]>
Commit | Line | Data |
---|---|---|
4c7ee8de | 1 | /* |
4c7ee8de JS |
2 | * NTP state machine interfaces and logic. |
3 | * | |
4 | * This code was mainly moved from kernel/timer.c and kernel/time.c | |
5 | * Please see those files for relevant copyright info and historical | |
6 | * changelogs. | |
7 | */ | |
aa0ac365 | 8 | #include <linux/capability.h> |
7dffa3c6 | 9 | #include <linux/clocksource.h> |
eb3f938f | 10 | #include <linux/workqueue.h> |
53bbfa9e IM |
11 | #include <linux/hrtimer.h> |
12 | #include <linux/jiffies.h> | |
13 | #include <linux/math64.h> | |
14 | #include <linux/timex.h> | |
15 | #include <linux/time.h> | |
16 | #include <linux/mm.h> | |
025b40ab | 17 | #include <linux/module.h> |
023f333a | 18 | #include <linux/rtc.h> |
4c7ee8de | 19 | |
e2830b5c | 20 | #include "tick-internal.h" |
aa6f9c59 | 21 | #include "ntp_internal.h" |
e2830b5c | 22 | |
b0ee7556 | 23 | /* |
53bbfa9e | 24 | * NTP timekeeping variables: |
a076b214 JS |
25 | * |
26 | * Note: All of the NTP state is protected by the timekeeping locks. | |
b0ee7556 | 27 | */ |
b0ee7556 | 28 | |
bd331268 | 29 | |
53bbfa9e IM |
30 | /* USER_HZ period (usecs): */ |
31 | unsigned long tick_usec = TICK_USEC; | |
32 | ||
02ab20ae | 33 | /* SHIFTED_HZ period (nsecs): */ |
53bbfa9e | 34 | unsigned long tick_nsec; |
7dffa3c6 | 35 | |
ea7cf49a | 36 | static u64 tick_length; |
53bbfa9e IM |
37 | static u64 tick_length_base; |
38 | ||
bbd12676 | 39 | #define MAX_TICKADJ 500LL /* usecs */ |
53bbfa9e | 40 | #define MAX_TICKADJ_SCALED \ |
bbd12676 | 41 | (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) |
4c7ee8de JS |
42 | |
43 | /* | |
44 | * phase-lock loop variables | |
45 | */ | |
53bbfa9e IM |
46 | |
47 | /* | |
48 | * clock synchronization status | |
49 | * | |
50 | * (TIME_ERROR prevents overwriting the CMOS clock) | |
51 | */ | |
52 | static int time_state = TIME_OK; | |
53 | ||
54 | /* clock status bits: */ | |
8357929e | 55 | static int time_status = STA_UNSYNC; |
53bbfa9e | 56 | |
53bbfa9e IM |
57 | /* time adjustment (nsecs): */ |
58 | static s64 time_offset; | |
59 | ||
60 | /* pll time constant: */ | |
61 | static long time_constant = 2; | |
62 | ||
63 | /* maximum error (usecs): */ | |
1f5b8f8a | 64 | static long time_maxerror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
65 | |
66 | /* estimated error (usecs): */ | |
1f5b8f8a | 67 | static long time_esterror = NTP_PHASE_LIMIT; |
53bbfa9e IM |
68 | |
69 | /* frequency offset (scaled nsecs/secs): */ | |
70 | static s64 time_freq; | |
71 | ||
72 | /* time at last adjustment (secs): */ | |
73 | static long time_reftime; | |
74 | ||
e1292ba1 | 75 | static long time_adjust; |
53bbfa9e | 76 | |
069569e0 IM |
77 | /* constant (boot-param configurable) NTP tick adjustment (upscaled) */ |
78 | static s64 ntp_tick_adj; | |
53bbfa9e | 79 | |
025b40ab AG |
80 | #ifdef CONFIG_NTP_PPS |
81 | ||
82 | /* | |
83 | * The following variables are used when a pulse-per-second (PPS) signal | |
84 | * is available. They establish the engineering parameters of the clock | |
85 | * discipline loop when controlled by the PPS signal. | |
86 | */ | |
87 | #define PPS_VALID 10 /* PPS signal watchdog max (s) */ | |
88 | #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ | |
89 | #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ | |
90 | #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ | |
91 | #define PPS_INTCOUNT 4 /* number of consecutive good intervals to | |
92 | increase pps_shift or consecutive bad | |
93 | intervals to decrease it */ | |
94 | #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ | |
95 | ||
96 | static int pps_valid; /* signal watchdog counter */ | |
97 | static long pps_tf[3]; /* phase median filter */ | |
98 | static long pps_jitter; /* current jitter (ns) */ | |
99 | static struct timespec pps_fbase; /* beginning of the last freq interval */ | |
100 | static int pps_shift; /* current interval duration (s) (shift) */ | |
101 | static int pps_intcnt; /* interval counter */ | |
102 | static s64 pps_freq; /* frequency offset (scaled ns/s) */ | |
103 | static long pps_stabil; /* current stability (scaled ns/s) */ | |
104 | ||
105 | /* | |
106 | * PPS signal quality monitors | |
107 | */ | |
108 | static long pps_calcnt; /* calibration intervals */ | |
109 | static long pps_jitcnt; /* jitter limit exceeded */ | |
110 | static long pps_stbcnt; /* stability limit exceeded */ | |
111 | static long pps_errcnt; /* calibration errors */ | |
112 | ||
113 | ||
114 | /* PPS kernel consumer compensates the whole phase error immediately. | |
115 | * Otherwise, reduce the offset by a fixed factor times the time constant. | |
116 | */ | |
117 | static inline s64 ntp_offset_chunk(s64 offset) | |
118 | { | |
119 | if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) | |
120 | return offset; | |
121 | else | |
122 | return shift_right(offset, SHIFT_PLL + time_constant); | |
123 | } | |
124 | ||
125 | static inline void pps_reset_freq_interval(void) | |
126 | { | |
127 | /* the PPS calibration interval may end | |
128 | surprisingly early */ | |
129 | pps_shift = PPS_INTMIN; | |
130 | pps_intcnt = 0; | |
131 | } | |
132 | ||
133 | /** | |
134 | * pps_clear - Clears the PPS state variables | |
025b40ab AG |
135 | */ |
136 | static inline void pps_clear(void) | |
137 | { | |
138 | pps_reset_freq_interval(); | |
139 | pps_tf[0] = 0; | |
140 | pps_tf[1] = 0; | |
141 | pps_tf[2] = 0; | |
142 | pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; | |
143 | pps_freq = 0; | |
144 | } | |
145 | ||
146 | /* Decrease pps_valid to indicate that another second has passed since | |
147 | * the last PPS signal. When it reaches 0, indicate that PPS signal is | |
148 | * missing. | |
025b40ab AG |
149 | */ |
150 | static inline void pps_dec_valid(void) | |
151 | { | |
152 | if (pps_valid > 0) | |
153 | pps_valid--; | |
154 | else { | |
155 | time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | | |
156 | STA_PPSWANDER | STA_PPSERROR); | |
157 | pps_clear(); | |
158 | } | |
159 | } | |
160 | ||
161 | static inline void pps_set_freq(s64 freq) | |
162 | { | |
163 | pps_freq = freq; | |
164 | } | |
165 | ||
166 | static inline int is_error_status(int status) | |
167 | { | |
168 | return (time_status & (STA_UNSYNC|STA_CLOCKERR)) | |
169 | /* PPS signal lost when either PPS time or | |
170 | * PPS frequency synchronization requested | |
171 | */ | |
172 | || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) | |
173 | && !(time_status & STA_PPSSIGNAL)) | |
174 | /* PPS jitter exceeded when | |
175 | * PPS time synchronization requested */ | |
176 | || ((time_status & (STA_PPSTIME|STA_PPSJITTER)) | |
177 | == (STA_PPSTIME|STA_PPSJITTER)) | |
178 | /* PPS wander exceeded or calibration error when | |
179 | * PPS frequency synchronization requested | |
180 | */ | |
181 | || ((time_status & STA_PPSFREQ) | |
182 | && (time_status & (STA_PPSWANDER|STA_PPSERROR))); | |
183 | } | |
184 | ||
185 | static inline void pps_fill_timex(struct timex *txc) | |
186 | { | |
187 | txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * | |
188 | PPM_SCALE_INV, NTP_SCALE_SHIFT); | |
189 | txc->jitter = pps_jitter; | |
190 | if (!(time_status & STA_NANO)) | |
191 | txc->jitter /= NSEC_PER_USEC; | |
192 | txc->shift = pps_shift; | |
193 | txc->stabil = pps_stabil; | |
194 | txc->jitcnt = pps_jitcnt; | |
195 | txc->calcnt = pps_calcnt; | |
196 | txc->errcnt = pps_errcnt; | |
197 | txc->stbcnt = pps_stbcnt; | |
198 | } | |
199 | ||
200 | #else /* !CONFIG_NTP_PPS */ | |
201 | ||
202 | static inline s64 ntp_offset_chunk(s64 offset) | |
203 | { | |
204 | return shift_right(offset, SHIFT_PLL + time_constant); | |
205 | } | |
206 | ||
207 | static inline void pps_reset_freq_interval(void) {} | |
208 | static inline void pps_clear(void) {} | |
209 | static inline void pps_dec_valid(void) {} | |
210 | static inline void pps_set_freq(s64 freq) {} | |
211 | ||
212 | static inline int is_error_status(int status) | |
213 | { | |
214 | return status & (STA_UNSYNC|STA_CLOCKERR); | |
215 | } | |
216 | ||
217 | static inline void pps_fill_timex(struct timex *txc) | |
218 | { | |
219 | /* PPS is not implemented, so these are zero */ | |
220 | txc->ppsfreq = 0; | |
221 | txc->jitter = 0; | |
222 | txc->shift = 0; | |
223 | txc->stabil = 0; | |
224 | txc->jitcnt = 0; | |
225 | txc->calcnt = 0; | |
226 | txc->errcnt = 0; | |
227 | txc->stbcnt = 0; | |
228 | } | |
229 | ||
230 | #endif /* CONFIG_NTP_PPS */ | |
231 | ||
8357929e JS |
232 | |
233 | /** | |
234 | * ntp_synced - Returns 1 if the NTP status is not UNSYNC | |
235 | * | |
236 | */ | |
237 | static inline int ntp_synced(void) | |
238 | { | |
239 | return !(time_status & STA_UNSYNC); | |
240 | } | |
241 | ||
242 | ||
53bbfa9e IM |
243 | /* |
244 | * NTP methods: | |
245 | */ | |
4c7ee8de | 246 | |
9ce616aa IM |
247 | /* |
248 | * Update (tick_length, tick_length_base, tick_nsec), based | |
249 | * on (tick_usec, ntp_tick_adj, time_freq): | |
250 | */ | |
70bc42f9 AB |
251 | static void ntp_update_frequency(void) |
252 | { | |
9ce616aa | 253 | u64 second_length; |
bc26c31d | 254 | u64 new_base; |
9ce616aa IM |
255 | |
256 | second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) | |
257 | << NTP_SCALE_SHIFT; | |
258 | ||
069569e0 | 259 | second_length += ntp_tick_adj; |
9ce616aa | 260 | second_length += time_freq; |
70bc42f9 | 261 | |
9ce616aa | 262 | tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT; |
bc26c31d | 263 | new_base = div_u64(second_length, NTP_INTERVAL_FREQ); |
fdcedf7b JS |
264 | |
265 | /* | |
266 | * Don't wait for the next second_overflow, apply | |
bc26c31d | 267 | * the change to the tick length immediately: |
fdcedf7b | 268 | */ |
bc26c31d IM |
269 | tick_length += new_base - tick_length_base; |
270 | tick_length_base = new_base; | |
70bc42f9 AB |
271 | } |
272 | ||
478b7aab | 273 | static inline s64 ntp_update_offset_fll(s64 offset64, long secs) |
f939890b IM |
274 | { |
275 | time_status &= ~STA_MODE; | |
276 | ||
277 | if (secs < MINSEC) | |
478b7aab | 278 | return 0; |
f939890b IM |
279 | |
280 | if (!(time_status & STA_FLL) && (secs <= MAXSEC)) | |
478b7aab | 281 | return 0; |
f939890b | 282 | |
f939890b IM |
283 | time_status |= STA_MODE; |
284 | ||
a078c6d0 | 285 | return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); |
f939890b IM |
286 | } |
287 | ||
ee9851b2 RZ |
288 | static void ntp_update_offset(long offset) |
289 | { | |
ee9851b2 | 290 | s64 freq_adj; |
f939890b IM |
291 | s64 offset64; |
292 | long secs; | |
ee9851b2 RZ |
293 | |
294 | if (!(time_status & STA_PLL)) | |
295 | return; | |
296 | ||
eea83d89 | 297 | if (!(time_status & STA_NANO)) |
9f14f669 | 298 | offset *= NSEC_PER_USEC; |
ee9851b2 RZ |
299 | |
300 | /* | |
301 | * Scale the phase adjustment and | |
302 | * clamp to the operating range. | |
303 | */ | |
9f14f669 RZ |
304 | offset = min(offset, MAXPHASE); |
305 | offset = max(offset, -MAXPHASE); | |
ee9851b2 RZ |
306 | |
307 | /* | |
308 | * Select how the frequency is to be controlled | |
309 | * and in which mode (PLL or FLL). | |
310 | */ | |
7e1b5847 | 311 | secs = get_seconds() - time_reftime; |
10dd31a7 | 312 | if (unlikely(time_status & STA_FREQHOLD)) |
c7986acb IM |
313 | secs = 0; |
314 | ||
7e1b5847 | 315 | time_reftime = get_seconds(); |
ee9851b2 | 316 | |
f939890b | 317 | offset64 = offset; |
8af3c153 | 318 | freq_adj = ntp_update_offset_fll(offset64, secs); |
f939890b | 319 | |
8af3c153 ML |
320 | /* |
321 | * Clamp update interval to reduce PLL gain with low | |
322 | * sampling rate (e.g. intermittent network connection) | |
323 | * to avoid instability. | |
324 | */ | |
325 | if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant))) | |
326 | secs = 1 << (SHIFT_PLL + 1 + time_constant); | |
327 | ||
328 | freq_adj += (offset64 * secs) << | |
329 | (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant)); | |
f939890b IM |
330 | |
331 | freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED); | |
332 | ||
333 | time_freq = max(freq_adj, -MAXFREQ_SCALED); | |
334 | ||
335 | time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); | |
ee9851b2 RZ |
336 | } |
337 | ||
b0ee7556 RZ |
338 | /** |
339 | * ntp_clear - Clears the NTP state variables | |
b0ee7556 RZ |
340 | */ |
341 | void ntp_clear(void) | |
342 | { | |
53bbfa9e IM |
343 | time_adjust = 0; /* stop active adjtime() */ |
344 | time_status |= STA_UNSYNC; | |
345 | time_maxerror = NTP_PHASE_LIMIT; | |
346 | time_esterror = NTP_PHASE_LIMIT; | |
b0ee7556 RZ |
347 | |
348 | ntp_update_frequency(); | |
349 | ||
53bbfa9e IM |
350 | tick_length = tick_length_base; |
351 | time_offset = 0; | |
025b40ab AG |
352 | |
353 | /* Clear PPS state variables */ | |
354 | pps_clear(); | |
b0ee7556 RZ |
355 | } |
356 | ||
ea7cf49a JS |
357 | |
358 | u64 ntp_tick_length(void) | |
359 | { | |
a076b214 | 360 | return tick_length; |
ea7cf49a JS |
361 | } |
362 | ||
363 | ||
4c7ee8de | 364 | /* |
6b43ae8a JS |
365 | * this routine handles the overflow of the microsecond field |
366 | * | |
367 | * The tricky bits of code to handle the accurate clock support | |
368 | * were provided by Dave Mills ([email protected]) of NTP fame. | |
369 | * They were originally developed for SUN and DEC kernels. | |
370 | * All the kudos should go to Dave for this stuff. | |
371 | * | |
372 | * Also handles leap second processing, and returns leap offset | |
4c7ee8de | 373 | */ |
6b43ae8a | 374 | int second_overflow(unsigned long secs) |
4c7ee8de | 375 | { |
6b43ae8a | 376 | s64 delta; |
bd331268 | 377 | int leap = 0; |
6b43ae8a JS |
378 | |
379 | /* | |
380 | * Leap second processing. If in leap-insert state at the end of the | |
381 | * day, the system clock is set back one second; if in leap-delete | |
382 | * state, the system clock is set ahead one second. | |
383 | */ | |
4c7ee8de JS |
384 | switch (time_state) { |
385 | case TIME_OK: | |
6b43ae8a JS |
386 | if (time_status & STA_INS) |
387 | time_state = TIME_INS; | |
388 | else if (time_status & STA_DEL) | |
389 | time_state = TIME_DEL; | |
4c7ee8de JS |
390 | break; |
391 | case TIME_INS: | |
6b1859db JS |
392 | if (!(time_status & STA_INS)) |
393 | time_state = TIME_OK; | |
394 | else if (secs % 86400 == 0) { | |
6b43ae8a JS |
395 | leap = -1; |
396 | time_state = TIME_OOP; | |
397 | printk(KERN_NOTICE | |
398 | "Clock: inserting leap second 23:59:60 UTC\n"); | |
399 | } | |
4c7ee8de JS |
400 | break; |
401 | case TIME_DEL: | |
6b1859db JS |
402 | if (!(time_status & STA_DEL)) |
403 | time_state = TIME_OK; | |
404 | else if ((secs + 1) % 86400 == 0) { | |
6b43ae8a | 405 | leap = 1; |
6b43ae8a JS |
406 | time_state = TIME_WAIT; |
407 | printk(KERN_NOTICE | |
408 | "Clock: deleting leap second 23:59:59 UTC\n"); | |
409 | } | |
4c7ee8de JS |
410 | break; |
411 | case TIME_OOP: | |
412 | time_state = TIME_WAIT; | |
6b43ae8a JS |
413 | break; |
414 | ||
4c7ee8de JS |
415 | case TIME_WAIT: |
416 | if (!(time_status & (STA_INS | STA_DEL))) | |
ee9851b2 | 417 | time_state = TIME_OK; |
7dffa3c6 RZ |
418 | break; |
419 | } | |
bd331268 | 420 | |
7dffa3c6 RZ |
421 | |
422 | /* Bump the maxerror field */ | |
423 | time_maxerror += MAXFREQ / NSEC_PER_USEC; | |
424 | if (time_maxerror > NTP_PHASE_LIMIT) { | |
425 | time_maxerror = NTP_PHASE_LIMIT; | |
426 | time_status |= STA_UNSYNC; | |
4c7ee8de JS |
427 | } |
428 | ||
025b40ab | 429 | /* Compute the phase adjustment for the next second */ |
39854fe8 IM |
430 | tick_length = tick_length_base; |
431 | ||
025b40ab | 432 | delta = ntp_offset_chunk(time_offset); |
39854fe8 IM |
433 | time_offset -= delta; |
434 | tick_length += delta; | |
4c7ee8de | 435 | |
025b40ab AG |
436 | /* Check PPS signal */ |
437 | pps_dec_valid(); | |
438 | ||
3c972c24 | 439 | if (!time_adjust) |
bd331268 | 440 | goto out; |
3c972c24 IM |
441 | |
442 | if (time_adjust > MAX_TICKADJ) { | |
443 | time_adjust -= MAX_TICKADJ; | |
444 | tick_length += MAX_TICKADJ_SCALED; | |
bd331268 | 445 | goto out; |
4c7ee8de | 446 | } |
3c972c24 IM |
447 | |
448 | if (time_adjust < -MAX_TICKADJ) { | |
449 | time_adjust += MAX_TICKADJ; | |
450 | tick_length -= MAX_TICKADJ_SCALED; | |
bd331268 | 451 | goto out; |
3c972c24 IM |
452 | } |
453 | ||
454 | tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) | |
455 | << NTP_SCALE_SHIFT; | |
456 | time_adjust = 0; | |
6b43ae8a | 457 | |
bd331268 | 458 | out: |
6b43ae8a | 459 | return leap; |
4c7ee8de JS |
460 | } |
461 | ||
023f333a | 462 | #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) |
eb3f938f | 463 | static void sync_cmos_clock(struct work_struct *work); |
82644459 | 464 | |
eb3f938f | 465 | static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock); |
82644459 | 466 | |
eb3f938f | 467 | static void sync_cmos_clock(struct work_struct *work) |
82644459 TG |
468 | { |
469 | struct timespec now, next; | |
470 | int fail = 1; | |
471 | ||
472 | /* | |
473 | * If we have an externally synchronized Linux clock, then update | |
474 | * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be | |
475 | * called as close as possible to 500 ms before the new second starts. | |
476 | * This code is run on a timer. If the clock is set, that timer | |
477 | * may not expire at the correct time. Thus, we adjust... | |
a97ad0c4 | 478 | * We want the clock to be within a couple of ticks from the target. |
82644459 | 479 | */ |
53bbfa9e | 480 | if (!ntp_synced()) { |
82644459 TG |
481 | /* |
482 | * Not synced, exit, do not restart a timer (if one is | |
483 | * running, let it run out). | |
484 | */ | |
485 | return; | |
53bbfa9e | 486 | } |
82644459 TG |
487 | |
488 | getnstimeofday(&now); | |
a97ad0c4 | 489 | if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) { |
84e345e4 PB |
490 | struct timespec adjust = now; |
491 | ||
023f333a | 492 | fail = -ENODEV; |
84e345e4 PB |
493 | if (persistent_clock_is_local) |
494 | adjust.tv_sec -= (sys_tz.tz_minuteswest * 60); | |
023f333a | 495 | #ifdef CONFIG_GENERIC_CMOS_UPDATE |
84e345e4 | 496 | fail = update_persistent_clock(adjust); |
023f333a JG |
497 | #endif |
498 | #ifdef CONFIG_RTC_SYSTOHC | |
499 | if (fail == -ENODEV) | |
84e345e4 | 500 | fail = rtc_set_ntp_time(adjust); |
023f333a JG |
501 | #endif |
502 | } | |
82644459 | 503 | |
4ff4b9e1 | 504 | next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2); |
82644459 TG |
505 | if (next.tv_nsec <= 0) |
506 | next.tv_nsec += NSEC_PER_SEC; | |
507 | ||
023f333a | 508 | if (!fail || fail == -ENODEV) |
82644459 TG |
509 | next.tv_sec = 659; |
510 | else | |
511 | next.tv_sec = 0; | |
512 | ||
513 | if (next.tv_nsec >= NSEC_PER_SEC) { | |
514 | next.tv_sec++; | |
515 | next.tv_nsec -= NSEC_PER_SEC; | |
516 | } | |
eb3f938f | 517 | schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next)); |
82644459 TG |
518 | } |
519 | ||
7bd36014 | 520 | void ntp_notify_cmos_timer(void) |
4c7ee8de | 521 | { |
335dd858 | 522 | schedule_delayed_work(&sync_cmos_work, 0); |
4c7ee8de JS |
523 | } |
524 | ||
82644459 | 525 | #else |
7bd36014 | 526 | void ntp_notify_cmos_timer(void) { } |
82644459 TG |
527 | #endif |
528 | ||
80f22571 IM |
529 | |
530 | /* | |
531 | * Propagate a new txc->status value into the NTP state: | |
532 | */ | |
533 | static inline void process_adj_status(struct timex *txc, struct timespec *ts) | |
534 | { | |
80f22571 IM |
535 | if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) { |
536 | time_state = TIME_OK; | |
537 | time_status = STA_UNSYNC; | |
025b40ab AG |
538 | /* restart PPS frequency calibration */ |
539 | pps_reset_freq_interval(); | |
80f22571 | 540 | } |
80f22571 IM |
541 | |
542 | /* | |
543 | * If we turn on PLL adjustments then reset the | |
544 | * reference time to current time. | |
545 | */ | |
546 | if (!(time_status & STA_PLL) && (txc->status & STA_PLL)) | |
7e1b5847 | 547 | time_reftime = get_seconds(); |
80f22571 | 548 | |
a2a5ac86 JS |
549 | /* only set allowed bits */ |
550 | time_status &= STA_RONLY; | |
80f22571 | 551 | time_status |= txc->status & ~STA_RONLY; |
80f22571 | 552 | } |
cd5398be | 553 | |
a076b214 | 554 | |
cc244dda JS |
555 | static inline void process_adjtimex_modes(struct timex *txc, |
556 | struct timespec *ts, | |
557 | s32 *time_tai) | |
80f22571 IM |
558 | { |
559 | if (txc->modes & ADJ_STATUS) | |
560 | process_adj_status(txc, ts); | |
561 | ||
562 | if (txc->modes & ADJ_NANO) | |
563 | time_status |= STA_NANO; | |
e9629165 | 564 | |
80f22571 IM |
565 | if (txc->modes & ADJ_MICRO) |
566 | time_status &= ~STA_NANO; | |
567 | ||
568 | if (txc->modes & ADJ_FREQUENCY) { | |
2b9d1496 | 569 | time_freq = txc->freq * PPM_SCALE; |
80f22571 IM |
570 | time_freq = min(time_freq, MAXFREQ_SCALED); |
571 | time_freq = max(time_freq, -MAXFREQ_SCALED); | |
025b40ab AG |
572 | /* update pps_freq */ |
573 | pps_set_freq(time_freq); | |
80f22571 IM |
574 | } |
575 | ||
576 | if (txc->modes & ADJ_MAXERROR) | |
577 | time_maxerror = txc->maxerror; | |
e9629165 | 578 | |
80f22571 IM |
579 | if (txc->modes & ADJ_ESTERROR) |
580 | time_esterror = txc->esterror; | |
581 | ||
582 | if (txc->modes & ADJ_TIMECONST) { | |
583 | time_constant = txc->constant; | |
584 | if (!(time_status & STA_NANO)) | |
585 | time_constant += 4; | |
586 | time_constant = min(time_constant, (long)MAXTC); | |
587 | time_constant = max(time_constant, 0l); | |
588 | } | |
589 | ||
590 | if (txc->modes & ADJ_TAI && txc->constant > 0) | |
cc244dda | 591 | *time_tai = txc->constant; |
80f22571 IM |
592 | |
593 | if (txc->modes & ADJ_OFFSET) | |
594 | ntp_update_offset(txc->offset); | |
e9629165 | 595 | |
80f22571 IM |
596 | if (txc->modes & ADJ_TICK) |
597 | tick_usec = txc->tick; | |
598 | ||
599 | if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) | |
600 | ntp_update_frequency(); | |
601 | } | |
602 | ||
ad460967 JS |
603 | |
604 | ||
605 | /** | |
606 | * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex | |
4c7ee8de | 607 | */ |
ad460967 | 608 | int ntp_validate_timex(struct timex *txc) |
4c7ee8de | 609 | { |
916c7a85 | 610 | if (txc->modes & ADJ_ADJTIME) { |
eea83d89 | 611 | /* singleshot must not be used with any other mode bits */ |
916c7a85 | 612 | if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) |
4c7ee8de | 613 | return -EINVAL; |
916c7a85 RZ |
614 | if (!(txc->modes & ADJ_OFFSET_READONLY) && |
615 | !capable(CAP_SYS_TIME)) | |
616 | return -EPERM; | |
617 | } else { | |
618 | /* In order to modify anything, you gotta be super-user! */ | |
619 | if (txc->modes && !capable(CAP_SYS_TIME)) | |
620 | return -EPERM; | |
53bbfa9e IM |
621 | /* |
622 | * if the quartz is off by more than 10% then | |
623 | * something is VERY wrong! | |
624 | */ | |
916c7a85 RZ |
625 | if (txc->modes & ADJ_TICK && |
626 | (txc->tick < 900000/USER_HZ || | |
627 | txc->tick > 1100000/USER_HZ)) | |
e9629165 | 628 | return -EINVAL; |
52bfb360 | 629 | } |
4c7ee8de | 630 | |
ad460967 JS |
631 | if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME))) |
632 | return -EPERM; | |
633 | ||
634 | return 0; | |
635 | } | |
636 | ||
637 | ||
638 | /* | |
639 | * adjtimex mainly allows reading (and writing, if superuser) of | |
640 | * kernel time-keeping variables. used by xntpd. | |
641 | */ | |
87ace39b | 642 | int __do_adjtimex(struct timex *txc, struct timespec *ts, s32 *time_tai) |
ad460967 | 643 | { |
ad460967 JS |
644 | int result; |
645 | ||
916c7a85 RZ |
646 | if (txc->modes & ADJ_ADJTIME) { |
647 | long save_adjust = time_adjust; | |
648 | ||
649 | if (!(txc->modes & ADJ_OFFSET_READONLY)) { | |
650 | /* adjtime() is independent from ntp_adjtime() */ | |
651 | time_adjust = txc->offset; | |
652 | ntp_update_frequency(); | |
653 | } | |
654 | txc->offset = save_adjust; | |
e9629165 | 655 | } else { |
ee9851b2 | 656 | |
e9629165 IM |
657 | /* If there are input parameters, then process them: */ |
658 | if (txc->modes) | |
87ace39b | 659 | process_adjtimex_modes(txc, ts, time_tai); |
eea83d89 | 660 | |
e9629165 | 661 | txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ, |
916c7a85 | 662 | NTP_SCALE_SHIFT); |
e9629165 IM |
663 | if (!(time_status & STA_NANO)) |
664 | txc->offset /= NSEC_PER_USEC; | |
665 | } | |
916c7a85 | 666 | |
eea83d89 | 667 | result = time_state; /* mostly `TIME_OK' */ |
025b40ab AG |
668 | /* check for errors */ |
669 | if (is_error_status(time_status)) | |
4c7ee8de JS |
670 | result = TIME_ERROR; |
671 | ||
d40e944c | 672 | txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) * |
2b9d1496 | 673 | PPM_SCALE_INV, NTP_SCALE_SHIFT); |
4c7ee8de JS |
674 | txc->maxerror = time_maxerror; |
675 | txc->esterror = time_esterror; | |
676 | txc->status = time_status; | |
677 | txc->constant = time_constant; | |
70bc42f9 | 678 | txc->precision = 1; |
074b3b87 | 679 | txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; |
4c7ee8de | 680 | txc->tick = tick_usec; |
87ace39b | 681 | txc->tai = *time_tai; |
4c7ee8de | 682 | |
025b40ab AG |
683 | /* fill PPS status fields */ |
684 | pps_fill_timex(txc); | |
e9629165 | 685 | |
87ace39b JS |
686 | txc->time.tv_sec = ts->tv_sec; |
687 | txc->time.tv_usec = ts->tv_nsec; | |
eea83d89 RZ |
688 | if (!(time_status & STA_NANO)) |
689 | txc->time.tv_usec /= NSEC_PER_USEC; | |
ee9851b2 | 690 | |
ee9851b2 | 691 | return result; |
4c7ee8de | 692 | } |
10a398d0 | 693 | |
025b40ab AG |
694 | #ifdef CONFIG_NTP_PPS |
695 | ||
696 | /* actually struct pps_normtime is good old struct timespec, but it is | |
697 | * semantically different (and it is the reason why it was invented): | |
698 | * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] | |
699 | * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */ | |
700 | struct pps_normtime { | |
701 | __kernel_time_t sec; /* seconds */ | |
702 | long nsec; /* nanoseconds */ | |
703 | }; | |
704 | ||
705 | /* normalize the timestamp so that nsec is in the | |
706 | ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */ | |
707 | static inline struct pps_normtime pps_normalize_ts(struct timespec ts) | |
708 | { | |
709 | struct pps_normtime norm = { | |
710 | .sec = ts.tv_sec, | |
711 | .nsec = ts.tv_nsec | |
712 | }; | |
713 | ||
714 | if (norm.nsec > (NSEC_PER_SEC >> 1)) { | |
715 | norm.nsec -= NSEC_PER_SEC; | |
716 | norm.sec++; | |
717 | } | |
718 | ||
719 | return norm; | |
720 | } | |
721 | ||
722 | /* get current phase correction and jitter */ | |
723 | static inline long pps_phase_filter_get(long *jitter) | |
724 | { | |
725 | *jitter = pps_tf[0] - pps_tf[1]; | |
726 | if (*jitter < 0) | |
727 | *jitter = -*jitter; | |
728 | ||
729 | /* TODO: test various filters */ | |
730 | return pps_tf[0]; | |
731 | } | |
732 | ||
733 | /* add the sample to the phase filter */ | |
734 | static inline void pps_phase_filter_add(long err) | |
735 | { | |
736 | pps_tf[2] = pps_tf[1]; | |
737 | pps_tf[1] = pps_tf[0]; | |
738 | pps_tf[0] = err; | |
739 | } | |
740 | ||
741 | /* decrease frequency calibration interval length. | |
742 | * It is halved after four consecutive unstable intervals. | |
743 | */ | |
744 | static inline void pps_dec_freq_interval(void) | |
745 | { | |
746 | if (--pps_intcnt <= -PPS_INTCOUNT) { | |
747 | pps_intcnt = -PPS_INTCOUNT; | |
748 | if (pps_shift > PPS_INTMIN) { | |
749 | pps_shift--; | |
750 | pps_intcnt = 0; | |
751 | } | |
752 | } | |
753 | } | |
754 | ||
755 | /* increase frequency calibration interval length. | |
756 | * It is doubled after four consecutive stable intervals. | |
757 | */ | |
758 | static inline void pps_inc_freq_interval(void) | |
759 | { | |
760 | if (++pps_intcnt >= PPS_INTCOUNT) { | |
761 | pps_intcnt = PPS_INTCOUNT; | |
762 | if (pps_shift < PPS_INTMAX) { | |
763 | pps_shift++; | |
764 | pps_intcnt = 0; | |
765 | } | |
766 | } | |
767 | } | |
768 | ||
769 | /* update clock frequency based on MONOTONIC_RAW clock PPS signal | |
770 | * timestamps | |
771 | * | |
772 | * At the end of the calibration interval the difference between the | |
773 | * first and last MONOTONIC_RAW clock timestamps divided by the length | |
774 | * of the interval becomes the frequency update. If the interval was | |
775 | * too long, the data are discarded. | |
776 | * Returns the difference between old and new frequency values. | |
777 | */ | |
778 | static long hardpps_update_freq(struct pps_normtime freq_norm) | |
779 | { | |
780 | long delta, delta_mod; | |
781 | s64 ftemp; | |
782 | ||
783 | /* check if the frequency interval was too long */ | |
784 | if (freq_norm.sec > (2 << pps_shift)) { | |
785 | time_status |= STA_PPSERROR; | |
786 | pps_errcnt++; | |
787 | pps_dec_freq_interval(); | |
788 | pr_err("hardpps: PPSERROR: interval too long - %ld s\n", | |
789 | freq_norm.sec); | |
790 | return 0; | |
791 | } | |
792 | ||
793 | /* here the raw frequency offset and wander (stability) is | |
794 | * calculated. If the wander is less than the wander threshold | |
795 | * the interval is increased; otherwise it is decreased. | |
796 | */ | |
797 | ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, | |
798 | freq_norm.sec); | |
799 | delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); | |
800 | pps_freq = ftemp; | |
801 | if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { | |
802 | pr_warning("hardpps: PPSWANDER: change=%ld\n", delta); | |
803 | time_status |= STA_PPSWANDER; | |
804 | pps_stbcnt++; | |
805 | pps_dec_freq_interval(); | |
806 | } else { /* good sample */ | |
807 | pps_inc_freq_interval(); | |
808 | } | |
809 | ||
810 | /* the stability metric is calculated as the average of recent | |
811 | * frequency changes, but is used only for performance | |
812 | * monitoring | |
813 | */ | |
814 | delta_mod = delta; | |
815 | if (delta_mod < 0) | |
816 | delta_mod = -delta_mod; | |
817 | pps_stabil += (div_s64(((s64)delta_mod) << | |
818 | (NTP_SCALE_SHIFT - SHIFT_USEC), | |
819 | NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; | |
820 | ||
821 | /* if enabled, the system clock frequency is updated */ | |
822 | if ((time_status & STA_PPSFREQ) != 0 && | |
823 | (time_status & STA_FREQHOLD) == 0) { | |
824 | time_freq = pps_freq; | |
825 | ntp_update_frequency(); | |
826 | } | |
827 | ||
828 | return delta; | |
829 | } | |
830 | ||
831 | /* correct REALTIME clock phase error against PPS signal */ | |
832 | static void hardpps_update_phase(long error) | |
833 | { | |
834 | long correction = -error; | |
835 | long jitter; | |
836 | ||
837 | /* add the sample to the median filter */ | |
838 | pps_phase_filter_add(correction); | |
839 | correction = pps_phase_filter_get(&jitter); | |
840 | ||
841 | /* Nominal jitter is due to PPS signal noise. If it exceeds the | |
842 | * threshold, the sample is discarded; otherwise, if so enabled, | |
843 | * the time offset is updated. | |
844 | */ | |
845 | if (jitter > (pps_jitter << PPS_POPCORN)) { | |
846 | pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", | |
847 | jitter, (pps_jitter << PPS_POPCORN)); | |
848 | time_status |= STA_PPSJITTER; | |
849 | pps_jitcnt++; | |
850 | } else if (time_status & STA_PPSTIME) { | |
851 | /* correct the time using the phase offset */ | |
852 | time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, | |
853 | NTP_INTERVAL_FREQ); | |
854 | /* cancel running adjtime() */ | |
855 | time_adjust = 0; | |
856 | } | |
857 | /* update jitter */ | |
858 | pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; | |
859 | } | |
860 | ||
861 | /* | |
aa6f9c59 | 862 | * __hardpps() - discipline CPU clock oscillator to external PPS signal |
025b40ab AG |
863 | * |
864 | * This routine is called at each PPS signal arrival in order to | |
865 | * discipline the CPU clock oscillator to the PPS signal. It takes two | |
866 | * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former | |
867 | * is used to correct clock phase error and the latter is used to | |
868 | * correct the frequency. | |
869 | * | |
870 | * This code is based on David Mills's reference nanokernel | |
871 | * implementation. It was mostly rewritten but keeps the same idea. | |
872 | */ | |
aa6f9c59 | 873 | void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts) |
025b40ab AG |
874 | { |
875 | struct pps_normtime pts_norm, freq_norm; | |
025b40ab AG |
876 | |
877 | pts_norm = pps_normalize_ts(*phase_ts); | |
878 | ||
025b40ab AG |
879 | /* clear the error bits, they will be set again if needed */ |
880 | time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); | |
881 | ||
882 | /* indicate signal presence */ | |
883 | time_status |= STA_PPSSIGNAL; | |
884 | pps_valid = PPS_VALID; | |
885 | ||
886 | /* when called for the first time, | |
887 | * just start the frequency interval */ | |
888 | if (unlikely(pps_fbase.tv_sec == 0)) { | |
889 | pps_fbase = *raw_ts; | |
025b40ab AG |
890 | return; |
891 | } | |
892 | ||
893 | /* ok, now we have a base for frequency calculation */ | |
894 | freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase)); | |
895 | ||
896 | /* check that the signal is in the range | |
897 | * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */ | |
898 | if ((freq_norm.sec == 0) || | |
899 | (freq_norm.nsec > MAXFREQ * freq_norm.sec) || | |
900 | (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { | |
901 | time_status |= STA_PPSJITTER; | |
902 | /* restart the frequency calibration interval */ | |
903 | pps_fbase = *raw_ts; | |
025b40ab AG |
904 | pr_err("hardpps: PPSJITTER: bad pulse\n"); |
905 | return; | |
906 | } | |
907 | ||
908 | /* signal is ok */ | |
909 | ||
910 | /* check if the current frequency interval is finished */ | |
911 | if (freq_norm.sec >= (1 << pps_shift)) { | |
912 | pps_calcnt++; | |
913 | /* restart the frequency calibration interval */ | |
914 | pps_fbase = *raw_ts; | |
915 | hardpps_update_freq(freq_norm); | |
916 | } | |
917 | ||
918 | hardpps_update_phase(pts_norm.nsec); | |
919 | ||
025b40ab | 920 | } |
025b40ab AG |
921 | #endif /* CONFIG_NTP_PPS */ |
922 | ||
10a398d0 RZ |
923 | static int __init ntp_tick_adj_setup(char *str) |
924 | { | |
925 | ntp_tick_adj = simple_strtol(str, NULL, 0); | |
069569e0 IM |
926 | ntp_tick_adj <<= NTP_SCALE_SHIFT; |
927 | ||
10a398d0 RZ |
928 | return 1; |
929 | } | |
930 | ||
931 | __setup("ntp_tick_adj=", ntp_tick_adj_setup); | |
7dffa3c6 RZ |
932 | |
933 | void __init ntp_init(void) | |
934 | { | |
935 | ntp_clear(); | |
7dffa3c6 | 936 | } |