | cpu_relax(); | |
166 | } | |
167 | } | |
168 | ||
6ff7041d TG |
169 | |
170 | /* | |
171 | * Get the preferred target CPU for NOHZ | |
172 | */ | |
173 | static int hrtimer_get_target(int this_cpu, int pinned) | |
174 | { | |
3451d024 | 175 | #ifdef CONFIG_NO_HZ_COMMON |
83cd4fe2 VP |
176 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) |
177 | return get_nohz_timer_target(); | |
6ff7041d TG |
178 | #endif |
179 | return this_cpu; | |
180 | } | |
181 | ||
182 | /* | |
183 | * With HIGHRES=y we do not migrate the timer when it is expiring | |
184 | * before the next event on the target cpu because we cannot reprogram | |
185 | * the target cpu hardware and we would cause it to fire late. | |
186 | * | |
187 | * Called with cpu_base->lock of target cpu held. | |
188 | */ | |
189 | static int | |
190 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | |
191 | { | |
192 | #ifdef CONFIG_HIGH_RES_TIMERS | |
193 | ktime_t expires; | |
194 | ||
195 | if (!new_base->cpu_base->hres_active) | |
196 | return 0; | |
197 | ||
198 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); | |
199 | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; | |
200 | #else | |
201 | return 0; | |
202 | #endif | |
203 | } | |
204 | ||
c0a31329 TG |
205 | /* |
206 | * Switch the timer base to the current CPU when possible. | |
207 | */ | |
3c8aa39d | 208 | static inline struct hrtimer_clock_base * |
597d0275 AB |
209 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
210 | int pinned) | |
c0a31329 | 211 | { |
3c8aa39d TG |
212 | struct hrtimer_clock_base *new_base; |
213 | struct hrtimer_cpu_base *new_cpu_base; | |
6ff7041d TG |
214 | int this_cpu = smp_processor_id(); |
215 | int cpu = hrtimer_get_target(this_cpu, pinned); | |
ab8177bc | 216 | int basenum = base->index; |
c0a31329 | 217 | |
eea08f32 AB |
218 | again: |
219 | new_cpu_base = &per_cpu(hrtimer_bases, cpu); | |
e06383db | 220 | new_base = &new_cpu_base->clock_base[basenum]; |
c0a31329 TG |
221 | |
222 | if (base != new_base) { | |
223 | /* | |
6ff7041d | 224 | * We are trying to move timer to new_base. |
c0a31329 TG |
225 | * However we can't change timer's base while it is running, |
226 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
227 | * the event source in the high resolution case. The softirq | |
228 | * code will take care of this when the timer function has | |
229 | * completed. There is no conflict as we hold the lock until | |
230 | * the timer is enqueued. | |
231 | */ | |
54cdfdb4 | 232 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
233 | return base; |
234 | ||
235 | /* See the comment in lock_timer_base() */ | |
236 | timer->base = NULL; | |
ecb49d1a TG |
237 | raw_spin_unlock(&base->cpu_base->lock); |
238 | raw_spin_lock(&new_base->cpu_base->lock); | |
eea08f32 | 239 | |
6ff7041d TG |
240 | if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { |
241 | cpu = this_cpu; | |
ecb49d1a TG |
242 | raw_spin_unlock(&new_base->cpu_base->lock); |
243 | raw_spin_lock(&base->cpu_base->lock); | |
6ff7041d TG |
244 | timer->base = base; |
245 | goto again; | |
eea08f32 | 246 | } |
c0a31329 TG |
247 | timer->base = new_base; |
248 | } | |
249 | return new_base; | |
250 | } | |
251 | ||
252 | #else /* CONFIG_SMP */ | |
253 | ||
3c8aa39d | 254 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
255 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
256 | { | |
3c8aa39d | 257 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 258 | |
ecb49d1a | 259 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
260 | |
261 | return base; | |
262 | } | |
263 | ||
eea08f32 | 264 | # define switch_hrtimer_base(t, b, p) (b) |
c0a31329 TG |
265 | |
266 | #endif /* !CONFIG_SMP */ | |
267 | ||
268 | /* | |
269 | * Functions for the union type storage format of ktime_t which are | |
270 | * too large for inlining: | |
271 | */ | |
272 | #if BITS_PER_LONG < 64 | |
273 | # ifndef CONFIG_KTIME_SCALAR | |
274 | /** | |
275 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | |
c0a31329 TG |
276 | * @kt: addend |
277 | * @nsec: the scalar nsec value to add | |
278 | * | |
279 | * Returns the sum of kt and nsec in ktime_t format | |
280 | */ | |
281 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |
282 | { | |
283 | ktime_t tmp; | |
284 | ||
285 | if (likely(nsec < NSEC_PER_SEC)) { | |
286 | tmp.tv64 = nsec; | |
287 | } else { | |
288 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
289 | ||
51fd36f3 DE |
290 | /* Make sure nsec fits into long */ |
291 | if (unlikely(nsec > KTIME_SEC_MAX)) | |
292 | return (ktime_t){ .tv64 = KTIME_MAX }; | |
293 | ||
c0a31329 TG |
294 | tmp = ktime_set((long)nsec, rem); |
295 | } | |
296 | ||
297 | return ktime_add(kt, tmp); | |
298 | } | |
b8b8fd2d DH |
299 | |
300 | EXPORT_SYMBOL_GPL(ktime_add_ns); | |
a272378d ACM |
301 | |
302 | /** | |
303 | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | |
304 | * @kt: minuend | |
305 | * @nsec: the scalar nsec value to subtract | |
306 | * | |
307 | * Returns the subtraction of @nsec from @kt in ktime_t format | |
308 | */ | |
309 | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | |
310 | { | |
311 | ktime_t tmp; | |
312 | ||
313 | if (likely(nsec < NSEC_PER_SEC)) { | |
314 | tmp.tv64 = nsec; | |
315 | } else { | |
316 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
317 | ||
318 | tmp = ktime_set((long)nsec, rem); | |
319 | } | |
320 | ||
321 | return ktime_sub(kt, tmp); | |
322 | } | |
323 | ||
324 | EXPORT_SYMBOL_GPL(ktime_sub_ns); | |
c0a31329 TG |
325 | # endif /* !CONFIG_KTIME_SCALAR */ |
326 | ||
327 | /* | |
328 | * Divide a ktime value by a nanosecond value | |
329 | */ | |
4d672e7a | 330 | u64 ktime_divns(const ktime_t kt, s64 div) |
c0a31329 | 331 | { |
900cfa46 | 332 | u64 dclc; |
c0a31329 TG |
333 | int sft = 0; |
334 | ||
900cfa46 | 335 | dclc = ktime_to_ns(kt); |
c0a31329 TG |
336 | /* Make sure the divisor is less than 2^32: */ |
337 | while (div >> 32) { | |
338 | sft++; | |
339 | div >>= 1; | |
340 | } | |
341 | dclc >>= sft; | |
342 | do_div(dclc, (unsigned long) div); | |
343 | ||
4d672e7a | 344 | return dclc; |
c0a31329 | 345 | } |
c0a31329 TG |
346 | #endif /* BITS_PER_LONG >= 64 */ |
347 | ||
5a7780e7 TG |
348 | /* |
349 | * Add two ktime values and do a safety check for overflow: | |
350 | */ | |
351 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
352 | { | |
353 | ktime_t res = ktime_add(lhs, rhs); | |
354 | ||
355 | /* | |
356 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
357 | * return to user space in a timespec: | |
358 | */ | |
359 | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | |
360 | res = ktime_set(KTIME_SEC_MAX, 0); | |
361 | ||
362 | return res; | |
363 | } | |
364 | ||
8daa21e6 AB |
365 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
366 | ||
237fc6e7 TG |
367 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
368 | ||
369 | static struct debug_obj_descr hrtimer_debug_descr; | |
370 | ||
99777288 SG |
371 | static void *hrtimer_debug_hint(void *addr) |
372 | { | |
373 | return ((struct hrtimer *) addr)->function; | |
374 | } | |
375 | ||
237fc6e7 TG |
376 | /* |
377 | * fixup_init is called when: | |
378 | * - an active object is initialized | |
379 | */ | |
380 | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) | |
381 | { | |
382 | struct hrtimer *timer = addr; | |
383 | ||
384 | switch (state) { | |
385 | case ODEBUG_STATE_ACTIVE: | |
386 | hrtimer_cancel(timer); | |
387 | debug_object_init(timer, &hrtimer_debug_descr); | |
388 | return 1; | |
389 | default: | |
390 | return 0; | |
391 | } | |
392 | } | |
393 | ||
394 | /* | |
395 | * fixup_activate is called when: | |
396 | * - an active object is activated | |
397 | * - an unknown object is activated (might be a statically initialized object) | |
398 | */ | |
399 | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) | |
400 | { | |
401 | switch (state) { | |
402 | ||
403 | case ODEBUG_STATE_NOTAVAILABLE: | |
404 | WARN_ON_ONCE(1); | |
405 | return 0; | |
406 | ||
407 | case ODEBUG_STATE_ACTIVE: | |
408 | WARN_ON(1); | |
409 | ||
410 | default: | |
411 | return 0; | |
412 | } | |
413 | } | |
414 | ||
415 | /* | |
416 | * fixup_free is called when: | |
417 | * - an active object is freed | |
418 | */ | |
419 | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) | |
420 | { | |
421 | struct hrtimer *timer = addr; | |
422 | ||
423 | switch (state) { | |
424 | case ODEBUG_STATE_ACTIVE: | |
425 | hrtimer_cancel(timer); | |
426 | debug_object_free(timer, &hrtimer_debug_descr); | |
427 | return 1; | |
428 | default: | |
429 | return 0; | |
430 | } | |
431 | } | |
432 | ||
433 | static struct debug_obj_descr hrtimer_debug_descr = { | |
434 | .name = "hrtimer", | |
99777288 | 435 | .debug_hint = hrtimer_debug_hint, |
237fc6e7 TG |
436 | .fixup_init = hrtimer_fixup_init, |
437 | .fixup_activate = hrtimer_fixup_activate, | |
438 | .fixup_free = hrtimer_fixup_free, | |
439 | }; | |
440 | ||
441 | static inline void debug_hrtimer_init(struct hrtimer *timer) | |
442 | { | |
443 | debug_object_init(timer, &hrtimer_debug_descr); | |
444 | } | |
445 | ||
446 | static inline void debug_hrtimer_activate(struct hrtimer *timer) | |
447 | { | |
448 | debug_object_activate(timer, &hrtimer_debug_descr); | |
449 | } | |
450 | ||
451 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | |
452 | { | |
453 | debug_object_deactivate(timer, &hrtimer_debug_descr); | |
454 | } | |
455 | ||
456 | static inline void debug_hrtimer_free(struct hrtimer *timer) | |
457 | { | |
458 | debug_object_free(timer, &hrtimer_debug_descr); | |
459 | } | |
460 | ||
461 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
462 | enum hrtimer_mode mode); | |
463 | ||
464 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |
465 | enum hrtimer_mode mode) | |
466 | { | |
467 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | |
468 | __hrtimer_init(timer, clock_id, mode); | |
469 | } | |
2bc481cf | 470 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7 TG |
471 | |
472 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | |
473 | { | |
474 | debug_object_free(timer, &hrtimer_debug_descr); | |
475 | } | |
476 | ||
477 | #else | |
478 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | |
479 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |
480 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | |
481 | #endif | |
482 | ||
c6a2a177 XG |
483 | static inline void |
484 | debug_init(struct hrtimer *timer, clockid_t clockid, | |
485 | enum hrtimer_mode mode) | |
486 | { | |
487 | debug_hrtimer_init(timer); | |
488 | trace_hrtimer_init(timer, clockid, mode); | |
489 | } | |
490 | ||
491 | static inline void debug_activate(struct hrtimer *timer) | |
492 | { | |
493 | debug_hrtimer_activate(timer); | |
494 | trace_hrtimer_start(timer); | |
495 | } | |
496 | ||
497 | static inline void debug_deactivate(struct hrtimer *timer) | |
498 | { | |
499 | debug_hrtimer_deactivate(timer); | |
500 | trace_hrtimer_cancel(timer); | |
501 | } | |
502 | ||
54cdfdb4 TG |
503 | /* High resolution timer related functions */ |
504 | #ifdef CONFIG_HIGH_RES_TIMERS | |
505 | ||
506 | /* | |
507 | * High resolution timer enabled ? | |
508 | */ | |
509 | static int hrtimer_hres_enabled __read_mostly = 1; | |
510 | ||
511 | /* | |
512 | * Enable / Disable high resolution mode | |
513 | */ | |
514 | static int __init setup_hrtimer_hres(char *str) | |
515 | { | |
516 | if (!strcmp(str, "off")) | |
517 | hrtimer_hres_enabled = 0; | |
518 | else if (!strcmp(str, "on")) | |
519 | hrtimer_hres_enabled = 1; | |
520 | else | |
521 | return 0; | |
522 | return 1; | |
523 | } | |
524 | ||
525 | __setup("highres=", setup_hrtimer_hres); | |
526 | ||
527 | /* | |
528 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
529 | */ | |
530 | static inline int hrtimer_is_hres_enabled(void) | |
531 | { | |
532 | return hrtimer_hres_enabled; | |
533 | } | |
534 | ||
535 | /* | |
536 | * Is the high resolution mode active ? | |
537 | */ | |
538 | static inline int hrtimer_hres_active(void) | |
539 | { | |
909ea964 | 540 | return __this_cpu_read(hrtimer_bases.hres_active); |
54cdfdb4 TG |
541 | } |
542 | ||
543 | /* | |
544 | * Reprogram the event source with checking both queues for the | |
545 | * next event | |
546 | * Called with interrupts disabled and base->lock held | |
547 | */ | |
7403f41f AC |
548 | static void |
549 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | |
54cdfdb4 TG |
550 | { |
551 | int i; | |
552 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
7403f41f | 553 | ktime_t expires, expires_next; |
54cdfdb4 | 554 | |
7403f41f | 555 | expires_next.tv64 = KTIME_MAX; |
54cdfdb4 TG |
556 | |
557 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
558 | struct hrtimer *timer; | |
998adc3d | 559 | struct timerqueue_node *next; |
54cdfdb4 | 560 | |
998adc3d JS |
561 | next = timerqueue_getnext(&base->active); |
562 | if (!next) | |
54cdfdb4 | 563 | continue; |
998adc3d JS |
564 | timer = container_of(next, struct hrtimer, node); |
565 | ||
cc584b21 | 566 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
b0a9b511 TG |
567 | /* |
568 | * clock_was_set() has changed base->offset so the | |
569 | * result might be negative. Fix it up to prevent a | |
570 | * false positive in clockevents_program_event() | |
571 | */ | |
572 | if (expires.tv64 < 0) | |
573 | expires.tv64 = 0; | |
7403f41f AC |
574 | if (expires.tv64 < expires_next.tv64) |
575 | expires_next = expires; | |
54cdfdb4 TG |
576 | } |
577 | ||
7403f41f AC |
578 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) |
579 | return; | |
580 | ||
581 | cpu_base->expires_next.tv64 = expires_next.tv64; | |
582 | ||
54cdfdb4 TG |
583 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
584 | tick_program_event(cpu_base->expires_next, 1); | |
585 | } | |
586 | ||
587 | /* | |
588 | * Shared reprogramming for clock_realtime and clock_monotonic | |
589 | * | |
590 | * When a timer is enqueued and expires earlier than the already enqueued | |
591 | * timers, we have to check, whether it expires earlier than the timer for | |
592 | * which the clock event device was armed. | |
593 | * | |
594 | * Called with interrupts disabled and base->cpu_base.lock held | |
595 | */ | |
596 | static int hrtimer_reprogram(struct hrtimer *timer, | |
597 | struct hrtimer_clock_base *base) | |
598 | { | |
41d2e494 | 599 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
cc584b21 | 600 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
54cdfdb4 TG |
601 | int res; |
602 | ||
cc584b21 | 603 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
63070a79 | 604 | |
54cdfdb4 TG |
605 | /* |
606 | * When the callback is running, we do not reprogram the clock event | |
607 | * device. The timer callback is either running on a different CPU or | |
3a4fa0a2 | 608 | * the callback is executed in the hrtimer_interrupt context. The |
54cdfdb4 TG |
609 | * reprogramming is handled either by the softirq, which called the |
610 | * callback or at the end of the hrtimer_interrupt. | |
611 | */ | |
612 | if (hrtimer_callback_running(timer)) | |
613 | return 0; | |
614 | ||
63070a79 TG |
615 | /* |
616 | * CLOCK_REALTIME timer might be requested with an absolute | |
617 | * expiry time which is less than base->offset. Nothing wrong | |
618 | * about that, just avoid to call into the tick code, which | |
619 | * has now objections against negative expiry values. | |
620 | */ | |
621 | if (expires.tv64 < 0) | |
622 | return -ETIME; | |
623 | ||
41d2e494 TG |
624 | if (expires.tv64 >= cpu_base->expires_next.tv64) |
625 | return 0; | |
626 | ||
627 | /* | |
628 | * If a hang was detected in the last timer interrupt then we | |
629 | * do not schedule a timer which is earlier than the expiry | |
630 | * which we enforced in the hang detection. We want the system | |
631 | * to make progress. | |
632 | */ | |
633 | if (cpu_base->hang_detected) | |
54cdfdb4 TG |
634 | return 0; |
635 | ||
636 | /* | |
637 | * Clockevents returns -ETIME, when the event was in the past. | |
638 | */ | |
639 | res = tick_program_event(expires, 0); | |
640 | if (!IS_ERR_VALUE(res)) | |
41d2e494 | 641 | cpu_base->expires_next = expires; |
54cdfdb4 TG |
642 | return res; |
643 | } | |
644 | ||
54cdfdb4 TG |
645 | /* |
646 | * Initialize the high resolution related parts of cpu_base | |
647 | */ | |
648 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | |
649 | { | |
650 | base->expires_next.tv64 = KTIME_MAX; | |
651 | base->hres_active = 0; | |
54cdfdb4 TG |
652 | } |
653 | ||
54cdfdb4 TG |
654 | /* |
655 | * When High resolution timers are active, try to reprogram. Note, that in case | |
656 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | |
657 | * check happens. The timer gets enqueued into the rbtree. The reprogramming | |
658 | * and expiry check is done in the hrtimer_interrupt or in the softirq. | |
659 | */ | |
660 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
b22affe0 | 661 | struct hrtimer_clock_base *base) |
54cdfdb4 | 662 | { |
b22affe0 | 663 | return base->cpu_base->hres_active && hrtimer_reprogram(timer, base); |
54cdfdb4 TG |
664 | } |
665 | ||
5baefd6d JS |
666 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
667 | { | |
668 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; | |
669 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; | |
90adda98 | 670 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
5baefd6d | 671 | |
90adda98 | 672 | return ktime_get_update_offsets(offs_real, offs_boot, offs_tai); |
5baefd6d JS |
673 | } |
674 | ||
9ec26907 TG |
675 | /* |
676 | * Retrigger next event is called after clock was set | |
677 | * | |
678 | * Called with interrupts disabled via on_each_cpu() | |
679 | */ | |
680 | static void retrigger_next_event(void *arg) | |
681 | { | |
682 | struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); | |
9ec26907 TG |
683 | |
684 | if (!hrtimer_hres_active()) | |
685 | return; | |
686 | ||
9ec26907 | 687 | raw_spin_lock(&base->lock); |
5baefd6d | 688 | hrtimer_update_base(base); |
9ec26907 TG |
689 | hrtimer_force_reprogram(base, 0); |
690 | raw_spin_unlock(&base->lock); | |
691 | } | |
b12a03ce | 692 | |
54cdfdb4 TG |
693 | /* |
694 | * Switch to high resolution mode | |
695 | */ | |
f8953856 | 696 | static int hrtimer_switch_to_hres(void) |
54cdfdb4 | 697 | { |
b12a03ce | 698 | int i, cpu = smp_processor_id(); |
820de5c3 | 699 | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); |
54cdfdb4 TG |
700 | unsigned long flags; |
701 | ||
702 | if (base->hres_active) | |
f8953856 | 703 | return 1; |
54cdfdb4 TG |
704 | |
705 | local_irq_save(flags); | |
706 | ||
707 | if (tick_init_highres()) { | |
708 | local_irq_restore(flags); | |
820de5c3 IM |
709 | printk(KERN_WARNING "Could not switch to high resolution " |
710 | "mode on CPU %d\n", cpu); | |
f8953856 | 711 | return 0; |
54cdfdb4 TG |
712 | } |
713 | base->hres_active = 1; | |
b12a03ce TG |
714 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
715 | base->clock_base[i].resolution = KTIME_HIGH_RES; | |
54cdfdb4 TG |
716 | |
717 | tick_setup_sched_timer(); | |
54cdfdb4 TG |
718 | /* "Retrigger" the interrupt to get things going */ |
719 | retrigger_next_event(NULL); | |
720 | local_irq_restore(flags); | |
f8953856 | 721 | return 1; |
54cdfdb4 TG |
722 | } |
723 | ||
f55a6faa JS |
724 | /* |
725 | * Called from timekeeping code to reprogramm the hrtimer interrupt | |
726 | * device. If called from the timer interrupt context we defer it to | |
727 | * softirq context. | |
728 | */ | |
729 | void clock_was_set_delayed(void) | |
730 | { | |
731 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
732 | ||
733 | cpu_base->clock_was_set = 1; | |
734 | __raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
735 | } | |
736 | ||
54cdfdb4 TG |
737 | #else |
738 | ||
739 | static inline int hrtimer_hres_active(void) { return 0; } | |
740 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | |
f8953856 | 741 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
7403f41f AC |
742 | static inline void |
743 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | |
54cdfdb4 | 744 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
b22affe0 | 745 | struct hrtimer_clock_base *base) |
54cdfdb4 TG |
746 | { |
747 | return 0; | |
748 | } | |
54cdfdb4 | 749 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
9ec26907 | 750 | static inline void retrigger_next_event(void *arg) { } |
54cdfdb4 TG |
751 | |
752 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
753 | ||
b12a03ce TG |
754 | /* |
755 | * Clock realtime was set | |
756 | * | |
757 | * Change the offset of the realtime clock vs. the monotonic | |
758 | * clock. | |
759 | * | |
760 | * We might have to reprogram the high resolution timer interrupt. On | |
761 | * SMP we call the architecture specific code to retrigger _all_ high | |
762 | * resolution timer interrupts. On UP we just disable interrupts and | |
763 | * call the high resolution interrupt code. | |
764 | */ | |
765 | void clock_was_set(void) | |
766 | { | |
90ff1f30 | 767 | #ifdef CONFIG_HIGH_RES_TIMERS |
b12a03ce TG |
768 | /* Retrigger the CPU local events everywhere */ |
769 | on_each_cpu(retrigger_next_event, NULL, 1); | |
9ec26907 TG |
770 | #endif |
771 | timerfd_clock_was_set(); | |
b12a03ce TG |
772 | } |
773 | ||
774 | /* | |
775 | * During resume we might have to reprogram the high resolution timer | |
776 | * interrupt (on the local CPU): | |
777 | */ | |
778 | void hrtimers_resume(void) | |
779 | { | |
780 | WARN_ONCE(!irqs_disabled(), | |
781 | KERN_INFO "hrtimers_resume() called with IRQs enabled!"); | |
782 | ||
783 | retrigger_next_event(NULL); | |
9ec26907 | 784 | timerfd_clock_was_set(); |
b12a03ce TG |
785 | } |
786 | ||
5f201907 | 787 | static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) |
82f67cd9 | 788 | { |
5f201907 | 789 | #ifdef CONFIG_TIMER_STATS |
82f67cd9 IM |
790 | if (timer->start_site) |
791 | return; | |
5f201907 | 792 | timer->start_site = __builtin_return_address(0); |
82f67cd9 IM |
793 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); |
794 | timer->start_pid = current->pid; | |
5f201907 HC |
795 | #endif |
796 | } | |
797 | ||
798 | static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) | |
799 | { | |
800 | #ifdef CONFIG_TIMER_STATS | |
801 | timer->start_site = NULL; | |
802 | #endif | |
82f67cd9 | 803 | } |
5f201907 HC |
804 | |
805 | static inline void timer_stats_account_hrtimer(struct hrtimer *timer) | |
806 | { | |
807 | #ifdef CONFIG_TIMER_STATS | |
808 | if (likely(!timer_stats_active)) | |
809 | return; | |
810 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
811 | timer->function, timer->start_comm, 0); | |
82f67cd9 | 812 | #endif |
5f201907 | 813 | } |
82f67cd9 | 814 | |
c0a31329 | 815 | /* |
6506f2aa | 816 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
817 | */ |
818 | static inline | |
819 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
820 | { | |
ecb49d1a | 821 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
822 | } |
823 | ||
824 | /** | |
825 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 826 | * @timer: hrtimer to forward |
44f21475 | 827 | * @now: forward past this time |
c0a31329 TG |
828 | * @interval: the interval to forward |
829 | * | |
830 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 831 | * Returns the number of overruns. |
c0a31329 | 832 | */ |
4d672e7a | 833 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 834 | { |
4d672e7a | 835 | u64 orun = 1; |
44f21475 | 836 | ktime_t delta; |
c0a31329 | 837 | |
cc584b21 | 838 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a31329 TG |
839 | |
840 | if (delta.tv64 < 0) | |
841 | return 0; | |
842 | ||
c9db4fa1 TG |
843 | if (interval.tv64 < timer->base->resolution.tv64) |
844 | interval.tv64 = timer->base->resolution.tv64; | |
845 | ||
c0a31329 | 846 | if (unlikely(delta.tv64 >= interval.tv64)) { |
df869b63 | 847 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
848 | |
849 | orun = ktime_divns(delta, incr); | |
cc584b21 AV |
850 | hrtimer_add_expires_ns(timer, incr * orun); |
851 | if (hrtimer_get_expires_tv64(timer) > now.tv64) | |
c0a31329 TG |
852 | return orun; |
853 | /* | |
854 | * This (and the ktime_add() below) is the | |
855 | * correction for exact: | |
856 | */ | |
857 | orun++; | |
858 | } | |
cc584b21 | 859 | hrtimer_add_expires(timer, interval); |
c0a31329 TG |
860 | |
861 | return orun; | |
862 | } | |
6bdb6b62 | 863 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
864 | |
865 | /* | |
866 | * enqueue_hrtimer - internal function to (re)start a timer | |
867 | * | |
868 | * The timer is inserted in expiry order. Insertion into the | |
869 | * red black tree is O(log(n)). Must hold the base lock. | |
a6037b61 PZ |
870 | * |
871 | * Returns 1 when the new timer is the leftmost timer in the tree. | |
c0a31329 | 872 | */ |
a6037b61 PZ |
873 | static int enqueue_hrtimer(struct hrtimer *timer, |
874 | struct hrtimer_clock_base *base) | |
c0a31329 | 875 | { |
c6a2a177 | 876 | debug_activate(timer); |
237fc6e7 | 877 | |
998adc3d | 878 | timerqueue_add(&base->active, &timer->node); |
ab8177bc | 879 | base->cpu_base->active_bases |= 1 << base->index; |
54cdfdb4 | 880 | |
303e967f TG |
881 | /* |
882 | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | |
883 | * state of a possibly running callback. | |
884 | */ | |
885 | timer->state |= HRTIMER_STATE_ENQUEUED; | |
a6037b61 | 886 | |
998adc3d | 887 | return (&timer->node == base->active.next); |
288867ec | 888 | } |
c0a31329 TG |
889 | |
890 | /* | |
891 | * __remove_hrtimer - internal function to remove a timer | |
892 | * | |
893 | * Caller must hold the base lock. | |
54cdfdb4 TG |
894 | * |
895 | * High resolution timer mode reprograms the clock event device when the | |
896 | * timer is the one which expires next. The caller can disable this by setting | |
897 | * reprogram to zero. This is useful, when the context does a reprogramming | |
898 | * anyway (e.g. timer interrupt) | |
c0a31329 | 899 | */ |
3c8aa39d | 900 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 901 | struct hrtimer_clock_base *base, |
54cdfdb4 | 902 | unsigned long newstate, int reprogram) |
c0a31329 | 903 | { |
27c9cd7e | 904 | struct timerqueue_node *next_timer; |
7403f41f AC |
905 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
906 | goto out; | |
907 | ||
27c9cd7e JO |
908 | next_timer = timerqueue_getnext(&base->active); |
909 | timerqueue_del(&base->active, &timer->node); | |
910 | if (&timer->node == next_timer) { | |
7403f41f AC |
911 | #ifdef CONFIG_HIGH_RES_TIMERS |
912 | /* Reprogram the clock event device. if enabled */ | |
913 | if (reprogram && hrtimer_hres_active()) { | |
914 | ktime_t expires; | |
915 | ||
916 | expires = ktime_sub(hrtimer_get_expires(timer), | |
917 | base->offset); | |
918 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | |
919 | hrtimer_force_reprogram(base->cpu_base, 1); | |
54cdfdb4 | 920 | } |
7403f41f | 921 | #endif |
54cdfdb4 | 922 | } |
ab8177bc TG |
923 | if (!timerqueue_getnext(&base->active)) |
924 | base->cpu_base->active_bases &= ~(1 << base->index); | |
7403f41f | 925 | out: |
303e967f | 926 | timer->state = newstate; |
c0a31329 TG |
927 | } |
928 | ||
929 | /* | |
930 | * remove hrtimer, called with base lock held | |
931 | */ | |
932 | static inline int | |
3c8aa39d | 933 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a31329 | 934 | { |
303e967f | 935 | if (hrtimer_is_queued(timer)) { |
f13d4f97 | 936 | unsigned long state; |
54cdfdb4 TG |
937 | int reprogram; |
938 | ||
939 | /* | |
940 | * Remove the timer and force reprogramming when high | |
941 | * resolution mode is active and the timer is on the current | |
942 | * CPU. If we remove a timer on another CPU, reprogramming is | |
943 | * skipped. The interrupt event on this CPU is fired and | |
944 | * reprogramming happens in the interrupt handler. This is a | |
945 | * rare case and less expensive than a smp call. | |
946 | */ | |
c6a2a177 | 947 | debug_deactivate(timer); |
82f67cd9 | 948 | timer_stats_hrtimer_clear_start_info(timer); |
54cdfdb4 | 949 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
f13d4f97 SQ |
950 | /* |
951 | * We must preserve the CALLBACK state flag here, | |
952 | * otherwise we could move the timer base in | |
953 | * switch_hrtimer_base. | |
954 | */ | |
955 | state = timer->state & HRTIMER_STATE_CALLBACK; | |
956 | __remove_hrtimer(timer, base, state, reprogram); | |
c0a31329 TG |
957 | return 1; |
958 | } | |
959 | return 0; | |
960 | } | |
961 | ||
7f1e2ca9 PZ |
962 | int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
963 | unsigned long delta_ns, const enum hrtimer_mode mode, | |
964 | int wakeup) | |
c0a31329 | 965 | { |
3c8aa39d | 966 | struct hrtimer_clock_base *base, *new_base; |
c0a31329 | 967 | unsigned long flags; |
a6037b61 | 968 | int ret, leftmost; |
c0a31329 TG |
969 | |
970 | base = lock_hrtimer_base(timer, &flags); | |
971 | ||
972 | /* Remove an active timer from the queue: */ | |
973 | ret = remove_hrtimer(timer, base); | |
974 | ||
975 | /* Switch the timer base, if necessary: */ | |
597d0275 | 976 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
c0a31329 | 977 | |
597d0275 | 978 | if (mode & HRTIMER_MODE_REL) { |
5a7780e7 | 979 | tim = ktime_add_safe(tim, new_base->get_time()); |
06027bdd IM |
980 | /* |
981 | * CONFIG_TIME_LOW_RES is a temporary way for architectures | |
982 | * to signal that they simply return xtime in | |
983 | * do_gettimeoffset(). In this case we want to round up by | |
984 | * resolution when starting a relative timer, to avoid short | |
985 | * timeouts. This will go away with the GTOD framework. | |
986 | */ | |
987 | #ifdef CONFIG_TIME_LOW_RES | |
5a7780e7 | 988 | tim = ktime_add_safe(tim, base->resolution); |
06027bdd IM |
989 | #endif |
990 | } | |
237fc6e7 | 991 | |
da8f2e17 | 992 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a31329 | 993 | |
82f67cd9 IM |
994 | timer_stats_hrtimer_set_start_info(timer); |
995 | ||
a6037b61 PZ |
996 | leftmost = enqueue_hrtimer(timer, new_base); |
997 | ||
935c631d IM |
998 | /* |
999 | * Only allow reprogramming if the new base is on this CPU. | |
1000 | * (it might still be on another CPU if the timer was pending) | |
a6037b61 PZ |
1001 | * |
1002 | * XXX send_remote_softirq() ? | |
935c631d | 1003 | */ |
b22affe0 LS |
1004 | if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases) |
1005 | && hrtimer_enqueue_reprogram(timer, new_base)) { | |
1006 | if (wakeup) { | |
1007 | /* | |
1008 | * We need to drop cpu_base->lock to avoid a | |
1009 | * lock ordering issue vs. rq->lock. | |
1010 | */ | |
1011 | raw_spin_unlock(&new_base->cpu_base->lock); | |
1012 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1013 | local_irq_restore(flags); | |
1014 | return ret; | |
1015 | } else { | |
1016 | __raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
1017 | } | |
1018 | } | |
c0a31329 TG |
1019 | |
1020 | unlock_hrtimer_base(timer, &flags); | |
1021 | ||
1022 | return ret; | |
1023 | } | |
7f1e2ca9 PZ |
1024 | |
1025 | /** | |
1026 | * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU | |
1027 | * @timer: the timer to be added | |
1028 | * @tim: expiry time | |
1029 | * @delta_ns: "slack" range for the timer | |
8ffbc7d9 DD |
1030 | * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or |
1031 | * relative (HRTIMER_MODE_REL) | |
7f1e2ca9 PZ |
1032 | * |
1033 | * Returns: | |
1034 | * 0 on success | |
1035 | * 1 when the timer was active | |
1036 | */ | |
1037 | int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | |
1038 | unsigned long delta_ns, const enum hrtimer_mode mode) | |
1039 | { | |
1040 | return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); | |
1041 | } | |
da8f2e17 AV |
1042 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1043 | ||
1044 | /** | |
e1dd7bc5 | 1045 | * hrtimer_start - (re)start an hrtimer on the current CPU |
da8f2e17 AV |
1046 | * @timer: the timer to be added |
1047 | * @tim: expiry time | |
8ffbc7d9 DD |
1048 | * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or |
1049 | * relative (HRTIMER_MODE_REL) | |
da8f2e17 AV |
1050 | * |
1051 | * Returns: | |
1052 | * 0 on success | |
1053 | * 1 when the timer was active | |
1054 | */ | |
1055 | int | |
1056 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |
1057 | { | |
7f1e2ca9 | 1058 | return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); |
da8f2e17 | 1059 | } |
8d16b764 | 1060 | EXPORT_SYMBOL_GPL(hrtimer_start); |
c0a31329 | 1061 | |
da8f2e17 | 1062 | |
c0a31329 TG |
1063 | /** |
1064 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
1065 | * @timer: hrtimer to stop |
1066 | * | |
1067 | * Returns: | |
1068 | * 0 when the timer was not active | |
1069 | * 1 when the timer was active | |
1070 | * -1 when the timer is currently excuting the callback function and | |
fa9799e3 | 1071 | * cannot be stopped |
c0a31329 TG |
1072 | */ |
1073 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
1074 | { | |
3c8aa39d | 1075 | struct hrtimer_clock_base *base; |
c0a31329 TG |
1076 | unsigned long flags; |
1077 | int ret = -1; | |
1078 | ||
1079 | base = lock_hrtimer_base(timer, &flags); | |
1080 | ||
303e967f | 1081 | if (!hrtimer_callback_running(timer)) |
c0a31329 TG |
1082 | ret = remove_hrtimer(timer, base); |
1083 | ||
1084 | unlock_hrtimer_base(timer, &flags); | |
1085 | ||
1086 | return ret; | |
1087 | ||
1088 | } | |
8d16b764 | 1089 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 TG |
1090 | |
1091 | /** | |
1092 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
1093 | * @timer: the timer to be cancelled |
1094 | * | |
1095 | * Returns: | |
1096 | * 0 when the timer was not active | |
1097 | * 1 when the timer was active | |
1098 | */ | |
1099 | int hrtimer_cancel(struct hrtimer *timer) | |
1100 | { | |
1101 | for (;;) { | |
1102 | int ret = hrtimer_try_to_cancel(timer); | |
1103 | ||
1104 | if (ret >= 0) | |
1105 | return ret; | |
5ef37b19 | 1106 | cpu_relax(); |
c0a31329 TG |
1107 | } |
1108 | } | |
8d16b764 | 1109 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
1110 | |
1111 | /** | |
1112 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 TG |
1113 | * @timer: the timer to read |
1114 | */ | |
1115 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | |
1116 | { | |
c0a31329 TG |
1117 | unsigned long flags; |
1118 | ktime_t rem; | |
1119 | ||
b3bd3de6 | 1120 | lock_hrtimer_base(timer, &flags); |
cc584b21 | 1121 | rem = hrtimer_expires_remaining(timer); |
c0a31329 TG |
1122 | unlock_hrtimer_base(timer, &flags); |
1123 | ||
1124 | return rem; | |
1125 | } | |
8d16b764 | 1126 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
c0a31329 | 1127 | |
3451d024 | 1128 | #ifdef CONFIG_NO_HZ_COMMON |
69239749 TL |
1129 | /** |
1130 | * hrtimer_get_next_event - get the time until next expiry event | |
1131 | * | |
1132 | * Returns the delta to the next expiry event or KTIME_MAX if no timer | |
1133 | * is pending. | |
1134 | */ | |
1135 | ktime_t hrtimer_get_next_event(void) | |
1136 | { | |
3c8aa39d TG |
1137 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1138 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
69239749 TL |
1139 | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
1140 | unsigned long flags; | |
1141 | int i; | |
1142 | ||
ecb49d1a | 1143 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d | 1144 | |
54cdfdb4 TG |
1145 | if (!hrtimer_hres_active()) { |
1146 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
1147 | struct hrtimer *timer; | |
998adc3d | 1148 | struct timerqueue_node *next; |
69239749 | 1149 | |
998adc3d JS |
1150 | next = timerqueue_getnext(&base->active); |
1151 | if (!next) | |
54cdfdb4 | 1152 | continue; |
3c8aa39d | 1153 | |
998adc3d | 1154 | timer = container_of(next, struct hrtimer, node); |
cc584b21 | 1155 | delta.tv64 = hrtimer_get_expires_tv64(timer); |
54cdfdb4 TG |
1156 | delta = ktime_sub(delta, base->get_time()); |
1157 | if (delta.tv64 < mindelta.tv64) | |
1158 | mindelta.tv64 = delta.tv64; | |
1159 | } | |
69239749 | 1160 | } |
3c8aa39d | 1161 | |
ecb49d1a | 1162 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d | 1163 | |
69239749 TL |
1164 | if (mindelta.tv64 < 0) |
1165 | mindelta.tv64 = 0; | |
1166 | return mindelta; | |
1167 | } | |
1168 | #endif | |
1169 | ||
237fc6e7 TG |
1170 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1171 | enum hrtimer_mode mode) | |
c0a31329 | 1172 | { |
3c8aa39d | 1173 | struct hrtimer_cpu_base *cpu_base; |
e06383db | 1174 | int base; |
c0a31329 | 1175 | |
7978672c GA |
1176 | memset(timer, 0, sizeof(struct hrtimer)); |
1177 | ||
3c8aa39d | 1178 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
c0a31329 | 1179 | |
c9cb2e3d | 1180 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
7978672c GA |
1181 | clock_id = CLOCK_MONOTONIC; |
1182 | ||
e06383db JS |
1183 | base = hrtimer_clockid_to_base(clock_id); |
1184 | timer->base = &cpu_base->clock_base[base]; | |
998adc3d | 1185 | timerqueue_init(&timer->node); |
82f67cd9 IM |
1186 | |
1187 | #ifdef CONFIG_TIMER_STATS | |
1188 | timer->start_site = NULL; | |
1189 | timer->start_pid = -1; | |
1190 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
1191 | #endif | |
c0a31329 | 1192 | } |
237fc6e7 TG |
1193 | |
1194 | /** | |
1195 | * hrtimer_init - initialize a timer to the given clock | |
1196 | * @timer: the timer to be initialized | |
1197 | * @clock_id: the clock to be used | |
1198 | * @mode: timer mode abs/rel | |
1199 | */ | |
1200 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
1201 | enum hrtimer_mode mode) | |
1202 | { | |
c6a2a177 | 1203 | debug_init(timer, clock_id, mode); |
237fc6e7 TG |
1204 | __hrtimer_init(timer, clock_id, mode); |
1205 | } | |
8d16b764 | 1206 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 TG |
1207 | |
1208 | /** | |
1209 | * hrtimer_get_res - get the timer resolution for a clock | |
c0a31329 TG |
1210 | * @which_clock: which clock to query |
1211 | * @tp: pointer to timespec variable to store the resolution | |
1212 | * | |
72fd4a35 RD |
1213 | * Store the resolution of the clock selected by @which_clock in the |
1214 | * variable pointed to by @tp. | |
c0a31329 TG |
1215 | */ |
1216 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |
1217 | { | |
3c8aa39d | 1218 | struct hrtimer_cpu_base *cpu_base; |
e06383db | 1219 | int base = hrtimer_clockid_to_base(which_clock); |
c0a31329 | 1220 | |
3c8aa39d | 1221 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
e06383db | 1222 | *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); |
c0a31329 TG |
1223 | |
1224 | return 0; | |
1225 | } | |
8d16b764 | 1226 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
c0a31329 | 1227 | |
c6a2a177 | 1228 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
d3d74453 PZ |
1229 | { |
1230 | struct hrtimer_clock_base *base = timer->base; | |
1231 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | |
1232 | enum hrtimer_restart (*fn)(struct hrtimer *); | |
1233 | int restart; | |
1234 | ||
ca109491 PZ |
1235 | WARN_ON(!irqs_disabled()); |
1236 | ||
c6a2a177 | 1237 | debug_deactivate(timer); |
d3d74453 PZ |
1238 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1239 | timer_stats_account_hrtimer(timer); | |
d3d74453 | 1240 | fn = timer->function; |
ca109491 PZ |
1241 | |
1242 | /* | |
1243 | * Because we run timers from hardirq context, there is no chance | |
1244 | * they get migrated to another cpu, therefore its safe to unlock | |
1245 | * the timer base. | |
1246 | */ | |
ecb49d1a | 1247 | raw_spin_unlock(&cpu_base->lock); |
c6a2a177 | 1248 | trace_hrtimer_expire_entry(timer, now); |
ca109491 | 1249 | restart = fn(timer); |
c6a2a177 | 1250 | trace_hrtimer_expire_exit(timer); |
ecb49d1a | 1251 | raw_spin_lock(&cpu_base->lock); |
d3d74453 PZ |
1252 | |
1253 | /* | |
e3f1d883 TG |
1254 | * Note: We clear the CALLBACK bit after enqueue_hrtimer and |
1255 | * we do not reprogramm the event hardware. Happens either in | |
1256 | * hrtimer_start_range_ns() or in hrtimer_interrupt() | |
d3d74453 PZ |
1257 | */ |
1258 | if (restart != HRTIMER_NORESTART) { | |
1259 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | |
a6037b61 | 1260 | enqueue_hrtimer(timer, base); |
d3d74453 | 1261 | } |
f13d4f97 SQ |
1262 | |
1263 | WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); | |
1264 | ||
d3d74453 PZ |
1265 | timer->state &= ~HRTIMER_STATE_CALLBACK; |
1266 | } | |
1267 | ||
54cdfdb4 TG |
1268 | #ifdef CONFIG_HIGH_RES_TIMERS |
1269 | ||
1270 | /* | |
1271 | * High resolution timer interrupt | |
1272 | * Called with interrupts disabled | |
1273 | */ | |
1274 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1275 | { | |
1276 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
41d2e494 TG |
1277 | ktime_t expires_next, now, entry_time, delta; |
1278 | int i, retries = 0; | |
54cdfdb4 TG |
1279 | |
1280 | BUG_ON(!cpu_base->hres_active); | |
1281 | cpu_base->nr_events++; | |
1282 | dev->next_event.tv64 = KTIME_MAX; | |
1283 | ||
196951e9 | 1284 | raw_spin_lock(&cpu_base->lock); |
5baefd6d | 1285 | entry_time = now = hrtimer_update_base(cpu_base); |
41d2e494 | 1286 | retry: |
54cdfdb4 | 1287 | expires_next.tv64 = KTIME_MAX; |
6ff7041d TG |
1288 | /* |
1289 | * We set expires_next to KTIME_MAX here with cpu_base->lock | |
1290 | * held to prevent that a timer is enqueued in our queue via | |
1291 | * the migration code. This does not affect enqueueing of | |
1292 | * timers which run their callback and need to be requeued on | |
1293 | * this CPU. | |
1294 | */ | |
1295 | cpu_base->expires_next.tv64 = KTIME_MAX; | |
1296 | ||
54cdfdb4 | 1297 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ab8177bc | 1298 | struct hrtimer_clock_base *base; |
998adc3d | 1299 | struct timerqueue_node *node; |
ab8177bc TG |
1300 | ktime_t basenow; |
1301 | ||
1302 | if (!(cpu_base->active_bases & (1 << i))) | |
1303 | continue; | |
54cdfdb4 | 1304 | |
ab8177bc | 1305 | base = cpu_base->clock_base + i; |
54cdfdb4 TG |
1306 | basenow = ktime_add(now, base->offset); |
1307 | ||
998adc3d | 1308 | while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb4 TG |
1309 | struct hrtimer *timer; |
1310 | ||
998adc3d | 1311 | timer = container_of(node, struct hrtimer, node); |
54cdfdb4 | 1312 | |
654c8e0b AV |
1313 | /* |
1314 | * The immediate goal for using the softexpires is | |
1315 | * minimizing wakeups, not running timers at the | |
1316 | * earliest interrupt after their soft expiration. | |
1317 | * This allows us to avoid using a Priority Search | |
1318 | * Tree, which can answer a stabbing querry for | |
1319 | * overlapping intervals and instead use the simple | |
1320 | * BST we already have. | |
1321 | * We don't add extra wakeups by delaying timers that | |
1322 | * are right-of a not yet expired timer, because that | |
1323 | * timer will have to trigger a wakeup anyway. | |
1324 | */ | |
1325 | ||
1326 | if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { | |
54cdfdb4 TG |
1327 | ktime_t expires; |
1328 | ||
cc584b21 | 1329 | expires = ktime_sub(hrtimer_get_expires(timer), |
54cdfdb4 | 1330 | base->offset); |
8f294b5a PB |
1331 | if (expires.tv64 < 0) |
1332 | expires.tv64 = KTIME_MAX; | |
54cdfdb4 TG |
1333 | if (expires.tv64 < expires_next.tv64) |
1334 | expires_next = expires; | |
1335 | break; | |
1336 | } | |
1337 | ||
c6a2a177 | 1338 | __run_hrtimer(timer, &basenow); |
54cdfdb4 | 1339 | } |
54cdfdb4 TG |
1340 | } |
1341 | ||
6ff7041d TG |
1342 | /* |
1343 | * Store the new expiry value so the migration code can verify | |
1344 | * against it. | |
1345 | */ | |
54cdfdb4 | 1346 | cpu_base->expires_next = expires_next; |
ecb49d1a | 1347 | raw_spin_unlock(&cpu_base->lock); |
54cdfdb4 TG |
1348 | |
1349 | /* Reprogramming necessary ? */ | |
41d2e494 TG |
1350 | if (expires_next.tv64 == KTIME_MAX || |
1351 | !tick_program_event(expires_next, 0)) { | |
1352 | cpu_base->hang_detected = 0; | |
1353 | return; | |
54cdfdb4 | 1354 | } |
41d2e494 TG |
1355 | |
1356 | /* | |
1357 | * The next timer was already expired due to: | |
1358 | * - tracing | |
1359 | * - long lasting callbacks | |
1360 | * - being scheduled away when running in a VM | |
1361 | * | |
1362 | * We need to prevent that we loop forever in the hrtimer | |
1363 | * interrupt routine. We give it 3 attempts to avoid | |
1364 | * overreacting on some spurious event. | |
5baefd6d JS |
1365 | * |
1366 | * Acquire base lock for updating the offsets and retrieving | |
1367 | * the current time. | |
41d2e494 | 1368 | */ |
196951e9 | 1369 | raw_spin_lock(&cpu_base->lock); |
5baefd6d | 1370 | now = hrtimer_update_base(cpu_base); |
41d2e494 TG |
1371 | cpu_base->nr_retries++; |
1372 | if (++retries < 3) | |
1373 | goto retry; | |
1374 | /* | |
1375 | * Give the system a chance to do something else than looping | |
1376 | * here. We stored the entry time, so we know exactly how long | |
1377 | * we spent here. We schedule the next event this amount of | |
1378 | * time away. | |
1379 | */ | |
1380 | cpu_base->nr_hangs++; | |
1381 | cpu_base->hang_detected = 1; | |
196951e9 | 1382 | raw_spin_unlock(&cpu_base->lock); |
41d2e494 TG |
1383 | delta = ktime_sub(now, entry_time); |
1384 | if (delta.tv64 > cpu_base->max_hang_time.tv64) | |
1385 | cpu_base->max_hang_time = delta; | |
1386 | /* | |
1387 | * Limit it to a sensible value as we enforce a longer | |
1388 | * delay. Give the CPU at least 100ms to catch up. | |
1389 | */ | |
1390 | if (delta.tv64 > 100 * NSEC_PER_MSEC) | |
1391 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); | |
1392 | else | |
1393 | expires_next = ktime_add(now, delta); | |
1394 | tick_program_event(expires_next, 1); | |
1395 | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", | |
1396 | ktime_to_ns(delta)); | |
54cdfdb4 TG |
1397 | } |
1398 | ||
8bdec955 TG |
1399 | /* |
1400 | * local version of hrtimer_peek_ahead_timers() called with interrupts | |
1401 | * disabled. | |
1402 | */ | |
1403 | static void __hrtimer_peek_ahead_timers(void) | |
1404 | { | |
1405 | struct tick_device *td; | |
1406 | ||
1407 | if (!hrtimer_hres_active()) | |
1408 | return; | |
1409 | ||
1410 | td = &__get_cpu_var(tick_cpu_device); | |
1411 | if (td && td->evtdev) | |
1412 | hrtimer_interrupt(td->evtdev); | |
1413 | } | |
1414 | ||
2e94d1f7 AV |
1415 | /** |
1416 | * hrtimer_peek_ahead_timers -- run soft-expired timers now | |
1417 | * | |
1418 | * hrtimer_peek_ahead_timers will peek at the timer queue of | |
1419 | * the current cpu and check if there are any timers for which | |
1420 | * the soft expires time has passed. If any such timers exist, | |
1421 | * they are run immediately and then removed from the timer queue. | |
1422 | * | |
1423 | */ | |
1424 | void hrtimer_peek_ahead_timers(void) | |
1425 | { | |
643bdf68 | 1426 | unsigned long flags; |
dc4304f7 | 1427 | |
2e94d1f7 | 1428 | local_irq_save(flags); |
8bdec955 | 1429 | __hrtimer_peek_ahead_timers(); |
2e94d1f7 AV |
1430 | local_irq_restore(flags); |
1431 | } | |
1432 | ||
a6037b61 PZ |
1433 | static void run_hrtimer_softirq(struct softirq_action *h) |
1434 | { | |
f55a6faa JS |
1435 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1436 | ||
1437 | if (cpu_base->clock_was_set) { | |
1438 | cpu_base->clock_was_set = 0; | |
1439 | clock_was_set(); | |
1440 | } | |
1441 | ||
a6037b61 PZ |
1442 | hrtimer_peek_ahead_timers(); |
1443 | } | |
1444 | ||
82c5b7b5 IM |
1445 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1446 | ||
1447 | static inline void __hrtimer_peek_ahead_timers(void) { } | |
1448 | ||
1449 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | |
82f67cd9 | 1450 | |
d3d74453 PZ |
1451 | /* |
1452 | * Called from timer softirq every jiffy, expire hrtimers: | |
1453 | * | |
1454 | * For HRT its the fall back code to run the softirq in the timer | |
1455 | * softirq context in case the hrtimer initialization failed or has | |
1456 | * not been done yet. | |
1457 | */ | |
1458 | void hrtimer_run_pending(void) | |
1459 | { | |
d3d74453 PZ |
1460 | if (hrtimer_hres_active()) |
1461 | return; | |
54cdfdb4 | 1462 | |
d3d74453 PZ |
1463 | /* |
1464 | * This _is_ ugly: We have to check in the softirq context, | |
1465 | * whether we can switch to highres and / or nohz mode. The | |
1466 | * clocksource switch happens in the timer interrupt with | |
1467 | * xtime_lock held. Notification from there only sets the | |
1468 | * check bit in the tick_oneshot code, otherwise we might | |
1469 | * deadlock vs. xtime_lock. | |
1470 | */ | |
1471 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | |
1472 | hrtimer_switch_to_hres(); | |
54cdfdb4 TG |
1473 | } |
1474 | ||
c0a31329 | 1475 | /* |
d3d74453 | 1476 | * Called from hardirq context every jiffy |
c0a31329 | 1477 | */ |
833883d9 | 1478 | void hrtimer_run_queues(void) |
c0a31329 | 1479 | { |
998adc3d | 1480 | struct timerqueue_node *node; |
833883d9 DS |
1481 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1482 | struct hrtimer_clock_base *base; | |
1483 | int index, gettime = 1; | |
c0a31329 | 1484 | |
833883d9 | 1485 | if (hrtimer_hres_active()) |
3055adda DS |
1486 | return; |
1487 | ||
833883d9 DS |
1488 | for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { |
1489 | base = &cpu_base->clock_base[index]; | |
b007c389 | 1490 | if (!timerqueue_getnext(&base->active)) |
d3d74453 | 1491 | continue; |
833883d9 | 1492 | |
d7cfb60c | 1493 | if (gettime) { |
833883d9 DS |
1494 | hrtimer_get_softirq_time(cpu_base); |
1495 | gettime = 0; | |
b75f7a51 | 1496 | } |
d3d74453 | 1497 | |
ecb49d1a | 1498 | raw_spin_lock(&cpu_base->lock); |
c0a31329 | 1499 | |
b007c389 | 1500 | while ((node = timerqueue_getnext(&base->active))) { |
833883d9 | 1501 | struct hrtimer *timer; |
54cdfdb4 | 1502 | |
998adc3d | 1503 | timer = container_of(node, struct hrtimer, node); |
cc584b21 AV |
1504 | if (base->softirq_time.tv64 <= |
1505 | hrtimer_get_expires_tv64(timer)) | |
833883d9 DS |
1506 | break; |
1507 | ||
c6a2a177 | 1508 | __run_hrtimer(timer, &base->softirq_time); |
833883d9 | 1509 | } |
ecb49d1a | 1510 | raw_spin_unlock(&cpu_base->lock); |
833883d9 | 1511 | } |
c0a31329 TG |
1512 | } |
1513 | ||
10c94ec1 TG |
1514 | /* |
1515 | * Sleep related functions: | |
1516 | */ | |
c9cb2e3d | 1517 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1518 | { |
1519 | struct hrtimer_sleeper *t = | |
1520 | container_of(timer, struct hrtimer_sleeper, timer); | |
1521 | struct task_struct *task = t->task; | |
1522 | ||
1523 | t->task = NULL; | |
1524 | if (task) | |
1525 | wake_up_process(task); | |
1526 | ||
1527 | return HRTIMER_NORESTART; | |
1528 | } | |
1529 | ||
36c8b586 | 1530 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33 TG |
1531 | { |
1532 | sl->timer.function = hrtimer_wakeup; | |
1533 | sl->task = task; | |
1534 | } | |
2bc481cf | 1535 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33 | 1536 | |
669d7868 | 1537 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1538 | { |
669d7868 | 1539 | hrtimer_init_sleeper(t, current); |
10c94ec1 | 1540 | |
432569bb RZ |
1541 | do { |
1542 | set_current_state(TASK_INTERRUPTIBLE); | |
cc584b21 | 1543 | hrtimer_start_expires(&t->timer, mode); |
37bb6cb4 PZ |
1544 | if (!hrtimer_active(&t->timer)) |
1545 | t->task = NULL; | |
432569bb | 1546 | |
54cdfdb4 TG |
1547 | if (likely(t->task)) |
1548 | schedule(); | |
432569bb | 1549 | |
669d7868 | 1550 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1551 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1552 | |
1553 | } while (t->task && !signal_pending(current)); | |
432569bb | 1554 | |
3588a085 PZ |
1555 | __set_current_state(TASK_RUNNING); |
1556 | ||
669d7868 | 1557 | return t->task == NULL; |
10c94ec1 TG |
1558 | } |
1559 | ||
080344b9 ON |
1560 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) |
1561 | { | |
1562 | struct timespec rmt; | |
1563 | ktime_t rem; | |
1564 | ||
cc584b21 | 1565 | rem = hrtimer_expires_remaining(timer); |
080344b9 ON |
1566 | if (rem.tv64 <= 0) |
1567 | return 0; | |
1568 | rmt = ktime_to_timespec(rem); | |
1569 | ||
1570 | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | |
1571 | return -EFAULT; | |
1572 | ||
1573 | return 1; | |
1574 | } | |
1575 | ||
1711ef38 | 1576 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1577 | { |
669d7868 | 1578 | struct hrtimer_sleeper t; |
080344b9 | 1579 | struct timespec __user *rmtp; |
237fc6e7 | 1580 | int ret = 0; |
10c94ec1 | 1581 | |
ab8177bc | 1582 | hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, |
237fc6e7 | 1583 | HRTIMER_MODE_ABS); |
cc584b21 | 1584 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
10c94ec1 | 1585 | |
c9cb2e3d | 1586 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
237fc6e7 | 1587 | goto out; |
10c94ec1 | 1588 | |
029a07e0 | 1589 | rmtp = restart->nanosleep.rmtp; |
432569bb | 1590 | if (rmtp) { |
237fc6e7 | 1591 | ret = update_rmtp(&t.timer, rmtp); |
080344b9 | 1592 | if (ret <= 0) |
237fc6e7 | 1593 | goto out; |
432569bb | 1594 | } |
10c94ec1 | 1595 | |
10c94ec1 | 1596 | /* The other values in restart are already filled in */ |
237fc6e7 TG |
1597 | ret = -ERESTART_RESTARTBLOCK; |
1598 | out: | |
1599 | destroy_hrtimer_on_stack(&t.timer); | |
1600 | return ret; | |
10c94ec1 TG |
1601 | } |
1602 | ||
080344b9 | 1603 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
10c94ec1 TG |
1604 | const enum hrtimer_mode mode, const clockid_t clockid) |
1605 | { | |
1606 | struct restart_block *restart; | |
669d7868 | 1607 | struct hrtimer_sleeper t; |
237fc6e7 | 1608 | int ret = 0; |
3bd01206 AV |
1609 | unsigned long slack; |
1610 | ||
1611 | slack = current->timer_slack_ns; | |
1612 | if (rt_task(current)) | |
1613 | slack = 0; | |
10c94ec1 | 1614 | |
237fc6e7 | 1615 | hrtimer_init_on_stack(&t.timer, clockid, mode); |
3bd01206 | 1616 | hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); |
432569bb | 1617 | if (do_nanosleep(&t, mode)) |
237fc6e7 | 1618 | goto out; |
10c94ec1 | 1619 | |
7978672c | 1620 | /* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7 TG |
1621 | if (mode == HRTIMER_MODE_ABS) { |
1622 | ret = -ERESTARTNOHAND; | |
1623 | goto out; | |
1624 | } | |
10c94ec1 | 1625 | |
432569bb | 1626 | if (rmtp) { |
237fc6e7 | 1627 | ret = update_rmtp(&t.timer, rmtp); |
080344b9 | 1628 | if (ret <= 0) |
237fc6e7 | 1629 | goto out; |
432569bb | 1630 | } |
10c94ec1 TG |
1631 | |
1632 | restart = ¤t_thread_info()->restart_block; | |
1711ef38 | 1633 | restart->fn = hrtimer_nanosleep_restart; |
ab8177bc | 1634 | restart->nanosleep.clockid = t.timer.base->clockid; |
029a07e0 | 1635 | restart->nanosleep.rmtp = rmtp; |
cc584b21 | 1636 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
10c94ec1 | 1637 | |
237fc6e7 TG |
1638 | ret = -ERESTART_RESTARTBLOCK; |
1639 | out: | |
1640 | destroy_hrtimer_on_stack(&t.timer); | |
1641 | return ret; | |
10c94ec1 TG |
1642 | } |
1643 | ||
58fd3aa2 HC |
1644 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, |
1645 | struct timespec __user *, rmtp) | |
6ba1b912 | 1646 | { |
080344b9 | 1647 | struct timespec tu; |
6ba1b912 TG |
1648 | |
1649 | if (copy_from_user(&tu, rqtp, sizeof(tu))) | |
1650 | return -EFAULT; | |
1651 | ||
1652 | if (!timespec_valid(&tu)) | |
1653 | return -EINVAL; | |
1654 | ||
080344b9 | 1655 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b912 TG |
1656 | } |
1657 | ||
c0a31329 TG |
1658 | /* |
1659 | * Functions related to boot-time initialization: | |
1660 | */ | |
0ec160dd | 1661 | static void __cpuinit init_hrtimers_cpu(int cpu) |
c0a31329 | 1662 | { |
3c8aa39d | 1663 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1664 | int i; |
1665 | ||
998adc3d | 1666 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d | 1667 | cpu_base->clock_base[i].cpu_base = cpu_base; |
998adc3d JS |
1668 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
1669 | } | |
3c8aa39d | 1670 | |
54cdfdb4 | 1671 | hrtimer_init_hres(cpu_base); |
c0a31329 TG |
1672 | } |
1673 | ||
1674 | #ifdef CONFIG_HOTPLUG_CPU | |
1675 | ||
ca109491 | 1676 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659 | 1677 | struct hrtimer_clock_base *new_base) |
c0a31329 TG |
1678 | { |
1679 | struct hrtimer *timer; | |
998adc3d | 1680 | struct timerqueue_node *node; |
c0a31329 | 1681 | |
998adc3d JS |
1682 | while ((node = timerqueue_getnext(&old_base->active))) { |
1683 | timer = container_of(node, struct hrtimer, node); | |
54cdfdb4 | 1684 | BUG_ON(hrtimer_callback_running(timer)); |
c6a2a177 | 1685 | debug_deactivate(timer); |
b00c1a99 TG |
1686 | |
1687 | /* | |
1688 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | |
1689 | * timer could be seen as !active and just vanish away | |
1690 | * under us on another CPU | |
1691 | */ | |
1692 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); | |
c0a31329 | 1693 | timer->base = new_base; |
54cdfdb4 | 1694 | /* |
e3f1d883 TG |
1695 | * Enqueue the timers on the new cpu. This does not |
1696 | * reprogram the event device in case the timer | |
1697 | * expires before the earliest on this CPU, but we run | |
1698 | * hrtimer_interrupt after we migrated everything to | |
1699 | * sort out already expired timers and reprogram the | |
1700 | * event device. | |
54cdfdb4 | 1701 | */ |
a6037b61 | 1702 | enqueue_hrtimer(timer, new_base); |
41e1022e | 1703 | |
b00c1a99 TG |
1704 | /* Clear the migration state bit */ |
1705 | timer->state &= ~HRTIMER_STATE_MIGRATE; | |
c0a31329 TG |
1706 | } |
1707 | } | |
1708 | ||
d5fd43c4 | 1709 | static void migrate_hrtimers(int scpu) |
c0a31329 | 1710 | { |
3c8aa39d | 1711 | struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba | 1712 | int i; |
c0a31329 | 1713 | |
37810659 | 1714 | BUG_ON(cpu_online(scpu)); |
37810659 | 1715 | tick_cancel_sched_timer(scpu); |
731a55ba TG |
1716 | |
1717 | local_irq_disable(); | |
1718 | old_base = &per_cpu(hrtimer_bases, scpu); | |
1719 | new_base = &__get_cpu_var(hrtimer_bases); | |
d82f0b0f ON |
1720 | /* |
1721 | * The caller is globally serialized and nobody else | |
1722 | * takes two locks at once, deadlock is not possible. | |
1723 | */ | |
ecb49d1a TG |
1724 | raw_spin_lock(&new_base->lock); |
1725 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
c0a31329 | 1726 | |
3c8aa39d | 1727 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491 | 1728 | migrate_hrtimer_list(&old_base->clock_base[i], |
37810659 | 1729 | &new_base->clock_base[i]); |
c0a31329 TG |
1730 | } |
1731 | ||
ecb49d1a TG |
1732 | raw_spin_unlock(&old_base->lock); |
1733 | raw_spin_unlock(&new_base->lock); | |
37810659 | 1734 | |
731a55ba TG |
1735 | /* Check, if we got expired work to do */ |
1736 | __hrtimer_peek_ahead_timers(); | |
1737 | local_irq_enable(); | |
c0a31329 | 1738 | } |
37810659 | 1739 | |
c0a31329 TG |
1740 | #endif /* CONFIG_HOTPLUG_CPU */ |
1741 | ||
8c78f307 | 1742 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
c0a31329 TG |
1743 | unsigned long action, void *hcpu) |
1744 | { | |
b2e3c0ad | 1745 | int scpu = (long)hcpu; |
c0a31329 TG |
1746 | |
1747 | switch (action) { | |
1748 | ||
1749 | case CPU_UP_PREPARE: | |
8bb78442 | 1750 | case CPU_UP_PREPARE_FROZEN: |
37810659 | 1751 | init_hrtimers_cpu(scpu); |
c0a31329 TG |
1752 | break; |
1753 | ||
1754 | #ifdef CONFIG_HOTPLUG_CPU | |
94df7de0 SD |
1755 | case CPU_DYING: |
1756 | case CPU_DYING_FROZEN: | |
1757 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); | |
1758 | break; | |
c0a31329 | 1759 | case CPU_DEAD: |
8bb78442 | 1760 | case CPU_DEAD_FROZEN: |
b2e3c0ad | 1761 | { |
37810659 | 1762 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); |
d5fd43c4 | 1763 | migrate_hrtimers(scpu); |
c0a31329 | 1764 | break; |
b2e3c0ad | 1765 | } |
c0a31329 TG |
1766 | #endif |
1767 | ||
1768 | default: | |
1769 | break; | |
1770 | } | |
1771 | ||
1772 | return NOTIFY_OK; | |
1773 | } | |
1774 | ||
8c78f307 | 1775 | static struct notifier_block __cpuinitdata hrtimers_nb = { |
c0a31329 TG |
1776 | .notifier_call = hrtimer_cpu_notify, |
1777 | }; | |
1778 | ||
1779 | void __init hrtimers_init(void) | |
1780 | { | |
1781 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | |
1782 | (void *)(long)smp_processor_id()); | |
1783 | register_cpu_notifier(&hrtimers_nb); | |
a6037b61 PZ |
1784 | #ifdef CONFIG_HIGH_RES_TIMERS |
1785 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); | |
1786 | #endif | |
c0a31329 TG |
1787 | } |
1788 | ||
7bb67439 | 1789 | /** |
351b3f7a | 1790 | * schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439 | 1791 | * @expires: timeout value (ktime_t) |
654c8e0b | 1792 | * @delta: slack in expires timeout (ktime_t) |
7bb67439 | 1793 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
351b3f7a | 1794 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
7bb67439 | 1795 | */ |
351b3f7a CE |
1796 | int __sched |
1797 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, | |
1798 | const enum hrtimer_mode mode, int clock) | |
7bb67439 AV |
1799 | { |
1800 | struct hrtimer_sleeper t; | |
1801 | ||
1802 | /* | |
1803 | * Optimize when a zero timeout value is given. It does not | |
1804 | * matter whether this is an absolute or a relative time. | |
1805 | */ | |
1806 | if (expires && !expires->tv64) { | |
1807 | __set_current_state(TASK_RUNNING); | |
1808 | return 0; | |
1809 | } | |
1810 | ||
1811 | /* | |
43b21013 | 1812 | * A NULL parameter means "infinite" |
7bb67439 AV |
1813 | */ |
1814 | if (!expires) { | |
1815 | schedule(); | |
1816 | __set_current_state(TASK_RUNNING); | |
1817 | return -EINTR; | |
1818 | } | |
1819 | ||
351b3f7a | 1820 | hrtimer_init_on_stack(&t.timer, clock, mode); |
654c8e0b | 1821 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
7bb67439 AV |
1822 | |
1823 | hrtimer_init_sleeper(&t, current); | |
1824 | ||
cc584b21 | 1825 | hrtimer_start_expires(&t.timer, mode); |
7bb67439 AV |
1826 | if (!hrtimer_active(&t.timer)) |
1827 | t.task = NULL; | |
1828 | ||
1829 | if (likely(t.task)) | |
1830 | schedule(); | |
1831 | ||
1832 | hrtimer_cancel(&t.timer); | |
1833 | destroy_hrtimer_on_stack(&t.timer); | |
1834 | ||
1835 | __set_current_state(TASK_RUNNING); | |
1836 | ||
1837 | return !t.task ? 0 : -EINTR; | |
1838 | } | |
351b3f7a CE |
1839 | |
1840 | /** | |
1841 | * schedule_hrtimeout_range - sleep until timeout | |
1842 | * @expires: timeout value (ktime_t) | |
1843 | * @delta: slack in expires timeout (ktime_t) | |
1844 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | |
1845 | * | |
1846 | * Make the current task sleep until the given expiry time has | |
1847 | * elapsed. The routine will return immediately unless | |
1848 | * the current task state has been set (see set_current_state()). | |
1849 | * | |
1850 | * The @delta argument gives the kernel the freedom to schedule the | |
1851 | * actual wakeup to a time that is both power and performance friendly. | |
1852 | * The kernel give the normal best effort behavior for "@expires+@delta", | |
1853 | * but may decide to fire the timer earlier, but no earlier than @expires. | |
1854 | * | |
1855 | * You can set the task state as follows - | |
1856 | * | |
1857 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
1858 | * pass before the routine returns. | |
1859 | * | |
1860 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1861 | * delivered to the current task. | |
1862 | * | |
1863 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1864 | * routine returns. | |
1865 | * | |
1866 | * Returns 0 when the timer has expired otherwise -EINTR | |
1867 | */ | |
1868 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |
1869 | const enum hrtimer_mode mode) | |
1870 | { | |
1871 | return schedule_hrtimeout_range_clock(expires, delta, mode, | |
1872 | CLOCK_MONOTONIC); | |
1873 | } | |
654c8e0b AV |
1874 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1875 | ||
1876 | /** | |
1877 | * schedule_hrtimeout - sleep until timeout | |
1878 | * @expires: timeout value (ktime_t) | |
1879 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | |
1880 | * | |
1881 | * Make the current task sleep until the given expiry time has | |
1882 | * elapsed. The routine will return immediately unless | |
1883 | * the current task state has been set (see set_current_state()). | |
1884 | * | |
1885 | * You can set the task state as follows - | |
1886 | * | |
1887 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
1888 | * pass before the routine returns. | |
1889 | * | |
1890 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1891 | * delivered to the current task. | |
1892 | * | |
1893 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1894 | * routine returns. | |
1895 | * | |
1896 | * Returns 0 when the timer has expired otherwise -EINTR | |
1897 | */ | |
1898 | int __sched schedule_hrtimeout(ktime_t *expires, | |
1899 | const enum hrtimer_mode mode) | |
1900 | { | |
1901 | return schedule_hrtimeout_range(expires, 0, mode); | |
1902 | } | |
7bb67439 | 1903 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |