]>
Commit | Line | Data |
---|---|---|
5b497af4 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
51580e79 | 2 | /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
969bf05e | 3 | * Copyright (c) 2016 Facebook |
fd978bf7 | 4 | * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io |
51580e79 | 5 | */ |
838e9690 | 6 | #include <uapi/linux/btf.h> |
51580e79 AS |
7 | #include <linux/kernel.h> |
8 | #include <linux/types.h> | |
9 | #include <linux/slab.h> | |
10 | #include <linux/bpf.h> | |
838e9690 | 11 | #include <linux/btf.h> |
58e2af8b | 12 | #include <linux/bpf_verifier.h> |
51580e79 AS |
13 | #include <linux/filter.h> |
14 | #include <net/netlink.h> | |
15 | #include <linux/file.h> | |
16 | #include <linux/vmalloc.h> | |
ebb676da | 17 | #include <linux/stringify.h> |
cc8b0b92 AS |
18 | #include <linux/bsearch.h> |
19 | #include <linux/sort.h> | |
c195651e | 20 | #include <linux/perf_event.h> |
d9762e84 | 21 | #include <linux/ctype.h> |
6ba43b76 | 22 | #include <linux/error-injection.h> |
9e4e01df | 23 | #include <linux/bpf_lsm.h> |
1e6c62a8 | 24 | #include <linux/btf_ids.h> |
51580e79 | 25 | |
f4ac7e0b JK |
26 | #include "disasm.h" |
27 | ||
00176a34 | 28 | static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { |
91cc1a99 | 29 | #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ |
00176a34 JK |
30 | [_id] = & _name ## _verifier_ops, |
31 | #define BPF_MAP_TYPE(_id, _ops) | |
f2e10bff | 32 | #define BPF_LINK_TYPE(_id, _name) |
00176a34 JK |
33 | #include <linux/bpf_types.h> |
34 | #undef BPF_PROG_TYPE | |
35 | #undef BPF_MAP_TYPE | |
f2e10bff | 36 | #undef BPF_LINK_TYPE |
00176a34 JK |
37 | }; |
38 | ||
51580e79 AS |
39 | /* bpf_check() is a static code analyzer that walks eBPF program |
40 | * instruction by instruction and updates register/stack state. | |
41 | * All paths of conditional branches are analyzed until 'bpf_exit' insn. | |
42 | * | |
43 | * The first pass is depth-first-search to check that the program is a DAG. | |
44 | * It rejects the following programs: | |
45 | * - larger than BPF_MAXINSNS insns | |
46 | * - if loop is present (detected via back-edge) | |
47 | * - unreachable insns exist (shouldn't be a forest. program = one function) | |
48 | * - out of bounds or malformed jumps | |
49 | * The second pass is all possible path descent from the 1st insn. | |
50 | * Since it's analyzing all pathes through the program, the length of the | |
eba38a96 | 51 | * analysis is limited to 64k insn, which may be hit even if total number of |
51580e79 AS |
52 | * insn is less then 4K, but there are too many branches that change stack/regs. |
53 | * Number of 'branches to be analyzed' is limited to 1k | |
54 | * | |
55 | * On entry to each instruction, each register has a type, and the instruction | |
56 | * changes the types of the registers depending on instruction semantics. | |
57 | * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is | |
58 | * copied to R1. | |
59 | * | |
60 | * All registers are 64-bit. | |
61 | * R0 - return register | |
62 | * R1-R5 argument passing registers | |
63 | * R6-R9 callee saved registers | |
64 | * R10 - frame pointer read-only | |
65 | * | |
66 | * At the start of BPF program the register R1 contains a pointer to bpf_context | |
67 | * and has type PTR_TO_CTX. | |
68 | * | |
69 | * Verifier tracks arithmetic operations on pointers in case: | |
70 | * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), | |
71 | * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), | |
72 | * 1st insn copies R10 (which has FRAME_PTR) type into R1 | |
73 | * and 2nd arithmetic instruction is pattern matched to recognize | |
74 | * that it wants to construct a pointer to some element within stack. | |
75 | * So after 2nd insn, the register R1 has type PTR_TO_STACK | |
76 | * (and -20 constant is saved for further stack bounds checking). | |
77 | * Meaning that this reg is a pointer to stack plus known immediate constant. | |
78 | * | |
f1174f77 | 79 | * Most of the time the registers have SCALAR_VALUE type, which |
51580e79 | 80 | * means the register has some value, but it's not a valid pointer. |
f1174f77 | 81 | * (like pointer plus pointer becomes SCALAR_VALUE type) |
51580e79 AS |
82 | * |
83 | * When verifier sees load or store instructions the type of base register | |
c64b7983 JS |
84 | * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are |
85 | * four pointer types recognized by check_mem_access() function. | |
51580e79 AS |
86 | * |
87 | * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' | |
88 | * and the range of [ptr, ptr + map's value_size) is accessible. | |
89 | * | |
90 | * registers used to pass values to function calls are checked against | |
91 | * function argument constraints. | |
92 | * | |
93 | * ARG_PTR_TO_MAP_KEY is one of such argument constraints. | |
94 | * It means that the register type passed to this function must be | |
95 | * PTR_TO_STACK and it will be used inside the function as | |
96 | * 'pointer to map element key' | |
97 | * | |
98 | * For example the argument constraints for bpf_map_lookup_elem(): | |
99 | * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, | |
100 | * .arg1_type = ARG_CONST_MAP_PTR, | |
101 | * .arg2_type = ARG_PTR_TO_MAP_KEY, | |
102 | * | |
103 | * ret_type says that this function returns 'pointer to map elem value or null' | |
104 | * function expects 1st argument to be a const pointer to 'struct bpf_map' and | |
105 | * 2nd argument should be a pointer to stack, which will be used inside | |
106 | * the helper function as a pointer to map element key. | |
107 | * | |
108 | * On the kernel side the helper function looks like: | |
109 | * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) | |
110 | * { | |
111 | * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; | |
112 | * void *key = (void *) (unsigned long) r2; | |
113 | * void *value; | |
114 | * | |
115 | * here kernel can access 'key' and 'map' pointers safely, knowing that | |
116 | * [key, key + map->key_size) bytes are valid and were initialized on | |
117 | * the stack of eBPF program. | |
118 | * } | |
119 | * | |
120 | * Corresponding eBPF program may look like: | |
121 | * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR | |
122 | * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK | |
123 | * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP | |
124 | * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), | |
125 | * here verifier looks at prototype of map_lookup_elem() and sees: | |
126 | * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, | |
127 | * Now verifier knows that this map has key of R1->map_ptr->key_size bytes | |
128 | * | |
129 | * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, | |
130 | * Now verifier checks that [R2, R2 + map's key_size) are within stack limits | |
131 | * and were initialized prior to this call. | |
132 | * If it's ok, then verifier allows this BPF_CALL insn and looks at | |
133 | * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets | |
134 | * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function | |
135 | * returns ether pointer to map value or NULL. | |
136 | * | |
137 | * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' | |
138 | * insn, the register holding that pointer in the true branch changes state to | |
139 | * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false | |
140 | * branch. See check_cond_jmp_op(). | |
141 | * | |
142 | * After the call R0 is set to return type of the function and registers R1-R5 | |
143 | * are set to NOT_INIT to indicate that they are no longer readable. | |
fd978bf7 JS |
144 | * |
145 | * The following reference types represent a potential reference to a kernel | |
146 | * resource which, after first being allocated, must be checked and freed by | |
147 | * the BPF program: | |
148 | * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET | |
149 | * | |
150 | * When the verifier sees a helper call return a reference type, it allocates a | |
151 | * pointer id for the reference and stores it in the current function state. | |
152 | * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into | |
153 | * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type | |
154 | * passes through a NULL-check conditional. For the branch wherein the state is | |
155 | * changed to CONST_IMM, the verifier releases the reference. | |
6acc9b43 JS |
156 | * |
157 | * For each helper function that allocates a reference, such as | |
158 | * bpf_sk_lookup_tcp(), there is a corresponding release function, such as | |
159 | * bpf_sk_release(). When a reference type passes into the release function, | |
160 | * the verifier also releases the reference. If any unchecked or unreleased | |
161 | * reference remains at the end of the program, the verifier rejects it. | |
51580e79 AS |
162 | */ |
163 | ||
17a52670 | 164 | /* verifier_state + insn_idx are pushed to stack when branch is encountered */ |
58e2af8b | 165 | struct bpf_verifier_stack_elem { |
17a52670 AS |
166 | /* verifer state is 'st' |
167 | * before processing instruction 'insn_idx' | |
168 | * and after processing instruction 'prev_insn_idx' | |
169 | */ | |
58e2af8b | 170 | struct bpf_verifier_state st; |
17a52670 AS |
171 | int insn_idx; |
172 | int prev_insn_idx; | |
58e2af8b | 173 | struct bpf_verifier_stack_elem *next; |
6f8a57cc AN |
174 | /* length of verifier log at the time this state was pushed on stack */ |
175 | u32 log_pos; | |
cbd35700 AS |
176 | }; |
177 | ||
b285fcb7 | 178 | #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 |
ceefbc96 | 179 | #define BPF_COMPLEXITY_LIMIT_STATES 64 |
07016151 | 180 | |
d2e4c1e6 DB |
181 | #define BPF_MAP_KEY_POISON (1ULL << 63) |
182 | #define BPF_MAP_KEY_SEEN (1ULL << 62) | |
183 | ||
c93552c4 DB |
184 | #define BPF_MAP_PTR_UNPRIV 1UL |
185 | #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ | |
186 | POISON_POINTER_DELTA)) | |
187 | #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) | |
188 | ||
189 | static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) | |
190 | { | |
d2e4c1e6 | 191 | return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; |
c93552c4 DB |
192 | } |
193 | ||
194 | static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) | |
195 | { | |
d2e4c1e6 | 196 | return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; |
c93552c4 DB |
197 | } |
198 | ||
199 | static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, | |
200 | const struct bpf_map *map, bool unpriv) | |
201 | { | |
202 | BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); | |
203 | unpriv |= bpf_map_ptr_unpriv(aux); | |
d2e4c1e6 DB |
204 | aux->map_ptr_state = (unsigned long)map | |
205 | (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); | |
206 | } | |
207 | ||
208 | static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) | |
209 | { | |
210 | return aux->map_key_state & BPF_MAP_KEY_POISON; | |
211 | } | |
212 | ||
213 | static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) | |
214 | { | |
215 | return !(aux->map_key_state & BPF_MAP_KEY_SEEN); | |
216 | } | |
217 | ||
218 | static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) | |
219 | { | |
220 | return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); | |
221 | } | |
222 | ||
223 | static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) | |
224 | { | |
225 | bool poisoned = bpf_map_key_poisoned(aux); | |
226 | ||
227 | aux->map_key_state = state | BPF_MAP_KEY_SEEN | | |
228 | (poisoned ? BPF_MAP_KEY_POISON : 0ULL); | |
c93552c4 | 229 | } |
fad73a1a | 230 | |
33ff9823 DB |
231 | struct bpf_call_arg_meta { |
232 | struct bpf_map *map_ptr; | |
435faee1 | 233 | bool raw_mode; |
36bbef52 | 234 | bool pkt_access; |
435faee1 DB |
235 | int regno; |
236 | int access_size; | |
457f4436 | 237 | int mem_size; |
10060503 | 238 | u64 msize_max_value; |
1b986589 | 239 | int ref_obj_id; |
d83525ca | 240 | int func_id; |
22dc4a0f | 241 | struct btf *btf; |
eaa6bcb7 | 242 | u32 btf_id; |
22dc4a0f | 243 | struct btf *ret_btf; |
eaa6bcb7 | 244 | u32 ret_btf_id; |
33ff9823 DB |
245 | }; |
246 | ||
8580ac94 AS |
247 | struct btf *btf_vmlinux; |
248 | ||
cbd35700 AS |
249 | static DEFINE_MUTEX(bpf_verifier_lock); |
250 | ||
d9762e84 MKL |
251 | static const struct bpf_line_info * |
252 | find_linfo(const struct bpf_verifier_env *env, u32 insn_off) | |
253 | { | |
254 | const struct bpf_line_info *linfo; | |
255 | const struct bpf_prog *prog; | |
256 | u32 i, nr_linfo; | |
257 | ||
258 | prog = env->prog; | |
259 | nr_linfo = prog->aux->nr_linfo; | |
260 | ||
261 | if (!nr_linfo || insn_off >= prog->len) | |
262 | return NULL; | |
263 | ||
264 | linfo = prog->aux->linfo; | |
265 | for (i = 1; i < nr_linfo; i++) | |
266 | if (insn_off < linfo[i].insn_off) | |
267 | break; | |
268 | ||
269 | return &linfo[i - 1]; | |
270 | } | |
271 | ||
77d2e05a MKL |
272 | void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, |
273 | va_list args) | |
cbd35700 | 274 | { |
a2a7d570 | 275 | unsigned int n; |
cbd35700 | 276 | |
a2a7d570 | 277 | n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); |
a2a7d570 JK |
278 | |
279 | WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, | |
280 | "verifier log line truncated - local buffer too short\n"); | |
281 | ||
282 | n = min(log->len_total - log->len_used - 1, n); | |
283 | log->kbuf[n] = '\0'; | |
284 | ||
8580ac94 AS |
285 | if (log->level == BPF_LOG_KERNEL) { |
286 | pr_err("BPF:%s\n", log->kbuf); | |
287 | return; | |
288 | } | |
a2a7d570 JK |
289 | if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) |
290 | log->len_used += n; | |
291 | else | |
292 | log->ubuf = NULL; | |
cbd35700 | 293 | } |
abe08840 | 294 | |
6f8a57cc AN |
295 | static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) |
296 | { | |
297 | char zero = 0; | |
298 | ||
299 | if (!bpf_verifier_log_needed(log)) | |
300 | return; | |
301 | ||
302 | log->len_used = new_pos; | |
303 | if (put_user(zero, log->ubuf + new_pos)) | |
304 | log->ubuf = NULL; | |
305 | } | |
306 | ||
abe08840 JO |
307 | /* log_level controls verbosity level of eBPF verifier. |
308 | * bpf_verifier_log_write() is used to dump the verification trace to the log, | |
309 | * so the user can figure out what's wrong with the program | |
430e68d1 | 310 | */ |
abe08840 JO |
311 | __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, |
312 | const char *fmt, ...) | |
313 | { | |
314 | va_list args; | |
315 | ||
77d2e05a MKL |
316 | if (!bpf_verifier_log_needed(&env->log)) |
317 | return; | |
318 | ||
abe08840 | 319 | va_start(args, fmt); |
77d2e05a | 320 | bpf_verifier_vlog(&env->log, fmt, args); |
abe08840 JO |
321 | va_end(args); |
322 | } | |
323 | EXPORT_SYMBOL_GPL(bpf_verifier_log_write); | |
324 | ||
325 | __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) | |
326 | { | |
77d2e05a | 327 | struct bpf_verifier_env *env = private_data; |
abe08840 JO |
328 | va_list args; |
329 | ||
77d2e05a MKL |
330 | if (!bpf_verifier_log_needed(&env->log)) |
331 | return; | |
332 | ||
abe08840 | 333 | va_start(args, fmt); |
77d2e05a | 334 | bpf_verifier_vlog(&env->log, fmt, args); |
abe08840 JO |
335 | va_end(args); |
336 | } | |
cbd35700 | 337 | |
9e15db66 AS |
338 | __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, |
339 | const char *fmt, ...) | |
340 | { | |
341 | va_list args; | |
342 | ||
343 | if (!bpf_verifier_log_needed(log)) | |
344 | return; | |
345 | ||
346 | va_start(args, fmt); | |
347 | bpf_verifier_vlog(log, fmt, args); | |
348 | va_end(args); | |
349 | } | |
350 | ||
d9762e84 MKL |
351 | static const char *ltrim(const char *s) |
352 | { | |
353 | while (isspace(*s)) | |
354 | s++; | |
355 | ||
356 | return s; | |
357 | } | |
358 | ||
359 | __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, | |
360 | u32 insn_off, | |
361 | const char *prefix_fmt, ...) | |
362 | { | |
363 | const struct bpf_line_info *linfo; | |
364 | ||
365 | if (!bpf_verifier_log_needed(&env->log)) | |
366 | return; | |
367 | ||
368 | linfo = find_linfo(env, insn_off); | |
369 | if (!linfo || linfo == env->prev_linfo) | |
370 | return; | |
371 | ||
372 | if (prefix_fmt) { | |
373 | va_list args; | |
374 | ||
375 | va_start(args, prefix_fmt); | |
376 | bpf_verifier_vlog(&env->log, prefix_fmt, args); | |
377 | va_end(args); | |
378 | } | |
379 | ||
380 | verbose(env, "%s\n", | |
381 | ltrim(btf_name_by_offset(env->prog->aux->btf, | |
382 | linfo->line_off))); | |
383 | ||
384 | env->prev_linfo = linfo; | |
385 | } | |
386 | ||
de8f3a83 DB |
387 | static bool type_is_pkt_pointer(enum bpf_reg_type type) |
388 | { | |
389 | return type == PTR_TO_PACKET || | |
390 | type == PTR_TO_PACKET_META; | |
391 | } | |
392 | ||
46f8bc92 MKL |
393 | static bool type_is_sk_pointer(enum bpf_reg_type type) |
394 | { | |
395 | return type == PTR_TO_SOCKET || | |
655a51e5 | 396 | type == PTR_TO_SOCK_COMMON || |
fada7fdc JL |
397 | type == PTR_TO_TCP_SOCK || |
398 | type == PTR_TO_XDP_SOCK; | |
46f8bc92 MKL |
399 | } |
400 | ||
cac616db JF |
401 | static bool reg_type_not_null(enum bpf_reg_type type) |
402 | { | |
403 | return type == PTR_TO_SOCKET || | |
404 | type == PTR_TO_TCP_SOCK || | |
405 | type == PTR_TO_MAP_VALUE || | |
01c66c48 | 406 | type == PTR_TO_SOCK_COMMON; |
cac616db JF |
407 | } |
408 | ||
840b9615 JS |
409 | static bool reg_type_may_be_null(enum bpf_reg_type type) |
410 | { | |
fd978bf7 | 411 | return type == PTR_TO_MAP_VALUE_OR_NULL || |
46f8bc92 | 412 | type == PTR_TO_SOCKET_OR_NULL || |
655a51e5 | 413 | type == PTR_TO_SOCK_COMMON_OR_NULL || |
b121b341 | 414 | type == PTR_TO_TCP_SOCK_OR_NULL || |
457f4436 | 415 | type == PTR_TO_BTF_ID_OR_NULL || |
afbf21dc YS |
416 | type == PTR_TO_MEM_OR_NULL || |
417 | type == PTR_TO_RDONLY_BUF_OR_NULL || | |
418 | type == PTR_TO_RDWR_BUF_OR_NULL; | |
fd978bf7 JS |
419 | } |
420 | ||
d83525ca AS |
421 | static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) |
422 | { | |
423 | return reg->type == PTR_TO_MAP_VALUE && | |
424 | map_value_has_spin_lock(reg->map_ptr); | |
425 | } | |
426 | ||
cba368c1 MKL |
427 | static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) |
428 | { | |
429 | return type == PTR_TO_SOCKET || | |
430 | type == PTR_TO_SOCKET_OR_NULL || | |
431 | type == PTR_TO_TCP_SOCK || | |
457f4436 AN |
432 | type == PTR_TO_TCP_SOCK_OR_NULL || |
433 | type == PTR_TO_MEM || | |
434 | type == PTR_TO_MEM_OR_NULL; | |
cba368c1 MKL |
435 | } |
436 | ||
1b986589 | 437 | static bool arg_type_may_be_refcounted(enum bpf_arg_type type) |
fd978bf7 | 438 | { |
1b986589 | 439 | return type == ARG_PTR_TO_SOCK_COMMON; |
fd978bf7 JS |
440 | } |
441 | ||
fd1b0d60 LB |
442 | static bool arg_type_may_be_null(enum bpf_arg_type type) |
443 | { | |
444 | return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || | |
445 | type == ARG_PTR_TO_MEM_OR_NULL || | |
446 | type == ARG_PTR_TO_CTX_OR_NULL || | |
447 | type == ARG_PTR_TO_SOCKET_OR_NULL || | |
448 | type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; | |
449 | } | |
450 | ||
fd978bf7 JS |
451 | /* Determine whether the function releases some resources allocated by another |
452 | * function call. The first reference type argument will be assumed to be | |
453 | * released by release_reference(). | |
454 | */ | |
455 | static bool is_release_function(enum bpf_func_id func_id) | |
456 | { | |
457f4436 AN |
457 | return func_id == BPF_FUNC_sk_release || |
458 | func_id == BPF_FUNC_ringbuf_submit || | |
459 | func_id == BPF_FUNC_ringbuf_discard; | |
840b9615 JS |
460 | } |
461 | ||
64d85290 | 462 | static bool may_be_acquire_function(enum bpf_func_id func_id) |
46f8bc92 MKL |
463 | { |
464 | return func_id == BPF_FUNC_sk_lookup_tcp || | |
edbf8c01 | 465 | func_id == BPF_FUNC_sk_lookup_udp || |
64d85290 | 466 | func_id == BPF_FUNC_skc_lookup_tcp || |
457f4436 AN |
467 | func_id == BPF_FUNC_map_lookup_elem || |
468 | func_id == BPF_FUNC_ringbuf_reserve; | |
64d85290 JS |
469 | } |
470 | ||
471 | static bool is_acquire_function(enum bpf_func_id func_id, | |
472 | const struct bpf_map *map) | |
473 | { | |
474 | enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; | |
475 | ||
476 | if (func_id == BPF_FUNC_sk_lookup_tcp || | |
477 | func_id == BPF_FUNC_sk_lookup_udp || | |
457f4436 AN |
478 | func_id == BPF_FUNC_skc_lookup_tcp || |
479 | func_id == BPF_FUNC_ringbuf_reserve) | |
64d85290 JS |
480 | return true; |
481 | ||
482 | if (func_id == BPF_FUNC_map_lookup_elem && | |
483 | (map_type == BPF_MAP_TYPE_SOCKMAP || | |
484 | map_type == BPF_MAP_TYPE_SOCKHASH)) | |
485 | return true; | |
486 | ||
487 | return false; | |
46f8bc92 MKL |
488 | } |
489 | ||
1b986589 MKL |
490 | static bool is_ptr_cast_function(enum bpf_func_id func_id) |
491 | { | |
492 | return func_id == BPF_FUNC_tcp_sock || | |
1df8f55a MKL |
493 | func_id == BPF_FUNC_sk_fullsock || |
494 | func_id == BPF_FUNC_skc_to_tcp_sock || | |
495 | func_id == BPF_FUNC_skc_to_tcp6_sock || | |
496 | func_id == BPF_FUNC_skc_to_udp6_sock || | |
497 | func_id == BPF_FUNC_skc_to_tcp_timewait_sock || | |
498 | func_id == BPF_FUNC_skc_to_tcp_request_sock; | |
1b986589 MKL |
499 | } |
500 | ||
17a52670 AS |
501 | /* string representation of 'enum bpf_reg_type' */ |
502 | static const char * const reg_type_str[] = { | |
503 | [NOT_INIT] = "?", | |
f1174f77 | 504 | [SCALAR_VALUE] = "inv", |
17a52670 AS |
505 | [PTR_TO_CTX] = "ctx", |
506 | [CONST_PTR_TO_MAP] = "map_ptr", | |
507 | [PTR_TO_MAP_VALUE] = "map_value", | |
508 | [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", | |
17a52670 | 509 | [PTR_TO_STACK] = "fp", |
969bf05e | 510 | [PTR_TO_PACKET] = "pkt", |
de8f3a83 | 511 | [PTR_TO_PACKET_META] = "pkt_meta", |
969bf05e | 512 | [PTR_TO_PACKET_END] = "pkt_end", |
d58e468b | 513 | [PTR_TO_FLOW_KEYS] = "flow_keys", |
c64b7983 JS |
514 | [PTR_TO_SOCKET] = "sock", |
515 | [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", | |
46f8bc92 MKL |
516 | [PTR_TO_SOCK_COMMON] = "sock_common", |
517 | [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", | |
655a51e5 MKL |
518 | [PTR_TO_TCP_SOCK] = "tcp_sock", |
519 | [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", | |
9df1c28b | 520 | [PTR_TO_TP_BUFFER] = "tp_buffer", |
fada7fdc | 521 | [PTR_TO_XDP_SOCK] = "xdp_sock", |
9e15db66 | 522 | [PTR_TO_BTF_ID] = "ptr_", |
b121b341 | 523 | [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", |
eaa6bcb7 | 524 | [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", |
457f4436 AN |
525 | [PTR_TO_MEM] = "mem", |
526 | [PTR_TO_MEM_OR_NULL] = "mem_or_null", | |
afbf21dc YS |
527 | [PTR_TO_RDONLY_BUF] = "rdonly_buf", |
528 | [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", | |
529 | [PTR_TO_RDWR_BUF] = "rdwr_buf", | |
530 | [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", | |
17a52670 AS |
531 | }; |
532 | ||
8efea21d EC |
533 | static char slot_type_char[] = { |
534 | [STACK_INVALID] = '?', | |
535 | [STACK_SPILL] = 'r', | |
536 | [STACK_MISC] = 'm', | |
537 | [STACK_ZERO] = '0', | |
538 | }; | |
539 | ||
4e92024a AS |
540 | static void print_liveness(struct bpf_verifier_env *env, |
541 | enum bpf_reg_liveness live) | |
542 | { | |
9242b5f5 | 543 | if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) |
4e92024a AS |
544 | verbose(env, "_"); |
545 | if (live & REG_LIVE_READ) | |
546 | verbose(env, "r"); | |
547 | if (live & REG_LIVE_WRITTEN) | |
548 | verbose(env, "w"); | |
9242b5f5 AS |
549 | if (live & REG_LIVE_DONE) |
550 | verbose(env, "D"); | |
4e92024a AS |
551 | } |
552 | ||
f4d7e40a AS |
553 | static struct bpf_func_state *func(struct bpf_verifier_env *env, |
554 | const struct bpf_reg_state *reg) | |
555 | { | |
556 | struct bpf_verifier_state *cur = env->cur_state; | |
557 | ||
558 | return cur->frame[reg->frameno]; | |
559 | } | |
560 | ||
22dc4a0f | 561 | static const char *kernel_type_name(const struct btf* btf, u32 id) |
9e15db66 | 562 | { |
22dc4a0f | 563 | return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); |
9e15db66 AS |
564 | } |
565 | ||
61bd5218 | 566 | static void print_verifier_state(struct bpf_verifier_env *env, |
f4d7e40a | 567 | const struct bpf_func_state *state) |
17a52670 | 568 | { |
f4d7e40a | 569 | const struct bpf_reg_state *reg; |
17a52670 AS |
570 | enum bpf_reg_type t; |
571 | int i; | |
572 | ||
f4d7e40a AS |
573 | if (state->frameno) |
574 | verbose(env, " frame%d:", state->frameno); | |
17a52670 | 575 | for (i = 0; i < MAX_BPF_REG; i++) { |
1a0dc1ac AS |
576 | reg = &state->regs[i]; |
577 | t = reg->type; | |
17a52670 AS |
578 | if (t == NOT_INIT) |
579 | continue; | |
4e92024a AS |
580 | verbose(env, " R%d", i); |
581 | print_liveness(env, reg->live); | |
582 | verbose(env, "=%s", reg_type_str[t]); | |
b5dc0163 AS |
583 | if (t == SCALAR_VALUE && reg->precise) |
584 | verbose(env, "P"); | |
f1174f77 EC |
585 | if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && |
586 | tnum_is_const(reg->var_off)) { | |
587 | /* reg->off should be 0 for SCALAR_VALUE */ | |
61bd5218 | 588 | verbose(env, "%lld", reg->var_off.value + reg->off); |
f1174f77 | 589 | } else { |
eaa6bcb7 HL |
590 | if (t == PTR_TO_BTF_ID || |
591 | t == PTR_TO_BTF_ID_OR_NULL || | |
592 | t == PTR_TO_PERCPU_BTF_ID) | |
22dc4a0f | 593 | verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); |
cba368c1 MKL |
594 | verbose(env, "(id=%d", reg->id); |
595 | if (reg_type_may_be_refcounted_or_null(t)) | |
596 | verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); | |
f1174f77 | 597 | if (t != SCALAR_VALUE) |
61bd5218 | 598 | verbose(env, ",off=%d", reg->off); |
de8f3a83 | 599 | if (type_is_pkt_pointer(t)) |
61bd5218 | 600 | verbose(env, ",r=%d", reg->range); |
f1174f77 EC |
601 | else if (t == CONST_PTR_TO_MAP || |
602 | t == PTR_TO_MAP_VALUE || | |
603 | t == PTR_TO_MAP_VALUE_OR_NULL) | |
61bd5218 | 604 | verbose(env, ",ks=%d,vs=%d", |
f1174f77 EC |
605 | reg->map_ptr->key_size, |
606 | reg->map_ptr->value_size); | |
7d1238f2 EC |
607 | if (tnum_is_const(reg->var_off)) { |
608 | /* Typically an immediate SCALAR_VALUE, but | |
609 | * could be a pointer whose offset is too big | |
610 | * for reg->off | |
611 | */ | |
61bd5218 | 612 | verbose(env, ",imm=%llx", reg->var_off.value); |
7d1238f2 EC |
613 | } else { |
614 | if (reg->smin_value != reg->umin_value && | |
615 | reg->smin_value != S64_MIN) | |
61bd5218 | 616 | verbose(env, ",smin_value=%lld", |
7d1238f2 EC |
617 | (long long)reg->smin_value); |
618 | if (reg->smax_value != reg->umax_value && | |
619 | reg->smax_value != S64_MAX) | |
61bd5218 | 620 | verbose(env, ",smax_value=%lld", |
7d1238f2 EC |
621 | (long long)reg->smax_value); |
622 | if (reg->umin_value != 0) | |
61bd5218 | 623 | verbose(env, ",umin_value=%llu", |
7d1238f2 EC |
624 | (unsigned long long)reg->umin_value); |
625 | if (reg->umax_value != U64_MAX) | |
61bd5218 | 626 | verbose(env, ",umax_value=%llu", |
7d1238f2 EC |
627 | (unsigned long long)reg->umax_value); |
628 | if (!tnum_is_unknown(reg->var_off)) { | |
629 | char tn_buf[48]; | |
f1174f77 | 630 | |
7d1238f2 | 631 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
61bd5218 | 632 | verbose(env, ",var_off=%s", tn_buf); |
7d1238f2 | 633 | } |
3f50f132 JF |
634 | if (reg->s32_min_value != reg->smin_value && |
635 | reg->s32_min_value != S32_MIN) | |
636 | verbose(env, ",s32_min_value=%d", | |
637 | (int)(reg->s32_min_value)); | |
638 | if (reg->s32_max_value != reg->smax_value && | |
639 | reg->s32_max_value != S32_MAX) | |
640 | verbose(env, ",s32_max_value=%d", | |
641 | (int)(reg->s32_max_value)); | |
642 | if (reg->u32_min_value != reg->umin_value && | |
643 | reg->u32_min_value != U32_MIN) | |
644 | verbose(env, ",u32_min_value=%d", | |
645 | (int)(reg->u32_min_value)); | |
646 | if (reg->u32_max_value != reg->umax_value && | |
647 | reg->u32_max_value != U32_MAX) | |
648 | verbose(env, ",u32_max_value=%d", | |
649 | (int)(reg->u32_max_value)); | |
f1174f77 | 650 | } |
61bd5218 | 651 | verbose(env, ")"); |
f1174f77 | 652 | } |
17a52670 | 653 | } |
638f5b90 | 654 | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
8efea21d EC |
655 | char types_buf[BPF_REG_SIZE + 1]; |
656 | bool valid = false; | |
657 | int j; | |
658 | ||
659 | for (j = 0; j < BPF_REG_SIZE; j++) { | |
660 | if (state->stack[i].slot_type[j] != STACK_INVALID) | |
661 | valid = true; | |
662 | types_buf[j] = slot_type_char[ | |
663 | state->stack[i].slot_type[j]]; | |
664 | } | |
665 | types_buf[BPF_REG_SIZE] = 0; | |
666 | if (!valid) | |
667 | continue; | |
668 | verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); | |
669 | print_liveness(env, state->stack[i].spilled_ptr.live); | |
b5dc0163 AS |
670 | if (state->stack[i].slot_type[0] == STACK_SPILL) { |
671 | reg = &state->stack[i].spilled_ptr; | |
672 | t = reg->type; | |
673 | verbose(env, "=%s", reg_type_str[t]); | |
674 | if (t == SCALAR_VALUE && reg->precise) | |
675 | verbose(env, "P"); | |
676 | if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) | |
677 | verbose(env, "%lld", reg->var_off.value + reg->off); | |
678 | } else { | |
8efea21d | 679 | verbose(env, "=%s", types_buf); |
b5dc0163 | 680 | } |
17a52670 | 681 | } |
fd978bf7 JS |
682 | if (state->acquired_refs && state->refs[0].id) { |
683 | verbose(env, " refs=%d", state->refs[0].id); | |
684 | for (i = 1; i < state->acquired_refs; i++) | |
685 | if (state->refs[i].id) | |
686 | verbose(env, ",%d", state->refs[i].id); | |
687 | } | |
61bd5218 | 688 | verbose(env, "\n"); |
17a52670 AS |
689 | } |
690 | ||
84dbf350 JS |
691 | #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ |
692 | static int copy_##NAME##_state(struct bpf_func_state *dst, \ | |
693 | const struct bpf_func_state *src) \ | |
694 | { \ | |
695 | if (!src->FIELD) \ | |
696 | return 0; \ | |
697 | if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ | |
698 | /* internal bug, make state invalid to reject the program */ \ | |
699 | memset(dst, 0, sizeof(*dst)); \ | |
700 | return -EFAULT; \ | |
701 | } \ | |
702 | memcpy(dst->FIELD, src->FIELD, \ | |
703 | sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ | |
704 | return 0; \ | |
638f5b90 | 705 | } |
fd978bf7 JS |
706 | /* copy_reference_state() */ |
707 | COPY_STATE_FN(reference, acquired_refs, refs, 1) | |
84dbf350 JS |
708 | /* copy_stack_state() */ |
709 | COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) | |
710 | #undef COPY_STATE_FN | |
711 | ||
712 | #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ | |
713 | static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ | |
714 | bool copy_old) \ | |
715 | { \ | |
716 | u32 old_size = state->COUNT; \ | |
717 | struct bpf_##NAME##_state *new_##FIELD; \ | |
718 | int slot = size / SIZE; \ | |
719 | \ | |
720 | if (size <= old_size || !size) { \ | |
721 | if (copy_old) \ | |
722 | return 0; \ | |
723 | state->COUNT = slot * SIZE; \ | |
724 | if (!size && old_size) { \ | |
725 | kfree(state->FIELD); \ | |
726 | state->FIELD = NULL; \ | |
727 | } \ | |
728 | return 0; \ | |
729 | } \ | |
730 | new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ | |
731 | GFP_KERNEL); \ | |
732 | if (!new_##FIELD) \ | |
733 | return -ENOMEM; \ | |
734 | if (copy_old) { \ | |
735 | if (state->FIELD) \ | |
736 | memcpy(new_##FIELD, state->FIELD, \ | |
737 | sizeof(*new_##FIELD) * (old_size / SIZE)); \ | |
738 | memset(new_##FIELD + old_size / SIZE, 0, \ | |
739 | sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ | |
740 | } \ | |
741 | state->COUNT = slot * SIZE; \ | |
742 | kfree(state->FIELD); \ | |
743 | state->FIELD = new_##FIELD; \ | |
744 | return 0; \ | |
745 | } | |
fd978bf7 JS |
746 | /* realloc_reference_state() */ |
747 | REALLOC_STATE_FN(reference, acquired_refs, refs, 1) | |
84dbf350 JS |
748 | /* realloc_stack_state() */ |
749 | REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) | |
750 | #undef REALLOC_STATE_FN | |
638f5b90 AS |
751 | |
752 | /* do_check() starts with zero-sized stack in struct bpf_verifier_state to | |
753 | * make it consume minimal amount of memory. check_stack_write() access from | |
f4d7e40a | 754 | * the program calls into realloc_func_state() to grow the stack size. |
84dbf350 JS |
755 | * Note there is a non-zero 'parent' pointer inside bpf_verifier_state |
756 | * which realloc_stack_state() copies over. It points to previous | |
757 | * bpf_verifier_state which is never reallocated. | |
638f5b90 | 758 | */ |
fd978bf7 JS |
759 | static int realloc_func_state(struct bpf_func_state *state, int stack_size, |
760 | int refs_size, bool copy_old) | |
638f5b90 | 761 | { |
fd978bf7 JS |
762 | int err = realloc_reference_state(state, refs_size, copy_old); |
763 | if (err) | |
764 | return err; | |
765 | return realloc_stack_state(state, stack_size, copy_old); | |
766 | } | |
767 | ||
768 | /* Acquire a pointer id from the env and update the state->refs to include | |
769 | * this new pointer reference. | |
770 | * On success, returns a valid pointer id to associate with the register | |
771 | * On failure, returns a negative errno. | |
638f5b90 | 772 | */ |
fd978bf7 | 773 | static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) |
638f5b90 | 774 | { |
fd978bf7 JS |
775 | struct bpf_func_state *state = cur_func(env); |
776 | int new_ofs = state->acquired_refs; | |
777 | int id, err; | |
778 | ||
779 | err = realloc_reference_state(state, state->acquired_refs + 1, true); | |
780 | if (err) | |
781 | return err; | |
782 | id = ++env->id_gen; | |
783 | state->refs[new_ofs].id = id; | |
784 | state->refs[new_ofs].insn_idx = insn_idx; | |
638f5b90 | 785 | |
fd978bf7 JS |
786 | return id; |
787 | } | |
788 | ||
789 | /* release function corresponding to acquire_reference_state(). Idempotent. */ | |
46f8bc92 | 790 | static int release_reference_state(struct bpf_func_state *state, int ptr_id) |
fd978bf7 JS |
791 | { |
792 | int i, last_idx; | |
793 | ||
fd978bf7 JS |
794 | last_idx = state->acquired_refs - 1; |
795 | for (i = 0; i < state->acquired_refs; i++) { | |
796 | if (state->refs[i].id == ptr_id) { | |
797 | if (last_idx && i != last_idx) | |
798 | memcpy(&state->refs[i], &state->refs[last_idx], | |
799 | sizeof(*state->refs)); | |
800 | memset(&state->refs[last_idx], 0, sizeof(*state->refs)); | |
801 | state->acquired_refs--; | |
638f5b90 | 802 | return 0; |
638f5b90 | 803 | } |
638f5b90 | 804 | } |
46f8bc92 | 805 | return -EINVAL; |
fd978bf7 JS |
806 | } |
807 | ||
808 | static int transfer_reference_state(struct bpf_func_state *dst, | |
809 | struct bpf_func_state *src) | |
810 | { | |
811 | int err = realloc_reference_state(dst, src->acquired_refs, false); | |
812 | if (err) | |
813 | return err; | |
814 | err = copy_reference_state(dst, src); | |
815 | if (err) | |
816 | return err; | |
638f5b90 AS |
817 | return 0; |
818 | } | |
819 | ||
f4d7e40a AS |
820 | static void free_func_state(struct bpf_func_state *state) |
821 | { | |
5896351e AS |
822 | if (!state) |
823 | return; | |
fd978bf7 | 824 | kfree(state->refs); |
f4d7e40a AS |
825 | kfree(state->stack); |
826 | kfree(state); | |
827 | } | |
828 | ||
b5dc0163 AS |
829 | static void clear_jmp_history(struct bpf_verifier_state *state) |
830 | { | |
831 | kfree(state->jmp_history); | |
832 | state->jmp_history = NULL; | |
833 | state->jmp_history_cnt = 0; | |
834 | } | |
835 | ||
1969db47 AS |
836 | static void free_verifier_state(struct bpf_verifier_state *state, |
837 | bool free_self) | |
638f5b90 | 838 | { |
f4d7e40a AS |
839 | int i; |
840 | ||
841 | for (i = 0; i <= state->curframe; i++) { | |
842 | free_func_state(state->frame[i]); | |
843 | state->frame[i] = NULL; | |
844 | } | |
b5dc0163 | 845 | clear_jmp_history(state); |
1969db47 AS |
846 | if (free_self) |
847 | kfree(state); | |
638f5b90 AS |
848 | } |
849 | ||
850 | /* copy verifier state from src to dst growing dst stack space | |
851 | * when necessary to accommodate larger src stack | |
852 | */ | |
f4d7e40a AS |
853 | static int copy_func_state(struct bpf_func_state *dst, |
854 | const struct bpf_func_state *src) | |
638f5b90 AS |
855 | { |
856 | int err; | |
857 | ||
fd978bf7 JS |
858 | err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, |
859 | false); | |
860 | if (err) | |
861 | return err; | |
862 | memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); | |
863 | err = copy_reference_state(dst, src); | |
638f5b90 AS |
864 | if (err) |
865 | return err; | |
638f5b90 AS |
866 | return copy_stack_state(dst, src); |
867 | } | |
868 | ||
f4d7e40a AS |
869 | static int copy_verifier_state(struct bpf_verifier_state *dst_state, |
870 | const struct bpf_verifier_state *src) | |
871 | { | |
872 | struct bpf_func_state *dst; | |
b5dc0163 | 873 | u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; |
f4d7e40a AS |
874 | int i, err; |
875 | ||
b5dc0163 AS |
876 | if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { |
877 | kfree(dst_state->jmp_history); | |
878 | dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); | |
879 | if (!dst_state->jmp_history) | |
880 | return -ENOMEM; | |
881 | } | |
882 | memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); | |
883 | dst_state->jmp_history_cnt = src->jmp_history_cnt; | |
884 | ||
f4d7e40a AS |
885 | /* if dst has more stack frames then src frame, free them */ |
886 | for (i = src->curframe + 1; i <= dst_state->curframe; i++) { | |
887 | free_func_state(dst_state->frame[i]); | |
888 | dst_state->frame[i] = NULL; | |
889 | } | |
979d63d5 | 890 | dst_state->speculative = src->speculative; |
f4d7e40a | 891 | dst_state->curframe = src->curframe; |
d83525ca | 892 | dst_state->active_spin_lock = src->active_spin_lock; |
2589726d AS |
893 | dst_state->branches = src->branches; |
894 | dst_state->parent = src->parent; | |
b5dc0163 AS |
895 | dst_state->first_insn_idx = src->first_insn_idx; |
896 | dst_state->last_insn_idx = src->last_insn_idx; | |
f4d7e40a AS |
897 | for (i = 0; i <= src->curframe; i++) { |
898 | dst = dst_state->frame[i]; | |
899 | if (!dst) { | |
900 | dst = kzalloc(sizeof(*dst), GFP_KERNEL); | |
901 | if (!dst) | |
902 | return -ENOMEM; | |
903 | dst_state->frame[i] = dst; | |
904 | } | |
905 | err = copy_func_state(dst, src->frame[i]); | |
906 | if (err) | |
907 | return err; | |
908 | } | |
909 | return 0; | |
910 | } | |
911 | ||
2589726d AS |
912 | static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) |
913 | { | |
914 | while (st) { | |
915 | u32 br = --st->branches; | |
916 | ||
917 | /* WARN_ON(br > 1) technically makes sense here, | |
918 | * but see comment in push_stack(), hence: | |
919 | */ | |
920 | WARN_ONCE((int)br < 0, | |
921 | "BUG update_branch_counts:branches_to_explore=%d\n", | |
922 | br); | |
923 | if (br) | |
924 | break; | |
925 | st = st->parent; | |
926 | } | |
927 | } | |
928 | ||
638f5b90 | 929 | static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, |
6f8a57cc | 930 | int *insn_idx, bool pop_log) |
638f5b90 AS |
931 | { |
932 | struct bpf_verifier_state *cur = env->cur_state; | |
933 | struct bpf_verifier_stack_elem *elem, *head = env->head; | |
934 | int err; | |
17a52670 AS |
935 | |
936 | if (env->head == NULL) | |
638f5b90 | 937 | return -ENOENT; |
17a52670 | 938 | |
638f5b90 AS |
939 | if (cur) { |
940 | err = copy_verifier_state(cur, &head->st); | |
941 | if (err) | |
942 | return err; | |
943 | } | |
6f8a57cc AN |
944 | if (pop_log) |
945 | bpf_vlog_reset(&env->log, head->log_pos); | |
638f5b90 AS |
946 | if (insn_idx) |
947 | *insn_idx = head->insn_idx; | |
17a52670 | 948 | if (prev_insn_idx) |
638f5b90 AS |
949 | *prev_insn_idx = head->prev_insn_idx; |
950 | elem = head->next; | |
1969db47 | 951 | free_verifier_state(&head->st, false); |
638f5b90 | 952 | kfree(head); |
17a52670 AS |
953 | env->head = elem; |
954 | env->stack_size--; | |
638f5b90 | 955 | return 0; |
17a52670 AS |
956 | } |
957 | ||
58e2af8b | 958 | static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, |
979d63d5 DB |
959 | int insn_idx, int prev_insn_idx, |
960 | bool speculative) | |
17a52670 | 961 | { |
638f5b90 | 962 | struct bpf_verifier_state *cur = env->cur_state; |
58e2af8b | 963 | struct bpf_verifier_stack_elem *elem; |
638f5b90 | 964 | int err; |
17a52670 | 965 | |
638f5b90 | 966 | elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
17a52670 AS |
967 | if (!elem) |
968 | goto err; | |
969 | ||
17a52670 AS |
970 | elem->insn_idx = insn_idx; |
971 | elem->prev_insn_idx = prev_insn_idx; | |
972 | elem->next = env->head; | |
6f8a57cc | 973 | elem->log_pos = env->log.len_used; |
17a52670 AS |
974 | env->head = elem; |
975 | env->stack_size++; | |
1969db47 AS |
976 | err = copy_verifier_state(&elem->st, cur); |
977 | if (err) | |
978 | goto err; | |
979d63d5 | 979 | elem->st.speculative |= speculative; |
b285fcb7 AS |
980 | if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { |
981 | verbose(env, "The sequence of %d jumps is too complex.\n", | |
982 | env->stack_size); | |
17a52670 AS |
983 | goto err; |
984 | } | |
2589726d AS |
985 | if (elem->st.parent) { |
986 | ++elem->st.parent->branches; | |
987 | /* WARN_ON(branches > 2) technically makes sense here, | |
988 | * but | |
989 | * 1. speculative states will bump 'branches' for non-branch | |
990 | * instructions | |
991 | * 2. is_state_visited() heuristics may decide not to create | |
992 | * a new state for a sequence of branches and all such current | |
993 | * and cloned states will be pointing to a single parent state | |
994 | * which might have large 'branches' count. | |
995 | */ | |
996 | } | |
17a52670 AS |
997 | return &elem->st; |
998 | err: | |
5896351e AS |
999 | free_verifier_state(env->cur_state, true); |
1000 | env->cur_state = NULL; | |
17a52670 | 1001 | /* pop all elements and return */ |
6f8a57cc | 1002 | while (!pop_stack(env, NULL, NULL, false)); |
17a52670 AS |
1003 | return NULL; |
1004 | } | |
1005 | ||
1006 | #define CALLER_SAVED_REGS 6 | |
1007 | static const int caller_saved[CALLER_SAVED_REGS] = { | |
1008 | BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 | |
1009 | }; | |
1010 | ||
f54c7898 DB |
1011 | static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
1012 | struct bpf_reg_state *reg); | |
f1174f77 | 1013 | |
e688c3db AS |
1014 | /* This helper doesn't clear reg->id */ |
1015 | static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) | |
b03c9f9f | 1016 | { |
b03c9f9f EC |
1017 | reg->var_off = tnum_const(imm); |
1018 | reg->smin_value = (s64)imm; | |
1019 | reg->smax_value = (s64)imm; | |
1020 | reg->umin_value = imm; | |
1021 | reg->umax_value = imm; | |
3f50f132 JF |
1022 | |
1023 | reg->s32_min_value = (s32)imm; | |
1024 | reg->s32_max_value = (s32)imm; | |
1025 | reg->u32_min_value = (u32)imm; | |
1026 | reg->u32_max_value = (u32)imm; | |
1027 | } | |
1028 | ||
e688c3db AS |
1029 | /* Mark the unknown part of a register (variable offset or scalar value) as |
1030 | * known to have the value @imm. | |
1031 | */ | |
1032 | static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) | |
1033 | { | |
1034 | /* Clear id, off, and union(map_ptr, range) */ | |
1035 | memset(((u8 *)reg) + sizeof(reg->type), 0, | |
1036 | offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); | |
1037 | ___mark_reg_known(reg, imm); | |
1038 | } | |
1039 | ||
3f50f132 JF |
1040 | static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) |
1041 | { | |
1042 | reg->var_off = tnum_const_subreg(reg->var_off, imm); | |
1043 | reg->s32_min_value = (s32)imm; | |
1044 | reg->s32_max_value = (s32)imm; | |
1045 | reg->u32_min_value = (u32)imm; | |
1046 | reg->u32_max_value = (u32)imm; | |
b03c9f9f EC |
1047 | } |
1048 | ||
f1174f77 EC |
1049 | /* Mark the 'variable offset' part of a register as zero. This should be |
1050 | * used only on registers holding a pointer type. | |
1051 | */ | |
1052 | static void __mark_reg_known_zero(struct bpf_reg_state *reg) | |
a9789ef9 | 1053 | { |
b03c9f9f | 1054 | __mark_reg_known(reg, 0); |
f1174f77 | 1055 | } |
a9789ef9 | 1056 | |
cc2b14d5 AS |
1057 | static void __mark_reg_const_zero(struct bpf_reg_state *reg) |
1058 | { | |
1059 | __mark_reg_known(reg, 0); | |
cc2b14d5 AS |
1060 | reg->type = SCALAR_VALUE; |
1061 | } | |
1062 | ||
61bd5218 JK |
1063 | static void mark_reg_known_zero(struct bpf_verifier_env *env, |
1064 | struct bpf_reg_state *regs, u32 regno) | |
f1174f77 EC |
1065 | { |
1066 | if (WARN_ON(regno >= MAX_BPF_REG)) { | |
61bd5218 | 1067 | verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); |
f1174f77 EC |
1068 | /* Something bad happened, let's kill all regs */ |
1069 | for (regno = 0; regno < MAX_BPF_REG; regno++) | |
f54c7898 | 1070 | __mark_reg_not_init(env, regs + regno); |
f1174f77 EC |
1071 | return; |
1072 | } | |
1073 | __mark_reg_known_zero(regs + regno); | |
1074 | } | |
1075 | ||
de8f3a83 DB |
1076 | static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) |
1077 | { | |
1078 | return type_is_pkt_pointer(reg->type); | |
1079 | } | |
1080 | ||
1081 | static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) | |
1082 | { | |
1083 | return reg_is_pkt_pointer(reg) || | |
1084 | reg->type == PTR_TO_PACKET_END; | |
1085 | } | |
1086 | ||
1087 | /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ | |
1088 | static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, | |
1089 | enum bpf_reg_type which) | |
1090 | { | |
1091 | /* The register can already have a range from prior markings. | |
1092 | * This is fine as long as it hasn't been advanced from its | |
1093 | * origin. | |
1094 | */ | |
1095 | return reg->type == which && | |
1096 | reg->id == 0 && | |
1097 | reg->off == 0 && | |
1098 | tnum_equals_const(reg->var_off, 0); | |
1099 | } | |
1100 | ||
3f50f132 JF |
1101 | /* Reset the min/max bounds of a register */ |
1102 | static void __mark_reg_unbounded(struct bpf_reg_state *reg) | |
1103 | { | |
1104 | reg->smin_value = S64_MIN; | |
1105 | reg->smax_value = S64_MAX; | |
1106 | reg->umin_value = 0; | |
1107 | reg->umax_value = U64_MAX; | |
1108 | ||
1109 | reg->s32_min_value = S32_MIN; | |
1110 | reg->s32_max_value = S32_MAX; | |
1111 | reg->u32_min_value = 0; | |
1112 | reg->u32_max_value = U32_MAX; | |
1113 | } | |
1114 | ||
1115 | static void __mark_reg64_unbounded(struct bpf_reg_state *reg) | |
1116 | { | |
1117 | reg->smin_value = S64_MIN; | |
1118 | reg->smax_value = S64_MAX; | |
1119 | reg->umin_value = 0; | |
1120 | reg->umax_value = U64_MAX; | |
1121 | } | |
1122 | ||
1123 | static void __mark_reg32_unbounded(struct bpf_reg_state *reg) | |
1124 | { | |
1125 | reg->s32_min_value = S32_MIN; | |
1126 | reg->s32_max_value = S32_MAX; | |
1127 | reg->u32_min_value = 0; | |
1128 | reg->u32_max_value = U32_MAX; | |
1129 | } | |
1130 | ||
1131 | static void __update_reg32_bounds(struct bpf_reg_state *reg) | |
1132 | { | |
1133 | struct tnum var32_off = tnum_subreg(reg->var_off); | |
1134 | ||
1135 | /* min signed is max(sign bit) | min(other bits) */ | |
1136 | reg->s32_min_value = max_t(s32, reg->s32_min_value, | |
1137 | var32_off.value | (var32_off.mask & S32_MIN)); | |
1138 | /* max signed is min(sign bit) | max(other bits) */ | |
1139 | reg->s32_max_value = min_t(s32, reg->s32_max_value, | |
1140 | var32_off.value | (var32_off.mask & S32_MAX)); | |
1141 | reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); | |
1142 | reg->u32_max_value = min(reg->u32_max_value, | |
1143 | (u32)(var32_off.value | var32_off.mask)); | |
1144 | } | |
1145 | ||
1146 | static void __update_reg64_bounds(struct bpf_reg_state *reg) | |
b03c9f9f EC |
1147 | { |
1148 | /* min signed is max(sign bit) | min(other bits) */ | |
1149 | reg->smin_value = max_t(s64, reg->smin_value, | |
1150 | reg->var_off.value | (reg->var_off.mask & S64_MIN)); | |
1151 | /* max signed is min(sign bit) | max(other bits) */ | |
1152 | reg->smax_value = min_t(s64, reg->smax_value, | |
1153 | reg->var_off.value | (reg->var_off.mask & S64_MAX)); | |
1154 | reg->umin_value = max(reg->umin_value, reg->var_off.value); | |
1155 | reg->umax_value = min(reg->umax_value, | |
1156 | reg->var_off.value | reg->var_off.mask); | |
1157 | } | |
1158 | ||
3f50f132 JF |
1159 | static void __update_reg_bounds(struct bpf_reg_state *reg) |
1160 | { | |
1161 | __update_reg32_bounds(reg); | |
1162 | __update_reg64_bounds(reg); | |
1163 | } | |
1164 | ||
b03c9f9f | 1165 | /* Uses signed min/max values to inform unsigned, and vice-versa */ |
3f50f132 JF |
1166 | static void __reg32_deduce_bounds(struct bpf_reg_state *reg) |
1167 | { | |
1168 | /* Learn sign from signed bounds. | |
1169 | * If we cannot cross the sign boundary, then signed and unsigned bounds | |
1170 | * are the same, so combine. This works even in the negative case, e.g. | |
1171 | * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. | |
1172 | */ | |
1173 | if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { | |
1174 | reg->s32_min_value = reg->u32_min_value = | |
1175 | max_t(u32, reg->s32_min_value, reg->u32_min_value); | |
1176 | reg->s32_max_value = reg->u32_max_value = | |
1177 | min_t(u32, reg->s32_max_value, reg->u32_max_value); | |
1178 | return; | |
1179 | } | |
1180 | /* Learn sign from unsigned bounds. Signed bounds cross the sign | |
1181 | * boundary, so we must be careful. | |
1182 | */ | |
1183 | if ((s32)reg->u32_max_value >= 0) { | |
1184 | /* Positive. We can't learn anything from the smin, but smax | |
1185 | * is positive, hence safe. | |
1186 | */ | |
1187 | reg->s32_min_value = reg->u32_min_value; | |
1188 | reg->s32_max_value = reg->u32_max_value = | |
1189 | min_t(u32, reg->s32_max_value, reg->u32_max_value); | |
1190 | } else if ((s32)reg->u32_min_value < 0) { | |
1191 | /* Negative. We can't learn anything from the smax, but smin | |
1192 | * is negative, hence safe. | |
1193 | */ | |
1194 | reg->s32_min_value = reg->u32_min_value = | |
1195 | max_t(u32, reg->s32_min_value, reg->u32_min_value); | |
1196 | reg->s32_max_value = reg->u32_max_value; | |
1197 | } | |
1198 | } | |
1199 | ||
1200 | static void __reg64_deduce_bounds(struct bpf_reg_state *reg) | |
b03c9f9f EC |
1201 | { |
1202 | /* Learn sign from signed bounds. | |
1203 | * If we cannot cross the sign boundary, then signed and unsigned bounds | |
1204 | * are the same, so combine. This works even in the negative case, e.g. | |
1205 | * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. | |
1206 | */ | |
1207 | if (reg->smin_value >= 0 || reg->smax_value < 0) { | |
1208 | reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, | |
1209 | reg->umin_value); | |
1210 | reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, | |
1211 | reg->umax_value); | |
1212 | return; | |
1213 | } | |
1214 | /* Learn sign from unsigned bounds. Signed bounds cross the sign | |
1215 | * boundary, so we must be careful. | |
1216 | */ | |
1217 | if ((s64)reg->umax_value >= 0) { | |
1218 | /* Positive. We can't learn anything from the smin, but smax | |
1219 | * is positive, hence safe. | |
1220 | */ | |
1221 | reg->smin_value = reg->umin_value; | |
1222 | reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, | |
1223 | reg->umax_value); | |
1224 | } else if ((s64)reg->umin_value < 0) { | |
1225 | /* Negative. We can't learn anything from the smax, but smin | |
1226 | * is negative, hence safe. | |
1227 | */ | |
1228 | reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, | |
1229 | reg->umin_value); | |
1230 | reg->smax_value = reg->umax_value; | |
1231 | } | |
1232 | } | |
1233 | ||
3f50f132 JF |
1234 | static void __reg_deduce_bounds(struct bpf_reg_state *reg) |
1235 | { | |
1236 | __reg32_deduce_bounds(reg); | |
1237 | __reg64_deduce_bounds(reg); | |
1238 | } | |
1239 | ||
b03c9f9f EC |
1240 | /* Attempts to improve var_off based on unsigned min/max information */ |
1241 | static void __reg_bound_offset(struct bpf_reg_state *reg) | |
1242 | { | |
3f50f132 JF |
1243 | struct tnum var64_off = tnum_intersect(reg->var_off, |
1244 | tnum_range(reg->umin_value, | |
1245 | reg->umax_value)); | |
1246 | struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), | |
1247 | tnum_range(reg->u32_min_value, | |
1248 | reg->u32_max_value)); | |
1249 | ||
1250 | reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); | |
b03c9f9f EC |
1251 | } |
1252 | ||
3f50f132 | 1253 | static void __reg_assign_32_into_64(struct bpf_reg_state *reg) |
b03c9f9f | 1254 | { |
3f50f132 JF |
1255 | reg->umin_value = reg->u32_min_value; |
1256 | reg->umax_value = reg->u32_max_value; | |
1257 | /* Attempt to pull 32-bit signed bounds into 64-bit bounds | |
1258 | * but must be positive otherwise set to worse case bounds | |
1259 | * and refine later from tnum. | |
1260 | */ | |
3a71dc36 | 1261 | if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) |
3f50f132 JF |
1262 | reg->smax_value = reg->s32_max_value; |
1263 | else | |
1264 | reg->smax_value = U32_MAX; | |
3a71dc36 JF |
1265 | if (reg->s32_min_value >= 0) |
1266 | reg->smin_value = reg->s32_min_value; | |
1267 | else | |
1268 | reg->smin_value = 0; | |
3f50f132 JF |
1269 | } |
1270 | ||
1271 | static void __reg_combine_32_into_64(struct bpf_reg_state *reg) | |
1272 | { | |
1273 | /* special case when 64-bit register has upper 32-bit register | |
1274 | * zeroed. Typically happens after zext or <<32, >>32 sequence | |
1275 | * allowing us to use 32-bit bounds directly, | |
1276 | */ | |
1277 | if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { | |
1278 | __reg_assign_32_into_64(reg); | |
1279 | } else { | |
1280 | /* Otherwise the best we can do is push lower 32bit known and | |
1281 | * unknown bits into register (var_off set from jmp logic) | |
1282 | * then learn as much as possible from the 64-bit tnum | |
1283 | * known and unknown bits. The previous smin/smax bounds are | |
1284 | * invalid here because of jmp32 compare so mark them unknown | |
1285 | * so they do not impact tnum bounds calculation. | |
1286 | */ | |
1287 | __mark_reg64_unbounded(reg); | |
1288 | __update_reg_bounds(reg); | |
1289 | } | |
1290 | ||
1291 | /* Intersecting with the old var_off might have improved our bounds | |
1292 | * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | |
1293 | * then new var_off is (0; 0x7f...fc) which improves our umax. | |
1294 | */ | |
1295 | __reg_deduce_bounds(reg); | |
1296 | __reg_bound_offset(reg); | |
1297 | __update_reg_bounds(reg); | |
1298 | } | |
1299 | ||
1300 | static bool __reg64_bound_s32(s64 a) | |
1301 | { | |
b0270958 | 1302 | return a > S32_MIN && a < S32_MAX; |
3f50f132 JF |
1303 | } |
1304 | ||
1305 | static bool __reg64_bound_u32(u64 a) | |
1306 | { | |
1307 | if (a > U32_MIN && a < U32_MAX) | |
1308 | return true; | |
1309 | return false; | |
1310 | } | |
1311 | ||
1312 | static void __reg_combine_64_into_32(struct bpf_reg_state *reg) | |
1313 | { | |
1314 | __mark_reg32_unbounded(reg); | |
1315 | ||
b0270958 | 1316 | if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { |
3f50f132 | 1317 | reg->s32_min_value = (s32)reg->smin_value; |
3f50f132 | 1318 | reg->s32_max_value = (s32)reg->smax_value; |
b0270958 | 1319 | } |
3f50f132 JF |
1320 | if (__reg64_bound_u32(reg->umin_value)) |
1321 | reg->u32_min_value = (u32)reg->umin_value; | |
1322 | if (__reg64_bound_u32(reg->umax_value)) | |
1323 | reg->u32_max_value = (u32)reg->umax_value; | |
1324 | ||
1325 | /* Intersecting with the old var_off might have improved our bounds | |
1326 | * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | |
1327 | * then new var_off is (0; 0x7f...fc) which improves our umax. | |
1328 | */ | |
1329 | __reg_deduce_bounds(reg); | |
1330 | __reg_bound_offset(reg); | |
1331 | __update_reg_bounds(reg); | |
b03c9f9f EC |
1332 | } |
1333 | ||
f1174f77 | 1334 | /* Mark a register as having a completely unknown (scalar) value. */ |
f54c7898 DB |
1335 | static void __mark_reg_unknown(const struct bpf_verifier_env *env, |
1336 | struct bpf_reg_state *reg) | |
f1174f77 | 1337 | { |
a9c676bc AS |
1338 | /* |
1339 | * Clear type, id, off, and union(map_ptr, range) and | |
1340 | * padding between 'type' and union | |
1341 | */ | |
1342 | memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); | |
f1174f77 | 1343 | reg->type = SCALAR_VALUE; |
f1174f77 | 1344 | reg->var_off = tnum_unknown; |
f4d7e40a | 1345 | reg->frameno = 0; |
2c78ee89 | 1346 | reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; |
b03c9f9f | 1347 | __mark_reg_unbounded(reg); |
f1174f77 EC |
1348 | } |
1349 | ||
61bd5218 JK |
1350 | static void mark_reg_unknown(struct bpf_verifier_env *env, |
1351 | struct bpf_reg_state *regs, u32 regno) | |
f1174f77 EC |
1352 | { |
1353 | if (WARN_ON(regno >= MAX_BPF_REG)) { | |
61bd5218 | 1354 | verbose(env, "mark_reg_unknown(regs, %u)\n", regno); |
19ceb417 AS |
1355 | /* Something bad happened, let's kill all regs except FP */ |
1356 | for (regno = 0; regno < BPF_REG_FP; regno++) | |
f54c7898 | 1357 | __mark_reg_not_init(env, regs + regno); |
f1174f77 EC |
1358 | return; |
1359 | } | |
f54c7898 | 1360 | __mark_reg_unknown(env, regs + regno); |
f1174f77 EC |
1361 | } |
1362 | ||
f54c7898 DB |
1363 | static void __mark_reg_not_init(const struct bpf_verifier_env *env, |
1364 | struct bpf_reg_state *reg) | |
f1174f77 | 1365 | { |
f54c7898 | 1366 | __mark_reg_unknown(env, reg); |
f1174f77 EC |
1367 | reg->type = NOT_INIT; |
1368 | } | |
1369 | ||
61bd5218 JK |
1370 | static void mark_reg_not_init(struct bpf_verifier_env *env, |
1371 | struct bpf_reg_state *regs, u32 regno) | |
f1174f77 EC |
1372 | { |
1373 | if (WARN_ON(regno >= MAX_BPF_REG)) { | |
61bd5218 | 1374 | verbose(env, "mark_reg_not_init(regs, %u)\n", regno); |
19ceb417 AS |
1375 | /* Something bad happened, let's kill all regs except FP */ |
1376 | for (regno = 0; regno < BPF_REG_FP; regno++) | |
f54c7898 | 1377 | __mark_reg_not_init(env, regs + regno); |
f1174f77 EC |
1378 | return; |
1379 | } | |
f54c7898 | 1380 | __mark_reg_not_init(env, regs + regno); |
a9789ef9 DB |
1381 | } |
1382 | ||
41c48f3a AI |
1383 | static void mark_btf_ld_reg(struct bpf_verifier_env *env, |
1384 | struct bpf_reg_state *regs, u32 regno, | |
22dc4a0f AN |
1385 | enum bpf_reg_type reg_type, |
1386 | struct btf *btf, u32 btf_id) | |
41c48f3a AI |
1387 | { |
1388 | if (reg_type == SCALAR_VALUE) { | |
1389 | mark_reg_unknown(env, regs, regno); | |
1390 | return; | |
1391 | } | |
1392 | mark_reg_known_zero(env, regs, regno); | |
1393 | regs[regno].type = PTR_TO_BTF_ID; | |
22dc4a0f | 1394 | regs[regno].btf = btf; |
41c48f3a AI |
1395 | regs[regno].btf_id = btf_id; |
1396 | } | |
1397 | ||
5327ed3d | 1398 | #define DEF_NOT_SUBREG (0) |
61bd5218 | 1399 | static void init_reg_state(struct bpf_verifier_env *env, |
f4d7e40a | 1400 | struct bpf_func_state *state) |
17a52670 | 1401 | { |
f4d7e40a | 1402 | struct bpf_reg_state *regs = state->regs; |
17a52670 AS |
1403 | int i; |
1404 | ||
dc503a8a | 1405 | for (i = 0; i < MAX_BPF_REG; i++) { |
61bd5218 | 1406 | mark_reg_not_init(env, regs, i); |
dc503a8a | 1407 | regs[i].live = REG_LIVE_NONE; |
679c782d | 1408 | regs[i].parent = NULL; |
5327ed3d | 1409 | regs[i].subreg_def = DEF_NOT_SUBREG; |
dc503a8a | 1410 | } |
17a52670 AS |
1411 | |
1412 | /* frame pointer */ | |
f1174f77 | 1413 | regs[BPF_REG_FP].type = PTR_TO_STACK; |
61bd5218 | 1414 | mark_reg_known_zero(env, regs, BPF_REG_FP); |
f4d7e40a | 1415 | regs[BPF_REG_FP].frameno = state->frameno; |
6760bf2d DB |
1416 | } |
1417 | ||
f4d7e40a AS |
1418 | #define BPF_MAIN_FUNC (-1) |
1419 | static void init_func_state(struct bpf_verifier_env *env, | |
1420 | struct bpf_func_state *state, | |
1421 | int callsite, int frameno, int subprogno) | |
1422 | { | |
1423 | state->callsite = callsite; | |
1424 | state->frameno = frameno; | |
1425 | state->subprogno = subprogno; | |
1426 | init_reg_state(env, state); | |
1427 | } | |
1428 | ||
17a52670 AS |
1429 | enum reg_arg_type { |
1430 | SRC_OP, /* register is used as source operand */ | |
1431 | DST_OP, /* register is used as destination operand */ | |
1432 | DST_OP_NO_MARK /* same as above, check only, don't mark */ | |
1433 | }; | |
1434 | ||
cc8b0b92 AS |
1435 | static int cmp_subprogs(const void *a, const void *b) |
1436 | { | |
9c8105bd JW |
1437 | return ((struct bpf_subprog_info *)a)->start - |
1438 | ((struct bpf_subprog_info *)b)->start; | |
cc8b0b92 AS |
1439 | } |
1440 | ||
1441 | static int find_subprog(struct bpf_verifier_env *env, int off) | |
1442 | { | |
9c8105bd | 1443 | struct bpf_subprog_info *p; |
cc8b0b92 | 1444 | |
9c8105bd JW |
1445 | p = bsearch(&off, env->subprog_info, env->subprog_cnt, |
1446 | sizeof(env->subprog_info[0]), cmp_subprogs); | |
cc8b0b92 AS |
1447 | if (!p) |
1448 | return -ENOENT; | |
9c8105bd | 1449 | return p - env->subprog_info; |
cc8b0b92 AS |
1450 | |
1451 | } | |
1452 | ||
1453 | static int add_subprog(struct bpf_verifier_env *env, int off) | |
1454 | { | |
1455 | int insn_cnt = env->prog->len; | |
1456 | int ret; | |
1457 | ||
1458 | if (off >= insn_cnt || off < 0) { | |
1459 | verbose(env, "call to invalid destination\n"); | |
1460 | return -EINVAL; | |
1461 | } | |
1462 | ret = find_subprog(env, off); | |
1463 | if (ret >= 0) | |
1464 | return 0; | |
4cb3d99c | 1465 | if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { |
cc8b0b92 AS |
1466 | verbose(env, "too many subprograms\n"); |
1467 | return -E2BIG; | |
1468 | } | |
9c8105bd JW |
1469 | env->subprog_info[env->subprog_cnt++].start = off; |
1470 | sort(env->subprog_info, env->subprog_cnt, | |
1471 | sizeof(env->subprog_info[0]), cmp_subprogs, NULL); | |
cc8b0b92 AS |
1472 | return 0; |
1473 | } | |
1474 | ||
1475 | static int check_subprogs(struct bpf_verifier_env *env) | |
1476 | { | |
1477 | int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; | |
9c8105bd | 1478 | struct bpf_subprog_info *subprog = env->subprog_info; |
cc8b0b92 AS |
1479 | struct bpf_insn *insn = env->prog->insnsi; |
1480 | int insn_cnt = env->prog->len; | |
1481 | ||
f910cefa JW |
1482 | /* Add entry function. */ |
1483 | ret = add_subprog(env, 0); | |
1484 | if (ret < 0) | |
1485 | return ret; | |
1486 | ||
cc8b0b92 AS |
1487 | /* determine subprog starts. The end is one before the next starts */ |
1488 | for (i = 0; i < insn_cnt; i++) { | |
1489 | if (insn[i].code != (BPF_JMP | BPF_CALL)) | |
1490 | continue; | |
1491 | if (insn[i].src_reg != BPF_PSEUDO_CALL) | |
1492 | continue; | |
2c78ee89 AS |
1493 | if (!env->bpf_capable) { |
1494 | verbose(env, | |
1495 | "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); | |
cc8b0b92 AS |
1496 | return -EPERM; |
1497 | } | |
cc8b0b92 AS |
1498 | ret = add_subprog(env, i + insn[i].imm + 1); |
1499 | if (ret < 0) | |
1500 | return ret; | |
1501 | } | |
1502 | ||
4cb3d99c JW |
1503 | /* Add a fake 'exit' subprog which could simplify subprog iteration |
1504 | * logic. 'subprog_cnt' should not be increased. | |
1505 | */ | |
1506 | subprog[env->subprog_cnt].start = insn_cnt; | |
1507 | ||
06ee7115 | 1508 | if (env->log.level & BPF_LOG_LEVEL2) |
cc8b0b92 | 1509 | for (i = 0; i < env->subprog_cnt; i++) |
9c8105bd | 1510 | verbose(env, "func#%d @%d\n", i, subprog[i].start); |
cc8b0b92 AS |
1511 | |
1512 | /* now check that all jumps are within the same subprog */ | |
4cb3d99c JW |
1513 | subprog_start = subprog[cur_subprog].start; |
1514 | subprog_end = subprog[cur_subprog + 1].start; | |
cc8b0b92 AS |
1515 | for (i = 0; i < insn_cnt; i++) { |
1516 | u8 code = insn[i].code; | |
1517 | ||
7f6e4312 MF |
1518 | if (code == (BPF_JMP | BPF_CALL) && |
1519 | insn[i].imm == BPF_FUNC_tail_call && | |
1520 | insn[i].src_reg != BPF_PSEUDO_CALL) | |
1521 | subprog[cur_subprog].has_tail_call = true; | |
09b28d76 AS |
1522 | if (BPF_CLASS(code) == BPF_LD && |
1523 | (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) | |
1524 | subprog[cur_subprog].has_ld_abs = true; | |
092ed096 | 1525 | if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) |
cc8b0b92 AS |
1526 | goto next; |
1527 | if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) | |
1528 | goto next; | |
1529 | off = i + insn[i].off + 1; | |
1530 | if (off < subprog_start || off >= subprog_end) { | |
1531 | verbose(env, "jump out of range from insn %d to %d\n", i, off); | |
1532 | return -EINVAL; | |
1533 | } | |
1534 | next: | |
1535 | if (i == subprog_end - 1) { | |
1536 | /* to avoid fall-through from one subprog into another | |
1537 | * the last insn of the subprog should be either exit | |
1538 | * or unconditional jump back | |
1539 | */ | |
1540 | if (code != (BPF_JMP | BPF_EXIT) && | |
1541 | code != (BPF_JMP | BPF_JA)) { | |
1542 | verbose(env, "last insn is not an exit or jmp\n"); | |
1543 | return -EINVAL; | |
1544 | } | |
1545 | subprog_start = subprog_end; | |
4cb3d99c JW |
1546 | cur_subprog++; |
1547 | if (cur_subprog < env->subprog_cnt) | |
9c8105bd | 1548 | subprog_end = subprog[cur_subprog + 1].start; |
cc8b0b92 AS |
1549 | } |
1550 | } | |
1551 | return 0; | |
1552 | } | |
1553 | ||
679c782d EC |
1554 | /* Parentage chain of this register (or stack slot) should take care of all |
1555 | * issues like callee-saved registers, stack slot allocation time, etc. | |
1556 | */ | |
f4d7e40a | 1557 | static int mark_reg_read(struct bpf_verifier_env *env, |
679c782d | 1558 | const struct bpf_reg_state *state, |
5327ed3d | 1559 | struct bpf_reg_state *parent, u8 flag) |
f4d7e40a AS |
1560 | { |
1561 | bool writes = parent == state->parent; /* Observe write marks */ | |
06ee7115 | 1562 | int cnt = 0; |
dc503a8a EC |
1563 | |
1564 | while (parent) { | |
1565 | /* if read wasn't screened by an earlier write ... */ | |
679c782d | 1566 | if (writes && state->live & REG_LIVE_WRITTEN) |
dc503a8a | 1567 | break; |
9242b5f5 AS |
1568 | if (parent->live & REG_LIVE_DONE) { |
1569 | verbose(env, "verifier BUG type %s var_off %lld off %d\n", | |
1570 | reg_type_str[parent->type], | |
1571 | parent->var_off.value, parent->off); | |
1572 | return -EFAULT; | |
1573 | } | |
5327ed3d JW |
1574 | /* The first condition is more likely to be true than the |
1575 | * second, checked it first. | |
1576 | */ | |
1577 | if ((parent->live & REG_LIVE_READ) == flag || | |
1578 | parent->live & REG_LIVE_READ64) | |
25af32da AS |
1579 | /* The parentage chain never changes and |
1580 | * this parent was already marked as LIVE_READ. | |
1581 | * There is no need to keep walking the chain again and | |
1582 | * keep re-marking all parents as LIVE_READ. | |
1583 | * This case happens when the same register is read | |
1584 | * multiple times without writes into it in-between. | |
5327ed3d JW |
1585 | * Also, if parent has the stronger REG_LIVE_READ64 set, |
1586 | * then no need to set the weak REG_LIVE_READ32. | |
25af32da AS |
1587 | */ |
1588 | break; | |
dc503a8a | 1589 | /* ... then we depend on parent's value */ |
5327ed3d JW |
1590 | parent->live |= flag; |
1591 | /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ | |
1592 | if (flag == REG_LIVE_READ64) | |
1593 | parent->live &= ~REG_LIVE_READ32; | |
dc503a8a EC |
1594 | state = parent; |
1595 | parent = state->parent; | |
f4d7e40a | 1596 | writes = true; |
06ee7115 | 1597 | cnt++; |
dc503a8a | 1598 | } |
06ee7115 AS |
1599 | |
1600 | if (env->longest_mark_read_walk < cnt) | |
1601 | env->longest_mark_read_walk = cnt; | |
f4d7e40a | 1602 | return 0; |
dc503a8a EC |
1603 | } |
1604 | ||
5327ed3d JW |
1605 | /* This function is supposed to be used by the following 32-bit optimization |
1606 | * code only. It returns TRUE if the source or destination register operates | |
1607 | * on 64-bit, otherwise return FALSE. | |
1608 | */ | |
1609 | static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, | |
1610 | u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) | |
1611 | { | |
1612 | u8 code, class, op; | |
1613 | ||
1614 | code = insn->code; | |
1615 | class = BPF_CLASS(code); | |
1616 | op = BPF_OP(code); | |
1617 | if (class == BPF_JMP) { | |
1618 | /* BPF_EXIT for "main" will reach here. Return TRUE | |
1619 | * conservatively. | |
1620 | */ | |
1621 | if (op == BPF_EXIT) | |
1622 | return true; | |
1623 | if (op == BPF_CALL) { | |
1624 | /* BPF to BPF call will reach here because of marking | |
1625 | * caller saved clobber with DST_OP_NO_MARK for which we | |
1626 | * don't care the register def because they are anyway | |
1627 | * marked as NOT_INIT already. | |
1628 | */ | |
1629 | if (insn->src_reg == BPF_PSEUDO_CALL) | |
1630 | return false; | |
1631 | /* Helper call will reach here because of arg type | |
1632 | * check, conservatively return TRUE. | |
1633 | */ | |
1634 | if (t == SRC_OP) | |
1635 | return true; | |
1636 | ||
1637 | return false; | |
1638 | } | |
1639 | } | |
1640 | ||
1641 | if (class == BPF_ALU64 || class == BPF_JMP || | |
1642 | /* BPF_END always use BPF_ALU class. */ | |
1643 | (class == BPF_ALU && op == BPF_END && insn->imm == 64)) | |
1644 | return true; | |
1645 | ||
1646 | if (class == BPF_ALU || class == BPF_JMP32) | |
1647 | return false; | |
1648 | ||
1649 | if (class == BPF_LDX) { | |
1650 | if (t != SRC_OP) | |
1651 | return BPF_SIZE(code) == BPF_DW; | |
1652 | /* LDX source must be ptr. */ | |
1653 | return true; | |
1654 | } | |
1655 | ||
1656 | if (class == BPF_STX) { | |
1657 | if (reg->type != SCALAR_VALUE) | |
1658 | return true; | |
1659 | return BPF_SIZE(code) == BPF_DW; | |
1660 | } | |
1661 | ||
1662 | if (class == BPF_LD) { | |
1663 | u8 mode = BPF_MODE(code); | |
1664 | ||
1665 | /* LD_IMM64 */ | |
1666 | if (mode == BPF_IMM) | |
1667 | return true; | |
1668 | ||
1669 | /* Both LD_IND and LD_ABS return 32-bit data. */ | |
1670 | if (t != SRC_OP) | |
1671 | return false; | |
1672 | ||
1673 | /* Implicit ctx ptr. */ | |
1674 | if (regno == BPF_REG_6) | |
1675 | return true; | |
1676 | ||
1677 | /* Explicit source could be any width. */ | |
1678 | return true; | |
1679 | } | |
1680 | ||
1681 | if (class == BPF_ST) | |
1682 | /* The only source register for BPF_ST is a ptr. */ | |
1683 | return true; | |
1684 | ||
1685 | /* Conservatively return true at default. */ | |
1686 | return true; | |
1687 | } | |
1688 | ||
b325fbca JW |
1689 | /* Return TRUE if INSN doesn't have explicit value define. */ |
1690 | static bool insn_no_def(struct bpf_insn *insn) | |
1691 | { | |
1692 | u8 class = BPF_CLASS(insn->code); | |
1693 | ||
1694 | return (class == BPF_JMP || class == BPF_JMP32 || | |
1695 | class == BPF_STX || class == BPF_ST); | |
1696 | } | |
1697 | ||
1698 | /* Return TRUE if INSN has defined any 32-bit value explicitly. */ | |
1699 | static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) | |
1700 | { | |
1701 | if (insn_no_def(insn)) | |
1702 | return false; | |
1703 | ||
1704 | return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); | |
1705 | } | |
1706 | ||
5327ed3d JW |
1707 | static void mark_insn_zext(struct bpf_verifier_env *env, |
1708 | struct bpf_reg_state *reg) | |
1709 | { | |
1710 | s32 def_idx = reg->subreg_def; | |
1711 | ||
1712 | if (def_idx == DEF_NOT_SUBREG) | |
1713 | return; | |
1714 | ||
1715 | env->insn_aux_data[def_idx - 1].zext_dst = true; | |
1716 | /* The dst will be zero extended, so won't be sub-register anymore. */ | |
1717 | reg->subreg_def = DEF_NOT_SUBREG; | |
1718 | } | |
1719 | ||
dc503a8a | 1720 | static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, |
17a52670 AS |
1721 | enum reg_arg_type t) |
1722 | { | |
f4d7e40a AS |
1723 | struct bpf_verifier_state *vstate = env->cur_state; |
1724 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
5327ed3d | 1725 | struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; |
c342dc10 | 1726 | struct bpf_reg_state *reg, *regs = state->regs; |
5327ed3d | 1727 | bool rw64; |
dc503a8a | 1728 | |
17a52670 | 1729 | if (regno >= MAX_BPF_REG) { |
61bd5218 | 1730 | verbose(env, "R%d is invalid\n", regno); |
17a52670 AS |
1731 | return -EINVAL; |
1732 | } | |
1733 | ||
c342dc10 | 1734 | reg = ®s[regno]; |
5327ed3d | 1735 | rw64 = is_reg64(env, insn, regno, reg, t); |
17a52670 AS |
1736 | if (t == SRC_OP) { |
1737 | /* check whether register used as source operand can be read */ | |
c342dc10 | 1738 | if (reg->type == NOT_INIT) { |
61bd5218 | 1739 | verbose(env, "R%d !read_ok\n", regno); |
17a52670 AS |
1740 | return -EACCES; |
1741 | } | |
679c782d | 1742 | /* We don't need to worry about FP liveness because it's read-only */ |
c342dc10 JW |
1743 | if (regno == BPF_REG_FP) |
1744 | return 0; | |
1745 | ||
5327ed3d JW |
1746 | if (rw64) |
1747 | mark_insn_zext(env, reg); | |
1748 | ||
1749 | return mark_reg_read(env, reg, reg->parent, | |
1750 | rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); | |
17a52670 AS |
1751 | } else { |
1752 | /* check whether register used as dest operand can be written to */ | |
1753 | if (regno == BPF_REG_FP) { | |
61bd5218 | 1754 | verbose(env, "frame pointer is read only\n"); |
17a52670 AS |
1755 | return -EACCES; |
1756 | } | |
c342dc10 | 1757 | reg->live |= REG_LIVE_WRITTEN; |
5327ed3d | 1758 | reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; |
17a52670 | 1759 | if (t == DST_OP) |
61bd5218 | 1760 | mark_reg_unknown(env, regs, regno); |
17a52670 AS |
1761 | } |
1762 | return 0; | |
1763 | } | |
1764 | ||
b5dc0163 AS |
1765 | /* for any branch, call, exit record the history of jmps in the given state */ |
1766 | static int push_jmp_history(struct bpf_verifier_env *env, | |
1767 | struct bpf_verifier_state *cur) | |
1768 | { | |
1769 | u32 cnt = cur->jmp_history_cnt; | |
1770 | struct bpf_idx_pair *p; | |
1771 | ||
1772 | cnt++; | |
1773 | p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); | |
1774 | if (!p) | |
1775 | return -ENOMEM; | |
1776 | p[cnt - 1].idx = env->insn_idx; | |
1777 | p[cnt - 1].prev_idx = env->prev_insn_idx; | |
1778 | cur->jmp_history = p; | |
1779 | cur->jmp_history_cnt = cnt; | |
1780 | return 0; | |
1781 | } | |
1782 | ||
1783 | /* Backtrack one insn at a time. If idx is not at the top of recorded | |
1784 | * history then previous instruction came from straight line execution. | |
1785 | */ | |
1786 | static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, | |
1787 | u32 *history) | |
1788 | { | |
1789 | u32 cnt = *history; | |
1790 | ||
1791 | if (cnt && st->jmp_history[cnt - 1].idx == i) { | |
1792 | i = st->jmp_history[cnt - 1].prev_idx; | |
1793 | (*history)--; | |
1794 | } else { | |
1795 | i--; | |
1796 | } | |
1797 | return i; | |
1798 | } | |
1799 | ||
1800 | /* For given verifier state backtrack_insn() is called from the last insn to | |
1801 | * the first insn. Its purpose is to compute a bitmask of registers and | |
1802 | * stack slots that needs precision in the parent verifier state. | |
1803 | */ | |
1804 | static int backtrack_insn(struct bpf_verifier_env *env, int idx, | |
1805 | u32 *reg_mask, u64 *stack_mask) | |
1806 | { | |
1807 | const struct bpf_insn_cbs cbs = { | |
1808 | .cb_print = verbose, | |
1809 | .private_data = env, | |
1810 | }; | |
1811 | struct bpf_insn *insn = env->prog->insnsi + idx; | |
1812 | u8 class = BPF_CLASS(insn->code); | |
1813 | u8 opcode = BPF_OP(insn->code); | |
1814 | u8 mode = BPF_MODE(insn->code); | |
1815 | u32 dreg = 1u << insn->dst_reg; | |
1816 | u32 sreg = 1u << insn->src_reg; | |
1817 | u32 spi; | |
1818 | ||
1819 | if (insn->code == 0) | |
1820 | return 0; | |
1821 | if (env->log.level & BPF_LOG_LEVEL) { | |
1822 | verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); | |
1823 | verbose(env, "%d: ", idx); | |
1824 | print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); | |
1825 | } | |
1826 | ||
1827 | if (class == BPF_ALU || class == BPF_ALU64) { | |
1828 | if (!(*reg_mask & dreg)) | |
1829 | return 0; | |
1830 | if (opcode == BPF_MOV) { | |
1831 | if (BPF_SRC(insn->code) == BPF_X) { | |
1832 | /* dreg = sreg | |
1833 | * dreg needs precision after this insn | |
1834 | * sreg needs precision before this insn | |
1835 | */ | |
1836 | *reg_mask &= ~dreg; | |
1837 | *reg_mask |= sreg; | |
1838 | } else { | |
1839 | /* dreg = K | |
1840 | * dreg needs precision after this insn. | |
1841 | * Corresponding register is already marked | |
1842 | * as precise=true in this verifier state. | |
1843 | * No further markings in parent are necessary | |
1844 | */ | |
1845 | *reg_mask &= ~dreg; | |
1846 | } | |
1847 | } else { | |
1848 | if (BPF_SRC(insn->code) == BPF_X) { | |
1849 | /* dreg += sreg | |
1850 | * both dreg and sreg need precision | |
1851 | * before this insn | |
1852 | */ | |
1853 | *reg_mask |= sreg; | |
1854 | } /* else dreg += K | |
1855 | * dreg still needs precision before this insn | |
1856 | */ | |
1857 | } | |
1858 | } else if (class == BPF_LDX) { | |
1859 | if (!(*reg_mask & dreg)) | |
1860 | return 0; | |
1861 | *reg_mask &= ~dreg; | |
1862 | ||
1863 | /* scalars can only be spilled into stack w/o losing precision. | |
1864 | * Load from any other memory can be zero extended. | |
1865 | * The desire to keep that precision is already indicated | |
1866 | * by 'precise' mark in corresponding register of this state. | |
1867 | * No further tracking necessary. | |
1868 | */ | |
1869 | if (insn->src_reg != BPF_REG_FP) | |
1870 | return 0; | |
1871 | if (BPF_SIZE(insn->code) != BPF_DW) | |
1872 | return 0; | |
1873 | ||
1874 | /* dreg = *(u64 *)[fp - off] was a fill from the stack. | |
1875 | * that [fp - off] slot contains scalar that needs to be | |
1876 | * tracked with precision | |
1877 | */ | |
1878 | spi = (-insn->off - 1) / BPF_REG_SIZE; | |
1879 | if (spi >= 64) { | |
1880 | verbose(env, "BUG spi %d\n", spi); | |
1881 | WARN_ONCE(1, "verifier backtracking bug"); | |
1882 | return -EFAULT; | |
1883 | } | |
1884 | *stack_mask |= 1ull << spi; | |
b3b50f05 | 1885 | } else if (class == BPF_STX || class == BPF_ST) { |
b5dc0163 | 1886 | if (*reg_mask & dreg) |
b3b50f05 | 1887 | /* stx & st shouldn't be using _scalar_ dst_reg |
b5dc0163 AS |
1888 | * to access memory. It means backtracking |
1889 | * encountered a case of pointer subtraction. | |
1890 | */ | |
1891 | return -ENOTSUPP; | |
1892 | /* scalars can only be spilled into stack */ | |
1893 | if (insn->dst_reg != BPF_REG_FP) | |
1894 | return 0; | |
1895 | if (BPF_SIZE(insn->code) != BPF_DW) | |
1896 | return 0; | |
1897 | spi = (-insn->off - 1) / BPF_REG_SIZE; | |
1898 | if (spi >= 64) { | |
1899 | verbose(env, "BUG spi %d\n", spi); | |
1900 | WARN_ONCE(1, "verifier backtracking bug"); | |
1901 | return -EFAULT; | |
1902 | } | |
1903 | if (!(*stack_mask & (1ull << spi))) | |
1904 | return 0; | |
1905 | *stack_mask &= ~(1ull << spi); | |
b3b50f05 AN |
1906 | if (class == BPF_STX) |
1907 | *reg_mask |= sreg; | |
b5dc0163 AS |
1908 | } else if (class == BPF_JMP || class == BPF_JMP32) { |
1909 | if (opcode == BPF_CALL) { | |
1910 | if (insn->src_reg == BPF_PSEUDO_CALL) | |
1911 | return -ENOTSUPP; | |
1912 | /* regular helper call sets R0 */ | |
1913 | *reg_mask &= ~1; | |
1914 | if (*reg_mask & 0x3f) { | |
1915 | /* if backtracing was looking for registers R1-R5 | |
1916 | * they should have been found already. | |
1917 | */ | |
1918 | verbose(env, "BUG regs %x\n", *reg_mask); | |
1919 | WARN_ONCE(1, "verifier backtracking bug"); | |
1920 | return -EFAULT; | |
1921 | } | |
1922 | } else if (opcode == BPF_EXIT) { | |
1923 | return -ENOTSUPP; | |
1924 | } | |
1925 | } else if (class == BPF_LD) { | |
1926 | if (!(*reg_mask & dreg)) | |
1927 | return 0; | |
1928 | *reg_mask &= ~dreg; | |
1929 | /* It's ld_imm64 or ld_abs or ld_ind. | |
1930 | * For ld_imm64 no further tracking of precision | |
1931 | * into parent is necessary | |
1932 | */ | |
1933 | if (mode == BPF_IND || mode == BPF_ABS) | |
1934 | /* to be analyzed */ | |
1935 | return -ENOTSUPP; | |
b5dc0163 AS |
1936 | } |
1937 | return 0; | |
1938 | } | |
1939 | ||
1940 | /* the scalar precision tracking algorithm: | |
1941 | * . at the start all registers have precise=false. | |
1942 | * . scalar ranges are tracked as normal through alu and jmp insns. | |
1943 | * . once precise value of the scalar register is used in: | |
1944 | * . ptr + scalar alu | |
1945 | * . if (scalar cond K|scalar) | |
1946 | * . helper_call(.., scalar, ...) where ARG_CONST is expected | |
1947 | * backtrack through the verifier states and mark all registers and | |
1948 | * stack slots with spilled constants that these scalar regisers | |
1949 | * should be precise. | |
1950 | * . during state pruning two registers (or spilled stack slots) | |
1951 | * are equivalent if both are not precise. | |
1952 | * | |
1953 | * Note the verifier cannot simply walk register parentage chain, | |
1954 | * since many different registers and stack slots could have been | |
1955 | * used to compute single precise scalar. | |
1956 | * | |
1957 | * The approach of starting with precise=true for all registers and then | |
1958 | * backtrack to mark a register as not precise when the verifier detects | |
1959 | * that program doesn't care about specific value (e.g., when helper | |
1960 | * takes register as ARG_ANYTHING parameter) is not safe. | |
1961 | * | |
1962 | * It's ok to walk single parentage chain of the verifier states. | |
1963 | * It's possible that this backtracking will go all the way till 1st insn. | |
1964 | * All other branches will be explored for needing precision later. | |
1965 | * | |
1966 | * The backtracking needs to deal with cases like: | |
1967 | * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) | |
1968 | * r9 -= r8 | |
1969 | * r5 = r9 | |
1970 | * if r5 > 0x79f goto pc+7 | |
1971 | * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) | |
1972 | * r5 += 1 | |
1973 | * ... | |
1974 | * call bpf_perf_event_output#25 | |
1975 | * where .arg5_type = ARG_CONST_SIZE_OR_ZERO | |
1976 | * | |
1977 | * and this case: | |
1978 | * r6 = 1 | |
1979 | * call foo // uses callee's r6 inside to compute r0 | |
1980 | * r0 += r6 | |
1981 | * if r0 == 0 goto | |
1982 | * | |
1983 | * to track above reg_mask/stack_mask needs to be independent for each frame. | |
1984 | * | |
1985 | * Also if parent's curframe > frame where backtracking started, | |
1986 | * the verifier need to mark registers in both frames, otherwise callees | |
1987 | * may incorrectly prune callers. This is similar to | |
1988 | * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") | |
1989 | * | |
1990 | * For now backtracking falls back into conservative marking. | |
1991 | */ | |
1992 | static void mark_all_scalars_precise(struct bpf_verifier_env *env, | |
1993 | struct bpf_verifier_state *st) | |
1994 | { | |
1995 | struct bpf_func_state *func; | |
1996 | struct bpf_reg_state *reg; | |
1997 | int i, j; | |
1998 | ||
1999 | /* big hammer: mark all scalars precise in this path. | |
2000 | * pop_stack may still get !precise scalars. | |
2001 | */ | |
2002 | for (; st; st = st->parent) | |
2003 | for (i = 0; i <= st->curframe; i++) { | |
2004 | func = st->frame[i]; | |
2005 | for (j = 0; j < BPF_REG_FP; j++) { | |
2006 | reg = &func->regs[j]; | |
2007 | if (reg->type != SCALAR_VALUE) | |
2008 | continue; | |
2009 | reg->precise = true; | |
2010 | } | |
2011 | for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { | |
2012 | if (func->stack[j].slot_type[0] != STACK_SPILL) | |
2013 | continue; | |
2014 | reg = &func->stack[j].spilled_ptr; | |
2015 | if (reg->type != SCALAR_VALUE) | |
2016 | continue; | |
2017 | reg->precise = true; | |
2018 | } | |
2019 | } | |
2020 | } | |
2021 | ||
a3ce685d AS |
2022 | static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, |
2023 | int spi) | |
b5dc0163 AS |
2024 | { |
2025 | struct bpf_verifier_state *st = env->cur_state; | |
2026 | int first_idx = st->first_insn_idx; | |
2027 | int last_idx = env->insn_idx; | |
2028 | struct bpf_func_state *func; | |
2029 | struct bpf_reg_state *reg; | |
a3ce685d AS |
2030 | u32 reg_mask = regno >= 0 ? 1u << regno : 0; |
2031 | u64 stack_mask = spi >= 0 ? 1ull << spi : 0; | |
b5dc0163 | 2032 | bool skip_first = true; |
a3ce685d | 2033 | bool new_marks = false; |
b5dc0163 AS |
2034 | int i, err; |
2035 | ||
2c78ee89 | 2036 | if (!env->bpf_capable) |
b5dc0163 AS |
2037 | return 0; |
2038 | ||
2039 | func = st->frame[st->curframe]; | |
a3ce685d AS |
2040 | if (regno >= 0) { |
2041 | reg = &func->regs[regno]; | |
2042 | if (reg->type != SCALAR_VALUE) { | |
2043 | WARN_ONCE(1, "backtracing misuse"); | |
2044 | return -EFAULT; | |
2045 | } | |
2046 | if (!reg->precise) | |
2047 | new_marks = true; | |
2048 | else | |
2049 | reg_mask = 0; | |
2050 | reg->precise = true; | |
b5dc0163 | 2051 | } |
b5dc0163 | 2052 | |
a3ce685d AS |
2053 | while (spi >= 0) { |
2054 | if (func->stack[spi].slot_type[0] != STACK_SPILL) { | |
2055 | stack_mask = 0; | |
2056 | break; | |
2057 | } | |
2058 | reg = &func->stack[spi].spilled_ptr; | |
2059 | if (reg->type != SCALAR_VALUE) { | |
2060 | stack_mask = 0; | |
2061 | break; | |
2062 | } | |
2063 | if (!reg->precise) | |
2064 | new_marks = true; | |
2065 | else | |
2066 | stack_mask = 0; | |
2067 | reg->precise = true; | |
2068 | break; | |
2069 | } | |
2070 | ||
2071 | if (!new_marks) | |
2072 | return 0; | |
2073 | if (!reg_mask && !stack_mask) | |
2074 | return 0; | |
b5dc0163 AS |
2075 | for (;;) { |
2076 | DECLARE_BITMAP(mask, 64); | |
b5dc0163 AS |
2077 | u32 history = st->jmp_history_cnt; |
2078 | ||
2079 | if (env->log.level & BPF_LOG_LEVEL) | |
2080 | verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); | |
2081 | for (i = last_idx;;) { | |
2082 | if (skip_first) { | |
2083 | err = 0; | |
2084 | skip_first = false; | |
2085 | } else { | |
2086 | err = backtrack_insn(env, i, ®_mask, &stack_mask); | |
2087 | } | |
2088 | if (err == -ENOTSUPP) { | |
2089 | mark_all_scalars_precise(env, st); | |
2090 | return 0; | |
2091 | } else if (err) { | |
2092 | return err; | |
2093 | } | |
2094 | if (!reg_mask && !stack_mask) | |
2095 | /* Found assignment(s) into tracked register in this state. | |
2096 | * Since this state is already marked, just return. | |
2097 | * Nothing to be tracked further in the parent state. | |
2098 | */ | |
2099 | return 0; | |
2100 | if (i == first_idx) | |
2101 | break; | |
2102 | i = get_prev_insn_idx(st, i, &history); | |
2103 | if (i >= env->prog->len) { | |
2104 | /* This can happen if backtracking reached insn 0 | |
2105 | * and there are still reg_mask or stack_mask | |
2106 | * to backtrack. | |
2107 | * It means the backtracking missed the spot where | |
2108 | * particular register was initialized with a constant. | |
2109 | */ | |
2110 | verbose(env, "BUG backtracking idx %d\n", i); | |
2111 | WARN_ONCE(1, "verifier backtracking bug"); | |
2112 | return -EFAULT; | |
2113 | } | |
2114 | } | |
2115 | st = st->parent; | |
2116 | if (!st) | |
2117 | break; | |
2118 | ||
a3ce685d | 2119 | new_marks = false; |
b5dc0163 AS |
2120 | func = st->frame[st->curframe]; |
2121 | bitmap_from_u64(mask, reg_mask); | |
2122 | for_each_set_bit(i, mask, 32) { | |
2123 | reg = &func->regs[i]; | |
a3ce685d AS |
2124 | if (reg->type != SCALAR_VALUE) { |
2125 | reg_mask &= ~(1u << i); | |
b5dc0163 | 2126 | continue; |
a3ce685d | 2127 | } |
b5dc0163 AS |
2128 | if (!reg->precise) |
2129 | new_marks = true; | |
2130 | reg->precise = true; | |
2131 | } | |
2132 | ||
2133 | bitmap_from_u64(mask, stack_mask); | |
2134 | for_each_set_bit(i, mask, 64) { | |
2135 | if (i >= func->allocated_stack / BPF_REG_SIZE) { | |
2339cd6c AS |
2136 | /* the sequence of instructions: |
2137 | * 2: (bf) r3 = r10 | |
2138 | * 3: (7b) *(u64 *)(r3 -8) = r0 | |
2139 | * 4: (79) r4 = *(u64 *)(r10 -8) | |
2140 | * doesn't contain jmps. It's backtracked | |
2141 | * as a single block. | |
2142 | * During backtracking insn 3 is not recognized as | |
2143 | * stack access, so at the end of backtracking | |
2144 | * stack slot fp-8 is still marked in stack_mask. | |
2145 | * However the parent state may not have accessed | |
2146 | * fp-8 and it's "unallocated" stack space. | |
2147 | * In such case fallback to conservative. | |
b5dc0163 | 2148 | */ |
2339cd6c AS |
2149 | mark_all_scalars_precise(env, st); |
2150 | return 0; | |
b5dc0163 AS |
2151 | } |
2152 | ||
a3ce685d AS |
2153 | if (func->stack[i].slot_type[0] != STACK_SPILL) { |
2154 | stack_mask &= ~(1ull << i); | |
b5dc0163 | 2155 | continue; |
a3ce685d | 2156 | } |
b5dc0163 | 2157 | reg = &func->stack[i].spilled_ptr; |
a3ce685d AS |
2158 | if (reg->type != SCALAR_VALUE) { |
2159 | stack_mask &= ~(1ull << i); | |
b5dc0163 | 2160 | continue; |
a3ce685d | 2161 | } |
b5dc0163 AS |
2162 | if (!reg->precise) |
2163 | new_marks = true; | |
2164 | reg->precise = true; | |
2165 | } | |
2166 | if (env->log.level & BPF_LOG_LEVEL) { | |
2167 | print_verifier_state(env, func); | |
2168 | verbose(env, "parent %s regs=%x stack=%llx marks\n", | |
2169 | new_marks ? "didn't have" : "already had", | |
2170 | reg_mask, stack_mask); | |
2171 | } | |
2172 | ||
a3ce685d AS |
2173 | if (!reg_mask && !stack_mask) |
2174 | break; | |
b5dc0163 AS |
2175 | if (!new_marks) |
2176 | break; | |
2177 | ||
2178 | last_idx = st->last_insn_idx; | |
2179 | first_idx = st->first_insn_idx; | |
2180 | } | |
2181 | return 0; | |
2182 | } | |
2183 | ||
a3ce685d AS |
2184 | static int mark_chain_precision(struct bpf_verifier_env *env, int regno) |
2185 | { | |
2186 | return __mark_chain_precision(env, regno, -1); | |
2187 | } | |
2188 | ||
2189 | static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) | |
2190 | { | |
2191 | return __mark_chain_precision(env, -1, spi); | |
2192 | } | |
b5dc0163 | 2193 | |
1be7f75d AS |
2194 | static bool is_spillable_regtype(enum bpf_reg_type type) |
2195 | { | |
2196 | switch (type) { | |
2197 | case PTR_TO_MAP_VALUE: | |
2198 | case PTR_TO_MAP_VALUE_OR_NULL: | |
2199 | case PTR_TO_STACK: | |
2200 | case PTR_TO_CTX: | |
969bf05e | 2201 | case PTR_TO_PACKET: |
de8f3a83 | 2202 | case PTR_TO_PACKET_META: |
969bf05e | 2203 | case PTR_TO_PACKET_END: |
d58e468b | 2204 | case PTR_TO_FLOW_KEYS: |
1be7f75d | 2205 | case CONST_PTR_TO_MAP: |
c64b7983 JS |
2206 | case PTR_TO_SOCKET: |
2207 | case PTR_TO_SOCKET_OR_NULL: | |
46f8bc92 MKL |
2208 | case PTR_TO_SOCK_COMMON: |
2209 | case PTR_TO_SOCK_COMMON_OR_NULL: | |
655a51e5 MKL |
2210 | case PTR_TO_TCP_SOCK: |
2211 | case PTR_TO_TCP_SOCK_OR_NULL: | |
fada7fdc | 2212 | case PTR_TO_XDP_SOCK: |
65726b5b | 2213 | case PTR_TO_BTF_ID: |
b121b341 | 2214 | case PTR_TO_BTF_ID_OR_NULL: |
afbf21dc YS |
2215 | case PTR_TO_RDONLY_BUF: |
2216 | case PTR_TO_RDONLY_BUF_OR_NULL: | |
2217 | case PTR_TO_RDWR_BUF: | |
2218 | case PTR_TO_RDWR_BUF_OR_NULL: | |
eaa6bcb7 | 2219 | case PTR_TO_PERCPU_BTF_ID: |
744ea4e3 GR |
2220 | case PTR_TO_MEM: |
2221 | case PTR_TO_MEM_OR_NULL: | |
1be7f75d AS |
2222 | return true; |
2223 | default: | |
2224 | return false; | |
2225 | } | |
2226 | } | |
2227 | ||
cc2b14d5 AS |
2228 | /* Does this register contain a constant zero? */ |
2229 | static bool register_is_null(struct bpf_reg_state *reg) | |
2230 | { | |
2231 | return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); | |
2232 | } | |
2233 | ||
f7cf25b2 AS |
2234 | static bool register_is_const(struct bpf_reg_state *reg) |
2235 | { | |
2236 | return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); | |
2237 | } | |
2238 | ||
5689d49b YS |
2239 | static bool __is_scalar_unbounded(struct bpf_reg_state *reg) |
2240 | { | |
2241 | return tnum_is_unknown(reg->var_off) && | |
2242 | reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && | |
2243 | reg->umin_value == 0 && reg->umax_value == U64_MAX && | |
2244 | reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && | |
2245 | reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; | |
2246 | } | |
2247 | ||
2248 | static bool register_is_bounded(struct bpf_reg_state *reg) | |
2249 | { | |
2250 | return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); | |
2251 | } | |
2252 | ||
6e7e63cb JH |
2253 | static bool __is_pointer_value(bool allow_ptr_leaks, |
2254 | const struct bpf_reg_state *reg) | |
2255 | { | |
2256 | if (allow_ptr_leaks) | |
2257 | return false; | |
2258 | ||
2259 | return reg->type != SCALAR_VALUE; | |
2260 | } | |
2261 | ||
f7cf25b2 AS |
2262 | static void save_register_state(struct bpf_func_state *state, |
2263 | int spi, struct bpf_reg_state *reg) | |
2264 | { | |
2265 | int i; | |
2266 | ||
2267 | state->stack[spi].spilled_ptr = *reg; | |
2268 | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | |
2269 | ||
2270 | for (i = 0; i < BPF_REG_SIZE; i++) | |
2271 | state->stack[spi].slot_type[i] = STACK_SPILL; | |
2272 | } | |
2273 | ||
17a52670 AS |
2274 | /* check_stack_read/write functions track spill/fill of registers, |
2275 | * stack boundary and alignment are checked in check_mem_access() | |
2276 | */ | |
61bd5218 | 2277 | static int check_stack_write(struct bpf_verifier_env *env, |
f4d7e40a | 2278 | struct bpf_func_state *state, /* func where register points to */ |
af86ca4e | 2279 | int off, int size, int value_regno, int insn_idx) |
17a52670 | 2280 | { |
f4d7e40a | 2281 | struct bpf_func_state *cur; /* state of the current function */ |
638f5b90 | 2282 | int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; |
b5dc0163 | 2283 | u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; |
f7cf25b2 | 2284 | struct bpf_reg_state *reg = NULL; |
638f5b90 | 2285 | |
f4d7e40a | 2286 | err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), |
fd978bf7 | 2287 | state->acquired_refs, true); |
638f5b90 AS |
2288 | if (err) |
2289 | return err; | |
9c399760 AS |
2290 | /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, |
2291 | * so it's aligned access and [off, off + size) are within stack limits | |
2292 | */ | |
638f5b90 AS |
2293 | if (!env->allow_ptr_leaks && |
2294 | state->stack[spi].slot_type[0] == STACK_SPILL && | |
2295 | size != BPF_REG_SIZE) { | |
2296 | verbose(env, "attempt to corrupt spilled pointer on stack\n"); | |
2297 | return -EACCES; | |
2298 | } | |
17a52670 | 2299 | |
f4d7e40a | 2300 | cur = env->cur_state->frame[env->cur_state->curframe]; |
f7cf25b2 AS |
2301 | if (value_regno >= 0) |
2302 | reg = &cur->regs[value_regno]; | |
17a52670 | 2303 | |
5689d49b | 2304 | if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && |
2c78ee89 | 2305 | !register_is_null(reg) && env->bpf_capable) { |
b5dc0163 AS |
2306 | if (dst_reg != BPF_REG_FP) { |
2307 | /* The backtracking logic can only recognize explicit | |
2308 | * stack slot address like [fp - 8]. Other spill of | |
2309 | * scalar via different register has to be conervative. | |
2310 | * Backtrack from here and mark all registers as precise | |
2311 | * that contributed into 'reg' being a constant. | |
2312 | */ | |
2313 | err = mark_chain_precision(env, value_regno); | |
2314 | if (err) | |
2315 | return err; | |
2316 | } | |
f7cf25b2 AS |
2317 | save_register_state(state, spi, reg); |
2318 | } else if (reg && is_spillable_regtype(reg->type)) { | |
17a52670 | 2319 | /* register containing pointer is being spilled into stack */ |
9c399760 | 2320 | if (size != BPF_REG_SIZE) { |
f7cf25b2 | 2321 | verbose_linfo(env, insn_idx, "; "); |
61bd5218 | 2322 | verbose(env, "invalid size of register spill\n"); |
17a52670 AS |
2323 | return -EACCES; |
2324 | } | |
2325 | ||
f7cf25b2 | 2326 | if (state != cur && reg->type == PTR_TO_STACK) { |
f4d7e40a AS |
2327 | verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); |
2328 | return -EINVAL; | |
2329 | } | |
2330 | ||
2c78ee89 | 2331 | if (!env->bypass_spec_v4) { |
f7cf25b2 | 2332 | bool sanitize = false; |
17a52670 | 2333 | |
f7cf25b2 AS |
2334 | if (state->stack[spi].slot_type[0] == STACK_SPILL && |
2335 | register_is_const(&state->stack[spi].spilled_ptr)) | |
2336 | sanitize = true; | |
2337 | for (i = 0; i < BPF_REG_SIZE; i++) | |
2338 | if (state->stack[spi].slot_type[i] == STACK_MISC) { | |
2339 | sanitize = true; | |
2340 | break; | |
2341 | } | |
2342 | if (sanitize) { | |
af86ca4e AS |
2343 | int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; |
2344 | int soff = (-spi - 1) * BPF_REG_SIZE; | |
2345 | ||
2346 | /* detected reuse of integer stack slot with a pointer | |
2347 | * which means either llvm is reusing stack slot or | |
2348 | * an attacker is trying to exploit CVE-2018-3639 | |
2349 | * (speculative store bypass) | |
2350 | * Have to sanitize that slot with preemptive | |
2351 | * store of zero. | |
2352 | */ | |
2353 | if (*poff && *poff != soff) { | |
2354 | /* disallow programs where single insn stores | |
2355 | * into two different stack slots, since verifier | |
2356 | * cannot sanitize them | |
2357 | */ | |
2358 | verbose(env, | |
2359 | "insn %d cannot access two stack slots fp%d and fp%d", | |
2360 | insn_idx, *poff, soff); | |
2361 | return -EINVAL; | |
2362 | } | |
2363 | *poff = soff; | |
2364 | } | |
af86ca4e | 2365 | } |
f7cf25b2 | 2366 | save_register_state(state, spi, reg); |
9c399760 | 2367 | } else { |
cc2b14d5 AS |
2368 | u8 type = STACK_MISC; |
2369 | ||
679c782d EC |
2370 | /* regular write of data into stack destroys any spilled ptr */ |
2371 | state->stack[spi].spilled_ptr.type = NOT_INIT; | |
0bae2d4d JW |
2372 | /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ |
2373 | if (state->stack[spi].slot_type[0] == STACK_SPILL) | |
2374 | for (i = 0; i < BPF_REG_SIZE; i++) | |
2375 | state->stack[spi].slot_type[i] = STACK_MISC; | |
9c399760 | 2376 | |
cc2b14d5 AS |
2377 | /* only mark the slot as written if all 8 bytes were written |
2378 | * otherwise read propagation may incorrectly stop too soon | |
2379 | * when stack slots are partially written. | |
2380 | * This heuristic means that read propagation will be | |
2381 | * conservative, since it will add reg_live_read marks | |
2382 | * to stack slots all the way to first state when programs | |
2383 | * writes+reads less than 8 bytes | |
2384 | */ | |
2385 | if (size == BPF_REG_SIZE) | |
2386 | state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; | |
2387 | ||
2388 | /* when we zero initialize stack slots mark them as such */ | |
b5dc0163 AS |
2389 | if (reg && register_is_null(reg)) { |
2390 | /* backtracking doesn't work for STACK_ZERO yet. */ | |
2391 | err = mark_chain_precision(env, value_regno); | |
2392 | if (err) | |
2393 | return err; | |
cc2b14d5 | 2394 | type = STACK_ZERO; |
b5dc0163 | 2395 | } |
cc2b14d5 | 2396 | |
0bae2d4d | 2397 | /* Mark slots affected by this stack write. */ |
9c399760 | 2398 | for (i = 0; i < size; i++) |
638f5b90 | 2399 | state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = |
cc2b14d5 | 2400 | type; |
17a52670 AS |
2401 | } |
2402 | return 0; | |
2403 | } | |
2404 | ||
61bd5218 | 2405 | static int check_stack_read(struct bpf_verifier_env *env, |
f4d7e40a AS |
2406 | struct bpf_func_state *reg_state /* func where register points to */, |
2407 | int off, int size, int value_regno) | |
17a52670 | 2408 | { |
f4d7e40a AS |
2409 | struct bpf_verifier_state *vstate = env->cur_state; |
2410 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
638f5b90 | 2411 | int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; |
f7cf25b2 | 2412 | struct bpf_reg_state *reg; |
638f5b90 | 2413 | u8 *stype; |
17a52670 | 2414 | |
f4d7e40a | 2415 | if (reg_state->allocated_stack <= slot) { |
638f5b90 AS |
2416 | verbose(env, "invalid read from stack off %d+0 size %d\n", |
2417 | off, size); | |
2418 | return -EACCES; | |
2419 | } | |
f4d7e40a | 2420 | stype = reg_state->stack[spi].slot_type; |
f7cf25b2 | 2421 | reg = ®_state->stack[spi].spilled_ptr; |
17a52670 | 2422 | |
638f5b90 | 2423 | if (stype[0] == STACK_SPILL) { |
9c399760 | 2424 | if (size != BPF_REG_SIZE) { |
f7cf25b2 AS |
2425 | if (reg->type != SCALAR_VALUE) { |
2426 | verbose_linfo(env, env->insn_idx, "; "); | |
2427 | verbose(env, "invalid size of register fill\n"); | |
2428 | return -EACCES; | |
2429 | } | |
2430 | if (value_regno >= 0) { | |
2431 | mark_reg_unknown(env, state->regs, value_regno); | |
2432 | state->regs[value_regno].live |= REG_LIVE_WRITTEN; | |
2433 | } | |
2434 | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); | |
2435 | return 0; | |
17a52670 | 2436 | } |
9c399760 | 2437 | for (i = 1; i < BPF_REG_SIZE; i++) { |
638f5b90 | 2438 | if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { |
61bd5218 | 2439 | verbose(env, "corrupted spill memory\n"); |
17a52670 AS |
2440 | return -EACCES; |
2441 | } | |
2442 | } | |
2443 | ||
dc503a8a | 2444 | if (value_regno >= 0) { |
17a52670 | 2445 | /* restore register state from stack */ |
f7cf25b2 | 2446 | state->regs[value_regno] = *reg; |
2f18f62e AS |
2447 | /* mark reg as written since spilled pointer state likely |
2448 | * has its liveness marks cleared by is_state_visited() | |
2449 | * which resets stack/reg liveness for state transitions | |
2450 | */ | |
2451 | state->regs[value_regno].live |= REG_LIVE_WRITTEN; | |
6e7e63cb JH |
2452 | } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { |
2453 | /* If value_regno==-1, the caller is asking us whether | |
2454 | * it is acceptable to use this value as a SCALAR_VALUE | |
2455 | * (e.g. for XADD). | |
2456 | * We must not allow unprivileged callers to do that | |
2457 | * with spilled pointers. | |
2458 | */ | |
2459 | verbose(env, "leaking pointer from stack off %d\n", | |
2460 | off); | |
2461 | return -EACCES; | |
dc503a8a | 2462 | } |
f7cf25b2 | 2463 | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
17a52670 | 2464 | } else { |
cc2b14d5 AS |
2465 | int zeros = 0; |
2466 | ||
17a52670 | 2467 | for (i = 0; i < size; i++) { |
cc2b14d5 AS |
2468 | if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) |
2469 | continue; | |
2470 | if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { | |
2471 | zeros++; | |
2472 | continue; | |
17a52670 | 2473 | } |
cc2b14d5 AS |
2474 | verbose(env, "invalid read from stack off %d+%d size %d\n", |
2475 | off, i, size); | |
2476 | return -EACCES; | |
2477 | } | |
f7cf25b2 | 2478 | mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); |
cc2b14d5 AS |
2479 | if (value_regno >= 0) { |
2480 | if (zeros == size) { | |
2481 | /* any size read into register is zero extended, | |
2482 | * so the whole register == const_zero | |
2483 | */ | |
2484 | __mark_reg_const_zero(&state->regs[value_regno]); | |
b5dc0163 AS |
2485 | /* backtracking doesn't support STACK_ZERO yet, |
2486 | * so mark it precise here, so that later | |
2487 | * backtracking can stop here. | |
2488 | * Backtracking may not need this if this register | |
2489 | * doesn't participate in pointer adjustment. | |
2490 | * Forward propagation of precise flag is not | |
2491 | * necessary either. This mark is only to stop | |
2492 | * backtracking. Any register that contributed | |
2493 | * to const 0 was marked precise before spill. | |
2494 | */ | |
2495 | state->regs[value_regno].precise = true; | |
cc2b14d5 AS |
2496 | } else { |
2497 | /* have read misc data from the stack */ | |
2498 | mark_reg_unknown(env, state->regs, value_regno); | |
2499 | } | |
2500 | state->regs[value_regno].live |= REG_LIVE_WRITTEN; | |
17a52670 | 2501 | } |
17a52670 | 2502 | } |
f7cf25b2 | 2503 | return 0; |
17a52670 AS |
2504 | } |
2505 | ||
e4298d25 DB |
2506 | static int check_stack_access(struct bpf_verifier_env *env, |
2507 | const struct bpf_reg_state *reg, | |
2508 | int off, int size) | |
2509 | { | |
2510 | /* Stack accesses must be at a fixed offset, so that we | |
2511 | * can determine what type of data were returned. See | |
2512 | * check_stack_read(). | |
2513 | */ | |
2514 | if (!tnum_is_const(reg->var_off)) { | |
2515 | char tn_buf[48]; | |
2516 | ||
2517 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
1fbd20f8 | 2518 | verbose(env, "variable stack access var_off=%s off=%d size=%d\n", |
e4298d25 DB |
2519 | tn_buf, off, size); |
2520 | return -EACCES; | |
2521 | } | |
2522 | ||
2523 | if (off >= 0 || off < -MAX_BPF_STACK) { | |
2524 | verbose(env, "invalid stack off=%d size=%d\n", off, size); | |
2525 | return -EACCES; | |
2526 | } | |
2527 | ||
2528 | return 0; | |
2529 | } | |
2530 | ||
591fe988 DB |
2531 | static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, |
2532 | int off, int size, enum bpf_access_type type) | |
2533 | { | |
2534 | struct bpf_reg_state *regs = cur_regs(env); | |
2535 | struct bpf_map *map = regs[regno].map_ptr; | |
2536 | u32 cap = bpf_map_flags_to_cap(map); | |
2537 | ||
2538 | if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { | |
2539 | verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", | |
2540 | map->value_size, off, size); | |
2541 | return -EACCES; | |
2542 | } | |
2543 | ||
2544 | if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { | |
2545 | verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", | |
2546 | map->value_size, off, size); | |
2547 | return -EACCES; | |
2548 | } | |
2549 | ||
2550 | return 0; | |
2551 | } | |
2552 | ||
457f4436 AN |
2553 | /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ |
2554 | static int __check_mem_access(struct bpf_verifier_env *env, int regno, | |
2555 | int off, int size, u32 mem_size, | |
2556 | bool zero_size_allowed) | |
17a52670 | 2557 | { |
457f4436 AN |
2558 | bool size_ok = size > 0 || (size == 0 && zero_size_allowed); |
2559 | struct bpf_reg_state *reg; | |
2560 | ||
2561 | if (off >= 0 && size_ok && (u64)off + size <= mem_size) | |
2562 | return 0; | |
17a52670 | 2563 | |
457f4436 AN |
2564 | reg = &cur_regs(env)[regno]; |
2565 | switch (reg->type) { | |
2566 | case PTR_TO_MAP_VALUE: | |
61bd5218 | 2567 | verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", |
457f4436 AN |
2568 | mem_size, off, size); |
2569 | break; | |
2570 | case PTR_TO_PACKET: | |
2571 | case PTR_TO_PACKET_META: | |
2572 | case PTR_TO_PACKET_END: | |
2573 | verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", | |
2574 | off, size, regno, reg->id, off, mem_size); | |
2575 | break; | |
2576 | case PTR_TO_MEM: | |
2577 | default: | |
2578 | verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", | |
2579 | mem_size, off, size); | |
17a52670 | 2580 | } |
457f4436 AN |
2581 | |
2582 | return -EACCES; | |
17a52670 AS |
2583 | } |
2584 | ||
457f4436 AN |
2585 | /* check read/write into a memory region with possible variable offset */ |
2586 | static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, | |
2587 | int off, int size, u32 mem_size, | |
2588 | bool zero_size_allowed) | |
dbcfe5f7 | 2589 | { |
f4d7e40a AS |
2590 | struct bpf_verifier_state *vstate = env->cur_state; |
2591 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
dbcfe5f7 GB |
2592 | struct bpf_reg_state *reg = &state->regs[regno]; |
2593 | int err; | |
2594 | ||
457f4436 | 2595 | /* We may have adjusted the register pointing to memory region, so we |
f1174f77 EC |
2596 | * need to try adding each of min_value and max_value to off |
2597 | * to make sure our theoretical access will be safe. | |
dbcfe5f7 | 2598 | */ |
06ee7115 | 2599 | if (env->log.level & BPF_LOG_LEVEL) |
61bd5218 | 2600 | print_verifier_state(env, state); |
b7137c4e | 2601 | |
dbcfe5f7 GB |
2602 | /* The minimum value is only important with signed |
2603 | * comparisons where we can't assume the floor of a | |
2604 | * value is 0. If we are using signed variables for our | |
2605 | * index'es we need to make sure that whatever we use | |
2606 | * will have a set floor within our range. | |
2607 | */ | |
b7137c4e DB |
2608 | if (reg->smin_value < 0 && |
2609 | (reg->smin_value == S64_MIN || | |
2610 | (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || | |
2611 | reg->smin_value + off < 0)) { | |
61bd5218 | 2612 | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
dbcfe5f7 GB |
2613 | regno); |
2614 | return -EACCES; | |
2615 | } | |
457f4436 AN |
2616 | err = __check_mem_access(env, regno, reg->smin_value + off, size, |
2617 | mem_size, zero_size_allowed); | |
dbcfe5f7 | 2618 | if (err) { |
457f4436 | 2619 | verbose(env, "R%d min value is outside of the allowed memory range\n", |
61bd5218 | 2620 | regno); |
dbcfe5f7 GB |
2621 | return err; |
2622 | } | |
2623 | ||
b03c9f9f EC |
2624 | /* If we haven't set a max value then we need to bail since we can't be |
2625 | * sure we won't do bad things. | |
2626 | * If reg->umax_value + off could overflow, treat that as unbounded too. | |
dbcfe5f7 | 2627 | */ |
b03c9f9f | 2628 | if (reg->umax_value >= BPF_MAX_VAR_OFF) { |
457f4436 | 2629 | verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", |
dbcfe5f7 GB |
2630 | regno); |
2631 | return -EACCES; | |
2632 | } | |
457f4436 AN |
2633 | err = __check_mem_access(env, regno, reg->umax_value + off, size, |
2634 | mem_size, zero_size_allowed); | |
2635 | if (err) { | |
2636 | verbose(env, "R%d max value is outside of the allowed memory range\n", | |
61bd5218 | 2637 | regno); |
457f4436 AN |
2638 | return err; |
2639 | } | |
2640 | ||
2641 | return 0; | |
2642 | } | |
d83525ca | 2643 | |
457f4436 AN |
2644 | /* check read/write into a map element with possible variable offset */ |
2645 | static int check_map_access(struct bpf_verifier_env *env, u32 regno, | |
2646 | int off, int size, bool zero_size_allowed) | |
2647 | { | |
2648 | struct bpf_verifier_state *vstate = env->cur_state; | |
2649 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
2650 | struct bpf_reg_state *reg = &state->regs[regno]; | |
2651 | struct bpf_map *map = reg->map_ptr; | |
2652 | int err; | |
2653 | ||
2654 | err = check_mem_region_access(env, regno, off, size, map->value_size, | |
2655 | zero_size_allowed); | |
2656 | if (err) | |
2657 | return err; | |
2658 | ||
2659 | if (map_value_has_spin_lock(map)) { | |
2660 | u32 lock = map->spin_lock_off; | |
d83525ca AS |
2661 | |
2662 | /* if any part of struct bpf_spin_lock can be touched by | |
2663 | * load/store reject this program. | |
2664 | * To check that [x1, x2) overlaps with [y1, y2) | |
2665 | * it is sufficient to check x1 < y2 && y1 < x2. | |
2666 | */ | |
2667 | if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && | |
2668 | lock < reg->umax_value + off + size) { | |
2669 | verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); | |
2670 | return -EACCES; | |
2671 | } | |
2672 | } | |
f1174f77 | 2673 | return err; |
dbcfe5f7 GB |
2674 | } |
2675 | ||
969bf05e AS |
2676 | #define MAX_PACKET_OFF 0xffff |
2677 | ||
7e40781c UP |
2678 | static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) |
2679 | { | |
3aac1ead | 2680 | return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; |
7e40781c UP |
2681 | } |
2682 | ||
58e2af8b | 2683 | static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, |
3a0af8fd TG |
2684 | const struct bpf_call_arg_meta *meta, |
2685 | enum bpf_access_type t) | |
4acf6c0b | 2686 | { |
7e40781c UP |
2687 | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
2688 | ||
2689 | switch (prog_type) { | |
5d66fa7d | 2690 | /* Program types only with direct read access go here! */ |
3a0af8fd TG |
2691 | case BPF_PROG_TYPE_LWT_IN: |
2692 | case BPF_PROG_TYPE_LWT_OUT: | |
004d4b27 | 2693 | case BPF_PROG_TYPE_LWT_SEG6LOCAL: |
2dbb9b9e | 2694 | case BPF_PROG_TYPE_SK_REUSEPORT: |
5d66fa7d | 2695 | case BPF_PROG_TYPE_FLOW_DISSECTOR: |
d5563d36 | 2696 | case BPF_PROG_TYPE_CGROUP_SKB: |
3a0af8fd TG |
2697 | if (t == BPF_WRITE) |
2698 | return false; | |
8731745e | 2699 | fallthrough; |
5d66fa7d DB |
2700 | |
2701 | /* Program types with direct read + write access go here! */ | |
36bbef52 DB |
2702 | case BPF_PROG_TYPE_SCHED_CLS: |
2703 | case BPF_PROG_TYPE_SCHED_ACT: | |
4acf6c0b | 2704 | case BPF_PROG_TYPE_XDP: |
3a0af8fd | 2705 | case BPF_PROG_TYPE_LWT_XMIT: |
8a31db56 | 2706 | case BPF_PROG_TYPE_SK_SKB: |
4f738adb | 2707 | case BPF_PROG_TYPE_SK_MSG: |
36bbef52 DB |
2708 | if (meta) |
2709 | return meta->pkt_access; | |
2710 | ||
2711 | env->seen_direct_write = true; | |
4acf6c0b | 2712 | return true; |
0d01da6a SF |
2713 | |
2714 | case BPF_PROG_TYPE_CGROUP_SOCKOPT: | |
2715 | if (t == BPF_WRITE) | |
2716 | env->seen_direct_write = true; | |
2717 | ||
2718 | return true; | |
2719 | ||
4acf6c0b BB |
2720 | default: |
2721 | return false; | |
2722 | } | |
2723 | } | |
2724 | ||
f1174f77 | 2725 | static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, |
9fd29c08 | 2726 | int size, bool zero_size_allowed) |
f1174f77 | 2727 | { |
638f5b90 | 2728 | struct bpf_reg_state *regs = cur_regs(env); |
f1174f77 EC |
2729 | struct bpf_reg_state *reg = ®s[regno]; |
2730 | int err; | |
2731 | ||
2732 | /* We may have added a variable offset to the packet pointer; but any | |
2733 | * reg->range we have comes after that. We are only checking the fixed | |
2734 | * offset. | |
2735 | */ | |
2736 | ||
2737 | /* We don't allow negative numbers, because we aren't tracking enough | |
2738 | * detail to prove they're safe. | |
2739 | */ | |
b03c9f9f | 2740 | if (reg->smin_value < 0) { |
61bd5218 | 2741 | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
f1174f77 EC |
2742 | regno); |
2743 | return -EACCES; | |
2744 | } | |
6d94e741 AS |
2745 | |
2746 | err = reg->range < 0 ? -EINVAL : | |
2747 | __check_mem_access(env, regno, off, size, reg->range, | |
457f4436 | 2748 | zero_size_allowed); |
f1174f77 | 2749 | if (err) { |
61bd5218 | 2750 | verbose(env, "R%d offset is outside of the packet\n", regno); |
f1174f77 EC |
2751 | return err; |
2752 | } | |
e647815a | 2753 | |
457f4436 | 2754 | /* __check_mem_access has made sure "off + size - 1" is within u16. |
e647815a JW |
2755 | * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, |
2756 | * otherwise find_good_pkt_pointers would have refused to set range info | |
457f4436 | 2757 | * that __check_mem_access would have rejected this pkt access. |
e647815a JW |
2758 | * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. |
2759 | */ | |
2760 | env->prog->aux->max_pkt_offset = | |
2761 | max_t(u32, env->prog->aux->max_pkt_offset, | |
2762 | off + reg->umax_value + size - 1); | |
2763 | ||
f1174f77 EC |
2764 | return err; |
2765 | } | |
2766 | ||
2767 | /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ | |
31fd8581 | 2768 | static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, |
9e15db66 | 2769 | enum bpf_access_type t, enum bpf_reg_type *reg_type, |
22dc4a0f | 2770 | struct btf **btf, u32 *btf_id) |
17a52670 | 2771 | { |
f96da094 DB |
2772 | struct bpf_insn_access_aux info = { |
2773 | .reg_type = *reg_type, | |
9e15db66 | 2774 | .log = &env->log, |
f96da094 | 2775 | }; |
31fd8581 | 2776 | |
4f9218aa | 2777 | if (env->ops->is_valid_access && |
5e43f899 | 2778 | env->ops->is_valid_access(off, size, t, env->prog, &info)) { |
f96da094 DB |
2779 | /* A non zero info.ctx_field_size indicates that this field is a |
2780 | * candidate for later verifier transformation to load the whole | |
2781 | * field and then apply a mask when accessed with a narrower | |
2782 | * access than actual ctx access size. A zero info.ctx_field_size | |
2783 | * will only allow for whole field access and rejects any other | |
2784 | * type of narrower access. | |
31fd8581 | 2785 | */ |
23994631 | 2786 | *reg_type = info.reg_type; |
31fd8581 | 2787 | |
22dc4a0f AN |
2788 | if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { |
2789 | *btf = info.btf; | |
9e15db66 | 2790 | *btf_id = info.btf_id; |
22dc4a0f | 2791 | } else { |
9e15db66 | 2792 | env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; |
22dc4a0f | 2793 | } |
32bbe007 AS |
2794 | /* remember the offset of last byte accessed in ctx */ |
2795 | if (env->prog->aux->max_ctx_offset < off + size) | |
2796 | env->prog->aux->max_ctx_offset = off + size; | |
17a52670 | 2797 | return 0; |
32bbe007 | 2798 | } |
17a52670 | 2799 | |
61bd5218 | 2800 | verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); |
17a52670 AS |
2801 | return -EACCES; |
2802 | } | |
2803 | ||
d58e468b PP |
2804 | static int check_flow_keys_access(struct bpf_verifier_env *env, int off, |
2805 | int size) | |
2806 | { | |
2807 | if (size < 0 || off < 0 || | |
2808 | (u64)off + size > sizeof(struct bpf_flow_keys)) { | |
2809 | verbose(env, "invalid access to flow keys off=%d size=%d\n", | |
2810 | off, size); | |
2811 | return -EACCES; | |
2812 | } | |
2813 | return 0; | |
2814 | } | |
2815 | ||
5f456649 MKL |
2816 | static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, |
2817 | u32 regno, int off, int size, | |
2818 | enum bpf_access_type t) | |
c64b7983 JS |
2819 | { |
2820 | struct bpf_reg_state *regs = cur_regs(env); | |
2821 | struct bpf_reg_state *reg = ®s[regno]; | |
5f456649 | 2822 | struct bpf_insn_access_aux info = {}; |
46f8bc92 | 2823 | bool valid; |
c64b7983 JS |
2824 | |
2825 | if (reg->smin_value < 0) { | |
2826 | verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", | |
2827 | regno); | |
2828 | return -EACCES; | |
2829 | } | |
2830 | ||
46f8bc92 MKL |
2831 | switch (reg->type) { |
2832 | case PTR_TO_SOCK_COMMON: | |
2833 | valid = bpf_sock_common_is_valid_access(off, size, t, &info); | |
2834 | break; | |
2835 | case PTR_TO_SOCKET: | |
2836 | valid = bpf_sock_is_valid_access(off, size, t, &info); | |
2837 | break; | |
655a51e5 MKL |
2838 | case PTR_TO_TCP_SOCK: |
2839 | valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); | |
2840 | break; | |
fada7fdc JL |
2841 | case PTR_TO_XDP_SOCK: |
2842 | valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); | |
2843 | break; | |
46f8bc92 MKL |
2844 | default: |
2845 | valid = false; | |
c64b7983 JS |
2846 | } |
2847 | ||
5f456649 | 2848 | |
46f8bc92 MKL |
2849 | if (valid) { |
2850 | env->insn_aux_data[insn_idx].ctx_field_size = | |
2851 | info.ctx_field_size; | |
2852 | return 0; | |
2853 | } | |
2854 | ||
2855 | verbose(env, "R%d invalid %s access off=%d size=%d\n", | |
2856 | regno, reg_type_str[reg->type], off, size); | |
2857 | ||
2858 | return -EACCES; | |
c64b7983 JS |
2859 | } |
2860 | ||
2a159c6f DB |
2861 | static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) |
2862 | { | |
2863 | return cur_regs(env) + regno; | |
2864 | } | |
2865 | ||
4cabc5b1 DB |
2866 | static bool is_pointer_value(struct bpf_verifier_env *env, int regno) |
2867 | { | |
2a159c6f | 2868 | return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); |
4cabc5b1 DB |
2869 | } |
2870 | ||
f37a8cb8 DB |
2871 | static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) |
2872 | { | |
2a159c6f | 2873 | const struct bpf_reg_state *reg = reg_state(env, regno); |
f37a8cb8 | 2874 | |
46f8bc92 MKL |
2875 | return reg->type == PTR_TO_CTX; |
2876 | } | |
2877 | ||
2878 | static bool is_sk_reg(struct bpf_verifier_env *env, int regno) | |
2879 | { | |
2880 | const struct bpf_reg_state *reg = reg_state(env, regno); | |
2881 | ||
2882 | return type_is_sk_pointer(reg->type); | |
f37a8cb8 DB |
2883 | } |
2884 | ||
ca369602 DB |
2885 | static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) |
2886 | { | |
2a159c6f | 2887 | const struct bpf_reg_state *reg = reg_state(env, regno); |
ca369602 DB |
2888 | |
2889 | return type_is_pkt_pointer(reg->type); | |
2890 | } | |
2891 | ||
4b5defde DB |
2892 | static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) |
2893 | { | |
2894 | const struct bpf_reg_state *reg = reg_state(env, regno); | |
2895 | ||
2896 | /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ | |
2897 | return reg->type == PTR_TO_FLOW_KEYS; | |
2898 | } | |
2899 | ||
61bd5218 JK |
2900 | static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, |
2901 | const struct bpf_reg_state *reg, | |
d1174416 | 2902 | int off, int size, bool strict) |
969bf05e | 2903 | { |
f1174f77 | 2904 | struct tnum reg_off; |
e07b98d9 | 2905 | int ip_align; |
d1174416 DM |
2906 | |
2907 | /* Byte size accesses are always allowed. */ | |
2908 | if (!strict || size == 1) | |
2909 | return 0; | |
2910 | ||
e4eda884 DM |
2911 | /* For platforms that do not have a Kconfig enabling |
2912 | * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of | |
2913 | * NET_IP_ALIGN is universally set to '2'. And on platforms | |
2914 | * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get | |
2915 | * to this code only in strict mode where we want to emulate | |
2916 | * the NET_IP_ALIGN==2 checking. Therefore use an | |
2917 | * unconditional IP align value of '2'. | |
e07b98d9 | 2918 | */ |
e4eda884 | 2919 | ip_align = 2; |
f1174f77 EC |
2920 | |
2921 | reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); | |
2922 | if (!tnum_is_aligned(reg_off, size)) { | |
2923 | char tn_buf[48]; | |
2924 | ||
2925 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
61bd5218 JK |
2926 | verbose(env, |
2927 | "misaligned packet access off %d+%s+%d+%d size %d\n", | |
f1174f77 | 2928 | ip_align, tn_buf, reg->off, off, size); |
969bf05e AS |
2929 | return -EACCES; |
2930 | } | |
79adffcd | 2931 | |
969bf05e AS |
2932 | return 0; |
2933 | } | |
2934 | ||
61bd5218 JK |
2935 | static int check_generic_ptr_alignment(struct bpf_verifier_env *env, |
2936 | const struct bpf_reg_state *reg, | |
f1174f77 EC |
2937 | const char *pointer_desc, |
2938 | int off, int size, bool strict) | |
79adffcd | 2939 | { |
f1174f77 EC |
2940 | struct tnum reg_off; |
2941 | ||
2942 | /* Byte size accesses are always allowed. */ | |
2943 | if (!strict || size == 1) | |
2944 | return 0; | |
2945 | ||
2946 | reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); | |
2947 | if (!tnum_is_aligned(reg_off, size)) { | |
2948 | char tn_buf[48]; | |
2949 | ||
2950 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
61bd5218 | 2951 | verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", |
f1174f77 | 2952 | pointer_desc, tn_buf, reg->off, off, size); |
79adffcd DB |
2953 | return -EACCES; |
2954 | } | |
2955 | ||
969bf05e AS |
2956 | return 0; |
2957 | } | |
2958 | ||
e07b98d9 | 2959 | static int check_ptr_alignment(struct bpf_verifier_env *env, |
ca369602 DB |
2960 | const struct bpf_reg_state *reg, int off, |
2961 | int size, bool strict_alignment_once) | |
79adffcd | 2962 | { |
ca369602 | 2963 | bool strict = env->strict_alignment || strict_alignment_once; |
f1174f77 | 2964 | const char *pointer_desc = ""; |
d1174416 | 2965 | |
79adffcd DB |
2966 | switch (reg->type) { |
2967 | case PTR_TO_PACKET: | |
de8f3a83 DB |
2968 | case PTR_TO_PACKET_META: |
2969 | /* Special case, because of NET_IP_ALIGN. Given metadata sits | |
2970 | * right in front, treat it the very same way. | |
2971 | */ | |
61bd5218 | 2972 | return check_pkt_ptr_alignment(env, reg, off, size, strict); |
d58e468b PP |
2973 | case PTR_TO_FLOW_KEYS: |
2974 | pointer_desc = "flow keys "; | |
2975 | break; | |
f1174f77 EC |
2976 | case PTR_TO_MAP_VALUE: |
2977 | pointer_desc = "value "; | |
2978 | break; | |
2979 | case PTR_TO_CTX: | |
2980 | pointer_desc = "context "; | |
2981 | break; | |
2982 | case PTR_TO_STACK: | |
2983 | pointer_desc = "stack "; | |
a5ec6ae1 JH |
2984 | /* The stack spill tracking logic in check_stack_write() |
2985 | * and check_stack_read() relies on stack accesses being | |
2986 | * aligned. | |
2987 | */ | |
2988 | strict = true; | |
f1174f77 | 2989 | break; |
c64b7983 JS |
2990 | case PTR_TO_SOCKET: |
2991 | pointer_desc = "sock "; | |
2992 | break; | |
46f8bc92 MKL |
2993 | case PTR_TO_SOCK_COMMON: |
2994 | pointer_desc = "sock_common "; | |
2995 | break; | |
655a51e5 MKL |
2996 | case PTR_TO_TCP_SOCK: |
2997 | pointer_desc = "tcp_sock "; | |
2998 | break; | |
fada7fdc JL |
2999 | case PTR_TO_XDP_SOCK: |
3000 | pointer_desc = "xdp_sock "; | |
3001 | break; | |
79adffcd | 3002 | default: |
f1174f77 | 3003 | break; |
79adffcd | 3004 | } |
61bd5218 JK |
3005 | return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, |
3006 | strict); | |
79adffcd DB |
3007 | } |
3008 | ||
f4d7e40a AS |
3009 | static int update_stack_depth(struct bpf_verifier_env *env, |
3010 | const struct bpf_func_state *func, | |
3011 | int off) | |
3012 | { | |
9c8105bd | 3013 | u16 stack = env->subprog_info[func->subprogno].stack_depth; |
f4d7e40a AS |
3014 | |
3015 | if (stack >= -off) | |
3016 | return 0; | |
3017 | ||
3018 | /* update known max for given subprogram */ | |
9c8105bd | 3019 | env->subprog_info[func->subprogno].stack_depth = -off; |
70a87ffe AS |
3020 | return 0; |
3021 | } | |
f4d7e40a | 3022 | |
70a87ffe AS |
3023 | /* starting from main bpf function walk all instructions of the function |
3024 | * and recursively walk all callees that given function can call. | |
3025 | * Ignore jump and exit insns. | |
3026 | * Since recursion is prevented by check_cfg() this algorithm | |
3027 | * only needs a local stack of MAX_CALL_FRAMES to remember callsites | |
3028 | */ | |
3029 | static int check_max_stack_depth(struct bpf_verifier_env *env) | |
3030 | { | |
9c8105bd JW |
3031 | int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; |
3032 | struct bpf_subprog_info *subprog = env->subprog_info; | |
70a87ffe | 3033 | struct bpf_insn *insn = env->prog->insnsi; |
ebf7d1f5 | 3034 | bool tail_call_reachable = false; |
70a87ffe AS |
3035 | int ret_insn[MAX_CALL_FRAMES]; |
3036 | int ret_prog[MAX_CALL_FRAMES]; | |
ebf7d1f5 | 3037 | int j; |
f4d7e40a | 3038 | |
70a87ffe | 3039 | process_func: |
7f6e4312 MF |
3040 | /* protect against potential stack overflow that might happen when |
3041 | * bpf2bpf calls get combined with tailcalls. Limit the caller's stack | |
3042 | * depth for such case down to 256 so that the worst case scenario | |
3043 | * would result in 8k stack size (32 which is tailcall limit * 256 = | |
3044 | * 8k). | |
3045 | * | |
3046 | * To get the idea what might happen, see an example: | |
3047 | * func1 -> sub rsp, 128 | |
3048 | * subfunc1 -> sub rsp, 256 | |
3049 | * tailcall1 -> add rsp, 256 | |
3050 | * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) | |
3051 | * subfunc2 -> sub rsp, 64 | |
3052 | * subfunc22 -> sub rsp, 128 | |
3053 | * tailcall2 -> add rsp, 128 | |
3054 | * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) | |
3055 | * | |
3056 | * tailcall will unwind the current stack frame but it will not get rid | |
3057 | * of caller's stack as shown on the example above. | |
3058 | */ | |
3059 | if (idx && subprog[idx].has_tail_call && depth >= 256) { | |
3060 | verbose(env, | |
3061 | "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", | |
3062 | depth); | |
3063 | return -EACCES; | |
3064 | } | |
70a87ffe AS |
3065 | /* round up to 32-bytes, since this is granularity |
3066 | * of interpreter stack size | |
3067 | */ | |
9c8105bd | 3068 | depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); |
70a87ffe | 3069 | if (depth > MAX_BPF_STACK) { |
f4d7e40a | 3070 | verbose(env, "combined stack size of %d calls is %d. Too large\n", |
70a87ffe | 3071 | frame + 1, depth); |
f4d7e40a AS |
3072 | return -EACCES; |
3073 | } | |
70a87ffe | 3074 | continue_func: |
4cb3d99c | 3075 | subprog_end = subprog[idx + 1].start; |
70a87ffe AS |
3076 | for (; i < subprog_end; i++) { |
3077 | if (insn[i].code != (BPF_JMP | BPF_CALL)) | |
3078 | continue; | |
3079 | if (insn[i].src_reg != BPF_PSEUDO_CALL) | |
3080 | continue; | |
3081 | /* remember insn and function to return to */ | |
3082 | ret_insn[frame] = i + 1; | |
9c8105bd | 3083 | ret_prog[frame] = idx; |
70a87ffe AS |
3084 | |
3085 | /* find the callee */ | |
3086 | i = i + insn[i].imm + 1; | |
9c8105bd JW |
3087 | idx = find_subprog(env, i); |
3088 | if (idx < 0) { | |
70a87ffe AS |
3089 | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", |
3090 | i); | |
3091 | return -EFAULT; | |
3092 | } | |
ebf7d1f5 MF |
3093 | |
3094 | if (subprog[idx].has_tail_call) | |
3095 | tail_call_reachable = true; | |
3096 | ||
70a87ffe AS |
3097 | frame++; |
3098 | if (frame >= MAX_CALL_FRAMES) { | |
927cb781 PC |
3099 | verbose(env, "the call stack of %d frames is too deep !\n", |
3100 | frame); | |
3101 | return -E2BIG; | |
70a87ffe AS |
3102 | } |
3103 | goto process_func; | |
3104 | } | |
ebf7d1f5 MF |
3105 | /* if tail call got detected across bpf2bpf calls then mark each of the |
3106 | * currently present subprog frames as tail call reachable subprogs; | |
3107 | * this info will be utilized by JIT so that we will be preserving the | |
3108 | * tail call counter throughout bpf2bpf calls combined with tailcalls | |
3109 | */ | |
3110 | if (tail_call_reachable) | |
3111 | for (j = 0; j < frame; j++) | |
3112 | subprog[ret_prog[j]].tail_call_reachable = true; | |
3113 | ||
70a87ffe AS |
3114 | /* end of for() loop means the last insn of the 'subprog' |
3115 | * was reached. Doesn't matter whether it was JA or EXIT | |
3116 | */ | |
3117 | if (frame == 0) | |
3118 | return 0; | |
9c8105bd | 3119 | depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); |
70a87ffe AS |
3120 | frame--; |
3121 | i = ret_insn[frame]; | |
9c8105bd | 3122 | idx = ret_prog[frame]; |
70a87ffe | 3123 | goto continue_func; |
f4d7e40a AS |
3124 | } |
3125 | ||
19d28fbd | 3126 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
1ea47e01 AS |
3127 | static int get_callee_stack_depth(struct bpf_verifier_env *env, |
3128 | const struct bpf_insn *insn, int idx) | |
3129 | { | |
3130 | int start = idx + insn->imm + 1, subprog; | |
3131 | ||
3132 | subprog = find_subprog(env, start); | |
3133 | if (subprog < 0) { | |
3134 | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | |
3135 | start); | |
3136 | return -EFAULT; | |
3137 | } | |
9c8105bd | 3138 | return env->subprog_info[subprog].stack_depth; |
1ea47e01 | 3139 | } |
19d28fbd | 3140 | #endif |
1ea47e01 | 3141 | |
51c39bb1 AS |
3142 | int check_ctx_reg(struct bpf_verifier_env *env, |
3143 | const struct bpf_reg_state *reg, int regno) | |
58990d1f DB |
3144 | { |
3145 | /* Access to ctx or passing it to a helper is only allowed in | |
3146 | * its original, unmodified form. | |
3147 | */ | |
3148 | ||
3149 | if (reg->off) { | |
3150 | verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", | |
3151 | regno, reg->off); | |
3152 | return -EACCES; | |
3153 | } | |
3154 | ||
3155 | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | |
3156 | char tn_buf[48]; | |
3157 | ||
3158 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
3159 | verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); | |
3160 | return -EACCES; | |
3161 | } | |
3162 | ||
3163 | return 0; | |
3164 | } | |
3165 | ||
afbf21dc YS |
3166 | static int __check_buffer_access(struct bpf_verifier_env *env, |
3167 | const char *buf_info, | |
3168 | const struct bpf_reg_state *reg, | |
3169 | int regno, int off, int size) | |
9df1c28b MM |
3170 | { |
3171 | if (off < 0) { | |
3172 | verbose(env, | |
4fc00b79 | 3173 | "R%d invalid %s buffer access: off=%d, size=%d\n", |
afbf21dc | 3174 | regno, buf_info, off, size); |
9df1c28b MM |
3175 | return -EACCES; |
3176 | } | |
3177 | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | |
3178 | char tn_buf[48]; | |
3179 | ||
3180 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
3181 | verbose(env, | |
4fc00b79 | 3182 | "R%d invalid variable buffer offset: off=%d, var_off=%s\n", |
9df1c28b MM |
3183 | regno, off, tn_buf); |
3184 | return -EACCES; | |
3185 | } | |
afbf21dc YS |
3186 | |
3187 | return 0; | |
3188 | } | |
3189 | ||
3190 | static int check_tp_buffer_access(struct bpf_verifier_env *env, | |
3191 | const struct bpf_reg_state *reg, | |
3192 | int regno, int off, int size) | |
3193 | { | |
3194 | int err; | |
3195 | ||
3196 | err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); | |
3197 | if (err) | |
3198 | return err; | |
3199 | ||
9df1c28b MM |
3200 | if (off + size > env->prog->aux->max_tp_access) |
3201 | env->prog->aux->max_tp_access = off + size; | |
3202 | ||
3203 | return 0; | |
3204 | } | |
3205 | ||
afbf21dc YS |
3206 | static int check_buffer_access(struct bpf_verifier_env *env, |
3207 | const struct bpf_reg_state *reg, | |
3208 | int regno, int off, int size, | |
3209 | bool zero_size_allowed, | |
3210 | const char *buf_info, | |
3211 | u32 *max_access) | |
3212 | { | |
3213 | int err; | |
3214 | ||
3215 | err = __check_buffer_access(env, buf_info, reg, regno, off, size); | |
3216 | if (err) | |
3217 | return err; | |
3218 | ||
3219 | if (off + size > *max_access) | |
3220 | *max_access = off + size; | |
3221 | ||
3222 | return 0; | |
3223 | } | |
3224 | ||
3f50f132 JF |
3225 | /* BPF architecture zero extends alu32 ops into 64-bit registesr */ |
3226 | static void zext_32_to_64(struct bpf_reg_state *reg) | |
3227 | { | |
3228 | reg->var_off = tnum_subreg(reg->var_off); | |
3229 | __reg_assign_32_into_64(reg); | |
3230 | } | |
9df1c28b | 3231 | |
0c17d1d2 JH |
3232 | /* truncate register to smaller size (in bytes) |
3233 | * must be called with size < BPF_REG_SIZE | |
3234 | */ | |
3235 | static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) | |
3236 | { | |
3237 | u64 mask; | |
3238 | ||
3239 | /* clear high bits in bit representation */ | |
3240 | reg->var_off = tnum_cast(reg->var_off, size); | |
3241 | ||
3242 | /* fix arithmetic bounds */ | |
3243 | mask = ((u64)1 << (size * 8)) - 1; | |
3244 | if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { | |
3245 | reg->umin_value &= mask; | |
3246 | reg->umax_value &= mask; | |
3247 | } else { | |
3248 | reg->umin_value = 0; | |
3249 | reg->umax_value = mask; | |
3250 | } | |
3251 | reg->smin_value = reg->umin_value; | |
3252 | reg->smax_value = reg->umax_value; | |
3f50f132 JF |
3253 | |
3254 | /* If size is smaller than 32bit register the 32bit register | |
3255 | * values are also truncated so we push 64-bit bounds into | |
3256 | * 32-bit bounds. Above were truncated < 32-bits already. | |
3257 | */ | |
3258 | if (size >= 4) | |
3259 | return; | |
3260 | __reg_combine_64_into_32(reg); | |
0c17d1d2 JH |
3261 | } |
3262 | ||
a23740ec AN |
3263 | static bool bpf_map_is_rdonly(const struct bpf_map *map) |
3264 | { | |
3265 | return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; | |
3266 | } | |
3267 | ||
3268 | static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) | |
3269 | { | |
3270 | void *ptr; | |
3271 | u64 addr; | |
3272 | int err; | |
3273 | ||
3274 | err = map->ops->map_direct_value_addr(map, &addr, off); | |
3275 | if (err) | |
3276 | return err; | |
2dedd7d2 | 3277 | ptr = (void *)(long)addr + off; |
a23740ec AN |
3278 | |
3279 | switch (size) { | |
3280 | case sizeof(u8): | |
3281 | *val = (u64)*(u8 *)ptr; | |
3282 | break; | |
3283 | case sizeof(u16): | |
3284 | *val = (u64)*(u16 *)ptr; | |
3285 | break; | |
3286 | case sizeof(u32): | |
3287 | *val = (u64)*(u32 *)ptr; | |
3288 | break; | |
3289 | case sizeof(u64): | |
3290 | *val = *(u64 *)ptr; | |
3291 | break; | |
3292 | default: | |
3293 | return -EINVAL; | |
3294 | } | |
3295 | return 0; | |
3296 | } | |
3297 | ||
9e15db66 AS |
3298 | static int check_ptr_to_btf_access(struct bpf_verifier_env *env, |
3299 | struct bpf_reg_state *regs, | |
3300 | int regno, int off, int size, | |
3301 | enum bpf_access_type atype, | |
3302 | int value_regno) | |
3303 | { | |
3304 | struct bpf_reg_state *reg = regs + regno; | |
22dc4a0f AN |
3305 | const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); |
3306 | const char *tname = btf_name_by_offset(reg->btf, t->name_off); | |
9e15db66 AS |
3307 | u32 btf_id; |
3308 | int ret; | |
3309 | ||
9e15db66 AS |
3310 | if (off < 0) { |
3311 | verbose(env, | |
3312 | "R%d is ptr_%s invalid negative access: off=%d\n", | |
3313 | regno, tname, off); | |
3314 | return -EACCES; | |
3315 | } | |
3316 | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | |
3317 | char tn_buf[48]; | |
3318 | ||
3319 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
3320 | verbose(env, | |
3321 | "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", | |
3322 | regno, tname, off, tn_buf); | |
3323 | return -EACCES; | |
3324 | } | |
3325 | ||
27ae7997 | 3326 | if (env->ops->btf_struct_access) { |
22dc4a0f AN |
3327 | ret = env->ops->btf_struct_access(&env->log, reg->btf, t, |
3328 | off, size, atype, &btf_id); | |
27ae7997 MKL |
3329 | } else { |
3330 | if (atype != BPF_READ) { | |
3331 | verbose(env, "only read is supported\n"); | |
3332 | return -EACCES; | |
3333 | } | |
3334 | ||
22dc4a0f AN |
3335 | ret = btf_struct_access(&env->log, reg->btf, t, off, size, |
3336 | atype, &btf_id); | |
27ae7997 MKL |
3337 | } |
3338 | ||
9e15db66 AS |
3339 | if (ret < 0) |
3340 | return ret; | |
3341 | ||
41c48f3a | 3342 | if (atype == BPF_READ && value_regno >= 0) |
22dc4a0f | 3343 | mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); |
41c48f3a AI |
3344 | |
3345 | return 0; | |
3346 | } | |
3347 | ||
3348 | static int check_ptr_to_map_access(struct bpf_verifier_env *env, | |
3349 | struct bpf_reg_state *regs, | |
3350 | int regno, int off, int size, | |
3351 | enum bpf_access_type atype, | |
3352 | int value_regno) | |
3353 | { | |
3354 | struct bpf_reg_state *reg = regs + regno; | |
3355 | struct bpf_map *map = reg->map_ptr; | |
3356 | const struct btf_type *t; | |
3357 | const char *tname; | |
3358 | u32 btf_id; | |
3359 | int ret; | |
3360 | ||
3361 | if (!btf_vmlinux) { | |
3362 | verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); | |
3363 | return -ENOTSUPP; | |
3364 | } | |
3365 | ||
3366 | if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { | |
3367 | verbose(env, "map_ptr access not supported for map type %d\n", | |
3368 | map->map_type); | |
3369 | return -ENOTSUPP; | |
3370 | } | |
3371 | ||
3372 | t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); | |
3373 | tname = btf_name_by_offset(btf_vmlinux, t->name_off); | |
3374 | ||
3375 | if (!env->allow_ptr_to_map_access) { | |
3376 | verbose(env, | |
3377 | "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", | |
3378 | tname); | |
3379 | return -EPERM; | |
9e15db66 | 3380 | } |
27ae7997 | 3381 | |
41c48f3a AI |
3382 | if (off < 0) { |
3383 | verbose(env, "R%d is %s invalid negative access: off=%d\n", | |
3384 | regno, tname, off); | |
3385 | return -EACCES; | |
3386 | } | |
3387 | ||
3388 | if (atype != BPF_READ) { | |
3389 | verbose(env, "only read from %s is supported\n", tname); | |
3390 | return -EACCES; | |
3391 | } | |
3392 | ||
22dc4a0f | 3393 | ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); |
41c48f3a AI |
3394 | if (ret < 0) |
3395 | return ret; | |
3396 | ||
3397 | if (value_regno >= 0) | |
22dc4a0f | 3398 | mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); |
41c48f3a | 3399 | |
9e15db66 AS |
3400 | return 0; |
3401 | } | |
3402 | ||
41c48f3a | 3403 | |
17a52670 AS |
3404 | /* check whether memory at (regno + off) is accessible for t = (read | write) |
3405 | * if t==write, value_regno is a register which value is stored into memory | |
3406 | * if t==read, value_regno is a register which will receive the value from memory | |
3407 | * if t==write && value_regno==-1, some unknown value is stored into memory | |
3408 | * if t==read && value_regno==-1, don't care what we read from memory | |
3409 | */ | |
ca369602 DB |
3410 | static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, |
3411 | int off, int bpf_size, enum bpf_access_type t, | |
3412 | int value_regno, bool strict_alignment_once) | |
17a52670 | 3413 | { |
638f5b90 AS |
3414 | struct bpf_reg_state *regs = cur_regs(env); |
3415 | struct bpf_reg_state *reg = regs + regno; | |
f4d7e40a | 3416 | struct bpf_func_state *state; |
17a52670 AS |
3417 | int size, err = 0; |
3418 | ||
3419 | size = bpf_size_to_bytes(bpf_size); | |
3420 | if (size < 0) | |
3421 | return size; | |
3422 | ||
f1174f77 | 3423 | /* alignment checks will add in reg->off themselves */ |
ca369602 | 3424 | err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); |
969bf05e AS |
3425 | if (err) |
3426 | return err; | |
17a52670 | 3427 | |
f1174f77 EC |
3428 | /* for access checks, reg->off is just part of off */ |
3429 | off += reg->off; | |
3430 | ||
3431 | if (reg->type == PTR_TO_MAP_VALUE) { | |
1be7f75d AS |
3432 | if (t == BPF_WRITE && value_regno >= 0 && |
3433 | is_pointer_value(env, value_regno)) { | |
61bd5218 | 3434 | verbose(env, "R%d leaks addr into map\n", value_regno); |
1be7f75d AS |
3435 | return -EACCES; |
3436 | } | |
591fe988 DB |
3437 | err = check_map_access_type(env, regno, off, size, t); |
3438 | if (err) | |
3439 | return err; | |
9fd29c08 | 3440 | err = check_map_access(env, regno, off, size, false); |
a23740ec AN |
3441 | if (!err && t == BPF_READ && value_regno >= 0) { |
3442 | struct bpf_map *map = reg->map_ptr; | |
3443 | ||
3444 | /* if map is read-only, track its contents as scalars */ | |
3445 | if (tnum_is_const(reg->var_off) && | |
3446 | bpf_map_is_rdonly(map) && | |
3447 | map->ops->map_direct_value_addr) { | |
3448 | int map_off = off + reg->var_off.value; | |
3449 | u64 val = 0; | |
3450 | ||
3451 | err = bpf_map_direct_read(map, map_off, size, | |
3452 | &val); | |
3453 | if (err) | |
3454 | return err; | |
3455 | ||
3456 | regs[value_regno].type = SCALAR_VALUE; | |
3457 | __mark_reg_known(®s[value_regno], val); | |
3458 | } else { | |
3459 | mark_reg_unknown(env, regs, value_regno); | |
3460 | } | |
3461 | } | |
457f4436 AN |
3462 | } else if (reg->type == PTR_TO_MEM) { |
3463 | if (t == BPF_WRITE && value_regno >= 0 && | |
3464 | is_pointer_value(env, value_regno)) { | |
3465 | verbose(env, "R%d leaks addr into mem\n", value_regno); | |
3466 | return -EACCES; | |
3467 | } | |
3468 | err = check_mem_region_access(env, regno, off, size, | |
3469 | reg->mem_size, false); | |
3470 | if (!err && t == BPF_READ && value_regno >= 0) | |
3471 | mark_reg_unknown(env, regs, value_regno); | |
1a0dc1ac | 3472 | } else if (reg->type == PTR_TO_CTX) { |
f1174f77 | 3473 | enum bpf_reg_type reg_type = SCALAR_VALUE; |
22dc4a0f | 3474 | struct btf *btf = NULL; |
9e15db66 | 3475 | u32 btf_id = 0; |
19de99f7 | 3476 | |
1be7f75d AS |
3477 | if (t == BPF_WRITE && value_regno >= 0 && |
3478 | is_pointer_value(env, value_regno)) { | |
61bd5218 | 3479 | verbose(env, "R%d leaks addr into ctx\n", value_regno); |
1be7f75d AS |
3480 | return -EACCES; |
3481 | } | |
f1174f77 | 3482 | |
58990d1f DB |
3483 | err = check_ctx_reg(env, reg, regno); |
3484 | if (err < 0) | |
3485 | return err; | |
3486 | ||
22dc4a0f | 3487 | err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); |
9e15db66 AS |
3488 | if (err) |
3489 | verbose_linfo(env, insn_idx, "; "); | |
969bf05e | 3490 | if (!err && t == BPF_READ && value_regno >= 0) { |
f1174f77 | 3491 | /* ctx access returns either a scalar, or a |
de8f3a83 DB |
3492 | * PTR_TO_PACKET[_META,_END]. In the latter |
3493 | * case, we know the offset is zero. | |
f1174f77 | 3494 | */ |
46f8bc92 | 3495 | if (reg_type == SCALAR_VALUE) { |
638f5b90 | 3496 | mark_reg_unknown(env, regs, value_regno); |
46f8bc92 | 3497 | } else { |
638f5b90 | 3498 | mark_reg_known_zero(env, regs, |
61bd5218 | 3499 | value_regno); |
46f8bc92 MKL |
3500 | if (reg_type_may_be_null(reg_type)) |
3501 | regs[value_regno].id = ++env->id_gen; | |
5327ed3d JW |
3502 | /* A load of ctx field could have different |
3503 | * actual load size with the one encoded in the | |
3504 | * insn. When the dst is PTR, it is for sure not | |
3505 | * a sub-register. | |
3506 | */ | |
3507 | regs[value_regno].subreg_def = DEF_NOT_SUBREG; | |
b121b341 | 3508 | if (reg_type == PTR_TO_BTF_ID || |
22dc4a0f AN |
3509 | reg_type == PTR_TO_BTF_ID_OR_NULL) { |
3510 | regs[value_regno].btf = btf; | |
9e15db66 | 3511 | regs[value_regno].btf_id = btf_id; |
22dc4a0f | 3512 | } |
46f8bc92 | 3513 | } |
638f5b90 | 3514 | regs[value_regno].type = reg_type; |
969bf05e | 3515 | } |
17a52670 | 3516 | |
f1174f77 | 3517 | } else if (reg->type == PTR_TO_STACK) { |
f1174f77 | 3518 | off += reg->var_off.value; |
e4298d25 DB |
3519 | err = check_stack_access(env, reg, off, size); |
3520 | if (err) | |
3521 | return err; | |
8726679a | 3522 | |
f4d7e40a AS |
3523 | state = func(env, reg); |
3524 | err = update_stack_depth(env, state, off); | |
3525 | if (err) | |
3526 | return err; | |
8726679a | 3527 | |
638f5b90 | 3528 | if (t == BPF_WRITE) |
61bd5218 | 3529 | err = check_stack_write(env, state, off, size, |
af86ca4e | 3530 | value_regno, insn_idx); |
638f5b90 | 3531 | else |
61bd5218 JK |
3532 | err = check_stack_read(env, state, off, size, |
3533 | value_regno); | |
de8f3a83 | 3534 | } else if (reg_is_pkt_pointer(reg)) { |
3a0af8fd | 3535 | if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { |
61bd5218 | 3536 | verbose(env, "cannot write into packet\n"); |
969bf05e AS |
3537 | return -EACCES; |
3538 | } | |
4acf6c0b BB |
3539 | if (t == BPF_WRITE && value_regno >= 0 && |
3540 | is_pointer_value(env, value_regno)) { | |
61bd5218 JK |
3541 | verbose(env, "R%d leaks addr into packet\n", |
3542 | value_regno); | |
4acf6c0b BB |
3543 | return -EACCES; |
3544 | } | |
9fd29c08 | 3545 | err = check_packet_access(env, regno, off, size, false); |
969bf05e | 3546 | if (!err && t == BPF_READ && value_regno >= 0) |
638f5b90 | 3547 | mark_reg_unknown(env, regs, value_regno); |
d58e468b PP |
3548 | } else if (reg->type == PTR_TO_FLOW_KEYS) { |
3549 | if (t == BPF_WRITE && value_regno >= 0 && | |
3550 | is_pointer_value(env, value_regno)) { | |
3551 | verbose(env, "R%d leaks addr into flow keys\n", | |
3552 | value_regno); | |
3553 | return -EACCES; | |
3554 | } | |
3555 | ||
3556 | err = check_flow_keys_access(env, off, size); | |
3557 | if (!err && t == BPF_READ && value_regno >= 0) | |
3558 | mark_reg_unknown(env, regs, value_regno); | |
46f8bc92 | 3559 | } else if (type_is_sk_pointer(reg->type)) { |
c64b7983 | 3560 | if (t == BPF_WRITE) { |
46f8bc92 MKL |
3561 | verbose(env, "R%d cannot write into %s\n", |
3562 | regno, reg_type_str[reg->type]); | |
c64b7983 JS |
3563 | return -EACCES; |
3564 | } | |
5f456649 | 3565 | err = check_sock_access(env, insn_idx, regno, off, size, t); |
c64b7983 JS |
3566 | if (!err && value_regno >= 0) |
3567 | mark_reg_unknown(env, regs, value_regno); | |
9df1c28b MM |
3568 | } else if (reg->type == PTR_TO_TP_BUFFER) { |
3569 | err = check_tp_buffer_access(env, reg, regno, off, size); | |
3570 | if (!err && t == BPF_READ && value_regno >= 0) | |
3571 | mark_reg_unknown(env, regs, value_regno); | |
9e15db66 AS |
3572 | } else if (reg->type == PTR_TO_BTF_ID) { |
3573 | err = check_ptr_to_btf_access(env, regs, regno, off, size, t, | |
3574 | value_regno); | |
41c48f3a AI |
3575 | } else if (reg->type == CONST_PTR_TO_MAP) { |
3576 | err = check_ptr_to_map_access(env, regs, regno, off, size, t, | |
3577 | value_regno); | |
afbf21dc YS |
3578 | } else if (reg->type == PTR_TO_RDONLY_BUF) { |
3579 | if (t == BPF_WRITE) { | |
3580 | verbose(env, "R%d cannot write into %s\n", | |
3581 | regno, reg_type_str[reg->type]); | |
3582 | return -EACCES; | |
3583 | } | |
f6dfbe31 CIK |
3584 | err = check_buffer_access(env, reg, regno, off, size, false, |
3585 | "rdonly", | |
afbf21dc YS |
3586 | &env->prog->aux->max_rdonly_access); |
3587 | if (!err && value_regno >= 0) | |
3588 | mark_reg_unknown(env, regs, value_regno); | |
3589 | } else if (reg->type == PTR_TO_RDWR_BUF) { | |
f6dfbe31 CIK |
3590 | err = check_buffer_access(env, reg, regno, off, size, false, |
3591 | "rdwr", | |
afbf21dc YS |
3592 | &env->prog->aux->max_rdwr_access); |
3593 | if (!err && t == BPF_READ && value_regno >= 0) | |
3594 | mark_reg_unknown(env, regs, value_regno); | |
17a52670 | 3595 | } else { |
61bd5218 JK |
3596 | verbose(env, "R%d invalid mem access '%s'\n", regno, |
3597 | reg_type_str[reg->type]); | |
17a52670 AS |
3598 | return -EACCES; |
3599 | } | |
969bf05e | 3600 | |
f1174f77 | 3601 | if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && |
638f5b90 | 3602 | regs[value_regno].type == SCALAR_VALUE) { |
f1174f77 | 3603 | /* b/h/w load zero-extends, mark upper bits as known 0 */ |
0c17d1d2 | 3604 | coerce_reg_to_size(®s[value_regno], size); |
969bf05e | 3605 | } |
17a52670 AS |
3606 | return err; |
3607 | } | |
3608 | ||
91c960b0 | 3609 | static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) |
17a52670 | 3610 | { |
5ffa2550 | 3611 | int load_reg; |
17a52670 AS |
3612 | int err; |
3613 | ||
5ca419f2 BJ |
3614 | switch (insn->imm) { |
3615 | case BPF_ADD: | |
3616 | case BPF_ADD | BPF_FETCH: | |
981f94c3 BJ |
3617 | case BPF_AND: |
3618 | case BPF_AND | BPF_FETCH: | |
3619 | case BPF_OR: | |
3620 | case BPF_OR | BPF_FETCH: | |
3621 | case BPF_XOR: | |
3622 | case BPF_XOR | BPF_FETCH: | |
5ffa2550 BJ |
3623 | case BPF_XCHG: |
3624 | case BPF_CMPXCHG: | |
5ca419f2 BJ |
3625 | break; |
3626 | default: | |
91c960b0 BJ |
3627 | verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); |
3628 | return -EINVAL; | |
3629 | } | |
3630 | ||
3631 | if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { | |
3632 | verbose(env, "invalid atomic operand size\n"); | |
17a52670 AS |
3633 | return -EINVAL; |
3634 | } | |
3635 | ||
3636 | /* check src1 operand */ | |
dc503a8a | 3637 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
3638 | if (err) |
3639 | return err; | |
3640 | ||
3641 | /* check src2 operand */ | |
dc503a8a | 3642 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
3643 | if (err) |
3644 | return err; | |
3645 | ||
5ffa2550 BJ |
3646 | if (insn->imm == BPF_CMPXCHG) { |
3647 | /* Check comparison of R0 with memory location */ | |
3648 | err = check_reg_arg(env, BPF_REG_0, SRC_OP); | |
3649 | if (err) | |
3650 | return err; | |
3651 | } | |
3652 | ||
6bdf6abc | 3653 | if (is_pointer_value(env, insn->src_reg)) { |
61bd5218 | 3654 | verbose(env, "R%d leaks addr into mem\n", insn->src_reg); |
6bdf6abc DB |
3655 | return -EACCES; |
3656 | } | |
3657 | ||
ca369602 | 3658 | if (is_ctx_reg(env, insn->dst_reg) || |
4b5defde | 3659 | is_pkt_reg(env, insn->dst_reg) || |
46f8bc92 MKL |
3660 | is_flow_key_reg(env, insn->dst_reg) || |
3661 | is_sk_reg(env, insn->dst_reg)) { | |
91c960b0 | 3662 | verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", |
2a159c6f DB |
3663 | insn->dst_reg, |
3664 | reg_type_str[reg_state(env, insn->dst_reg)->type]); | |
f37a8cb8 DB |
3665 | return -EACCES; |
3666 | } | |
3667 | ||
37086bfd BJ |
3668 | if (insn->imm & BPF_FETCH) { |
3669 | if (insn->imm == BPF_CMPXCHG) | |
3670 | load_reg = BPF_REG_0; | |
3671 | else | |
3672 | load_reg = insn->src_reg; | |
3673 | ||
3674 | /* check and record load of old value */ | |
3675 | err = check_reg_arg(env, load_reg, DST_OP); | |
3676 | if (err) | |
3677 | return err; | |
3678 | } else { | |
3679 | /* This instruction accesses a memory location but doesn't | |
3680 | * actually load it into a register. | |
3681 | */ | |
3682 | load_reg = -1; | |
3683 | } | |
3684 | ||
91c960b0 | 3685 | /* check whether we can read the memory */ |
31fd8581 | 3686 | err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
37086bfd | 3687 | BPF_SIZE(insn->code), BPF_READ, load_reg, true); |
17a52670 AS |
3688 | if (err) |
3689 | return err; | |
3690 | ||
91c960b0 | 3691 | /* check whether we can write into the same memory */ |
5ca419f2 BJ |
3692 | err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
3693 | BPF_SIZE(insn->code), BPF_WRITE, -1, true); | |
3694 | if (err) | |
3695 | return err; | |
3696 | ||
5ca419f2 | 3697 | return 0; |
17a52670 AS |
3698 | } |
3699 | ||
2011fccf AI |
3700 | static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, |
3701 | int off, int access_size, | |
3702 | bool zero_size_allowed) | |
3703 | { | |
3704 | struct bpf_reg_state *reg = reg_state(env, regno); | |
3705 | ||
3706 | if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || | |
3707 | access_size < 0 || (access_size == 0 && !zero_size_allowed)) { | |
3708 | if (tnum_is_const(reg->var_off)) { | |
3709 | verbose(env, "invalid stack type R%d off=%d access_size=%d\n", | |
3710 | regno, off, access_size); | |
3711 | } else { | |
3712 | char tn_buf[48]; | |
3713 | ||
3714 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
3715 | verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", | |
3716 | regno, tn_buf, access_size); | |
3717 | } | |
3718 | return -EACCES; | |
3719 | } | |
3720 | return 0; | |
3721 | } | |
3722 | ||
17a52670 AS |
3723 | /* when register 'regno' is passed into function that will read 'access_size' |
3724 | * bytes from that pointer, make sure that it's within stack boundary | |
f1174f77 EC |
3725 | * and all elements of stack are initialized. |
3726 | * Unlike most pointer bounds-checking functions, this one doesn't take an | |
3727 | * 'off' argument, so it has to add in reg->off itself. | |
17a52670 | 3728 | */ |
58e2af8b | 3729 | static int check_stack_boundary(struct bpf_verifier_env *env, int regno, |
435faee1 DB |
3730 | int access_size, bool zero_size_allowed, |
3731 | struct bpf_call_arg_meta *meta) | |
17a52670 | 3732 | { |
2a159c6f | 3733 | struct bpf_reg_state *reg = reg_state(env, regno); |
f4d7e40a | 3734 | struct bpf_func_state *state = func(env, reg); |
f7cf25b2 | 3735 | int err, min_off, max_off, i, j, slot, spi; |
17a52670 | 3736 | |
2011fccf AI |
3737 | if (tnum_is_const(reg->var_off)) { |
3738 | min_off = max_off = reg->var_off.value + reg->off; | |
3739 | err = __check_stack_boundary(env, regno, min_off, access_size, | |
3740 | zero_size_allowed); | |
3741 | if (err) | |
3742 | return err; | |
3743 | } else { | |
088ec26d AI |
3744 | /* Variable offset is prohibited for unprivileged mode for |
3745 | * simplicity since it requires corresponding support in | |
3746 | * Spectre masking for stack ALU. | |
3747 | * See also retrieve_ptr_limit(). | |
3748 | */ | |
2c78ee89 | 3749 | if (!env->bypass_spec_v1) { |
088ec26d | 3750 | char tn_buf[48]; |
f1174f77 | 3751 | |
088ec26d AI |
3752 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
3753 | verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", | |
3754 | regno, tn_buf); | |
3755 | return -EACCES; | |
3756 | } | |
f2bcd05e AI |
3757 | /* Only initialized buffer on stack is allowed to be accessed |
3758 | * with variable offset. With uninitialized buffer it's hard to | |
3759 | * guarantee that whole memory is marked as initialized on | |
3760 | * helper return since specific bounds are unknown what may | |
3761 | * cause uninitialized stack leaking. | |
3762 | */ | |
3763 | if (meta && meta->raw_mode) | |
3764 | meta = NULL; | |
3765 | ||
107c26a7 AI |
3766 | if (reg->smax_value >= BPF_MAX_VAR_OFF || |
3767 | reg->smax_value <= -BPF_MAX_VAR_OFF) { | |
3768 | verbose(env, "R%d unbounded indirect variable offset stack access\n", | |
3769 | regno); | |
3770 | return -EACCES; | |
3771 | } | |
2011fccf | 3772 | min_off = reg->smin_value + reg->off; |
107c26a7 | 3773 | max_off = reg->smax_value + reg->off; |
2011fccf AI |
3774 | err = __check_stack_boundary(env, regno, min_off, access_size, |
3775 | zero_size_allowed); | |
107c26a7 AI |
3776 | if (err) { |
3777 | verbose(env, "R%d min value is outside of stack bound\n", | |
3778 | regno); | |
2011fccf | 3779 | return err; |
107c26a7 | 3780 | } |
2011fccf AI |
3781 | err = __check_stack_boundary(env, regno, max_off, access_size, |
3782 | zero_size_allowed); | |
107c26a7 AI |
3783 | if (err) { |
3784 | verbose(env, "R%d max value is outside of stack bound\n", | |
3785 | regno); | |
2011fccf | 3786 | return err; |
107c26a7 | 3787 | } |
17a52670 AS |
3788 | } |
3789 | ||
435faee1 DB |
3790 | if (meta && meta->raw_mode) { |
3791 | meta->access_size = access_size; | |
3792 | meta->regno = regno; | |
3793 | return 0; | |
3794 | } | |
3795 | ||
2011fccf | 3796 | for (i = min_off; i < max_off + access_size; i++) { |
cc2b14d5 AS |
3797 | u8 *stype; |
3798 | ||
2011fccf | 3799 | slot = -i - 1; |
638f5b90 | 3800 | spi = slot / BPF_REG_SIZE; |
cc2b14d5 AS |
3801 | if (state->allocated_stack <= slot) |
3802 | goto err; | |
3803 | stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; | |
3804 | if (*stype == STACK_MISC) | |
3805 | goto mark; | |
3806 | if (*stype == STACK_ZERO) { | |
3807 | /* helper can write anything into the stack */ | |
3808 | *stype = STACK_MISC; | |
3809 | goto mark; | |
17a52670 | 3810 | } |
1d68f22b YS |
3811 | |
3812 | if (state->stack[spi].slot_type[0] == STACK_SPILL && | |
3813 | state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) | |
3814 | goto mark; | |
3815 | ||
f7cf25b2 | 3816 | if (state->stack[spi].slot_type[0] == STACK_SPILL && |
cd17d38f YS |
3817 | (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || |
3818 | env->allow_ptr_leaks)) { | |
f54c7898 | 3819 | __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); |
f7cf25b2 AS |
3820 | for (j = 0; j < BPF_REG_SIZE; j++) |
3821 | state->stack[spi].slot_type[j] = STACK_MISC; | |
3822 | goto mark; | |
3823 | } | |
3824 | ||
cc2b14d5 | 3825 | err: |
2011fccf AI |
3826 | if (tnum_is_const(reg->var_off)) { |
3827 | verbose(env, "invalid indirect read from stack off %d+%d size %d\n", | |
3828 | min_off, i - min_off, access_size); | |
3829 | } else { | |
3830 | char tn_buf[48]; | |
3831 | ||
3832 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); | |
3833 | verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", | |
3834 | tn_buf, i - min_off, access_size); | |
3835 | } | |
cc2b14d5 AS |
3836 | return -EACCES; |
3837 | mark: | |
3838 | /* reading any byte out of 8-byte 'spill_slot' will cause | |
3839 | * the whole slot to be marked as 'read' | |
3840 | */ | |
679c782d | 3841 | mark_reg_read(env, &state->stack[spi].spilled_ptr, |
5327ed3d JW |
3842 | state->stack[spi].spilled_ptr.parent, |
3843 | REG_LIVE_READ64); | |
17a52670 | 3844 | } |
2011fccf | 3845 | return update_stack_depth(env, state, min_off); |
17a52670 AS |
3846 | } |
3847 | ||
06c1c049 GB |
3848 | static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, |
3849 | int access_size, bool zero_size_allowed, | |
3850 | struct bpf_call_arg_meta *meta) | |
3851 | { | |
638f5b90 | 3852 | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
06c1c049 | 3853 | |
f1174f77 | 3854 | switch (reg->type) { |
06c1c049 | 3855 | case PTR_TO_PACKET: |
de8f3a83 | 3856 | case PTR_TO_PACKET_META: |
9fd29c08 YS |
3857 | return check_packet_access(env, regno, reg->off, access_size, |
3858 | zero_size_allowed); | |
06c1c049 | 3859 | case PTR_TO_MAP_VALUE: |
591fe988 DB |
3860 | if (check_map_access_type(env, regno, reg->off, access_size, |
3861 | meta && meta->raw_mode ? BPF_WRITE : | |
3862 | BPF_READ)) | |
3863 | return -EACCES; | |
9fd29c08 YS |
3864 | return check_map_access(env, regno, reg->off, access_size, |
3865 | zero_size_allowed); | |
457f4436 AN |
3866 | case PTR_TO_MEM: |
3867 | return check_mem_region_access(env, regno, reg->off, | |
3868 | access_size, reg->mem_size, | |
3869 | zero_size_allowed); | |
afbf21dc YS |
3870 | case PTR_TO_RDONLY_BUF: |
3871 | if (meta && meta->raw_mode) | |
3872 | return -EACCES; | |
3873 | return check_buffer_access(env, reg, regno, reg->off, | |
3874 | access_size, zero_size_allowed, | |
3875 | "rdonly", | |
3876 | &env->prog->aux->max_rdonly_access); | |
3877 | case PTR_TO_RDWR_BUF: | |
3878 | return check_buffer_access(env, reg, regno, reg->off, | |
3879 | access_size, zero_size_allowed, | |
3880 | "rdwr", | |
3881 | &env->prog->aux->max_rdwr_access); | |
0d004c02 | 3882 | case PTR_TO_STACK: |
06c1c049 GB |
3883 | return check_stack_boundary(env, regno, access_size, |
3884 | zero_size_allowed, meta); | |
0d004c02 LB |
3885 | default: /* scalar_value or invalid ptr */ |
3886 | /* Allow zero-byte read from NULL, regardless of pointer type */ | |
3887 | if (zero_size_allowed && access_size == 0 && | |
3888 | register_is_null(reg)) | |
3889 | return 0; | |
3890 | ||
3891 | verbose(env, "R%d type=%s expected=%s\n", regno, | |
3892 | reg_type_str[reg->type], | |
3893 | reg_type_str[PTR_TO_STACK]); | |
3894 | return -EACCES; | |
06c1c049 GB |
3895 | } |
3896 | } | |
3897 | ||
d83525ca AS |
3898 | /* Implementation details: |
3899 | * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL | |
3900 | * Two bpf_map_lookups (even with the same key) will have different reg->id. | |
3901 | * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after | |
3902 | * value_or_null->value transition, since the verifier only cares about | |
3903 | * the range of access to valid map value pointer and doesn't care about actual | |
3904 | * address of the map element. | |
3905 | * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps | |
3906 | * reg->id > 0 after value_or_null->value transition. By doing so | |
3907 | * two bpf_map_lookups will be considered two different pointers that | |
3908 | * point to different bpf_spin_locks. | |
3909 | * The verifier allows taking only one bpf_spin_lock at a time to avoid | |
3910 | * dead-locks. | |
3911 | * Since only one bpf_spin_lock is allowed the checks are simpler than | |
3912 | * reg_is_refcounted() logic. The verifier needs to remember only | |
3913 | * one spin_lock instead of array of acquired_refs. | |
3914 | * cur_state->active_spin_lock remembers which map value element got locked | |
3915 | * and clears it after bpf_spin_unlock. | |
3916 | */ | |
3917 | static int process_spin_lock(struct bpf_verifier_env *env, int regno, | |
3918 | bool is_lock) | |
3919 | { | |
3920 | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | |
3921 | struct bpf_verifier_state *cur = env->cur_state; | |
3922 | bool is_const = tnum_is_const(reg->var_off); | |
3923 | struct bpf_map *map = reg->map_ptr; | |
3924 | u64 val = reg->var_off.value; | |
3925 | ||
d83525ca AS |
3926 | if (!is_const) { |
3927 | verbose(env, | |
3928 | "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", | |
3929 | regno); | |
3930 | return -EINVAL; | |
3931 | } | |
3932 | if (!map->btf) { | |
3933 | verbose(env, | |
3934 | "map '%s' has to have BTF in order to use bpf_spin_lock\n", | |
3935 | map->name); | |
3936 | return -EINVAL; | |
3937 | } | |
3938 | if (!map_value_has_spin_lock(map)) { | |
3939 | if (map->spin_lock_off == -E2BIG) | |
3940 | verbose(env, | |
3941 | "map '%s' has more than one 'struct bpf_spin_lock'\n", | |
3942 | map->name); | |
3943 | else if (map->spin_lock_off == -ENOENT) | |
3944 | verbose(env, | |
3945 | "map '%s' doesn't have 'struct bpf_spin_lock'\n", | |
3946 | map->name); | |
3947 | else | |
3948 | verbose(env, | |
3949 | "map '%s' is not a struct type or bpf_spin_lock is mangled\n", | |
3950 | map->name); | |
3951 | return -EINVAL; | |
3952 | } | |
3953 | if (map->spin_lock_off != val + reg->off) { | |
3954 | verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", | |
3955 | val + reg->off); | |
3956 | return -EINVAL; | |
3957 | } | |
3958 | if (is_lock) { | |
3959 | if (cur->active_spin_lock) { | |
3960 | verbose(env, | |
3961 | "Locking two bpf_spin_locks are not allowed\n"); | |
3962 | return -EINVAL; | |
3963 | } | |
3964 | cur->active_spin_lock = reg->id; | |
3965 | } else { | |
3966 | if (!cur->active_spin_lock) { | |
3967 | verbose(env, "bpf_spin_unlock without taking a lock\n"); | |
3968 | return -EINVAL; | |
3969 | } | |
3970 | if (cur->active_spin_lock != reg->id) { | |
3971 | verbose(env, "bpf_spin_unlock of different lock\n"); | |
3972 | return -EINVAL; | |
3973 | } | |
3974 | cur->active_spin_lock = 0; | |
3975 | } | |
3976 | return 0; | |
3977 | } | |
3978 | ||
90133415 DB |
3979 | static bool arg_type_is_mem_ptr(enum bpf_arg_type type) |
3980 | { | |
3981 | return type == ARG_PTR_TO_MEM || | |
3982 | type == ARG_PTR_TO_MEM_OR_NULL || | |
3983 | type == ARG_PTR_TO_UNINIT_MEM; | |
3984 | } | |
3985 | ||
3986 | static bool arg_type_is_mem_size(enum bpf_arg_type type) | |
3987 | { | |
3988 | return type == ARG_CONST_SIZE || | |
3989 | type == ARG_CONST_SIZE_OR_ZERO; | |
3990 | } | |
3991 | ||
457f4436 AN |
3992 | static bool arg_type_is_alloc_size(enum bpf_arg_type type) |
3993 | { | |
3994 | return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; | |
3995 | } | |
3996 | ||
57c3bb72 AI |
3997 | static bool arg_type_is_int_ptr(enum bpf_arg_type type) |
3998 | { | |
3999 | return type == ARG_PTR_TO_INT || | |
4000 | type == ARG_PTR_TO_LONG; | |
4001 | } | |
4002 | ||
4003 | static int int_ptr_type_to_size(enum bpf_arg_type type) | |
4004 | { | |
4005 | if (type == ARG_PTR_TO_INT) | |
4006 | return sizeof(u32); | |
4007 | else if (type == ARG_PTR_TO_LONG) | |
4008 | return sizeof(u64); | |
4009 | ||
4010 | return -EINVAL; | |
4011 | } | |
4012 | ||
912f442c LB |
4013 | static int resolve_map_arg_type(struct bpf_verifier_env *env, |
4014 | const struct bpf_call_arg_meta *meta, | |
4015 | enum bpf_arg_type *arg_type) | |
4016 | { | |
4017 | if (!meta->map_ptr) { | |
4018 | /* kernel subsystem misconfigured verifier */ | |
4019 | verbose(env, "invalid map_ptr to access map->type\n"); | |
4020 | return -EACCES; | |
4021 | } | |
4022 | ||
4023 | switch (meta->map_ptr->map_type) { | |
4024 | case BPF_MAP_TYPE_SOCKMAP: | |
4025 | case BPF_MAP_TYPE_SOCKHASH: | |
4026 | if (*arg_type == ARG_PTR_TO_MAP_VALUE) { | |
6550f2dd | 4027 | *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; |
912f442c LB |
4028 | } else { |
4029 | verbose(env, "invalid arg_type for sockmap/sockhash\n"); | |
4030 | return -EINVAL; | |
4031 | } | |
4032 | break; | |
4033 | ||
4034 | default: | |
4035 | break; | |
4036 | } | |
4037 | return 0; | |
4038 | } | |
4039 | ||
f79e7ea5 LB |
4040 | struct bpf_reg_types { |
4041 | const enum bpf_reg_type types[10]; | |
1df8f55a | 4042 | u32 *btf_id; |
f79e7ea5 LB |
4043 | }; |
4044 | ||
4045 | static const struct bpf_reg_types map_key_value_types = { | |
4046 | .types = { | |
4047 | PTR_TO_STACK, | |
4048 | PTR_TO_PACKET, | |
4049 | PTR_TO_PACKET_META, | |
4050 | PTR_TO_MAP_VALUE, | |
4051 | }, | |
4052 | }; | |
4053 | ||
4054 | static const struct bpf_reg_types sock_types = { | |
4055 | .types = { | |
4056 | PTR_TO_SOCK_COMMON, | |
4057 | PTR_TO_SOCKET, | |
4058 | PTR_TO_TCP_SOCK, | |
4059 | PTR_TO_XDP_SOCK, | |
4060 | }, | |
4061 | }; | |
4062 | ||
49a2a4d4 | 4063 | #ifdef CONFIG_NET |
1df8f55a MKL |
4064 | static const struct bpf_reg_types btf_id_sock_common_types = { |
4065 | .types = { | |
4066 | PTR_TO_SOCK_COMMON, | |
4067 | PTR_TO_SOCKET, | |
4068 | PTR_TO_TCP_SOCK, | |
4069 | PTR_TO_XDP_SOCK, | |
4070 | PTR_TO_BTF_ID, | |
4071 | }, | |
4072 | .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], | |
4073 | }; | |
49a2a4d4 | 4074 | #endif |
1df8f55a | 4075 | |
f79e7ea5 LB |
4076 | static const struct bpf_reg_types mem_types = { |
4077 | .types = { | |
4078 | PTR_TO_STACK, | |
4079 | PTR_TO_PACKET, | |
4080 | PTR_TO_PACKET_META, | |
4081 | PTR_TO_MAP_VALUE, | |
4082 | PTR_TO_MEM, | |
4083 | PTR_TO_RDONLY_BUF, | |
4084 | PTR_TO_RDWR_BUF, | |
4085 | }, | |
4086 | }; | |
4087 | ||
4088 | static const struct bpf_reg_types int_ptr_types = { | |
4089 | .types = { | |
4090 | PTR_TO_STACK, | |
4091 | PTR_TO_PACKET, | |
4092 | PTR_TO_PACKET_META, | |
4093 | PTR_TO_MAP_VALUE, | |
4094 | }, | |
4095 | }; | |
4096 | ||
4097 | static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; | |
4098 | static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; | |
4099 | static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; | |
4100 | static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; | |
4101 | static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; | |
4102 | static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; | |
4103 | static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; | |
eaa6bcb7 | 4104 | static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; |
f79e7ea5 | 4105 | |
0789e13b | 4106 | static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { |
f79e7ea5 LB |
4107 | [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, |
4108 | [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, | |
4109 | [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, | |
4110 | [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, | |
4111 | [ARG_CONST_SIZE] = &scalar_types, | |
4112 | [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, | |
4113 | [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, | |
4114 | [ARG_CONST_MAP_PTR] = &const_map_ptr_types, | |
4115 | [ARG_PTR_TO_CTX] = &context_types, | |
4116 | [ARG_PTR_TO_CTX_OR_NULL] = &context_types, | |
4117 | [ARG_PTR_TO_SOCK_COMMON] = &sock_types, | |
49a2a4d4 | 4118 | #ifdef CONFIG_NET |
1df8f55a | 4119 | [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, |
49a2a4d4 | 4120 | #endif |
f79e7ea5 LB |
4121 | [ARG_PTR_TO_SOCKET] = &fullsock_types, |
4122 | [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, | |
4123 | [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, | |
4124 | [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, | |
4125 | [ARG_PTR_TO_MEM] = &mem_types, | |
4126 | [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, | |
4127 | [ARG_PTR_TO_UNINIT_MEM] = &mem_types, | |
4128 | [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, | |
4129 | [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, | |
4130 | [ARG_PTR_TO_INT] = &int_ptr_types, | |
4131 | [ARG_PTR_TO_LONG] = &int_ptr_types, | |
eaa6bcb7 | 4132 | [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, |
f79e7ea5 LB |
4133 | }; |
4134 | ||
4135 | static int check_reg_type(struct bpf_verifier_env *env, u32 regno, | |
a968d5e2 MKL |
4136 | enum bpf_arg_type arg_type, |
4137 | const u32 *arg_btf_id) | |
f79e7ea5 LB |
4138 | { |
4139 | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; | |
4140 | enum bpf_reg_type expected, type = reg->type; | |
a968d5e2 | 4141 | const struct bpf_reg_types *compatible; |
f79e7ea5 LB |
4142 | int i, j; |
4143 | ||
a968d5e2 MKL |
4144 | compatible = compatible_reg_types[arg_type]; |
4145 | if (!compatible) { | |
4146 | verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); | |
4147 | return -EFAULT; | |
4148 | } | |
4149 | ||
f79e7ea5 LB |
4150 | for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { |
4151 | expected = compatible->types[i]; | |
4152 | if (expected == NOT_INIT) | |
4153 | break; | |
4154 | ||
4155 | if (type == expected) | |
a968d5e2 | 4156 | goto found; |
f79e7ea5 LB |
4157 | } |
4158 | ||
4159 | verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); | |
4160 | for (j = 0; j + 1 < i; j++) | |
4161 | verbose(env, "%s, ", reg_type_str[compatible->types[j]]); | |
4162 | verbose(env, "%s\n", reg_type_str[compatible->types[j]]); | |
4163 | return -EACCES; | |
a968d5e2 MKL |
4164 | |
4165 | found: | |
4166 | if (type == PTR_TO_BTF_ID) { | |
1df8f55a MKL |
4167 | if (!arg_btf_id) { |
4168 | if (!compatible->btf_id) { | |
4169 | verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); | |
4170 | return -EFAULT; | |
4171 | } | |
4172 | arg_btf_id = compatible->btf_id; | |
4173 | } | |
4174 | ||
22dc4a0f AN |
4175 | if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, |
4176 | btf_vmlinux, *arg_btf_id)) { | |
a968d5e2 | 4177 | verbose(env, "R%d is of type %s but %s is expected\n", |
22dc4a0f AN |
4178 | regno, kernel_type_name(reg->btf, reg->btf_id), |
4179 | kernel_type_name(btf_vmlinux, *arg_btf_id)); | |
a968d5e2 MKL |
4180 | return -EACCES; |
4181 | } | |
4182 | ||
4183 | if (!tnum_is_const(reg->var_off) || reg->var_off.value) { | |
4184 | verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", | |
4185 | regno); | |
4186 | return -EACCES; | |
4187 | } | |
4188 | } | |
4189 | ||
4190 | return 0; | |
f79e7ea5 LB |
4191 | } |
4192 | ||
af7ec138 YS |
4193 | static int check_func_arg(struct bpf_verifier_env *env, u32 arg, |
4194 | struct bpf_call_arg_meta *meta, | |
4195 | const struct bpf_func_proto *fn) | |
17a52670 | 4196 | { |
af7ec138 | 4197 | u32 regno = BPF_REG_1 + arg; |
638f5b90 | 4198 | struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
af7ec138 | 4199 | enum bpf_arg_type arg_type = fn->arg_type[arg]; |
f79e7ea5 | 4200 | enum bpf_reg_type type = reg->type; |
17a52670 AS |
4201 | int err = 0; |
4202 | ||
80f1d68c | 4203 | if (arg_type == ARG_DONTCARE) |
17a52670 AS |
4204 | return 0; |
4205 | ||
dc503a8a EC |
4206 | err = check_reg_arg(env, regno, SRC_OP); |
4207 | if (err) | |
4208 | return err; | |
17a52670 | 4209 | |
1be7f75d AS |
4210 | if (arg_type == ARG_ANYTHING) { |
4211 | if (is_pointer_value(env, regno)) { | |
61bd5218 JK |
4212 | verbose(env, "R%d leaks addr into helper function\n", |
4213 | regno); | |
1be7f75d AS |
4214 | return -EACCES; |
4215 | } | |
80f1d68c | 4216 | return 0; |
1be7f75d | 4217 | } |
80f1d68c | 4218 | |
de8f3a83 | 4219 | if (type_is_pkt_pointer(type) && |
3a0af8fd | 4220 | !may_access_direct_pkt_data(env, meta, BPF_READ)) { |
61bd5218 | 4221 | verbose(env, "helper access to the packet is not allowed\n"); |
6841de8b AS |
4222 | return -EACCES; |
4223 | } | |
4224 | ||
912f442c LB |
4225 | if (arg_type == ARG_PTR_TO_MAP_VALUE || |
4226 | arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || | |
4227 | arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { | |
4228 | err = resolve_map_arg_type(env, meta, &arg_type); | |
4229 | if (err) | |
4230 | return err; | |
4231 | } | |
4232 | ||
fd1b0d60 LB |
4233 | if (register_is_null(reg) && arg_type_may_be_null(arg_type)) |
4234 | /* A NULL register has a SCALAR_VALUE type, so skip | |
4235 | * type checking. | |
4236 | */ | |
4237 | goto skip_type_check; | |
4238 | ||
a968d5e2 | 4239 | err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); |
f79e7ea5 LB |
4240 | if (err) |
4241 | return err; | |
4242 | ||
a968d5e2 | 4243 | if (type == PTR_TO_CTX) { |
feec7040 LB |
4244 | err = check_ctx_reg(env, reg, regno); |
4245 | if (err < 0) | |
4246 | return err; | |
d7b9454a LB |
4247 | } |
4248 | ||
fd1b0d60 | 4249 | skip_type_check: |
02f7c958 | 4250 | if (reg->ref_obj_id) { |
457f4436 AN |
4251 | if (meta->ref_obj_id) { |
4252 | verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", | |
4253 | regno, reg->ref_obj_id, | |
4254 | meta->ref_obj_id); | |
4255 | return -EFAULT; | |
4256 | } | |
4257 | meta->ref_obj_id = reg->ref_obj_id; | |
17a52670 AS |
4258 | } |
4259 | ||
17a52670 AS |
4260 | if (arg_type == ARG_CONST_MAP_PTR) { |
4261 | /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ | |
33ff9823 | 4262 | meta->map_ptr = reg->map_ptr; |
17a52670 AS |
4263 | } else if (arg_type == ARG_PTR_TO_MAP_KEY) { |
4264 | /* bpf_map_xxx(..., map_ptr, ..., key) call: | |
4265 | * check that [key, key + map->key_size) are within | |
4266 | * stack limits and initialized | |
4267 | */ | |
33ff9823 | 4268 | if (!meta->map_ptr) { |
17a52670 AS |
4269 | /* in function declaration map_ptr must come before |
4270 | * map_key, so that it's verified and known before | |
4271 | * we have to check map_key here. Otherwise it means | |
4272 | * that kernel subsystem misconfigured verifier | |
4273 | */ | |
61bd5218 | 4274 | verbose(env, "invalid map_ptr to access map->key\n"); |
17a52670 AS |
4275 | return -EACCES; |
4276 | } | |
d71962f3 PC |
4277 | err = check_helper_mem_access(env, regno, |
4278 | meta->map_ptr->key_size, false, | |
4279 | NULL); | |
2ea864c5 | 4280 | } else if (arg_type == ARG_PTR_TO_MAP_VALUE || |
6ac99e8f MKL |
4281 | (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && |
4282 | !register_is_null(reg)) || | |
2ea864c5 | 4283 | arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { |
17a52670 AS |
4284 | /* bpf_map_xxx(..., map_ptr, ..., value) call: |
4285 | * check [value, value + map->value_size) validity | |
4286 | */ | |
33ff9823 | 4287 | if (!meta->map_ptr) { |
17a52670 | 4288 | /* kernel subsystem misconfigured verifier */ |
61bd5218 | 4289 | verbose(env, "invalid map_ptr to access map->value\n"); |
17a52670 AS |
4290 | return -EACCES; |
4291 | } | |
2ea864c5 | 4292 | meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); |
d71962f3 PC |
4293 | err = check_helper_mem_access(env, regno, |
4294 | meta->map_ptr->value_size, false, | |
2ea864c5 | 4295 | meta); |
eaa6bcb7 HL |
4296 | } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { |
4297 | if (!reg->btf_id) { | |
4298 | verbose(env, "Helper has invalid btf_id in R%d\n", regno); | |
4299 | return -EACCES; | |
4300 | } | |
22dc4a0f | 4301 | meta->ret_btf = reg->btf; |
eaa6bcb7 | 4302 | meta->ret_btf_id = reg->btf_id; |
c18f0b6a LB |
4303 | } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { |
4304 | if (meta->func_id == BPF_FUNC_spin_lock) { | |
4305 | if (process_spin_lock(env, regno, true)) | |
4306 | return -EACCES; | |
4307 | } else if (meta->func_id == BPF_FUNC_spin_unlock) { | |
4308 | if (process_spin_lock(env, regno, false)) | |
4309 | return -EACCES; | |
4310 | } else { | |
4311 | verbose(env, "verifier internal error\n"); | |
4312 | return -EFAULT; | |
4313 | } | |
a2bbe7cc LB |
4314 | } else if (arg_type_is_mem_ptr(arg_type)) { |
4315 | /* The access to this pointer is only checked when we hit the | |
4316 | * next is_mem_size argument below. | |
4317 | */ | |
4318 | meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); | |
90133415 | 4319 | } else if (arg_type_is_mem_size(arg_type)) { |
39f19ebb | 4320 | bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); |
17a52670 | 4321 | |
10060503 JF |
4322 | /* This is used to refine r0 return value bounds for helpers |
4323 | * that enforce this value as an upper bound on return values. | |
4324 | * See do_refine_retval_range() for helpers that can refine | |
4325 | * the return value. C type of helper is u32 so we pull register | |
4326 | * bound from umax_value however, if negative verifier errors | |
4327 | * out. Only upper bounds can be learned because retval is an | |
4328 | * int type and negative retvals are allowed. | |
849fa506 | 4329 | */ |
10060503 | 4330 | meta->msize_max_value = reg->umax_value; |
849fa506 | 4331 | |
f1174f77 EC |
4332 | /* The register is SCALAR_VALUE; the access check |
4333 | * happens using its boundaries. | |
06c1c049 | 4334 | */ |
f1174f77 | 4335 | if (!tnum_is_const(reg->var_off)) |
06c1c049 GB |
4336 | /* For unprivileged variable accesses, disable raw |
4337 | * mode so that the program is required to | |
4338 | * initialize all the memory that the helper could | |
4339 | * just partially fill up. | |
4340 | */ | |
4341 | meta = NULL; | |
4342 | ||
b03c9f9f | 4343 | if (reg->smin_value < 0) { |
61bd5218 | 4344 | verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", |
f1174f77 EC |
4345 | regno); |
4346 | return -EACCES; | |
4347 | } | |
06c1c049 | 4348 | |
b03c9f9f | 4349 | if (reg->umin_value == 0) { |
f1174f77 EC |
4350 | err = check_helper_mem_access(env, regno - 1, 0, |
4351 | zero_size_allowed, | |
4352 | meta); | |
06c1c049 GB |
4353 | if (err) |
4354 | return err; | |
06c1c049 | 4355 | } |
f1174f77 | 4356 | |
b03c9f9f | 4357 | if (reg->umax_value >= BPF_MAX_VAR_SIZ) { |
61bd5218 | 4358 | verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", |
f1174f77 EC |
4359 | regno); |
4360 | return -EACCES; | |
4361 | } | |
4362 | err = check_helper_mem_access(env, regno - 1, | |
b03c9f9f | 4363 | reg->umax_value, |
f1174f77 | 4364 | zero_size_allowed, meta); |
b5dc0163 AS |
4365 | if (!err) |
4366 | err = mark_chain_precision(env, regno); | |
457f4436 AN |
4367 | } else if (arg_type_is_alloc_size(arg_type)) { |
4368 | if (!tnum_is_const(reg->var_off)) { | |
28a8add6 | 4369 | verbose(env, "R%d is not a known constant'\n", |
457f4436 AN |
4370 | regno); |
4371 | return -EACCES; | |
4372 | } | |
4373 | meta->mem_size = reg->var_off.value; | |
57c3bb72 AI |
4374 | } else if (arg_type_is_int_ptr(arg_type)) { |
4375 | int size = int_ptr_type_to_size(arg_type); | |
4376 | ||
4377 | err = check_helper_mem_access(env, regno, size, false, meta); | |
4378 | if (err) | |
4379 | return err; | |
4380 | err = check_ptr_alignment(env, reg, 0, size, true); | |
17a52670 AS |
4381 | } |
4382 | ||
4383 | return err; | |
4384 | } | |
4385 | ||
0126240f LB |
4386 | static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) |
4387 | { | |
4388 | enum bpf_attach_type eatype = env->prog->expected_attach_type; | |
7e40781c | 4389 | enum bpf_prog_type type = resolve_prog_type(env->prog); |
0126240f LB |
4390 | |
4391 | if (func_id != BPF_FUNC_map_update_elem) | |
4392 | return false; | |
4393 | ||
4394 | /* It's not possible to get access to a locked struct sock in these | |
4395 | * contexts, so updating is safe. | |
4396 | */ | |
4397 | switch (type) { | |
4398 | case BPF_PROG_TYPE_TRACING: | |
4399 | if (eatype == BPF_TRACE_ITER) | |
4400 | return true; | |
4401 | break; | |
4402 | case BPF_PROG_TYPE_SOCKET_FILTER: | |
4403 | case BPF_PROG_TYPE_SCHED_CLS: | |
4404 | case BPF_PROG_TYPE_SCHED_ACT: | |
4405 | case BPF_PROG_TYPE_XDP: | |
4406 | case BPF_PROG_TYPE_SK_REUSEPORT: | |
4407 | case BPF_PROG_TYPE_FLOW_DISSECTOR: | |
4408 | case BPF_PROG_TYPE_SK_LOOKUP: | |
4409 | return true; | |
4410 | default: | |
4411 | break; | |
4412 | } | |
4413 | ||
4414 | verbose(env, "cannot update sockmap in this context\n"); | |
4415 | return false; | |
4416 | } | |
4417 | ||
e411901c MF |
4418 | static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) |
4419 | { | |
4420 | return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); | |
4421 | } | |
4422 | ||
61bd5218 JK |
4423 | static int check_map_func_compatibility(struct bpf_verifier_env *env, |
4424 | struct bpf_map *map, int func_id) | |
35578d79 | 4425 | { |
35578d79 KX |
4426 | if (!map) |
4427 | return 0; | |
4428 | ||
6aff67c8 AS |
4429 | /* We need a two way check, first is from map perspective ... */ |
4430 | switch (map->map_type) { | |
4431 | case BPF_MAP_TYPE_PROG_ARRAY: | |
4432 | if (func_id != BPF_FUNC_tail_call) | |
4433 | goto error; | |
4434 | break; | |
4435 | case BPF_MAP_TYPE_PERF_EVENT_ARRAY: | |
4436 | if (func_id != BPF_FUNC_perf_event_read && | |
908432ca | 4437 | func_id != BPF_FUNC_perf_event_output && |
a7658e1a | 4438 | func_id != BPF_FUNC_skb_output && |
d831ee84 EC |
4439 | func_id != BPF_FUNC_perf_event_read_value && |
4440 | func_id != BPF_FUNC_xdp_output) | |
6aff67c8 AS |
4441 | goto error; |
4442 | break; | |
457f4436 AN |
4443 | case BPF_MAP_TYPE_RINGBUF: |
4444 | if (func_id != BPF_FUNC_ringbuf_output && | |
4445 | func_id != BPF_FUNC_ringbuf_reserve && | |
4446 | func_id != BPF_FUNC_ringbuf_submit && | |
4447 | func_id != BPF_FUNC_ringbuf_discard && | |
4448 | func_id != BPF_FUNC_ringbuf_query) | |
4449 | goto error; | |
4450 | break; | |
6aff67c8 AS |
4451 | case BPF_MAP_TYPE_STACK_TRACE: |
4452 | if (func_id != BPF_FUNC_get_stackid) | |
4453 | goto error; | |
4454 | break; | |
4ed8ec52 | 4455 | case BPF_MAP_TYPE_CGROUP_ARRAY: |
60747ef4 | 4456 | if (func_id != BPF_FUNC_skb_under_cgroup && |
60d20f91 | 4457 | func_id != BPF_FUNC_current_task_under_cgroup) |
4a482f34 MKL |
4458 | goto error; |
4459 | break; | |
cd339431 | 4460 | case BPF_MAP_TYPE_CGROUP_STORAGE: |
b741f163 | 4461 | case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: |
cd339431 RG |
4462 | if (func_id != BPF_FUNC_get_local_storage) |
4463 | goto error; | |
4464 | break; | |
546ac1ff | 4465 | case BPF_MAP_TYPE_DEVMAP: |
6f9d451a | 4466 | case BPF_MAP_TYPE_DEVMAP_HASH: |
0cdbb4b0 THJ |
4467 | if (func_id != BPF_FUNC_redirect_map && |
4468 | func_id != BPF_FUNC_map_lookup_elem) | |
546ac1ff JF |
4469 | goto error; |
4470 | break; | |
fbfc504a BT |
4471 | /* Restrict bpf side of cpumap and xskmap, open when use-cases |
4472 | * appear. | |
4473 | */ | |
6710e112 JDB |
4474 | case BPF_MAP_TYPE_CPUMAP: |
4475 | if (func_id != BPF_FUNC_redirect_map) | |
4476 | goto error; | |
4477 | break; | |
fada7fdc JL |
4478 | case BPF_MAP_TYPE_XSKMAP: |
4479 | if (func_id != BPF_FUNC_redirect_map && | |
4480 | func_id != BPF_FUNC_map_lookup_elem) | |
4481 | goto error; | |
4482 | break; | |
56f668df | 4483 | case BPF_MAP_TYPE_ARRAY_OF_MAPS: |
bcc6b1b7 | 4484 | case BPF_MAP_TYPE_HASH_OF_MAPS: |
56f668df MKL |
4485 | if (func_id != BPF_FUNC_map_lookup_elem) |
4486 | goto error; | |
16a43625 | 4487 | break; |
174a79ff JF |
4488 | case BPF_MAP_TYPE_SOCKMAP: |
4489 | if (func_id != BPF_FUNC_sk_redirect_map && | |
4490 | func_id != BPF_FUNC_sock_map_update && | |
4f738adb | 4491 | func_id != BPF_FUNC_map_delete_elem && |
9fed9000 | 4492 | func_id != BPF_FUNC_msg_redirect_map && |
64d85290 | 4493 | func_id != BPF_FUNC_sk_select_reuseport && |
0126240f LB |
4494 | func_id != BPF_FUNC_map_lookup_elem && |
4495 | !may_update_sockmap(env, func_id)) | |
174a79ff JF |
4496 | goto error; |
4497 | break; | |
81110384 JF |
4498 | case BPF_MAP_TYPE_SOCKHASH: |
4499 | if (func_id != BPF_FUNC_sk_redirect_hash && | |
4500 | func_id != BPF_FUNC_sock_hash_update && | |
4501 | func_id != BPF_FUNC_map_delete_elem && | |
9fed9000 | 4502 | func_id != BPF_FUNC_msg_redirect_hash && |
64d85290 | 4503 | func_id != BPF_FUNC_sk_select_reuseport && |
0126240f LB |
4504 | func_id != BPF_FUNC_map_lookup_elem && |
4505 | !may_update_sockmap(env, func_id)) | |
81110384 JF |
4506 | goto error; |
4507 | break; | |
2dbb9b9e MKL |
4508 | case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: |
4509 | if (func_id != BPF_FUNC_sk_select_reuseport) | |
4510 | goto error; | |
4511 | break; | |
f1a2e44a MV |
4512 | case BPF_MAP_TYPE_QUEUE: |
4513 | case BPF_MAP_TYPE_STACK: | |
4514 | if (func_id != BPF_FUNC_map_peek_elem && | |
4515 | func_id != BPF_FUNC_map_pop_elem && | |
4516 | func_id != BPF_FUNC_map_push_elem) | |
4517 | goto error; | |
4518 | break; | |
6ac99e8f MKL |
4519 | case BPF_MAP_TYPE_SK_STORAGE: |
4520 | if (func_id != BPF_FUNC_sk_storage_get && | |
4521 | func_id != BPF_FUNC_sk_storage_delete) | |
4522 | goto error; | |
4523 | break; | |
8ea63684 KS |
4524 | case BPF_MAP_TYPE_INODE_STORAGE: |
4525 | if (func_id != BPF_FUNC_inode_storage_get && | |
4526 | func_id != BPF_FUNC_inode_storage_delete) | |
4527 | goto error; | |
4528 | break; | |
4cf1bc1f KS |
4529 | case BPF_MAP_TYPE_TASK_STORAGE: |
4530 | if (func_id != BPF_FUNC_task_storage_get && | |
4531 | func_id != BPF_FUNC_task_storage_delete) | |
4532 | goto error; | |
4533 | break; | |
6aff67c8 AS |
4534 | default: |
4535 | break; | |
4536 | } | |
4537 | ||
4538 | /* ... and second from the function itself. */ | |
4539 | switch (func_id) { | |
4540 | case BPF_FUNC_tail_call: | |
4541 | if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) | |
4542 | goto error; | |
e411901c MF |
4543 | if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { |
4544 | verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); | |
f4d7e40a AS |
4545 | return -EINVAL; |
4546 | } | |
6aff67c8 AS |
4547 | break; |
4548 | case BPF_FUNC_perf_event_read: | |
4549 | case BPF_FUNC_perf_event_output: | |
908432ca | 4550 | case BPF_FUNC_perf_event_read_value: |
a7658e1a | 4551 | case BPF_FUNC_skb_output: |
d831ee84 | 4552 | case BPF_FUNC_xdp_output: |
6aff67c8 AS |
4553 | if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) |
4554 | goto error; | |
4555 | break; | |
4556 | case BPF_FUNC_get_stackid: | |
4557 | if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) | |
4558 | goto error; | |
4559 | break; | |
60d20f91 | 4560 | case BPF_FUNC_current_task_under_cgroup: |
747ea55e | 4561 | case BPF_FUNC_skb_under_cgroup: |
4a482f34 MKL |
4562 | if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) |
4563 | goto error; | |
4564 | break; | |
97f91a7c | 4565 | case BPF_FUNC_redirect_map: |
9c270af3 | 4566 | if (map->map_type != BPF_MAP_TYPE_DEVMAP && |
6f9d451a | 4567 | map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && |
fbfc504a BT |
4568 | map->map_type != BPF_MAP_TYPE_CPUMAP && |
4569 | map->map_type != BPF_MAP_TYPE_XSKMAP) | |
97f91a7c JF |
4570 | goto error; |
4571 | break; | |
174a79ff | 4572 | case BPF_FUNC_sk_redirect_map: |
4f738adb | 4573 | case BPF_FUNC_msg_redirect_map: |
81110384 | 4574 | case BPF_FUNC_sock_map_update: |
174a79ff JF |
4575 | if (map->map_type != BPF_MAP_TYPE_SOCKMAP) |
4576 | goto error; | |
4577 | break; | |
81110384 JF |
4578 | case BPF_FUNC_sk_redirect_hash: |
4579 | case BPF_FUNC_msg_redirect_hash: | |
4580 | case BPF_FUNC_sock_hash_update: | |
4581 | if (map->map_type != BPF_MAP_TYPE_SOCKHASH) | |
174a79ff JF |
4582 | goto error; |
4583 | break; | |
cd339431 | 4584 | case BPF_FUNC_get_local_storage: |
b741f163 RG |
4585 | if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && |
4586 | map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) | |
cd339431 RG |
4587 | goto error; |
4588 | break; | |
2dbb9b9e | 4589 | case BPF_FUNC_sk_select_reuseport: |
9fed9000 JS |
4590 | if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && |
4591 | map->map_type != BPF_MAP_TYPE_SOCKMAP && | |
4592 | map->map_type != BPF_MAP_TYPE_SOCKHASH) | |
2dbb9b9e MKL |
4593 | goto error; |
4594 | break; | |
f1a2e44a MV |
4595 | case BPF_FUNC_map_peek_elem: |
4596 | case BPF_FUNC_map_pop_elem: | |
4597 | case BPF_FUNC_map_push_elem: | |
4598 | if (map->map_type != BPF_MAP_TYPE_QUEUE && | |
4599 | map->map_type != BPF_MAP_TYPE_STACK) | |
4600 | goto error; | |
4601 | break; | |
6ac99e8f MKL |
4602 | case BPF_FUNC_sk_storage_get: |
4603 | case BPF_FUNC_sk_storage_delete: | |
4604 | if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) | |
4605 | goto error; | |
4606 | break; | |
8ea63684 KS |
4607 | case BPF_FUNC_inode_storage_get: |
4608 | case BPF_FUNC_inode_storage_delete: | |
4609 | if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) | |
4610 | goto error; | |
4611 | break; | |
4cf1bc1f KS |
4612 | case BPF_FUNC_task_storage_get: |
4613 | case BPF_FUNC_task_storage_delete: | |
4614 | if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) | |
4615 | goto error; | |
4616 | break; | |
6aff67c8 AS |
4617 | default: |
4618 | break; | |
35578d79 KX |
4619 | } |
4620 | ||
4621 | return 0; | |
6aff67c8 | 4622 | error: |
61bd5218 | 4623 | verbose(env, "cannot pass map_type %d into func %s#%d\n", |
ebb676da | 4624 | map->map_type, func_id_name(func_id), func_id); |
6aff67c8 | 4625 | return -EINVAL; |
35578d79 KX |
4626 | } |
4627 | ||
90133415 | 4628 | static bool check_raw_mode_ok(const struct bpf_func_proto *fn) |
435faee1 DB |
4629 | { |
4630 | int count = 0; | |
4631 | ||
39f19ebb | 4632 | if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) |
435faee1 | 4633 | count++; |
39f19ebb | 4634 | if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) |
435faee1 | 4635 | count++; |
39f19ebb | 4636 | if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) |
435faee1 | 4637 | count++; |
39f19ebb | 4638 | if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) |
435faee1 | 4639 | count++; |
39f19ebb | 4640 | if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) |
435faee1 DB |
4641 | count++; |
4642 | ||
90133415 DB |
4643 | /* We only support one arg being in raw mode at the moment, |
4644 | * which is sufficient for the helper functions we have | |
4645 | * right now. | |
4646 | */ | |
4647 | return count <= 1; | |
4648 | } | |
4649 | ||
4650 | static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, | |
4651 | enum bpf_arg_type arg_next) | |
4652 | { | |
4653 | return (arg_type_is_mem_ptr(arg_curr) && | |
4654 | !arg_type_is_mem_size(arg_next)) || | |
4655 | (!arg_type_is_mem_ptr(arg_curr) && | |
4656 | arg_type_is_mem_size(arg_next)); | |
4657 | } | |
4658 | ||
4659 | static bool check_arg_pair_ok(const struct bpf_func_proto *fn) | |
4660 | { | |
4661 | /* bpf_xxx(..., buf, len) call will access 'len' | |
4662 | * bytes from memory 'buf'. Both arg types need | |
4663 | * to be paired, so make sure there's no buggy | |
4664 | * helper function specification. | |
4665 | */ | |
4666 | if (arg_type_is_mem_size(fn->arg1_type) || | |
4667 | arg_type_is_mem_ptr(fn->arg5_type) || | |
4668 | check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || | |
4669 | check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || | |
4670 | check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || | |
4671 | check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) | |
4672 | return false; | |
4673 | ||
4674 | return true; | |
4675 | } | |
4676 | ||
1b986589 | 4677 | static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) |
fd978bf7 JS |
4678 | { |
4679 | int count = 0; | |
4680 | ||
1b986589 | 4681 | if (arg_type_may_be_refcounted(fn->arg1_type)) |
fd978bf7 | 4682 | count++; |
1b986589 | 4683 | if (arg_type_may_be_refcounted(fn->arg2_type)) |
fd978bf7 | 4684 | count++; |
1b986589 | 4685 | if (arg_type_may_be_refcounted(fn->arg3_type)) |
fd978bf7 | 4686 | count++; |
1b986589 | 4687 | if (arg_type_may_be_refcounted(fn->arg4_type)) |
fd978bf7 | 4688 | count++; |
1b986589 | 4689 | if (arg_type_may_be_refcounted(fn->arg5_type)) |
fd978bf7 JS |
4690 | count++; |
4691 | ||
1b986589 MKL |
4692 | /* A reference acquiring function cannot acquire |
4693 | * another refcounted ptr. | |
4694 | */ | |
64d85290 | 4695 | if (may_be_acquire_function(func_id) && count) |
1b986589 MKL |
4696 | return false; |
4697 | ||
fd978bf7 JS |
4698 | /* We only support one arg being unreferenced at the moment, |
4699 | * which is sufficient for the helper functions we have right now. | |
4700 | */ | |
4701 | return count <= 1; | |
4702 | } | |
4703 | ||
9436ef6e LB |
4704 | static bool check_btf_id_ok(const struct bpf_func_proto *fn) |
4705 | { | |
4706 | int i; | |
4707 | ||
1df8f55a | 4708 | for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { |
9436ef6e LB |
4709 | if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) |
4710 | return false; | |
4711 | ||
1df8f55a MKL |
4712 | if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) |
4713 | return false; | |
4714 | } | |
4715 | ||
9436ef6e LB |
4716 | return true; |
4717 | } | |
4718 | ||
1b986589 | 4719 | static int check_func_proto(const struct bpf_func_proto *fn, int func_id) |
90133415 DB |
4720 | { |
4721 | return check_raw_mode_ok(fn) && | |
fd978bf7 | 4722 | check_arg_pair_ok(fn) && |
9436ef6e | 4723 | check_btf_id_ok(fn) && |
1b986589 | 4724 | check_refcount_ok(fn, func_id) ? 0 : -EINVAL; |
435faee1 DB |
4725 | } |
4726 | ||
de8f3a83 DB |
4727 | /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] |
4728 | * are now invalid, so turn them into unknown SCALAR_VALUE. | |
f1174f77 | 4729 | */ |
f4d7e40a AS |
4730 | static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, |
4731 | struct bpf_func_state *state) | |
969bf05e | 4732 | { |
58e2af8b | 4733 | struct bpf_reg_state *regs = state->regs, *reg; |
969bf05e AS |
4734 | int i; |
4735 | ||
4736 | for (i = 0; i < MAX_BPF_REG; i++) | |
de8f3a83 | 4737 | if (reg_is_pkt_pointer_any(®s[i])) |
61bd5218 | 4738 | mark_reg_unknown(env, regs, i); |
969bf05e | 4739 | |
f3709f69 JS |
4740 | bpf_for_each_spilled_reg(i, state, reg) { |
4741 | if (!reg) | |
969bf05e | 4742 | continue; |
de8f3a83 | 4743 | if (reg_is_pkt_pointer_any(reg)) |
f54c7898 | 4744 | __mark_reg_unknown(env, reg); |
969bf05e AS |
4745 | } |
4746 | } | |
4747 | ||
f4d7e40a AS |
4748 | static void clear_all_pkt_pointers(struct bpf_verifier_env *env) |
4749 | { | |
4750 | struct bpf_verifier_state *vstate = env->cur_state; | |
4751 | int i; | |
4752 | ||
4753 | for (i = 0; i <= vstate->curframe; i++) | |
4754 | __clear_all_pkt_pointers(env, vstate->frame[i]); | |
4755 | } | |
4756 | ||
6d94e741 AS |
4757 | enum { |
4758 | AT_PKT_END = -1, | |
4759 | BEYOND_PKT_END = -2, | |
4760 | }; | |
4761 | ||
4762 | static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) | |
4763 | { | |
4764 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
4765 | struct bpf_reg_state *reg = &state->regs[regn]; | |
4766 | ||
4767 | if (reg->type != PTR_TO_PACKET) | |
4768 | /* PTR_TO_PACKET_META is not supported yet */ | |
4769 | return; | |
4770 | ||
4771 | /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. | |
4772 | * How far beyond pkt_end it goes is unknown. | |
4773 | * if (!range_open) it's the case of pkt >= pkt_end | |
4774 | * if (range_open) it's the case of pkt > pkt_end | |
4775 | * hence this pointer is at least 1 byte bigger than pkt_end | |
4776 | */ | |
4777 | if (range_open) | |
4778 | reg->range = BEYOND_PKT_END; | |
4779 | else | |
4780 | reg->range = AT_PKT_END; | |
4781 | } | |
4782 | ||
fd978bf7 | 4783 | static void release_reg_references(struct bpf_verifier_env *env, |
1b986589 MKL |
4784 | struct bpf_func_state *state, |
4785 | int ref_obj_id) | |
fd978bf7 JS |
4786 | { |
4787 | struct bpf_reg_state *regs = state->regs, *reg; | |
4788 | int i; | |
4789 | ||
4790 | for (i = 0; i < MAX_BPF_REG; i++) | |
1b986589 | 4791 | if (regs[i].ref_obj_id == ref_obj_id) |
fd978bf7 JS |
4792 | mark_reg_unknown(env, regs, i); |
4793 | ||
4794 | bpf_for_each_spilled_reg(i, state, reg) { | |
4795 | if (!reg) | |
4796 | continue; | |
1b986589 | 4797 | if (reg->ref_obj_id == ref_obj_id) |
f54c7898 | 4798 | __mark_reg_unknown(env, reg); |
fd978bf7 JS |
4799 | } |
4800 | } | |
4801 | ||
4802 | /* The pointer with the specified id has released its reference to kernel | |
4803 | * resources. Identify all copies of the same pointer and clear the reference. | |
4804 | */ | |
4805 | static int release_reference(struct bpf_verifier_env *env, | |
1b986589 | 4806 | int ref_obj_id) |
fd978bf7 JS |
4807 | { |
4808 | struct bpf_verifier_state *vstate = env->cur_state; | |
1b986589 | 4809 | int err; |
fd978bf7 JS |
4810 | int i; |
4811 | ||
1b986589 MKL |
4812 | err = release_reference_state(cur_func(env), ref_obj_id); |
4813 | if (err) | |
4814 | return err; | |
4815 | ||
fd978bf7 | 4816 | for (i = 0; i <= vstate->curframe; i++) |
1b986589 | 4817 | release_reg_references(env, vstate->frame[i], ref_obj_id); |
fd978bf7 | 4818 | |
1b986589 | 4819 | return 0; |
fd978bf7 JS |
4820 | } |
4821 | ||
51c39bb1 AS |
4822 | static void clear_caller_saved_regs(struct bpf_verifier_env *env, |
4823 | struct bpf_reg_state *regs) | |
4824 | { | |
4825 | int i; | |
4826 | ||
4827 | /* after the call registers r0 - r5 were scratched */ | |
4828 | for (i = 0; i < CALLER_SAVED_REGS; i++) { | |
4829 | mark_reg_not_init(env, regs, caller_saved[i]); | |
4830 | check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); | |
4831 | } | |
4832 | } | |
4833 | ||
f4d7e40a AS |
4834 | static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, |
4835 | int *insn_idx) | |
4836 | { | |
4837 | struct bpf_verifier_state *state = env->cur_state; | |
51c39bb1 | 4838 | struct bpf_func_info_aux *func_info_aux; |
f4d7e40a | 4839 | struct bpf_func_state *caller, *callee; |
fd978bf7 | 4840 | int i, err, subprog, target_insn; |
51c39bb1 | 4841 | bool is_global = false; |
f4d7e40a | 4842 | |
aada9ce6 | 4843 | if (state->curframe + 1 >= MAX_CALL_FRAMES) { |
f4d7e40a | 4844 | verbose(env, "the call stack of %d frames is too deep\n", |
aada9ce6 | 4845 | state->curframe + 2); |
f4d7e40a AS |
4846 | return -E2BIG; |
4847 | } | |
4848 | ||
4849 | target_insn = *insn_idx + insn->imm; | |
4850 | subprog = find_subprog(env, target_insn + 1); | |
4851 | if (subprog < 0) { | |
4852 | verbose(env, "verifier bug. No program starts at insn %d\n", | |
4853 | target_insn + 1); | |
4854 | return -EFAULT; | |
4855 | } | |
4856 | ||
4857 | caller = state->frame[state->curframe]; | |
4858 | if (state->frame[state->curframe + 1]) { | |
4859 | verbose(env, "verifier bug. Frame %d already allocated\n", | |
4860 | state->curframe + 1); | |
4861 | return -EFAULT; | |
4862 | } | |
4863 | ||
51c39bb1 AS |
4864 | func_info_aux = env->prog->aux->func_info_aux; |
4865 | if (func_info_aux) | |
4866 | is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; | |
4867 | err = btf_check_func_arg_match(env, subprog, caller->regs); | |
4868 | if (err == -EFAULT) | |
4869 | return err; | |
4870 | if (is_global) { | |
4871 | if (err) { | |
4872 | verbose(env, "Caller passes invalid args into func#%d\n", | |
4873 | subprog); | |
4874 | return err; | |
4875 | } else { | |
4876 | if (env->log.level & BPF_LOG_LEVEL) | |
4877 | verbose(env, | |
4878 | "Func#%d is global and valid. Skipping.\n", | |
4879 | subprog); | |
4880 | clear_caller_saved_regs(env, caller->regs); | |
4881 | ||
4882 | /* All global functions return SCALAR_VALUE */ | |
4883 | mark_reg_unknown(env, caller->regs, BPF_REG_0); | |
4884 | ||
4885 | /* continue with next insn after call */ | |
4886 | return 0; | |
4887 | } | |
4888 | } | |
4889 | ||
f4d7e40a AS |
4890 | callee = kzalloc(sizeof(*callee), GFP_KERNEL); |
4891 | if (!callee) | |
4892 | return -ENOMEM; | |
4893 | state->frame[state->curframe + 1] = callee; | |
4894 | ||
4895 | /* callee cannot access r0, r6 - r9 for reading and has to write | |
4896 | * into its own stack before reading from it. | |
4897 | * callee can read/write into caller's stack | |
4898 | */ | |
4899 | init_func_state(env, callee, | |
4900 | /* remember the callsite, it will be used by bpf_exit */ | |
4901 | *insn_idx /* callsite */, | |
4902 | state->curframe + 1 /* frameno within this callchain */, | |
f910cefa | 4903 | subprog /* subprog number within this prog */); |
f4d7e40a | 4904 | |
fd978bf7 JS |
4905 | /* Transfer references to the callee */ |
4906 | err = transfer_reference_state(callee, caller); | |
4907 | if (err) | |
4908 | return err; | |
4909 | ||
679c782d EC |
4910 | /* copy r1 - r5 args that callee can access. The copy includes parent |
4911 | * pointers, which connects us up to the liveness chain | |
4912 | */ | |
f4d7e40a AS |
4913 | for (i = BPF_REG_1; i <= BPF_REG_5; i++) |
4914 | callee->regs[i] = caller->regs[i]; | |
4915 | ||
51c39bb1 | 4916 | clear_caller_saved_regs(env, caller->regs); |
f4d7e40a AS |
4917 | |
4918 | /* only increment it after check_reg_arg() finished */ | |
4919 | state->curframe++; | |
4920 | ||
4921 | /* and go analyze first insn of the callee */ | |
4922 | *insn_idx = target_insn; | |
4923 | ||
06ee7115 | 4924 | if (env->log.level & BPF_LOG_LEVEL) { |
f4d7e40a AS |
4925 | verbose(env, "caller:\n"); |
4926 | print_verifier_state(env, caller); | |
4927 | verbose(env, "callee:\n"); | |
4928 | print_verifier_state(env, callee); | |
4929 | } | |
4930 | return 0; | |
4931 | } | |
4932 | ||
4933 | static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) | |
4934 | { | |
4935 | struct bpf_verifier_state *state = env->cur_state; | |
4936 | struct bpf_func_state *caller, *callee; | |
4937 | struct bpf_reg_state *r0; | |
fd978bf7 | 4938 | int err; |
f4d7e40a AS |
4939 | |
4940 | callee = state->frame[state->curframe]; | |
4941 | r0 = &callee->regs[BPF_REG_0]; | |
4942 | if (r0->type == PTR_TO_STACK) { | |
4943 | /* technically it's ok to return caller's stack pointer | |
4944 | * (or caller's caller's pointer) back to the caller, | |
4945 | * since these pointers are valid. Only current stack | |
4946 | * pointer will be invalid as soon as function exits, | |
4947 | * but let's be conservative | |
4948 | */ | |
4949 | verbose(env, "cannot return stack pointer to the caller\n"); | |
4950 | return -EINVAL; | |
4951 | } | |
4952 | ||
4953 | state->curframe--; | |
4954 | caller = state->frame[state->curframe]; | |
4955 | /* return to the caller whatever r0 had in the callee */ | |
4956 | caller->regs[BPF_REG_0] = *r0; | |
4957 | ||
fd978bf7 JS |
4958 | /* Transfer references to the caller */ |
4959 | err = transfer_reference_state(caller, callee); | |
4960 | if (err) | |
4961 | return err; | |
4962 | ||
f4d7e40a | 4963 | *insn_idx = callee->callsite + 1; |
06ee7115 | 4964 | if (env->log.level & BPF_LOG_LEVEL) { |
f4d7e40a AS |
4965 | verbose(env, "returning from callee:\n"); |
4966 | print_verifier_state(env, callee); | |
4967 | verbose(env, "to caller at %d:\n", *insn_idx); | |
4968 | print_verifier_state(env, caller); | |
4969 | } | |
4970 | /* clear everything in the callee */ | |
4971 | free_func_state(callee); | |
4972 | state->frame[state->curframe + 1] = NULL; | |
4973 | return 0; | |
4974 | } | |
4975 | ||
849fa506 YS |
4976 | static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, |
4977 | int func_id, | |
4978 | struct bpf_call_arg_meta *meta) | |
4979 | { | |
4980 | struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; | |
4981 | ||
4982 | if (ret_type != RET_INTEGER || | |
4983 | (func_id != BPF_FUNC_get_stack && | |
47cc0ed5 DB |
4984 | func_id != BPF_FUNC_probe_read_str && |
4985 | func_id != BPF_FUNC_probe_read_kernel_str && | |
4986 | func_id != BPF_FUNC_probe_read_user_str)) | |
849fa506 YS |
4987 | return; |
4988 | ||
10060503 | 4989 | ret_reg->smax_value = meta->msize_max_value; |
fa123ac0 | 4990 | ret_reg->s32_max_value = meta->msize_max_value; |
b0270958 AS |
4991 | ret_reg->smin_value = -MAX_ERRNO; |
4992 | ret_reg->s32_min_value = -MAX_ERRNO; | |
849fa506 YS |
4993 | __reg_deduce_bounds(ret_reg); |
4994 | __reg_bound_offset(ret_reg); | |
10060503 | 4995 | __update_reg_bounds(ret_reg); |
849fa506 YS |
4996 | } |
4997 | ||
c93552c4 DB |
4998 | static int |
4999 | record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, | |
5000 | int func_id, int insn_idx) | |
5001 | { | |
5002 | struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; | |
591fe988 | 5003 | struct bpf_map *map = meta->map_ptr; |
c93552c4 DB |
5004 | |
5005 | if (func_id != BPF_FUNC_tail_call && | |
09772d92 DB |
5006 | func_id != BPF_FUNC_map_lookup_elem && |
5007 | func_id != BPF_FUNC_map_update_elem && | |
f1a2e44a MV |
5008 | func_id != BPF_FUNC_map_delete_elem && |
5009 | func_id != BPF_FUNC_map_push_elem && | |
5010 | func_id != BPF_FUNC_map_pop_elem && | |
5011 | func_id != BPF_FUNC_map_peek_elem) | |
c93552c4 | 5012 | return 0; |
09772d92 | 5013 | |
591fe988 | 5014 | if (map == NULL) { |
c93552c4 DB |
5015 | verbose(env, "kernel subsystem misconfigured verifier\n"); |
5016 | return -EINVAL; | |
5017 | } | |
5018 | ||
591fe988 DB |
5019 | /* In case of read-only, some additional restrictions |
5020 | * need to be applied in order to prevent altering the | |
5021 | * state of the map from program side. | |
5022 | */ | |
5023 | if ((map->map_flags & BPF_F_RDONLY_PROG) && | |
5024 | (func_id == BPF_FUNC_map_delete_elem || | |
5025 | func_id == BPF_FUNC_map_update_elem || | |
5026 | func_id == BPF_FUNC_map_push_elem || | |
5027 | func_id == BPF_FUNC_map_pop_elem)) { | |
5028 | verbose(env, "write into map forbidden\n"); | |
5029 | return -EACCES; | |
5030 | } | |
5031 | ||
d2e4c1e6 | 5032 | if (!BPF_MAP_PTR(aux->map_ptr_state)) |
c93552c4 | 5033 | bpf_map_ptr_store(aux, meta->map_ptr, |
2c78ee89 | 5034 | !meta->map_ptr->bypass_spec_v1); |
d2e4c1e6 | 5035 | else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) |
c93552c4 | 5036 | bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, |
2c78ee89 | 5037 | !meta->map_ptr->bypass_spec_v1); |
c93552c4 DB |
5038 | return 0; |
5039 | } | |
5040 | ||
d2e4c1e6 DB |
5041 | static int |
5042 | record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, | |
5043 | int func_id, int insn_idx) | |
5044 | { | |
5045 | struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; | |
5046 | struct bpf_reg_state *regs = cur_regs(env), *reg; | |
5047 | struct bpf_map *map = meta->map_ptr; | |
5048 | struct tnum range; | |
5049 | u64 val; | |
cc52d914 | 5050 | int err; |
d2e4c1e6 DB |
5051 | |
5052 | if (func_id != BPF_FUNC_tail_call) | |
5053 | return 0; | |
5054 | if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { | |
5055 | verbose(env, "kernel subsystem misconfigured verifier\n"); | |
5056 | return -EINVAL; | |
5057 | } | |
5058 | ||
5059 | range = tnum_range(0, map->max_entries - 1); | |
5060 | reg = ®s[BPF_REG_3]; | |
5061 | ||
5062 | if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { | |
5063 | bpf_map_key_store(aux, BPF_MAP_KEY_POISON); | |
5064 | return 0; | |
5065 | } | |
5066 | ||
cc52d914 DB |
5067 | err = mark_chain_precision(env, BPF_REG_3); |
5068 | if (err) | |
5069 | return err; | |
5070 | ||
d2e4c1e6 DB |
5071 | val = reg->var_off.value; |
5072 | if (bpf_map_key_unseen(aux)) | |
5073 | bpf_map_key_store(aux, val); | |
5074 | else if (!bpf_map_key_poisoned(aux) && | |
5075 | bpf_map_key_immediate(aux) != val) | |
5076 | bpf_map_key_store(aux, BPF_MAP_KEY_POISON); | |
5077 | return 0; | |
5078 | } | |
5079 | ||
fd978bf7 JS |
5080 | static int check_reference_leak(struct bpf_verifier_env *env) |
5081 | { | |
5082 | struct bpf_func_state *state = cur_func(env); | |
5083 | int i; | |
5084 | ||
5085 | for (i = 0; i < state->acquired_refs; i++) { | |
5086 | verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", | |
5087 | state->refs[i].id, state->refs[i].insn_idx); | |
5088 | } | |
5089 | return state->acquired_refs ? -EINVAL : 0; | |
5090 | } | |
5091 | ||
f4d7e40a | 5092 | static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) |
17a52670 | 5093 | { |
17a52670 | 5094 | const struct bpf_func_proto *fn = NULL; |
638f5b90 | 5095 | struct bpf_reg_state *regs; |
33ff9823 | 5096 | struct bpf_call_arg_meta meta; |
969bf05e | 5097 | bool changes_data; |
17a52670 AS |
5098 | int i, err; |
5099 | ||
5100 | /* find function prototype */ | |
5101 | if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { | |
61bd5218 JK |
5102 | verbose(env, "invalid func %s#%d\n", func_id_name(func_id), |
5103 | func_id); | |
17a52670 AS |
5104 | return -EINVAL; |
5105 | } | |
5106 | ||
00176a34 | 5107 | if (env->ops->get_func_proto) |
5e43f899 | 5108 | fn = env->ops->get_func_proto(func_id, env->prog); |
17a52670 | 5109 | if (!fn) { |
61bd5218 JK |
5110 | verbose(env, "unknown func %s#%d\n", func_id_name(func_id), |
5111 | func_id); | |
17a52670 AS |
5112 | return -EINVAL; |
5113 | } | |
5114 | ||
5115 | /* eBPF programs must be GPL compatible to use GPL-ed functions */ | |
24701ece | 5116 | if (!env->prog->gpl_compatible && fn->gpl_only) { |
3fe2867c | 5117 | verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); |
17a52670 AS |
5118 | return -EINVAL; |
5119 | } | |
5120 | ||
eae2e83e JO |
5121 | if (fn->allowed && !fn->allowed(env->prog)) { |
5122 | verbose(env, "helper call is not allowed in probe\n"); | |
5123 | return -EINVAL; | |
5124 | } | |
5125 | ||
04514d13 | 5126 | /* With LD_ABS/IND some JITs save/restore skb from r1. */ |
17bedab2 | 5127 | changes_data = bpf_helper_changes_pkt_data(fn->func); |
04514d13 DB |
5128 | if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { |
5129 | verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", | |
5130 | func_id_name(func_id), func_id); | |
5131 | return -EINVAL; | |
5132 | } | |
969bf05e | 5133 | |
33ff9823 | 5134 | memset(&meta, 0, sizeof(meta)); |
36bbef52 | 5135 | meta.pkt_access = fn->pkt_access; |
33ff9823 | 5136 | |
1b986589 | 5137 | err = check_func_proto(fn, func_id); |
435faee1 | 5138 | if (err) { |
61bd5218 | 5139 | verbose(env, "kernel subsystem misconfigured func %s#%d\n", |
ebb676da | 5140 | func_id_name(func_id), func_id); |
435faee1 DB |
5141 | return err; |
5142 | } | |
5143 | ||
d83525ca | 5144 | meta.func_id = func_id; |
17a52670 | 5145 | /* check args */ |
a7658e1a | 5146 | for (i = 0; i < 5; i++) { |
af7ec138 | 5147 | err = check_func_arg(env, i, &meta, fn); |
a7658e1a AS |
5148 | if (err) |
5149 | return err; | |
5150 | } | |
17a52670 | 5151 | |
c93552c4 DB |
5152 | err = record_func_map(env, &meta, func_id, insn_idx); |
5153 | if (err) | |
5154 | return err; | |
5155 | ||
d2e4c1e6 DB |
5156 | err = record_func_key(env, &meta, func_id, insn_idx); |
5157 | if (err) | |
5158 | return err; | |
5159 | ||
435faee1 DB |
5160 | /* Mark slots with STACK_MISC in case of raw mode, stack offset |
5161 | * is inferred from register state. | |
5162 | */ | |
5163 | for (i = 0; i < meta.access_size; i++) { | |
ca369602 DB |
5164 | err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, |
5165 | BPF_WRITE, -1, false); | |
435faee1 DB |
5166 | if (err) |
5167 | return err; | |
5168 | } | |
5169 | ||
fd978bf7 JS |
5170 | if (func_id == BPF_FUNC_tail_call) { |
5171 | err = check_reference_leak(env); | |
5172 | if (err) { | |
5173 | verbose(env, "tail_call would lead to reference leak\n"); | |
5174 | return err; | |
5175 | } | |
5176 | } else if (is_release_function(func_id)) { | |
1b986589 | 5177 | err = release_reference(env, meta.ref_obj_id); |
46f8bc92 MKL |
5178 | if (err) { |
5179 | verbose(env, "func %s#%d reference has not been acquired before\n", | |
5180 | func_id_name(func_id), func_id); | |
fd978bf7 | 5181 | return err; |
46f8bc92 | 5182 | } |
fd978bf7 JS |
5183 | } |
5184 | ||
638f5b90 | 5185 | regs = cur_regs(env); |
cd339431 RG |
5186 | |
5187 | /* check that flags argument in get_local_storage(map, flags) is 0, | |
5188 | * this is required because get_local_storage() can't return an error. | |
5189 | */ | |
5190 | if (func_id == BPF_FUNC_get_local_storage && | |
5191 | !register_is_null(®s[BPF_REG_2])) { | |
5192 | verbose(env, "get_local_storage() doesn't support non-zero flags\n"); | |
5193 | return -EINVAL; | |
5194 | } | |
5195 | ||
17a52670 | 5196 | /* reset caller saved regs */ |
dc503a8a | 5197 | for (i = 0; i < CALLER_SAVED_REGS; i++) { |
61bd5218 | 5198 | mark_reg_not_init(env, regs, caller_saved[i]); |
dc503a8a EC |
5199 | check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
5200 | } | |
17a52670 | 5201 | |
5327ed3d JW |
5202 | /* helper call returns 64-bit value. */ |
5203 | regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; | |
5204 | ||
dc503a8a | 5205 | /* update return register (already marked as written above) */ |
17a52670 | 5206 | if (fn->ret_type == RET_INTEGER) { |
f1174f77 | 5207 | /* sets type to SCALAR_VALUE */ |
61bd5218 | 5208 | mark_reg_unknown(env, regs, BPF_REG_0); |
17a52670 AS |
5209 | } else if (fn->ret_type == RET_VOID) { |
5210 | regs[BPF_REG_0].type = NOT_INIT; | |
3e6a4b3e RG |
5211 | } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || |
5212 | fn->ret_type == RET_PTR_TO_MAP_VALUE) { | |
f1174f77 | 5213 | /* There is no offset yet applied, variable or fixed */ |
61bd5218 | 5214 | mark_reg_known_zero(env, regs, BPF_REG_0); |
17a52670 AS |
5215 | /* remember map_ptr, so that check_map_access() |
5216 | * can check 'value_size' boundary of memory access | |
5217 | * to map element returned from bpf_map_lookup_elem() | |
5218 | */ | |
33ff9823 | 5219 | if (meta.map_ptr == NULL) { |
61bd5218 JK |
5220 | verbose(env, |
5221 | "kernel subsystem misconfigured verifier\n"); | |
17a52670 AS |
5222 | return -EINVAL; |
5223 | } | |
33ff9823 | 5224 | regs[BPF_REG_0].map_ptr = meta.map_ptr; |
4d31f301 DB |
5225 | if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { |
5226 | regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; | |
e16d2f1a AS |
5227 | if (map_value_has_spin_lock(meta.map_ptr)) |
5228 | regs[BPF_REG_0].id = ++env->id_gen; | |
4d31f301 DB |
5229 | } else { |
5230 | regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; | |
4d31f301 | 5231 | } |
c64b7983 JS |
5232 | } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { |
5233 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
5234 | regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; | |
85a51f8c LB |
5235 | } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { |
5236 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
5237 | regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; | |
655a51e5 MKL |
5238 | } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { |
5239 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
5240 | regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; | |
457f4436 AN |
5241 | } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { |
5242 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
5243 | regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; | |
457f4436 | 5244 | regs[BPF_REG_0].mem_size = meta.mem_size; |
63d9b80d HL |
5245 | } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || |
5246 | fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { | |
eaa6bcb7 HL |
5247 | const struct btf_type *t; |
5248 | ||
5249 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
22dc4a0f | 5250 | t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); |
eaa6bcb7 HL |
5251 | if (!btf_type_is_struct(t)) { |
5252 | u32 tsize; | |
5253 | const struct btf_type *ret; | |
5254 | const char *tname; | |
5255 | ||
5256 | /* resolve the type size of ksym. */ | |
22dc4a0f | 5257 | ret = btf_resolve_size(meta.ret_btf, t, &tsize); |
eaa6bcb7 | 5258 | if (IS_ERR(ret)) { |
22dc4a0f | 5259 | tname = btf_name_by_offset(meta.ret_btf, t->name_off); |
eaa6bcb7 HL |
5260 | verbose(env, "unable to resolve the size of type '%s': %ld\n", |
5261 | tname, PTR_ERR(ret)); | |
5262 | return -EINVAL; | |
5263 | } | |
63d9b80d HL |
5264 | regs[BPF_REG_0].type = |
5265 | fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? | |
5266 | PTR_TO_MEM : PTR_TO_MEM_OR_NULL; | |
eaa6bcb7 HL |
5267 | regs[BPF_REG_0].mem_size = tsize; |
5268 | } else { | |
63d9b80d HL |
5269 | regs[BPF_REG_0].type = |
5270 | fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? | |
5271 | PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; | |
22dc4a0f | 5272 | regs[BPF_REG_0].btf = meta.ret_btf; |
eaa6bcb7 HL |
5273 | regs[BPF_REG_0].btf_id = meta.ret_btf_id; |
5274 | } | |
3ca1032a KS |
5275 | } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || |
5276 | fn->ret_type == RET_PTR_TO_BTF_ID) { | |
af7ec138 YS |
5277 | int ret_btf_id; |
5278 | ||
5279 | mark_reg_known_zero(env, regs, BPF_REG_0); | |
3ca1032a KS |
5280 | regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? |
5281 | PTR_TO_BTF_ID : | |
5282 | PTR_TO_BTF_ID_OR_NULL; | |
af7ec138 YS |
5283 | ret_btf_id = *fn->ret_btf_id; |
5284 | if (ret_btf_id == 0) { | |
5285 | verbose(env, "invalid return type %d of func %s#%d\n", | |
5286 | fn->ret_type, func_id_name(func_id), func_id); | |
5287 | return -EINVAL; | |
5288 | } | |
22dc4a0f AN |
5289 | /* current BPF helper definitions are only coming from |
5290 | * built-in code with type IDs from vmlinux BTF | |
5291 | */ | |
5292 | regs[BPF_REG_0].btf = btf_vmlinux; | |
af7ec138 | 5293 | regs[BPF_REG_0].btf_id = ret_btf_id; |
17a52670 | 5294 | } else { |
61bd5218 | 5295 | verbose(env, "unknown return type %d of func %s#%d\n", |
ebb676da | 5296 | fn->ret_type, func_id_name(func_id), func_id); |
17a52670 AS |
5297 | return -EINVAL; |
5298 | } | |
04fd61ab | 5299 | |
93c230e3 MKL |
5300 | if (reg_type_may_be_null(regs[BPF_REG_0].type)) |
5301 | regs[BPF_REG_0].id = ++env->id_gen; | |
5302 | ||
0f3adc28 | 5303 | if (is_ptr_cast_function(func_id)) { |
1b986589 MKL |
5304 | /* For release_reference() */ |
5305 | regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; | |
64d85290 | 5306 | } else if (is_acquire_function(func_id, meta.map_ptr)) { |
0f3adc28 LB |
5307 | int id = acquire_reference_state(env, insn_idx); |
5308 | ||
5309 | if (id < 0) | |
5310 | return id; | |
5311 | /* For mark_ptr_or_null_reg() */ | |
5312 | regs[BPF_REG_0].id = id; | |
5313 | /* For release_reference() */ | |
5314 | regs[BPF_REG_0].ref_obj_id = id; | |
5315 | } | |
1b986589 | 5316 | |
849fa506 YS |
5317 | do_refine_retval_range(regs, fn->ret_type, func_id, &meta); |
5318 | ||
61bd5218 | 5319 | err = check_map_func_compatibility(env, meta.map_ptr, func_id); |
35578d79 KX |
5320 | if (err) |
5321 | return err; | |
04fd61ab | 5322 | |
fa28dcb8 SL |
5323 | if ((func_id == BPF_FUNC_get_stack || |
5324 | func_id == BPF_FUNC_get_task_stack) && | |
5325 | !env->prog->has_callchain_buf) { | |
c195651e YS |
5326 | const char *err_str; |
5327 | ||
5328 | #ifdef CONFIG_PERF_EVENTS | |
5329 | err = get_callchain_buffers(sysctl_perf_event_max_stack); | |
5330 | err_str = "cannot get callchain buffer for func %s#%d\n"; | |
5331 | #else | |
5332 | err = -ENOTSUPP; | |
5333 | err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; | |
5334 | #endif | |
5335 | if (err) { | |
5336 | verbose(env, err_str, func_id_name(func_id), func_id); | |
5337 | return err; | |
5338 | } | |
5339 | ||
5340 | env->prog->has_callchain_buf = true; | |
5341 | } | |
5342 | ||
5d99cb2c SL |
5343 | if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) |
5344 | env->prog->call_get_stack = true; | |
5345 | ||
969bf05e AS |
5346 | if (changes_data) |
5347 | clear_all_pkt_pointers(env); | |
5348 | return 0; | |
5349 | } | |
5350 | ||
b03c9f9f EC |
5351 | static bool signed_add_overflows(s64 a, s64 b) |
5352 | { | |
5353 | /* Do the add in u64, where overflow is well-defined */ | |
5354 | s64 res = (s64)((u64)a + (u64)b); | |
5355 | ||
5356 | if (b < 0) | |
5357 | return res > a; | |
5358 | return res < a; | |
5359 | } | |
5360 | ||
bc895e8b | 5361 | static bool signed_add32_overflows(s32 a, s32 b) |
3f50f132 JF |
5362 | { |
5363 | /* Do the add in u32, where overflow is well-defined */ | |
5364 | s32 res = (s32)((u32)a + (u32)b); | |
5365 | ||
5366 | if (b < 0) | |
5367 | return res > a; | |
5368 | return res < a; | |
5369 | } | |
5370 | ||
bc895e8b | 5371 | static bool signed_sub_overflows(s64 a, s64 b) |
b03c9f9f EC |
5372 | { |
5373 | /* Do the sub in u64, where overflow is well-defined */ | |
5374 | s64 res = (s64)((u64)a - (u64)b); | |
5375 | ||
5376 | if (b < 0) | |
5377 | return res < a; | |
5378 | return res > a; | |
969bf05e AS |
5379 | } |
5380 | ||
3f50f132 JF |
5381 | static bool signed_sub32_overflows(s32 a, s32 b) |
5382 | { | |
bc895e8b | 5383 | /* Do the sub in u32, where overflow is well-defined */ |
3f50f132 JF |
5384 | s32 res = (s32)((u32)a - (u32)b); |
5385 | ||
5386 | if (b < 0) | |
5387 | return res < a; | |
5388 | return res > a; | |
5389 | } | |
5390 | ||
bb7f0f98 AS |
5391 | static bool check_reg_sane_offset(struct bpf_verifier_env *env, |
5392 | const struct bpf_reg_state *reg, | |
5393 | enum bpf_reg_type type) | |
5394 | { | |
5395 | bool known = tnum_is_const(reg->var_off); | |
5396 | s64 val = reg->var_off.value; | |
5397 | s64 smin = reg->smin_value; | |
5398 | ||
5399 | if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { | |
5400 | verbose(env, "math between %s pointer and %lld is not allowed\n", | |
5401 | reg_type_str[type], val); | |
5402 | return false; | |
5403 | } | |
5404 | ||
5405 | if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { | |
5406 | verbose(env, "%s pointer offset %d is not allowed\n", | |
5407 | reg_type_str[type], reg->off); | |
5408 | return false; | |
5409 | } | |
5410 | ||
5411 | if (smin == S64_MIN) { | |
5412 | verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", | |
5413 | reg_type_str[type]); | |
5414 | return false; | |
5415 | } | |
5416 | ||
5417 | if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { | |
5418 | verbose(env, "value %lld makes %s pointer be out of bounds\n", | |
5419 | smin, reg_type_str[type]); | |
5420 | return false; | |
5421 | } | |
5422 | ||
5423 | return true; | |
5424 | } | |
5425 | ||
979d63d5 DB |
5426 | static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) |
5427 | { | |
5428 | return &env->insn_aux_data[env->insn_idx]; | |
5429 | } | |
5430 | ||
5431 | static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, | |
5432 | u32 *ptr_limit, u8 opcode, bool off_is_neg) | |
5433 | { | |
5434 | bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || | |
5435 | (opcode == BPF_SUB && !off_is_neg); | |
5436 | u32 off; | |
5437 | ||
5438 | switch (ptr_reg->type) { | |
5439 | case PTR_TO_STACK: | |
088ec26d AI |
5440 | /* Indirect variable offset stack access is prohibited in |
5441 | * unprivileged mode so it's not handled here. | |
5442 | */ | |
979d63d5 DB |
5443 | off = ptr_reg->off + ptr_reg->var_off.value; |
5444 | if (mask_to_left) | |
5445 | *ptr_limit = MAX_BPF_STACK + off; | |
5446 | else | |
5447 | *ptr_limit = -off; | |
5448 | return 0; | |
5449 | case PTR_TO_MAP_VALUE: | |
5450 | if (mask_to_left) { | |
5451 | *ptr_limit = ptr_reg->umax_value + ptr_reg->off; | |
5452 | } else { | |
5453 | off = ptr_reg->smin_value + ptr_reg->off; | |
5454 | *ptr_limit = ptr_reg->map_ptr->value_size - off; | |
5455 | } | |
5456 | return 0; | |
5457 | default: | |
5458 | return -EINVAL; | |
5459 | } | |
5460 | } | |
5461 | ||
d3bd7413 DB |
5462 | static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, |
5463 | const struct bpf_insn *insn) | |
5464 | { | |
2c78ee89 | 5465 | return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; |
d3bd7413 DB |
5466 | } |
5467 | ||
5468 | static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, | |
5469 | u32 alu_state, u32 alu_limit) | |
5470 | { | |
5471 | /* If we arrived here from different branches with different | |
5472 | * state or limits to sanitize, then this won't work. | |
5473 | */ | |
5474 | if (aux->alu_state && | |
5475 | (aux->alu_state != alu_state || | |
5476 | aux->alu_limit != alu_limit)) | |
5477 | return -EACCES; | |
5478 | ||
5479 | /* Corresponding fixup done in fixup_bpf_calls(). */ | |
5480 | aux->alu_state = alu_state; | |
5481 | aux->alu_limit = alu_limit; | |
5482 | return 0; | |
5483 | } | |
5484 | ||
5485 | static int sanitize_val_alu(struct bpf_verifier_env *env, | |
5486 | struct bpf_insn *insn) | |
5487 | { | |
5488 | struct bpf_insn_aux_data *aux = cur_aux(env); | |
5489 | ||
5490 | if (can_skip_alu_sanitation(env, insn)) | |
5491 | return 0; | |
5492 | ||
5493 | return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); | |
5494 | } | |
5495 | ||
979d63d5 DB |
5496 | static int sanitize_ptr_alu(struct bpf_verifier_env *env, |
5497 | struct bpf_insn *insn, | |
5498 | const struct bpf_reg_state *ptr_reg, | |
5499 | struct bpf_reg_state *dst_reg, | |
5500 | bool off_is_neg) | |
5501 | { | |
5502 | struct bpf_verifier_state *vstate = env->cur_state; | |
5503 | struct bpf_insn_aux_data *aux = cur_aux(env); | |
5504 | bool ptr_is_dst_reg = ptr_reg == dst_reg; | |
5505 | u8 opcode = BPF_OP(insn->code); | |
5506 | u32 alu_state, alu_limit; | |
5507 | struct bpf_reg_state tmp; | |
5508 | bool ret; | |
5509 | ||
d3bd7413 | 5510 | if (can_skip_alu_sanitation(env, insn)) |
979d63d5 DB |
5511 | return 0; |
5512 | ||
5513 | /* We already marked aux for masking from non-speculative | |
5514 | * paths, thus we got here in the first place. We only care | |
5515 | * to explore bad access from here. | |
5516 | */ | |
5517 | if (vstate->speculative) | |
5518 | goto do_sim; | |
5519 | ||
5520 | alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; | |
5521 | alu_state |= ptr_is_dst_reg ? | |
5522 | BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; | |
5523 | ||
5524 | if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) | |
5525 | return 0; | |
d3bd7413 | 5526 | if (update_alu_sanitation_state(aux, alu_state, alu_limit)) |
979d63d5 | 5527 | return -EACCES; |
979d63d5 DB |
5528 | do_sim: |
5529 | /* Simulate and find potential out-of-bounds access under | |
5530 | * speculative execution from truncation as a result of | |
5531 | * masking when off was not within expected range. If off | |
5532 | * sits in dst, then we temporarily need to move ptr there | |
5533 | * to simulate dst (== 0) +/-= ptr. Needed, for example, | |
5534 | * for cases where we use K-based arithmetic in one direction | |
5535 | * and truncated reg-based in the other in order to explore | |
5536 | * bad access. | |
5537 | */ | |
5538 | if (!ptr_is_dst_reg) { | |
5539 | tmp = *dst_reg; | |
5540 | *dst_reg = *ptr_reg; | |
5541 | } | |
5542 | ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); | |
0803278b | 5543 | if (!ptr_is_dst_reg && ret) |
979d63d5 DB |
5544 | *dst_reg = tmp; |
5545 | return !ret ? -EFAULT : 0; | |
5546 | } | |
5547 | ||
f1174f77 | 5548 | /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. |
f1174f77 EC |
5549 | * Caller should also handle BPF_MOV case separately. |
5550 | * If we return -EACCES, caller may want to try again treating pointer as a | |
5551 | * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. | |
5552 | */ | |
5553 | static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, | |
5554 | struct bpf_insn *insn, | |
5555 | const struct bpf_reg_state *ptr_reg, | |
5556 | const struct bpf_reg_state *off_reg) | |
969bf05e | 5557 | { |
f4d7e40a AS |
5558 | struct bpf_verifier_state *vstate = env->cur_state; |
5559 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
5560 | struct bpf_reg_state *regs = state->regs, *dst_reg; | |
f1174f77 | 5561 | bool known = tnum_is_const(off_reg->var_off); |
b03c9f9f EC |
5562 | s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, |
5563 | smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; | |
5564 | u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, | |
5565 | umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; | |
9d7eceed | 5566 | u32 dst = insn->dst_reg, src = insn->src_reg; |
969bf05e | 5567 | u8 opcode = BPF_OP(insn->code); |
979d63d5 | 5568 | int ret; |
969bf05e | 5569 | |
f1174f77 | 5570 | dst_reg = ®s[dst]; |
969bf05e | 5571 | |
6f16101e DB |
5572 | if ((known && (smin_val != smax_val || umin_val != umax_val)) || |
5573 | smin_val > smax_val || umin_val > umax_val) { | |
5574 | /* Taint dst register if offset had invalid bounds derived from | |
5575 | * e.g. dead branches. | |
5576 | */ | |
f54c7898 | 5577 | __mark_reg_unknown(env, dst_reg); |
6f16101e | 5578 | return 0; |
f1174f77 EC |
5579 | } |
5580 | ||
5581 | if (BPF_CLASS(insn->code) != BPF_ALU64) { | |
5582 | /* 32-bit ALU ops on pointers produce (meaningless) scalars */ | |
6c693541 YS |
5583 | if (opcode == BPF_SUB && env->allow_ptr_leaks) { |
5584 | __mark_reg_unknown(env, dst_reg); | |
5585 | return 0; | |
5586 | } | |
5587 | ||
82abbf8d AS |
5588 | verbose(env, |
5589 | "R%d 32-bit pointer arithmetic prohibited\n", | |
5590 | dst); | |
f1174f77 | 5591 | return -EACCES; |
969bf05e AS |
5592 | } |
5593 | ||
aad2eeaf JS |
5594 | switch (ptr_reg->type) { |
5595 | case PTR_TO_MAP_VALUE_OR_NULL: | |
5596 | verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", | |
5597 | dst, reg_type_str[ptr_reg->type]); | |
f1174f77 | 5598 | return -EACCES; |
aad2eeaf | 5599 | case CONST_PTR_TO_MAP: |
7c696732 YS |
5600 | /* smin_val represents the known value */ |
5601 | if (known && smin_val == 0 && opcode == BPF_ADD) | |
5602 | break; | |
8731745e | 5603 | fallthrough; |
aad2eeaf | 5604 | case PTR_TO_PACKET_END: |
c64b7983 JS |
5605 | case PTR_TO_SOCKET: |
5606 | case PTR_TO_SOCKET_OR_NULL: | |
46f8bc92 MKL |
5607 | case PTR_TO_SOCK_COMMON: |
5608 | case PTR_TO_SOCK_COMMON_OR_NULL: | |
655a51e5 MKL |
5609 | case PTR_TO_TCP_SOCK: |
5610 | case PTR_TO_TCP_SOCK_OR_NULL: | |
fada7fdc | 5611 | case PTR_TO_XDP_SOCK: |
aad2eeaf JS |
5612 | verbose(env, "R%d pointer arithmetic on %s prohibited\n", |
5613 | dst, reg_type_str[ptr_reg->type]); | |
f1174f77 | 5614 | return -EACCES; |
9d7eceed DB |
5615 | case PTR_TO_MAP_VALUE: |
5616 | if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { | |
5617 | verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", | |
5618 | off_reg == dst_reg ? dst : src); | |
5619 | return -EACCES; | |
5620 | } | |
df561f66 | 5621 | fallthrough; |
aad2eeaf JS |
5622 | default: |
5623 | break; | |
f1174f77 EC |
5624 | } |
5625 | ||
5626 | /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. | |
5627 | * The id may be overwritten later if we create a new variable offset. | |
969bf05e | 5628 | */ |
f1174f77 EC |
5629 | dst_reg->type = ptr_reg->type; |
5630 | dst_reg->id = ptr_reg->id; | |
969bf05e | 5631 | |
bb7f0f98 AS |
5632 | if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || |
5633 | !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) | |
5634 | return -EINVAL; | |
5635 | ||
3f50f132 JF |
5636 | /* pointer types do not carry 32-bit bounds at the moment. */ |
5637 | __mark_reg32_unbounded(dst_reg); | |
5638 | ||
f1174f77 EC |
5639 | switch (opcode) { |
5640 | case BPF_ADD: | |
979d63d5 DB |
5641 | ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); |
5642 | if (ret < 0) { | |
5643 | verbose(env, "R%d tried to add from different maps or paths\n", dst); | |
5644 | return ret; | |
5645 | } | |
f1174f77 EC |
5646 | /* We can take a fixed offset as long as it doesn't overflow |
5647 | * the s32 'off' field | |
969bf05e | 5648 | */ |
b03c9f9f EC |
5649 | if (known && (ptr_reg->off + smin_val == |
5650 | (s64)(s32)(ptr_reg->off + smin_val))) { | |
f1174f77 | 5651 | /* pointer += K. Accumulate it into fixed offset */ |
b03c9f9f EC |
5652 | dst_reg->smin_value = smin_ptr; |
5653 | dst_reg->smax_value = smax_ptr; | |
5654 | dst_reg->umin_value = umin_ptr; | |
5655 | dst_reg->umax_value = umax_ptr; | |
f1174f77 | 5656 | dst_reg->var_off = ptr_reg->var_off; |
b03c9f9f | 5657 | dst_reg->off = ptr_reg->off + smin_val; |
0962590e | 5658 | dst_reg->raw = ptr_reg->raw; |
f1174f77 EC |
5659 | break; |
5660 | } | |
f1174f77 EC |
5661 | /* A new variable offset is created. Note that off_reg->off |
5662 | * == 0, since it's a scalar. | |
5663 | * dst_reg gets the pointer type and since some positive | |
5664 | * integer value was added to the pointer, give it a new 'id' | |
5665 | * if it's a PTR_TO_PACKET. | |
5666 | * this creates a new 'base' pointer, off_reg (variable) gets | |
5667 | * added into the variable offset, and we copy the fixed offset | |
5668 | * from ptr_reg. | |
969bf05e | 5669 | */ |
b03c9f9f EC |
5670 | if (signed_add_overflows(smin_ptr, smin_val) || |
5671 | signed_add_overflows(smax_ptr, smax_val)) { | |
5672 | dst_reg->smin_value = S64_MIN; | |
5673 | dst_reg->smax_value = S64_MAX; | |
5674 | } else { | |
5675 | dst_reg->smin_value = smin_ptr + smin_val; | |
5676 | dst_reg->smax_value = smax_ptr + smax_val; | |
5677 | } | |
5678 | if (umin_ptr + umin_val < umin_ptr || | |
5679 | umax_ptr + umax_val < umax_ptr) { | |
5680 | dst_reg->umin_value = 0; | |
5681 | dst_reg->umax_value = U64_MAX; | |
5682 | } else { | |
5683 | dst_reg->umin_value = umin_ptr + umin_val; | |
5684 | dst_reg->umax_value = umax_ptr + umax_val; | |
5685 | } | |
f1174f77 EC |
5686 | dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); |
5687 | dst_reg->off = ptr_reg->off; | |
0962590e | 5688 | dst_reg->raw = ptr_reg->raw; |
de8f3a83 | 5689 | if (reg_is_pkt_pointer(ptr_reg)) { |
f1174f77 EC |
5690 | dst_reg->id = ++env->id_gen; |
5691 | /* something was added to pkt_ptr, set range to zero */ | |
22dc4a0f | 5692 | memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); |
f1174f77 EC |
5693 | } |
5694 | break; | |
5695 | case BPF_SUB: | |
979d63d5 DB |
5696 | ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); |
5697 | if (ret < 0) { | |
5698 | verbose(env, "R%d tried to sub from different maps or paths\n", dst); | |
5699 | return ret; | |
5700 | } | |
f1174f77 EC |
5701 | if (dst_reg == off_reg) { |
5702 | /* scalar -= pointer. Creates an unknown scalar */ | |
82abbf8d AS |
5703 | verbose(env, "R%d tried to subtract pointer from scalar\n", |
5704 | dst); | |
f1174f77 EC |
5705 | return -EACCES; |
5706 | } | |
5707 | /* We don't allow subtraction from FP, because (according to | |
5708 | * test_verifier.c test "invalid fp arithmetic", JITs might not | |
5709 | * be able to deal with it. | |
969bf05e | 5710 | */ |
f1174f77 | 5711 | if (ptr_reg->type == PTR_TO_STACK) { |
82abbf8d AS |
5712 | verbose(env, "R%d subtraction from stack pointer prohibited\n", |
5713 | dst); | |
f1174f77 EC |
5714 | return -EACCES; |
5715 | } | |
b03c9f9f EC |
5716 | if (known && (ptr_reg->off - smin_val == |
5717 | (s64)(s32)(ptr_reg->off - smin_val))) { | |
f1174f77 | 5718 | /* pointer -= K. Subtract it from fixed offset */ |
b03c9f9f EC |
5719 | dst_reg->smin_value = smin_ptr; |
5720 | dst_reg->smax_value = smax_ptr; | |
5721 | dst_reg->umin_value = umin_ptr; | |
5722 | dst_reg->umax_value = umax_ptr; | |
f1174f77 EC |
5723 | dst_reg->var_off = ptr_reg->var_off; |
5724 | dst_reg->id = ptr_reg->id; | |
b03c9f9f | 5725 | dst_reg->off = ptr_reg->off - smin_val; |
0962590e | 5726 | dst_reg->raw = ptr_reg->raw; |
f1174f77 EC |
5727 | break; |
5728 | } | |
f1174f77 EC |
5729 | /* A new variable offset is created. If the subtrahend is known |
5730 | * nonnegative, then any reg->range we had before is still good. | |
969bf05e | 5731 | */ |
b03c9f9f EC |
5732 | if (signed_sub_overflows(smin_ptr, smax_val) || |
5733 | signed_sub_overflows(smax_ptr, smin_val)) { | |
5734 | /* Overflow possible, we know nothing */ | |
5735 | dst_reg->smin_value = S64_MIN; | |
5736 | dst_reg->smax_value = S64_MAX; | |
5737 | } else { | |
5738 | dst_reg->smin_value = smin_ptr - smax_val; | |
5739 | dst_reg->smax_value = smax_ptr - smin_val; | |
5740 | } | |
5741 | if (umin_ptr < umax_val) { | |
5742 | /* Overflow possible, we know nothing */ | |
5743 | dst_reg->umin_value = 0; | |
5744 | dst_reg->umax_value = U64_MAX; | |
5745 | } else { | |
5746 | /* Cannot overflow (as long as bounds are consistent) */ | |
5747 | dst_reg->umin_value = umin_ptr - umax_val; | |
5748 | dst_reg->umax_value = umax_ptr - umin_val; | |
5749 | } | |
f1174f77 EC |
5750 | dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); |
5751 | dst_reg->off = ptr_reg->off; | |
0962590e | 5752 | dst_reg->raw = ptr_reg->raw; |
de8f3a83 | 5753 | if (reg_is_pkt_pointer(ptr_reg)) { |
f1174f77 EC |
5754 | dst_reg->id = ++env->id_gen; |
5755 | /* something was added to pkt_ptr, set range to zero */ | |
b03c9f9f | 5756 | if (smin_val < 0) |
22dc4a0f | 5757 | memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); |
43188702 | 5758 | } |
f1174f77 EC |
5759 | break; |
5760 | case BPF_AND: | |
5761 | case BPF_OR: | |
5762 | case BPF_XOR: | |
82abbf8d AS |
5763 | /* bitwise ops on pointers are troublesome, prohibit. */ |
5764 | verbose(env, "R%d bitwise operator %s on pointer prohibited\n", | |
5765 | dst, bpf_alu_string[opcode >> 4]); | |
f1174f77 EC |
5766 | return -EACCES; |
5767 | default: | |
5768 | /* other operators (e.g. MUL,LSH) produce non-pointer results */ | |
82abbf8d AS |
5769 | verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", |
5770 | dst, bpf_alu_string[opcode >> 4]); | |
f1174f77 | 5771 | return -EACCES; |
43188702 JF |
5772 | } |
5773 | ||
bb7f0f98 AS |
5774 | if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) |
5775 | return -EINVAL; | |
5776 | ||
b03c9f9f EC |
5777 | __update_reg_bounds(dst_reg); |
5778 | __reg_deduce_bounds(dst_reg); | |
5779 | __reg_bound_offset(dst_reg); | |
0d6303db DB |
5780 | |
5781 | /* For unprivileged we require that resulting offset must be in bounds | |
5782 | * in order to be able to sanitize access later on. | |
5783 | */ | |
2c78ee89 | 5784 | if (!env->bypass_spec_v1) { |
e4298d25 DB |
5785 | if (dst_reg->type == PTR_TO_MAP_VALUE && |
5786 | check_map_access(env, dst, dst_reg->off, 1, false)) { | |
5787 | verbose(env, "R%d pointer arithmetic of map value goes out of range, " | |
5788 | "prohibited for !root\n", dst); | |
5789 | return -EACCES; | |
5790 | } else if (dst_reg->type == PTR_TO_STACK && | |
5791 | check_stack_access(env, dst_reg, dst_reg->off + | |
5792 | dst_reg->var_off.value, 1)) { | |
5793 | verbose(env, "R%d stack pointer arithmetic goes out of range, " | |
5794 | "prohibited for !root\n", dst); | |
5795 | return -EACCES; | |
5796 | } | |
0d6303db DB |
5797 | } |
5798 | ||
43188702 JF |
5799 | return 0; |
5800 | } | |
5801 | ||
3f50f132 JF |
5802 | static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, |
5803 | struct bpf_reg_state *src_reg) | |
5804 | { | |
5805 | s32 smin_val = src_reg->s32_min_value; | |
5806 | s32 smax_val = src_reg->s32_max_value; | |
5807 | u32 umin_val = src_reg->u32_min_value; | |
5808 | u32 umax_val = src_reg->u32_max_value; | |
5809 | ||
5810 | if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || | |
5811 | signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { | |
5812 | dst_reg->s32_min_value = S32_MIN; | |
5813 | dst_reg->s32_max_value = S32_MAX; | |
5814 | } else { | |
5815 | dst_reg->s32_min_value += smin_val; | |
5816 | dst_reg->s32_max_value += smax_val; | |
5817 | } | |
5818 | if (dst_reg->u32_min_value + umin_val < umin_val || | |
5819 | dst_reg->u32_max_value + umax_val < umax_val) { | |
5820 | dst_reg->u32_min_value = 0; | |
5821 | dst_reg->u32_max_value = U32_MAX; | |
5822 | } else { | |
5823 | dst_reg->u32_min_value += umin_val; | |
5824 | dst_reg->u32_max_value += umax_val; | |
5825 | } | |
5826 | } | |
5827 | ||
07cd2631 JF |
5828 | static void scalar_min_max_add(struct bpf_reg_state *dst_reg, |
5829 | struct bpf_reg_state *src_reg) | |
5830 | { | |
5831 | s64 smin_val = src_reg->smin_value; | |
5832 | s64 smax_val = src_reg->smax_value; | |
5833 | u64 umin_val = src_reg->umin_value; | |
5834 | u64 umax_val = src_reg->umax_value; | |
5835 | ||
5836 | if (signed_add_overflows(dst_reg->smin_value, smin_val) || | |
5837 | signed_add_overflows(dst_reg->smax_value, smax_val)) { | |
5838 | dst_reg->smin_value = S64_MIN; | |
5839 | dst_reg->smax_value = S64_MAX; | |
5840 | } else { | |
5841 | dst_reg->smin_value += smin_val; | |
5842 | dst_reg->smax_value += smax_val; | |
5843 | } | |
5844 | if (dst_reg->umin_value + umin_val < umin_val || | |
5845 | dst_reg->umax_value + umax_val < umax_val) { | |
5846 | dst_reg->umin_value = 0; | |
5847 | dst_reg->umax_value = U64_MAX; | |
5848 | } else { | |
5849 | dst_reg->umin_value += umin_val; | |
5850 | dst_reg->umax_value += umax_val; | |
5851 | } | |
3f50f132 JF |
5852 | } |
5853 | ||
5854 | static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, | |
5855 | struct bpf_reg_state *src_reg) | |
5856 | { | |
5857 | s32 smin_val = src_reg->s32_min_value; | |
5858 | s32 smax_val = src_reg->s32_max_value; | |
5859 | u32 umin_val = src_reg->u32_min_value; | |
5860 | u32 umax_val = src_reg->u32_max_value; | |
5861 | ||
5862 | if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || | |
5863 | signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { | |
5864 | /* Overflow possible, we know nothing */ | |
5865 | dst_reg->s32_min_value = S32_MIN; | |
5866 | dst_reg->s32_max_value = S32_MAX; | |
5867 | } else { | |
5868 | dst_reg->s32_min_value -= smax_val; | |
5869 | dst_reg->s32_max_value -= smin_val; | |
5870 | } | |
5871 | if (dst_reg->u32_min_value < umax_val) { | |
5872 | /* Overflow possible, we know nothing */ | |
5873 | dst_reg->u32_min_value = 0; | |
5874 | dst_reg->u32_max_value = U32_MAX; | |
5875 | } else { | |
5876 | /* Cannot overflow (as long as bounds are consistent) */ | |
5877 | dst_reg->u32_min_value -= umax_val; | |
5878 | dst_reg->u32_max_value -= umin_val; | |
5879 | } | |
07cd2631 JF |
5880 | } |
5881 | ||
5882 | static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, | |
5883 | struct bpf_reg_state *src_reg) | |
5884 | { | |
5885 | s64 smin_val = src_reg->smin_value; | |
5886 | s64 smax_val = src_reg->smax_value; | |
5887 | u64 umin_val = src_reg->umin_value; | |
5888 | u64 umax_val = src_reg->umax_value; | |
5889 | ||
5890 | if (signed_sub_overflows(dst_reg->smin_value, smax_val) || | |
5891 | signed_sub_overflows(dst_reg->smax_value, smin_val)) { | |
5892 | /* Overflow possible, we know nothing */ | |
5893 | dst_reg->smin_value = S64_MIN; | |
5894 | dst_reg->smax_value = S64_MAX; | |
5895 | } else { | |
5896 | dst_reg->smin_value -= smax_val; | |
5897 | dst_reg->smax_value -= smin_val; | |
5898 | } | |
5899 | if (dst_reg->umin_value < umax_val) { | |
5900 | /* Overflow possible, we know nothing */ | |
5901 | dst_reg->umin_value = 0; | |
5902 | dst_reg->umax_value = U64_MAX; | |
5903 | } else { | |
5904 | /* Cannot overflow (as long as bounds are consistent) */ | |
5905 | dst_reg->umin_value -= umax_val; | |
5906 | dst_reg->umax_value -= umin_val; | |
5907 | } | |
3f50f132 JF |
5908 | } |
5909 | ||
5910 | static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, | |
5911 | struct bpf_reg_state *src_reg) | |
5912 | { | |
5913 | s32 smin_val = src_reg->s32_min_value; | |
5914 | u32 umin_val = src_reg->u32_min_value; | |
5915 | u32 umax_val = src_reg->u32_max_value; | |
5916 | ||
5917 | if (smin_val < 0 || dst_reg->s32_min_value < 0) { | |
5918 | /* Ain't nobody got time to multiply that sign */ | |
5919 | __mark_reg32_unbounded(dst_reg); | |
5920 | return; | |
5921 | } | |
5922 | /* Both values are positive, so we can work with unsigned and | |
5923 | * copy the result to signed (unless it exceeds S32_MAX). | |
5924 | */ | |
5925 | if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { | |
5926 | /* Potential overflow, we know nothing */ | |
5927 | __mark_reg32_unbounded(dst_reg); | |
5928 | return; | |
5929 | } | |
5930 | dst_reg->u32_min_value *= umin_val; | |
5931 | dst_reg->u32_max_value *= umax_val; | |
5932 | if (dst_reg->u32_max_value > S32_MAX) { | |
5933 | /* Overflow possible, we know nothing */ | |
5934 | dst_reg->s32_min_value = S32_MIN; | |
5935 | dst_reg->s32_max_value = S32_MAX; | |
5936 | } else { | |
5937 | dst_reg->s32_min_value = dst_reg->u32_min_value; | |
5938 | dst_reg->s32_max_value = dst_reg->u32_max_value; | |
5939 | } | |
07cd2631 JF |
5940 | } |
5941 | ||
5942 | static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, | |
5943 | struct bpf_reg_state *src_reg) | |
5944 | { | |
5945 | s64 smin_val = src_reg->smin_value; | |
5946 | u64 umin_val = src_reg->umin_value; | |
5947 | u64 umax_val = src_reg->umax_value; | |
5948 | ||
07cd2631 JF |
5949 | if (smin_val < 0 || dst_reg->smin_value < 0) { |
5950 | /* Ain't nobody got time to multiply that sign */ | |
3f50f132 | 5951 | __mark_reg64_unbounded(dst_reg); |
07cd2631 JF |
5952 | return; |
5953 | } | |
5954 | /* Both values are positive, so we can work with unsigned and | |
5955 | * copy the result to signed (unless it exceeds S64_MAX). | |
5956 | */ | |
5957 | if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { | |
5958 | /* Potential overflow, we know nothing */ | |
3f50f132 | 5959 | __mark_reg64_unbounded(dst_reg); |
07cd2631 JF |
5960 | return; |
5961 | } | |
5962 | dst_reg->umin_value *= umin_val; | |
5963 | dst_reg->umax_value *= umax_val; | |
5964 | if (dst_reg->umax_value > S64_MAX) { | |
5965 | /* Overflow possible, we know nothing */ | |
5966 | dst_reg->smin_value = S64_MIN; | |
5967 | dst_reg->smax_value = S64_MAX; | |
5968 | } else { | |
5969 | dst_reg->smin_value = dst_reg->umin_value; | |
5970 | dst_reg->smax_value = dst_reg->umax_value; | |
5971 | } | |
5972 | } | |
5973 | ||
3f50f132 JF |
5974 | static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, |
5975 | struct bpf_reg_state *src_reg) | |
5976 | { | |
5977 | bool src_known = tnum_subreg_is_const(src_reg->var_off); | |
5978 | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | |
5979 | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | |
5980 | s32 smin_val = src_reg->s32_min_value; | |
5981 | u32 umax_val = src_reg->u32_max_value; | |
5982 | ||
5983 | /* Assuming scalar64_min_max_and will be called so its safe | |
5984 | * to skip updating register for known 32-bit case. | |
5985 | */ | |
5986 | if (src_known && dst_known) | |
5987 | return; | |
5988 | ||
5989 | /* We get our minimum from the var_off, since that's inherently | |
5990 | * bitwise. Our maximum is the minimum of the operands' maxima. | |
5991 | */ | |
5992 | dst_reg->u32_min_value = var32_off.value; | |
5993 | dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); | |
5994 | if (dst_reg->s32_min_value < 0 || smin_val < 0) { | |
5995 | /* Lose signed bounds when ANDing negative numbers, | |
5996 | * ain't nobody got time for that. | |
5997 | */ | |
5998 | dst_reg->s32_min_value = S32_MIN; | |
5999 | dst_reg->s32_max_value = S32_MAX; | |
6000 | } else { | |
6001 | /* ANDing two positives gives a positive, so safe to | |
6002 | * cast result into s64. | |
6003 | */ | |
6004 | dst_reg->s32_min_value = dst_reg->u32_min_value; | |
6005 | dst_reg->s32_max_value = dst_reg->u32_max_value; | |
6006 | } | |
6007 | ||
6008 | } | |
6009 | ||
07cd2631 JF |
6010 | static void scalar_min_max_and(struct bpf_reg_state *dst_reg, |
6011 | struct bpf_reg_state *src_reg) | |
6012 | { | |
3f50f132 JF |
6013 | bool src_known = tnum_is_const(src_reg->var_off); |
6014 | bool dst_known = tnum_is_const(dst_reg->var_off); | |
07cd2631 JF |
6015 | s64 smin_val = src_reg->smin_value; |
6016 | u64 umax_val = src_reg->umax_value; | |
6017 | ||
3f50f132 | 6018 | if (src_known && dst_known) { |
4fbb38a3 | 6019 | __mark_reg_known(dst_reg, dst_reg->var_off.value); |
3f50f132 JF |
6020 | return; |
6021 | } | |
6022 | ||
07cd2631 JF |
6023 | /* We get our minimum from the var_off, since that's inherently |
6024 | * bitwise. Our maximum is the minimum of the operands' maxima. | |
6025 | */ | |
07cd2631 JF |
6026 | dst_reg->umin_value = dst_reg->var_off.value; |
6027 | dst_reg->umax_value = min(dst_reg->umax_value, umax_val); | |
6028 | if (dst_reg->smin_value < 0 || smin_val < 0) { | |
6029 | /* Lose signed bounds when ANDing negative numbers, | |
6030 | * ain't nobody got time for that. | |
6031 | */ | |
6032 | dst_reg->smin_value = S64_MIN; | |
6033 | dst_reg->smax_value = S64_MAX; | |
6034 | } else { | |
6035 | /* ANDing two positives gives a positive, so safe to | |
6036 | * cast result into s64. | |
6037 | */ | |
6038 | dst_reg->smin_value = dst_reg->umin_value; | |
6039 | dst_reg->smax_value = dst_reg->umax_value; | |
6040 | } | |
6041 | /* We may learn something more from the var_off */ | |
6042 | __update_reg_bounds(dst_reg); | |
6043 | } | |
6044 | ||
3f50f132 JF |
6045 | static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, |
6046 | struct bpf_reg_state *src_reg) | |
6047 | { | |
6048 | bool src_known = tnum_subreg_is_const(src_reg->var_off); | |
6049 | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | |
6050 | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | |
5b9fbeb7 DB |
6051 | s32 smin_val = src_reg->s32_min_value; |
6052 | u32 umin_val = src_reg->u32_min_value; | |
3f50f132 JF |
6053 | |
6054 | /* Assuming scalar64_min_max_or will be called so it is safe | |
6055 | * to skip updating register for known case. | |
6056 | */ | |
6057 | if (src_known && dst_known) | |
6058 | return; | |
6059 | ||
6060 | /* We get our maximum from the var_off, and our minimum is the | |
6061 | * maximum of the operands' minima | |
6062 | */ | |
6063 | dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); | |
6064 | dst_reg->u32_max_value = var32_off.value | var32_off.mask; | |
6065 | if (dst_reg->s32_min_value < 0 || smin_val < 0) { | |
6066 | /* Lose signed bounds when ORing negative numbers, | |
6067 | * ain't nobody got time for that. | |
6068 | */ | |
6069 | dst_reg->s32_min_value = S32_MIN; | |
6070 | dst_reg->s32_max_value = S32_MAX; | |
6071 | } else { | |
6072 | /* ORing two positives gives a positive, so safe to | |
6073 | * cast result into s64. | |
6074 | */ | |
5b9fbeb7 DB |
6075 | dst_reg->s32_min_value = dst_reg->u32_min_value; |
6076 | dst_reg->s32_max_value = dst_reg->u32_max_value; | |
3f50f132 JF |
6077 | } |
6078 | } | |
6079 | ||
07cd2631 JF |
6080 | static void scalar_min_max_or(struct bpf_reg_state *dst_reg, |
6081 | struct bpf_reg_state *src_reg) | |
6082 | { | |
3f50f132 JF |
6083 | bool src_known = tnum_is_const(src_reg->var_off); |
6084 | bool dst_known = tnum_is_const(dst_reg->var_off); | |
07cd2631 JF |
6085 | s64 smin_val = src_reg->smin_value; |
6086 | u64 umin_val = src_reg->umin_value; | |
6087 | ||
3f50f132 | 6088 | if (src_known && dst_known) { |
4fbb38a3 | 6089 | __mark_reg_known(dst_reg, dst_reg->var_off.value); |
3f50f132 JF |
6090 | return; |
6091 | } | |
6092 | ||
07cd2631 JF |
6093 | /* We get our maximum from the var_off, and our minimum is the |
6094 | * maximum of the operands' minima | |
6095 | */ | |
07cd2631 JF |
6096 | dst_reg->umin_value = max(dst_reg->umin_value, umin_val); |
6097 | dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; | |
6098 | if (dst_reg->smin_value < 0 || smin_val < 0) { | |
6099 | /* Lose signed bounds when ORing negative numbers, | |
6100 | * ain't nobody got time for that. | |
6101 | */ | |
6102 | dst_reg->smin_value = S64_MIN; | |
6103 | dst_reg->smax_value = S64_MAX; | |
6104 | } else { | |
6105 | /* ORing two positives gives a positive, so safe to | |
6106 | * cast result into s64. | |
6107 | */ | |
6108 | dst_reg->smin_value = dst_reg->umin_value; | |
6109 | dst_reg->smax_value = dst_reg->umax_value; | |
6110 | } | |
6111 | /* We may learn something more from the var_off */ | |
6112 | __update_reg_bounds(dst_reg); | |
6113 | } | |
6114 | ||
2921c90d YS |
6115 | static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, |
6116 | struct bpf_reg_state *src_reg) | |
6117 | { | |
6118 | bool src_known = tnum_subreg_is_const(src_reg->var_off); | |
6119 | bool dst_known = tnum_subreg_is_const(dst_reg->var_off); | |
6120 | struct tnum var32_off = tnum_subreg(dst_reg->var_off); | |
6121 | s32 smin_val = src_reg->s32_min_value; | |
6122 | ||
6123 | /* Assuming scalar64_min_max_xor will be called so it is safe | |
6124 | * to skip updating register for known case. | |
6125 | */ | |
6126 | if (src_known && dst_known) | |
6127 | return; | |
6128 | ||
6129 | /* We get both minimum and maximum from the var32_off. */ | |
6130 | dst_reg->u32_min_value = var32_off.value; | |
6131 | dst_reg->u32_max_value = var32_off.value | var32_off.mask; | |
6132 | ||
6133 | if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { | |
6134 | /* XORing two positive sign numbers gives a positive, | |
6135 | * so safe to cast u32 result into s32. | |
6136 | */ | |
6137 | dst_reg->s32_min_value = dst_reg->u32_min_value; | |
6138 | dst_reg->s32_max_value = dst_reg->u32_max_value; | |
6139 | } else { | |
6140 | dst_reg->s32_min_value = S32_MIN; | |
6141 | dst_reg->s32_max_value = S32_MAX; | |
6142 | } | |
6143 | } | |
6144 | ||
6145 | static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, | |
6146 | struct bpf_reg_state *src_reg) | |
6147 | { | |
6148 | bool src_known = tnum_is_const(src_reg->var_off); | |
6149 | bool dst_known = tnum_is_const(dst_reg->var_off); | |
6150 | s64 smin_val = src_reg->smin_value; | |
6151 | ||
6152 | if (src_known && dst_known) { | |
6153 | /* dst_reg->var_off.value has been updated earlier */ | |
6154 | __mark_reg_known(dst_reg, dst_reg->var_off.value); | |
6155 | return; | |
6156 | } | |
6157 | ||
6158 | /* We get both minimum and maximum from the var_off. */ | |
6159 | dst_reg->umin_value = dst_reg->var_off.value; | |
6160 | dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; | |
6161 | ||
6162 | if (dst_reg->smin_value >= 0 && smin_val >= 0) { | |
6163 | /* XORing two positive sign numbers gives a positive, | |
6164 | * so safe to cast u64 result into s64. | |
6165 | */ | |
6166 | dst_reg->smin_value = dst_reg->umin_value; | |
6167 | dst_reg->smax_value = dst_reg->umax_value; | |
6168 | } else { | |
6169 | dst_reg->smin_value = S64_MIN; | |
6170 | dst_reg->smax_value = S64_MAX; | |
6171 | } | |
6172 | ||
6173 | __update_reg_bounds(dst_reg); | |
6174 | } | |
6175 | ||
3f50f132 JF |
6176 | static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, |
6177 | u64 umin_val, u64 umax_val) | |
07cd2631 | 6178 | { |
07cd2631 JF |
6179 | /* We lose all sign bit information (except what we can pick |
6180 | * up from var_off) | |
6181 | */ | |
3f50f132 JF |
6182 | dst_reg->s32_min_value = S32_MIN; |
6183 | dst_reg->s32_max_value = S32_MAX; | |
6184 | /* If we might shift our top bit out, then we know nothing */ | |
6185 | if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { | |
6186 | dst_reg->u32_min_value = 0; | |
6187 | dst_reg->u32_max_value = U32_MAX; | |
6188 | } else { | |
6189 | dst_reg->u32_min_value <<= umin_val; | |
6190 | dst_reg->u32_max_value <<= umax_val; | |
6191 | } | |
6192 | } | |
6193 | ||
6194 | static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, | |
6195 | struct bpf_reg_state *src_reg) | |
6196 | { | |
6197 | u32 umax_val = src_reg->u32_max_value; | |
6198 | u32 umin_val = src_reg->u32_min_value; | |
6199 | /* u32 alu operation will zext upper bits */ | |
6200 | struct tnum subreg = tnum_subreg(dst_reg->var_off); | |
6201 | ||
6202 | __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); | |
6203 | dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); | |
6204 | /* Not required but being careful mark reg64 bounds as unknown so | |
6205 | * that we are forced to pick them up from tnum and zext later and | |
6206 | * if some path skips this step we are still safe. | |
6207 | */ | |
6208 | __mark_reg64_unbounded(dst_reg); | |
6209 | __update_reg32_bounds(dst_reg); | |
6210 | } | |
6211 | ||
6212 | static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, | |
6213 | u64 umin_val, u64 umax_val) | |
6214 | { | |
6215 | /* Special case <<32 because it is a common compiler pattern to sign | |
6216 | * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are | |
6217 | * positive we know this shift will also be positive so we can track | |
6218 | * bounds correctly. Otherwise we lose all sign bit information except | |
6219 | * what we can pick up from var_off. Perhaps we can generalize this | |
6220 | * later to shifts of any length. | |
6221 | */ | |
6222 | if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) | |
6223 | dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; | |
6224 | else | |
6225 | dst_reg->smax_value = S64_MAX; | |
6226 | ||
6227 | if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) | |
6228 | dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; | |
6229 | else | |
6230 | dst_reg->smin_value = S64_MIN; | |
6231 | ||
07cd2631 JF |
6232 | /* If we might shift our top bit out, then we know nothing */ |
6233 | if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { | |
6234 | dst_reg->umin_value = 0; | |
6235 | dst_reg->umax_value = U64_MAX; | |
6236 | } else { | |
6237 | dst_reg->umin_value <<= umin_val; | |
6238 | dst_reg->umax_value <<= umax_val; | |
6239 | } | |
3f50f132 JF |
6240 | } |
6241 | ||
6242 | static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, | |
6243 | struct bpf_reg_state *src_reg) | |
6244 | { | |
6245 | u64 umax_val = src_reg->umax_value; | |
6246 | u64 umin_val = src_reg->umin_value; | |
6247 | ||
6248 | /* scalar64 calc uses 32bit unshifted bounds so must be called first */ | |
6249 | __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); | |
6250 | __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); | |
6251 | ||
07cd2631 JF |
6252 | dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); |
6253 | /* We may learn something more from the var_off */ | |
6254 | __update_reg_bounds(dst_reg); | |
6255 | } | |
6256 | ||
3f50f132 JF |
6257 | static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, |
6258 | struct bpf_reg_state *src_reg) | |
6259 | { | |
6260 | struct tnum subreg = tnum_subreg(dst_reg->var_off); | |
6261 | u32 umax_val = src_reg->u32_max_value; | |
6262 | u32 umin_val = src_reg->u32_min_value; | |
6263 | ||
6264 | /* BPF_RSH is an unsigned shift. If the value in dst_reg might | |
6265 | * be negative, then either: | |
6266 | * 1) src_reg might be zero, so the sign bit of the result is | |
6267 | * unknown, so we lose our signed bounds | |
6268 | * 2) it's known negative, thus the unsigned bounds capture the | |
6269 | * signed bounds | |
6270 | * 3) the signed bounds cross zero, so they tell us nothing | |
6271 | * about the result | |
6272 | * If the value in dst_reg is known nonnegative, then again the | |
18b24d78 | 6273 | * unsigned bounds capture the signed bounds. |
3f50f132 JF |
6274 | * Thus, in all cases it suffices to blow away our signed bounds |
6275 | * and rely on inferring new ones from the unsigned bounds and | |
6276 | * var_off of the result. | |
6277 | */ | |
6278 | dst_reg->s32_min_value = S32_MIN; | |
6279 | dst_reg->s32_max_value = S32_MAX; | |
6280 | ||
6281 | dst_reg->var_off = tnum_rshift(subreg, umin_val); | |
6282 | dst_reg->u32_min_value >>= umax_val; | |
6283 | dst_reg->u32_max_value >>= umin_val; | |
6284 | ||
6285 | __mark_reg64_unbounded(dst_reg); | |
6286 | __update_reg32_bounds(dst_reg); | |
6287 | } | |
6288 | ||
07cd2631 JF |
6289 | static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, |
6290 | struct bpf_reg_state *src_reg) | |
6291 | { | |
6292 | u64 umax_val = src_reg->umax_value; | |
6293 | u64 umin_val = src_reg->umin_value; | |
6294 | ||
6295 | /* BPF_RSH is an unsigned shift. If the value in dst_reg might | |
6296 | * be negative, then either: | |
6297 | * 1) src_reg might be zero, so the sign bit of the result is | |
6298 | * unknown, so we lose our signed bounds | |
6299 | * 2) it's known negative, thus the unsigned bounds capture the | |
6300 | * signed bounds | |
6301 | * 3) the signed bounds cross zero, so they tell us nothing | |
6302 | * about the result | |
6303 | * If the value in dst_reg is known nonnegative, then again the | |
18b24d78 | 6304 | * unsigned bounds capture the signed bounds. |
07cd2631 JF |
6305 | * Thus, in all cases it suffices to blow away our signed bounds |
6306 | * and rely on inferring new ones from the unsigned bounds and | |
6307 | * var_off of the result. | |
6308 | */ | |
6309 | dst_reg->smin_value = S64_MIN; | |
6310 | dst_reg->smax_value = S64_MAX; | |
6311 | dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); | |
6312 | dst_reg->umin_value >>= umax_val; | |
6313 | dst_reg->umax_value >>= umin_val; | |
3f50f132 JF |
6314 | |
6315 | /* Its not easy to operate on alu32 bounds here because it depends | |
6316 | * on bits being shifted in. Take easy way out and mark unbounded | |
6317 | * so we can recalculate later from tnum. | |
6318 | */ | |
6319 | __mark_reg32_unbounded(dst_reg); | |
07cd2631 JF |
6320 | __update_reg_bounds(dst_reg); |
6321 | } | |
6322 | ||
3f50f132 JF |
6323 | static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, |
6324 | struct bpf_reg_state *src_reg) | |
07cd2631 | 6325 | { |
3f50f132 | 6326 | u64 umin_val = src_reg->u32_min_value; |
07cd2631 JF |
6327 | |
6328 | /* Upon reaching here, src_known is true and | |
6329 | * umax_val is equal to umin_val. | |
6330 | */ | |
3f50f132 JF |
6331 | dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); |
6332 | dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); | |
07cd2631 | 6333 | |
3f50f132 JF |
6334 | dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); |
6335 | ||
6336 | /* blow away the dst_reg umin_value/umax_value and rely on | |
6337 | * dst_reg var_off to refine the result. | |
6338 | */ | |
6339 | dst_reg->u32_min_value = 0; | |
6340 | dst_reg->u32_max_value = U32_MAX; | |
6341 | ||
6342 | __mark_reg64_unbounded(dst_reg); | |
6343 | __update_reg32_bounds(dst_reg); | |
6344 | } | |
6345 | ||
6346 | static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, | |
6347 | struct bpf_reg_state *src_reg) | |
6348 | { | |
6349 | u64 umin_val = src_reg->umin_value; | |
6350 | ||
6351 | /* Upon reaching here, src_known is true and umax_val is equal | |
6352 | * to umin_val. | |
6353 | */ | |
6354 | dst_reg->smin_value >>= umin_val; | |
6355 | dst_reg->smax_value >>= umin_val; | |
6356 | ||
6357 | dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); | |
07cd2631 JF |
6358 | |
6359 | /* blow away the dst_reg umin_value/umax_value and rely on | |
6360 | * dst_reg var_off to refine the result. | |
6361 | */ | |
6362 | dst_reg->umin_value = 0; | |
6363 | dst_reg->umax_value = U64_MAX; | |
3f50f132 JF |
6364 | |
6365 | /* Its not easy to operate on alu32 bounds here because it depends | |
6366 | * on bits being shifted in from upper 32-bits. Take easy way out | |
6367 | * and mark unbounded so we can recalculate later from tnum. | |
6368 | */ | |
6369 | __mark_reg32_unbounded(dst_reg); | |
07cd2631 JF |
6370 | __update_reg_bounds(dst_reg); |
6371 | } | |
6372 | ||
468f6eaf JH |
6373 | /* WARNING: This function does calculations on 64-bit values, but the actual |
6374 | * execution may occur on 32-bit values. Therefore, things like bitshifts | |
6375 | * need extra checks in the 32-bit case. | |
6376 | */ | |
f1174f77 EC |
6377 | static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, |
6378 | struct bpf_insn *insn, | |
6379 | struct bpf_reg_state *dst_reg, | |
6380 | struct bpf_reg_state src_reg) | |
969bf05e | 6381 | { |
638f5b90 | 6382 | struct bpf_reg_state *regs = cur_regs(env); |
48461135 | 6383 | u8 opcode = BPF_OP(insn->code); |
b0b3fb67 | 6384 | bool src_known; |
b03c9f9f EC |
6385 | s64 smin_val, smax_val; |
6386 | u64 umin_val, umax_val; | |
3f50f132 JF |
6387 | s32 s32_min_val, s32_max_val; |
6388 | u32 u32_min_val, u32_max_val; | |
468f6eaf | 6389 | u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; |
d3bd7413 DB |
6390 | u32 dst = insn->dst_reg; |
6391 | int ret; | |
3f50f132 | 6392 | bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); |
b799207e | 6393 | |
b03c9f9f EC |
6394 | smin_val = src_reg.smin_value; |
6395 | smax_val = src_reg.smax_value; | |
6396 | umin_val = src_reg.umin_value; | |
6397 | umax_val = src_reg.umax_value; | |
f23cc643 | 6398 | |
3f50f132 JF |
6399 | s32_min_val = src_reg.s32_min_value; |
6400 | s32_max_val = src_reg.s32_max_value; | |
6401 | u32_min_val = src_reg.u32_min_value; | |
6402 | u32_max_val = src_reg.u32_max_value; | |
6403 | ||
6404 | if (alu32) { | |
6405 | src_known = tnum_subreg_is_const(src_reg.var_off); | |
3f50f132 JF |
6406 | if ((src_known && |
6407 | (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || | |
6408 | s32_min_val > s32_max_val || u32_min_val > u32_max_val) { | |
6409 | /* Taint dst register if offset had invalid bounds | |
6410 | * derived from e.g. dead branches. | |
6411 | */ | |
6412 | __mark_reg_unknown(env, dst_reg); | |
6413 | return 0; | |
6414 | } | |
6415 | } else { | |
6416 | src_known = tnum_is_const(src_reg.var_off); | |
3f50f132 JF |
6417 | if ((src_known && |
6418 | (smin_val != smax_val || umin_val != umax_val)) || | |
6419 | smin_val > smax_val || umin_val > umax_val) { | |
6420 | /* Taint dst register if offset had invalid bounds | |
6421 | * derived from e.g. dead branches. | |
6422 | */ | |
6423 | __mark_reg_unknown(env, dst_reg); | |
6424 | return 0; | |
6425 | } | |
6f16101e DB |
6426 | } |
6427 | ||
bb7f0f98 AS |
6428 | if (!src_known && |
6429 | opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { | |
f54c7898 | 6430 | __mark_reg_unknown(env, dst_reg); |
bb7f0f98 AS |
6431 | return 0; |
6432 | } | |
6433 | ||
3f50f132 JF |
6434 | /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. |
6435 | * There are two classes of instructions: The first class we track both | |
6436 | * alu32 and alu64 sign/unsigned bounds independently this provides the | |
6437 | * greatest amount of precision when alu operations are mixed with jmp32 | |
6438 | * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, | |
6439 | * and BPF_OR. This is possible because these ops have fairly easy to | |
6440 | * understand and calculate behavior in both 32-bit and 64-bit alu ops. | |
6441 | * See alu32 verifier tests for examples. The second class of | |
6442 | * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy | |
6443 | * with regards to tracking sign/unsigned bounds because the bits may | |
6444 | * cross subreg boundaries in the alu64 case. When this happens we mark | |
6445 | * the reg unbounded in the subreg bound space and use the resulting | |
6446 | * tnum to calculate an approximation of the sign/unsigned bounds. | |
6447 | */ | |
48461135 JB |
6448 | switch (opcode) { |
6449 | case BPF_ADD: | |
d3bd7413 DB |
6450 | ret = sanitize_val_alu(env, insn); |
6451 | if (ret < 0) { | |
6452 | verbose(env, "R%d tried to add from different pointers or scalars\n", dst); | |
6453 | return ret; | |
6454 | } | |
3f50f132 | 6455 | scalar32_min_max_add(dst_reg, &src_reg); |
07cd2631 | 6456 | scalar_min_max_add(dst_reg, &src_reg); |
3f50f132 | 6457 | dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); |
48461135 JB |
6458 | break; |
6459 | case BPF_SUB: | |
d3bd7413 DB |
6460 | ret = sanitize_val_alu(env, insn); |
6461 | if (ret < 0) { | |
6462 | verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); | |
6463 | return ret; | |
6464 | } | |
3f50f132 | 6465 | scalar32_min_max_sub(dst_reg, &src_reg); |
07cd2631 | 6466 | scalar_min_max_sub(dst_reg, &src_reg); |
3f50f132 | 6467 | dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); |
48461135 JB |
6468 | break; |
6469 | case BPF_MUL: | |
3f50f132 JF |
6470 | dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); |
6471 | scalar32_min_max_mul(dst_reg, &src_reg); | |
07cd2631 | 6472 | scalar_min_max_mul(dst_reg, &src_reg); |
48461135 JB |
6473 | break; |
6474 | case BPF_AND: | |
3f50f132 JF |
6475 | dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); |
6476 | scalar32_min_max_and(dst_reg, &src_reg); | |
07cd2631 | 6477 | scalar_min_max_and(dst_reg, &src_reg); |
f1174f77 EC |
6478 | break; |
6479 | case BPF_OR: | |
3f50f132 JF |
6480 | dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); |
6481 | scalar32_min_max_or(dst_reg, &src_reg); | |
07cd2631 | 6482 | scalar_min_max_or(dst_reg, &src_reg); |
48461135 | 6483 | break; |
2921c90d YS |
6484 | case BPF_XOR: |
6485 | dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); | |
6486 | scalar32_min_max_xor(dst_reg, &src_reg); | |
6487 | scalar_min_max_xor(dst_reg, &src_reg); | |
6488 | break; | |
48461135 | 6489 | case BPF_LSH: |
468f6eaf JH |
6490 | if (umax_val >= insn_bitness) { |
6491 | /* Shifts greater than 31 or 63 are undefined. | |
6492 | * This includes shifts by a negative number. | |
b03c9f9f | 6493 | */ |
61bd5218 | 6494 | mark_reg_unknown(env, regs, insn->dst_reg); |
f1174f77 EC |
6495 | break; |
6496 | } | |
3f50f132 JF |
6497 | if (alu32) |
6498 | scalar32_min_max_lsh(dst_reg, &src_reg); | |
6499 | else | |
6500 | scalar_min_max_lsh(dst_reg, &src_reg); | |
48461135 JB |
6501 | break; |
6502 | case BPF_RSH: | |
468f6eaf JH |
6503 | if (umax_val >= insn_bitness) { |
6504 | /* Shifts greater than 31 or 63 are undefined. | |
6505 | * This includes shifts by a negative number. | |
b03c9f9f | 6506 | */ |
61bd5218 | 6507 | mark_reg_unknown(env, regs, insn->dst_reg); |
f1174f77 EC |
6508 | break; |
6509 | } | |
3f50f132 JF |
6510 | if (alu32) |
6511 | scalar32_min_max_rsh(dst_reg, &src_reg); | |
6512 | else | |
6513 | scalar_min_max_rsh(dst_reg, &src_reg); | |
48461135 | 6514 | break; |
9cbe1f5a YS |
6515 | case BPF_ARSH: |
6516 | if (umax_val >= insn_bitness) { | |
6517 | /* Shifts greater than 31 or 63 are undefined. | |
6518 | * This includes shifts by a negative number. | |
6519 | */ | |
6520 | mark_reg_unknown(env, regs, insn->dst_reg); | |
6521 | break; | |
6522 | } | |
3f50f132 JF |
6523 | if (alu32) |
6524 | scalar32_min_max_arsh(dst_reg, &src_reg); | |
6525 | else | |
6526 | scalar_min_max_arsh(dst_reg, &src_reg); | |
9cbe1f5a | 6527 | break; |
48461135 | 6528 | default: |
61bd5218 | 6529 | mark_reg_unknown(env, regs, insn->dst_reg); |
48461135 JB |
6530 | break; |
6531 | } | |
6532 | ||
3f50f132 JF |
6533 | /* ALU32 ops are zero extended into 64bit register */ |
6534 | if (alu32) | |
6535 | zext_32_to_64(dst_reg); | |
468f6eaf | 6536 | |
294f2fc6 | 6537 | __update_reg_bounds(dst_reg); |
b03c9f9f EC |
6538 | __reg_deduce_bounds(dst_reg); |
6539 | __reg_bound_offset(dst_reg); | |
f1174f77 EC |
6540 | return 0; |
6541 | } | |
6542 | ||
6543 | /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max | |
6544 | * and var_off. | |
6545 | */ | |
6546 | static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, | |
6547 | struct bpf_insn *insn) | |
6548 | { | |
f4d7e40a AS |
6549 | struct bpf_verifier_state *vstate = env->cur_state; |
6550 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; | |
6551 | struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; | |
f1174f77 EC |
6552 | struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; |
6553 | u8 opcode = BPF_OP(insn->code); | |
b5dc0163 | 6554 | int err; |
f1174f77 EC |
6555 | |
6556 | dst_reg = ®s[insn->dst_reg]; | |
f1174f77 EC |
6557 | src_reg = NULL; |
6558 | if (dst_reg->type != SCALAR_VALUE) | |
6559 | ptr_reg = dst_reg; | |
75748837 AS |
6560 | else |
6561 | /* Make sure ID is cleared otherwise dst_reg min/max could be | |
6562 | * incorrectly propagated into other registers by find_equal_scalars() | |
6563 | */ | |
6564 | dst_reg->id = 0; | |
f1174f77 EC |
6565 | if (BPF_SRC(insn->code) == BPF_X) { |
6566 | src_reg = ®s[insn->src_reg]; | |
f1174f77 EC |
6567 | if (src_reg->type != SCALAR_VALUE) { |
6568 | if (dst_reg->type != SCALAR_VALUE) { | |
6569 | /* Combining two pointers by any ALU op yields | |
82abbf8d AS |
6570 | * an arbitrary scalar. Disallow all math except |
6571 | * pointer subtraction | |
f1174f77 | 6572 | */ |
dd066823 | 6573 | if (opcode == BPF_SUB && env->allow_ptr_leaks) { |
82abbf8d AS |
6574 | mark_reg_unknown(env, regs, insn->dst_reg); |
6575 | return 0; | |
f1174f77 | 6576 | } |
82abbf8d AS |
6577 | verbose(env, "R%d pointer %s pointer prohibited\n", |
6578 | insn->dst_reg, | |
6579 | bpf_alu_string[opcode >> 4]); | |
6580 | return -EACCES; | |
f1174f77 EC |
6581 | } else { |
6582 | /* scalar += pointer | |
6583 | * This is legal, but we have to reverse our | |
6584 | * src/dest handling in computing the range | |
6585 | */ | |
b5dc0163 AS |
6586 | err = mark_chain_precision(env, insn->dst_reg); |
6587 | if (err) | |
6588 | return err; | |
82abbf8d AS |
6589 | return adjust_ptr_min_max_vals(env, insn, |
6590 | src_reg, dst_reg); | |
f1174f77 EC |
6591 | } |
6592 | } else if (ptr_reg) { | |
6593 | /* pointer += scalar */ | |
b5dc0163 AS |
6594 | err = mark_chain_precision(env, insn->src_reg); |
6595 | if (err) | |
6596 | return err; | |
82abbf8d AS |
6597 | return adjust_ptr_min_max_vals(env, insn, |
6598 | dst_reg, src_reg); | |
f1174f77 EC |
6599 | } |
6600 | } else { | |
6601 | /* Pretend the src is a reg with a known value, since we only | |
6602 | * need to be able to read from this state. | |
6603 | */ | |
6604 | off_reg.type = SCALAR_VALUE; | |
b03c9f9f | 6605 | __mark_reg_known(&off_reg, insn->imm); |
f1174f77 | 6606 | src_reg = &off_reg; |
82abbf8d AS |
6607 | if (ptr_reg) /* pointer += K */ |
6608 | return adjust_ptr_min_max_vals(env, insn, | |
6609 | ptr_reg, src_reg); | |
f1174f77 EC |
6610 | } |
6611 | ||
6612 | /* Got here implies adding two SCALAR_VALUEs */ | |
6613 | if (WARN_ON_ONCE(ptr_reg)) { | |
f4d7e40a | 6614 | print_verifier_state(env, state); |
61bd5218 | 6615 | verbose(env, "verifier internal error: unexpected ptr_reg\n"); |
f1174f77 EC |
6616 | return -EINVAL; |
6617 | } | |
6618 | if (WARN_ON(!src_reg)) { | |
f4d7e40a | 6619 | print_verifier_state(env, state); |
61bd5218 | 6620 | verbose(env, "verifier internal error: no src_reg\n"); |
f1174f77 EC |
6621 | return -EINVAL; |
6622 | } | |
6623 | return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); | |
48461135 JB |
6624 | } |
6625 | ||
17a52670 | 6626 | /* check validity of 32-bit and 64-bit arithmetic operations */ |
58e2af8b | 6627 | static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) |
17a52670 | 6628 | { |
638f5b90 | 6629 | struct bpf_reg_state *regs = cur_regs(env); |
17a52670 AS |
6630 | u8 opcode = BPF_OP(insn->code); |
6631 | int err; | |
6632 | ||
6633 | if (opcode == BPF_END || opcode == BPF_NEG) { | |
6634 | if (opcode == BPF_NEG) { | |
6635 | if (BPF_SRC(insn->code) != 0 || | |
6636 | insn->src_reg != BPF_REG_0 || | |
6637 | insn->off != 0 || insn->imm != 0) { | |
61bd5218 | 6638 | verbose(env, "BPF_NEG uses reserved fields\n"); |
17a52670 AS |
6639 | return -EINVAL; |
6640 | } | |
6641 | } else { | |
6642 | if (insn->src_reg != BPF_REG_0 || insn->off != 0 || | |
e67b8a68 EC |
6643 | (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || |
6644 | BPF_CLASS(insn->code) == BPF_ALU64) { | |
61bd5218 | 6645 | verbose(env, "BPF_END uses reserved fields\n"); |
17a52670 AS |
6646 | return -EINVAL; |
6647 | } | |
6648 | } | |
6649 | ||
6650 | /* check src operand */ | |
dc503a8a | 6651 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
6652 | if (err) |
6653 | return err; | |
6654 | ||
1be7f75d | 6655 | if (is_pointer_value(env, insn->dst_reg)) { |
61bd5218 | 6656 | verbose(env, "R%d pointer arithmetic prohibited\n", |
1be7f75d AS |
6657 | insn->dst_reg); |
6658 | return -EACCES; | |
6659 | } | |
6660 | ||
17a52670 | 6661 | /* check dest operand */ |
dc503a8a | 6662 | err = check_reg_arg(env, insn->dst_reg, DST_OP); |
17a52670 AS |
6663 | if (err) |
6664 | return err; | |
6665 | ||
6666 | } else if (opcode == BPF_MOV) { | |
6667 | ||
6668 | if (BPF_SRC(insn->code) == BPF_X) { | |
6669 | if (insn->imm != 0 || insn->off != 0) { | |
61bd5218 | 6670 | verbose(env, "BPF_MOV uses reserved fields\n"); |
17a52670 AS |
6671 | return -EINVAL; |
6672 | } | |
6673 | ||
6674 | /* check src operand */ | |
dc503a8a | 6675 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
6676 | if (err) |
6677 | return err; | |
6678 | } else { | |
6679 | if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | |
61bd5218 | 6680 | verbose(env, "BPF_MOV uses reserved fields\n"); |
17a52670 AS |
6681 | return -EINVAL; |
6682 | } | |
6683 | } | |
6684 | ||
fbeb1603 AF |
6685 | /* check dest operand, mark as required later */ |
6686 | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); | |
17a52670 AS |
6687 | if (err) |
6688 | return err; | |
6689 | ||
6690 | if (BPF_SRC(insn->code) == BPF_X) { | |
e434b8cd JW |
6691 | struct bpf_reg_state *src_reg = regs + insn->src_reg; |
6692 | struct bpf_reg_state *dst_reg = regs + insn->dst_reg; | |
6693 | ||
17a52670 AS |
6694 | if (BPF_CLASS(insn->code) == BPF_ALU64) { |
6695 | /* case: R1 = R2 | |
6696 | * copy register state to dest reg | |
6697 | */ | |
75748837 AS |
6698 | if (src_reg->type == SCALAR_VALUE && !src_reg->id) |
6699 | /* Assign src and dst registers the same ID | |
6700 | * that will be used by find_equal_scalars() | |
6701 | * to propagate min/max range. | |
6702 | */ | |
6703 | src_reg->id = ++env->id_gen; | |
e434b8cd JW |
6704 | *dst_reg = *src_reg; |
6705 | dst_reg->live |= REG_LIVE_WRITTEN; | |
5327ed3d | 6706 | dst_reg->subreg_def = DEF_NOT_SUBREG; |
17a52670 | 6707 | } else { |
f1174f77 | 6708 | /* R1 = (u32) R2 */ |
1be7f75d | 6709 | if (is_pointer_value(env, insn->src_reg)) { |
61bd5218 JK |
6710 | verbose(env, |
6711 | "R%d partial copy of pointer\n", | |
1be7f75d AS |
6712 | insn->src_reg); |
6713 | return -EACCES; | |
e434b8cd JW |
6714 | } else if (src_reg->type == SCALAR_VALUE) { |
6715 | *dst_reg = *src_reg; | |
75748837 AS |
6716 | /* Make sure ID is cleared otherwise |
6717 | * dst_reg min/max could be incorrectly | |
6718 | * propagated into src_reg by find_equal_scalars() | |
6719 | */ | |
6720 | dst_reg->id = 0; | |
e434b8cd | 6721 | dst_reg->live |= REG_LIVE_WRITTEN; |
5327ed3d | 6722 | dst_reg->subreg_def = env->insn_idx + 1; |
e434b8cd JW |
6723 | } else { |
6724 | mark_reg_unknown(env, regs, | |
6725 | insn->dst_reg); | |
1be7f75d | 6726 | } |
3f50f132 | 6727 | zext_32_to_64(dst_reg); |
17a52670 AS |
6728 | } |
6729 | } else { | |
6730 | /* case: R = imm | |
6731 | * remember the value we stored into this reg | |
6732 | */ | |
fbeb1603 AF |
6733 | /* clear any state __mark_reg_known doesn't set */ |
6734 | mark_reg_unknown(env, regs, insn->dst_reg); | |
f1174f77 | 6735 | regs[insn->dst_reg].type = SCALAR_VALUE; |
95a762e2 JH |
6736 | if (BPF_CLASS(insn->code) == BPF_ALU64) { |
6737 | __mark_reg_known(regs + insn->dst_reg, | |
6738 | insn->imm); | |
6739 | } else { | |
6740 | __mark_reg_known(regs + insn->dst_reg, | |
6741 | (u32)insn->imm); | |
6742 | } | |
17a52670 AS |
6743 | } |
6744 | ||
6745 | } else if (opcode > BPF_END) { | |
61bd5218 | 6746 | verbose(env, "invalid BPF_ALU opcode %x\n", opcode); |
17a52670 AS |
6747 | return -EINVAL; |
6748 | ||
6749 | } else { /* all other ALU ops: and, sub, xor, add, ... */ | |
6750 | ||
17a52670 AS |
6751 | if (BPF_SRC(insn->code) == BPF_X) { |
6752 | if (insn->imm != 0 || insn->off != 0) { | |
61bd5218 | 6753 | verbose(env, "BPF_ALU uses reserved fields\n"); |
17a52670 AS |
6754 | return -EINVAL; |
6755 | } | |
6756 | /* check src1 operand */ | |
dc503a8a | 6757 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
6758 | if (err) |
6759 | return err; | |
6760 | } else { | |
6761 | if (insn->src_reg != BPF_REG_0 || insn->off != 0) { | |
61bd5218 | 6762 | verbose(env, "BPF_ALU uses reserved fields\n"); |
17a52670 AS |
6763 | return -EINVAL; |
6764 | } | |
6765 | } | |
6766 | ||
6767 | /* check src2 operand */ | |
dc503a8a | 6768 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
6769 | if (err) |
6770 | return err; | |
6771 | ||
6772 | if ((opcode == BPF_MOD || opcode == BPF_DIV) && | |
6773 | BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { | |
61bd5218 | 6774 | verbose(env, "div by zero\n"); |
17a52670 AS |
6775 | return -EINVAL; |
6776 | } | |
6777 | ||
229394e8 RV |
6778 | if ((opcode == BPF_LSH || opcode == BPF_RSH || |
6779 | opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { | |
6780 | int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; | |
6781 | ||
6782 | if (insn->imm < 0 || insn->imm >= size) { | |
61bd5218 | 6783 | verbose(env, "invalid shift %d\n", insn->imm); |
229394e8 RV |
6784 | return -EINVAL; |
6785 | } | |
6786 | } | |
6787 | ||
1a0dc1ac | 6788 | /* check dest operand */ |
dc503a8a | 6789 | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
1a0dc1ac AS |
6790 | if (err) |
6791 | return err; | |
6792 | ||
f1174f77 | 6793 | return adjust_reg_min_max_vals(env, insn); |
17a52670 AS |
6794 | } |
6795 | ||
6796 | return 0; | |
6797 | } | |
6798 | ||
c6a9efa1 PC |
6799 | static void __find_good_pkt_pointers(struct bpf_func_state *state, |
6800 | struct bpf_reg_state *dst_reg, | |
6d94e741 | 6801 | enum bpf_reg_type type, int new_range) |
c6a9efa1 PC |
6802 | { |
6803 | struct bpf_reg_state *reg; | |
6804 | int i; | |
6805 | ||
6806 | for (i = 0; i < MAX_BPF_REG; i++) { | |
6807 | reg = &state->regs[i]; | |
6808 | if (reg->type == type && reg->id == dst_reg->id) | |
6809 | /* keep the maximum range already checked */ | |
6810 | reg->range = max(reg->range, new_range); | |
6811 | } | |
6812 | ||
6813 | bpf_for_each_spilled_reg(i, state, reg) { | |
6814 | if (!reg) | |
6815 | continue; | |
6816 | if (reg->type == type && reg->id == dst_reg->id) | |
6817 | reg->range = max(reg->range, new_range); | |
6818 | } | |
6819 | } | |
6820 | ||
f4d7e40a | 6821 | static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, |
de8f3a83 | 6822 | struct bpf_reg_state *dst_reg, |
f8ddadc4 | 6823 | enum bpf_reg_type type, |
fb2a311a | 6824 | bool range_right_open) |
969bf05e | 6825 | { |
6d94e741 | 6826 | int new_range, i; |
2d2be8ca | 6827 | |
fb2a311a DB |
6828 | if (dst_reg->off < 0 || |
6829 | (dst_reg->off == 0 && range_right_open)) | |
f1174f77 EC |
6830 | /* This doesn't give us any range */ |
6831 | return; | |
6832 | ||
b03c9f9f EC |
6833 | if (dst_reg->umax_value > MAX_PACKET_OFF || |
6834 | dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) | |
f1174f77 EC |
6835 | /* Risk of overflow. For instance, ptr + (1<<63) may be less |
6836 | * than pkt_end, but that's because it's also less than pkt. | |
6837 | */ | |
6838 | return; | |
6839 | ||
fb2a311a DB |
6840 | new_range = dst_reg->off; |
6841 | if (range_right_open) | |
6842 | new_range--; | |
6843 | ||
6844 | /* Examples for register markings: | |
2d2be8ca | 6845 | * |
fb2a311a | 6846 | * pkt_data in dst register: |
2d2be8ca DB |
6847 | * |
6848 | * r2 = r3; | |
6849 | * r2 += 8; | |
6850 | * if (r2 > pkt_end) goto <handle exception> | |
6851 | * <access okay> | |
6852 | * | |
b4e432f1 DB |
6853 | * r2 = r3; |
6854 | * r2 += 8; | |
6855 | * if (r2 < pkt_end) goto <access okay> | |
6856 | * <handle exception> | |
6857 | * | |
2d2be8ca DB |
6858 | * Where: |
6859 | * r2 == dst_reg, pkt_end == src_reg | |
6860 | * r2=pkt(id=n,off=8,r=0) | |
6861 | * r3=pkt(id=n,off=0,r=0) | |
6862 | * | |
fb2a311a | 6863 | * pkt_data in src register: |
2d2be8ca DB |
6864 | * |
6865 | * r2 = r3; | |
6866 | * r2 += 8; | |
6867 | * if (pkt_end >= r2) goto <access okay> | |
6868 | * <handle exception> | |
6869 | * | |
b4e432f1 DB |
6870 | * r2 = r3; |
6871 | * r2 += 8; | |
6872 | * if (pkt_end <= r2) goto <handle exception> | |
6873 | * <access okay> | |
6874 | * | |
2d2be8ca DB |
6875 | * Where: |
6876 | * pkt_end == dst_reg, r2 == src_reg | |
6877 | * r2=pkt(id=n,off=8,r=0) | |
6878 | * r3=pkt(id=n,off=0,r=0) | |
6879 | * | |
6880 | * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) | |
fb2a311a DB |
6881 | * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) |
6882 | * and [r3, r3 + 8-1) respectively is safe to access depending on | |
6883 | * the check. | |
969bf05e | 6884 | */ |
2d2be8ca | 6885 | |
f1174f77 EC |
6886 | /* If our ids match, then we must have the same max_value. And we |
6887 | * don't care about the other reg's fixed offset, since if it's too big | |
6888 | * the range won't allow anything. | |
6889 | * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. | |
6890 | */ | |
c6a9efa1 PC |
6891 | for (i = 0; i <= vstate->curframe; i++) |
6892 | __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, | |
6893 | new_range); | |
969bf05e AS |
6894 | } |
6895 | ||
3f50f132 | 6896 | static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) |
4f7b3e82 | 6897 | { |
3f50f132 JF |
6898 | struct tnum subreg = tnum_subreg(reg->var_off); |
6899 | s32 sval = (s32)val; | |
a72dafaf | 6900 | |
3f50f132 JF |
6901 | switch (opcode) { |
6902 | case BPF_JEQ: | |
6903 | if (tnum_is_const(subreg)) | |
6904 | return !!tnum_equals_const(subreg, val); | |
6905 | break; | |
6906 | case BPF_JNE: | |
6907 | if (tnum_is_const(subreg)) | |
6908 | return !tnum_equals_const(subreg, val); | |
6909 | break; | |
6910 | case BPF_JSET: | |
6911 | if ((~subreg.mask & subreg.value) & val) | |
6912 | return 1; | |
6913 | if (!((subreg.mask | subreg.value) & val)) | |
6914 | return 0; | |
6915 | break; | |
6916 | case BPF_JGT: | |
6917 | if (reg->u32_min_value > val) | |
6918 | return 1; | |
6919 | else if (reg->u32_max_value <= val) | |
6920 | return 0; | |
6921 | break; | |
6922 | case BPF_JSGT: | |
6923 | if (reg->s32_min_value > sval) | |
6924 | return 1; | |
6925 | else if (reg->s32_max_value < sval) | |
6926 | return 0; | |
6927 | break; | |
6928 | case BPF_JLT: | |
6929 | if (reg->u32_max_value < val) | |
6930 | return 1; | |
6931 | else if (reg->u32_min_value >= val) | |
6932 | return 0; | |
6933 | break; | |
6934 | case BPF_JSLT: | |
6935 | if (reg->s32_max_value < sval) | |
6936 | return 1; | |
6937 | else if (reg->s32_min_value >= sval) | |
6938 | return 0; | |
6939 | break; | |
6940 | case BPF_JGE: | |
6941 | if (reg->u32_min_value >= val) | |
6942 | return 1; | |
6943 | else if (reg->u32_max_value < val) | |
6944 | return 0; | |
6945 | break; | |
6946 | case BPF_JSGE: | |
6947 | if (reg->s32_min_value >= sval) | |
6948 | return 1; | |
6949 | else if (reg->s32_max_value < sval) | |
6950 | return 0; | |
6951 | break; | |
6952 | case BPF_JLE: | |
6953 | if (reg->u32_max_value <= val) | |
6954 | return 1; | |
6955 | else if (reg->u32_min_value > val) | |
6956 | return 0; | |
6957 | break; | |
6958 | case BPF_JSLE: | |
6959 | if (reg->s32_max_value <= sval) | |
6960 | return 1; | |
6961 | else if (reg->s32_min_value > sval) | |
6962 | return 0; | |
6963 | break; | |
6964 | } | |
4f7b3e82 | 6965 | |
3f50f132 JF |
6966 | return -1; |
6967 | } | |
092ed096 | 6968 | |
3f50f132 JF |
6969 | |
6970 | static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) | |
6971 | { | |
6972 | s64 sval = (s64)val; | |
a72dafaf | 6973 | |
4f7b3e82 AS |
6974 | switch (opcode) { |
6975 | case BPF_JEQ: | |
6976 | if (tnum_is_const(reg->var_off)) | |
6977 | return !!tnum_equals_const(reg->var_off, val); | |
6978 | break; | |
6979 | case BPF_JNE: | |
6980 | if (tnum_is_const(reg->var_off)) | |
6981 | return !tnum_equals_const(reg->var_off, val); | |
6982 | break; | |
960ea056 JK |
6983 | case BPF_JSET: |
6984 | if ((~reg->var_off.mask & reg->var_off.value) & val) | |
6985 | return 1; | |
6986 | if (!((reg->var_off.mask | reg->var_off.value) & val)) | |
6987 | return 0; | |
6988 | break; | |
4f7b3e82 AS |
6989 | case BPF_JGT: |
6990 | if (reg->umin_value > val) | |
6991 | return 1; | |
6992 | else if (reg->umax_value <= val) | |
6993 | return 0; | |
6994 | break; | |
6995 | case BPF_JSGT: | |
a72dafaf | 6996 | if (reg->smin_value > sval) |
4f7b3e82 | 6997 | return 1; |
a72dafaf | 6998 | else if (reg->smax_value < sval) |
4f7b3e82 AS |
6999 | return 0; |
7000 | break; | |
7001 | case BPF_JLT: | |
7002 | if (reg->umax_value < val) | |
7003 | return 1; | |
7004 | else if (reg->umin_value >= val) | |
7005 | return 0; | |
7006 | break; | |
7007 | case BPF_JSLT: | |
a72dafaf | 7008 | if (reg->smax_value < sval) |
4f7b3e82 | 7009 | return 1; |
a72dafaf | 7010 | else if (reg->smin_value >= sval) |
4f7b3e82 AS |
7011 | return 0; |
7012 | break; | |
7013 | case BPF_JGE: | |
7014 | if (reg->umin_value >= val) | |
7015 | return 1; | |
7016 | else if (reg->umax_value < val) | |
7017 | return 0; | |
7018 | break; | |
7019 | case BPF_JSGE: | |
a72dafaf | 7020 | if (reg->smin_value >= sval) |
4f7b3e82 | 7021 | return 1; |
a72dafaf | 7022 | else if (reg->smax_value < sval) |
4f7b3e82 AS |
7023 | return 0; |
7024 | break; | |
7025 | case BPF_JLE: | |
7026 | if (reg->umax_value <= val) | |
7027 | return 1; | |
7028 | else if (reg->umin_value > val) | |
7029 | return 0; | |
7030 | break; | |
7031 | case BPF_JSLE: | |
a72dafaf | 7032 | if (reg->smax_value <= sval) |
4f7b3e82 | 7033 | return 1; |
a72dafaf | 7034 | else if (reg->smin_value > sval) |
4f7b3e82 AS |
7035 | return 0; |
7036 | break; | |
7037 | } | |
7038 | ||
7039 | return -1; | |
7040 | } | |
7041 | ||
3f50f132 JF |
7042 | /* compute branch direction of the expression "if (reg opcode val) goto target;" |
7043 | * and return: | |
7044 | * 1 - branch will be taken and "goto target" will be executed | |
7045 | * 0 - branch will not be taken and fall-through to next insn | |
7046 | * -1 - unknown. Example: "if (reg < 5)" is unknown when register value | |
7047 | * range [0,10] | |
604dca5e | 7048 | */ |
3f50f132 JF |
7049 | static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, |
7050 | bool is_jmp32) | |
604dca5e | 7051 | { |
cac616db JF |
7052 | if (__is_pointer_value(false, reg)) { |
7053 | if (!reg_type_not_null(reg->type)) | |
7054 | return -1; | |
7055 | ||
7056 | /* If pointer is valid tests against zero will fail so we can | |
7057 | * use this to direct branch taken. | |
7058 | */ | |
7059 | if (val != 0) | |
7060 | return -1; | |
7061 | ||
7062 | switch (opcode) { | |
7063 | case BPF_JEQ: | |
7064 | return 0; | |
7065 | case BPF_JNE: | |
7066 | return 1; | |
7067 | default: | |
7068 | return -1; | |
7069 | } | |
7070 | } | |
604dca5e | 7071 | |
3f50f132 JF |
7072 | if (is_jmp32) |
7073 | return is_branch32_taken(reg, val, opcode); | |
7074 | return is_branch64_taken(reg, val, opcode); | |
604dca5e JH |
7075 | } |
7076 | ||
6d94e741 AS |
7077 | static int flip_opcode(u32 opcode) |
7078 | { | |
7079 | /* How can we transform "a <op> b" into "b <op> a"? */ | |
7080 | static const u8 opcode_flip[16] = { | |
7081 | /* these stay the same */ | |
7082 | [BPF_JEQ >> 4] = BPF_JEQ, | |
7083 | [BPF_JNE >> 4] = BPF_JNE, | |
7084 | [BPF_JSET >> 4] = BPF_JSET, | |
7085 | /* these swap "lesser" and "greater" (L and G in the opcodes) */ | |
7086 | [BPF_JGE >> 4] = BPF_JLE, | |
7087 | [BPF_JGT >> 4] = BPF_JLT, | |
7088 | [BPF_JLE >> 4] = BPF_JGE, | |
7089 | [BPF_JLT >> 4] = BPF_JGT, | |
7090 | [BPF_JSGE >> 4] = BPF_JSLE, | |
7091 | [BPF_JSGT >> 4] = BPF_JSLT, | |
7092 | [BPF_JSLE >> 4] = BPF_JSGE, | |
7093 | [BPF_JSLT >> 4] = BPF_JSGT | |
7094 | }; | |
7095 | return opcode_flip[opcode >> 4]; | |
7096 | } | |
7097 | ||
7098 | static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, | |
7099 | struct bpf_reg_state *src_reg, | |
7100 | u8 opcode) | |
7101 | { | |
7102 | struct bpf_reg_state *pkt; | |
7103 | ||
7104 | if (src_reg->type == PTR_TO_PACKET_END) { | |
7105 | pkt = dst_reg; | |
7106 | } else if (dst_reg->type == PTR_TO_PACKET_END) { | |
7107 | pkt = src_reg; | |
7108 | opcode = flip_opcode(opcode); | |
7109 | } else { | |
7110 | return -1; | |
7111 | } | |
7112 | ||
7113 | if (pkt->range >= 0) | |
7114 | return -1; | |
7115 | ||
7116 | switch (opcode) { | |
7117 | case BPF_JLE: | |
7118 | /* pkt <= pkt_end */ | |
7119 | fallthrough; | |
7120 | case BPF_JGT: | |
7121 | /* pkt > pkt_end */ | |
7122 | if (pkt->range == BEYOND_PKT_END) | |
7123 | /* pkt has at last one extra byte beyond pkt_end */ | |
7124 | return opcode == BPF_JGT; | |
7125 | break; | |
7126 | case BPF_JLT: | |
7127 | /* pkt < pkt_end */ | |
7128 | fallthrough; | |
7129 | case BPF_JGE: | |
7130 | /* pkt >= pkt_end */ | |
7131 | if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) | |
7132 | return opcode == BPF_JGE; | |
7133 | break; | |
7134 | } | |
7135 | return -1; | |
7136 | } | |
7137 | ||
48461135 JB |
7138 | /* Adjusts the register min/max values in the case that the dst_reg is the |
7139 | * variable register that we are working on, and src_reg is a constant or we're | |
7140 | * simply doing a BPF_K check. | |
f1174f77 | 7141 | * In JEQ/JNE cases we also adjust the var_off values. |
48461135 JB |
7142 | */ |
7143 | static void reg_set_min_max(struct bpf_reg_state *true_reg, | |
3f50f132 JF |
7144 | struct bpf_reg_state *false_reg, |
7145 | u64 val, u32 val32, | |
092ed096 | 7146 | u8 opcode, bool is_jmp32) |
48461135 | 7147 | { |
3f50f132 JF |
7148 | struct tnum false_32off = tnum_subreg(false_reg->var_off); |
7149 | struct tnum false_64off = false_reg->var_off; | |
7150 | struct tnum true_32off = tnum_subreg(true_reg->var_off); | |
7151 | struct tnum true_64off = true_reg->var_off; | |
7152 | s64 sval = (s64)val; | |
7153 | s32 sval32 = (s32)val32; | |
a72dafaf | 7154 | |
f1174f77 EC |
7155 | /* If the dst_reg is a pointer, we can't learn anything about its |
7156 | * variable offset from the compare (unless src_reg were a pointer into | |
7157 | * the same object, but we don't bother with that. | |
7158 | * Since false_reg and true_reg have the same type by construction, we | |
7159 | * only need to check one of them for pointerness. | |
7160 | */ | |
7161 | if (__is_pointer_value(false, false_reg)) | |
7162 | return; | |
4cabc5b1 | 7163 | |
48461135 JB |
7164 | switch (opcode) { |
7165 | case BPF_JEQ: | |
48461135 | 7166 | case BPF_JNE: |
a72dafaf JW |
7167 | { |
7168 | struct bpf_reg_state *reg = | |
7169 | opcode == BPF_JEQ ? true_reg : false_reg; | |
7170 | ||
e688c3db AS |
7171 | /* JEQ/JNE comparison doesn't change the register equivalence. |
7172 | * r1 = r2; | |
7173 | * if (r1 == 42) goto label; | |
7174 | * ... | |
7175 | * label: // here both r1 and r2 are known to be 42. | |
7176 | * | |
7177 | * Hence when marking register as known preserve it's ID. | |
48461135 | 7178 | */ |
3f50f132 JF |
7179 | if (is_jmp32) |
7180 | __mark_reg32_known(reg, val32); | |
7181 | else | |
e688c3db | 7182 | ___mark_reg_known(reg, val); |
48461135 | 7183 | break; |
a72dafaf | 7184 | } |
960ea056 | 7185 | case BPF_JSET: |
3f50f132 JF |
7186 | if (is_jmp32) { |
7187 | false_32off = tnum_and(false_32off, tnum_const(~val32)); | |
7188 | if (is_power_of_2(val32)) | |
7189 | true_32off = tnum_or(true_32off, | |
7190 | tnum_const(val32)); | |
7191 | } else { | |
7192 | false_64off = tnum_and(false_64off, tnum_const(~val)); | |
7193 | if (is_power_of_2(val)) | |
7194 | true_64off = tnum_or(true_64off, | |
7195 | tnum_const(val)); | |
7196 | } | |
960ea056 | 7197 | break; |
48461135 | 7198 | case BPF_JGE: |
a72dafaf JW |
7199 | case BPF_JGT: |
7200 | { | |
3f50f132 JF |
7201 | if (is_jmp32) { |
7202 | u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; | |
7203 | u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; | |
7204 | ||
7205 | false_reg->u32_max_value = min(false_reg->u32_max_value, | |
7206 | false_umax); | |
7207 | true_reg->u32_min_value = max(true_reg->u32_min_value, | |
7208 | true_umin); | |
7209 | } else { | |
7210 | u64 false_umax = opcode == BPF_JGT ? val : val - 1; | |
7211 | u64 true_umin = opcode == BPF_JGT ? val + 1 : val; | |
7212 | ||
7213 | false_reg->umax_value = min(false_reg->umax_value, false_umax); | |
7214 | true_reg->umin_value = max(true_reg->umin_value, true_umin); | |
7215 | } | |
b03c9f9f | 7216 | break; |
a72dafaf | 7217 | } |
48461135 | 7218 | case BPF_JSGE: |
a72dafaf JW |
7219 | case BPF_JSGT: |
7220 | { | |
3f50f132 JF |
7221 | if (is_jmp32) { |
7222 | s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; | |
7223 | s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; | |
a72dafaf | 7224 | |
3f50f132 JF |
7225 | false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); |
7226 | true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); | |
7227 | } else { | |
7228 | s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; | |
7229 | s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; | |
7230 | ||
7231 | false_reg->smax_value = min(false_reg->smax_value, false_smax); | |
7232 | true_reg->smin_value = max(true_reg->smin_value, true_smin); | |
7233 | } | |
48461135 | 7234 | break; |
a72dafaf | 7235 | } |
b4e432f1 | 7236 | case BPF_JLE: |
a72dafaf JW |
7237 | case BPF_JLT: |
7238 | { | |
3f50f132 JF |
7239 | if (is_jmp32) { |
7240 | u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; | |
7241 | u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; | |
7242 | ||
7243 | false_reg->u32_min_value = max(false_reg->u32_min_value, | |
7244 | false_umin); | |
7245 | true_reg->u32_max_value = min(true_reg->u32_max_value, | |
7246 | true_umax); | |
7247 | } else { | |
7248 | u64 false_umin = opcode == BPF_JLT ? val : val + 1; | |
7249 | u64 true_umax = opcode == BPF_JLT ? val - 1 : val; | |
7250 | ||
7251 | false_reg->umin_value = max(false_reg->umin_value, false_umin); | |
7252 | true_reg->umax_value = min(true_reg->umax_value, true_umax); | |
7253 | } | |
b4e432f1 | 7254 | break; |
a72dafaf | 7255 | } |
b4e432f1 | 7256 | case BPF_JSLE: |
a72dafaf JW |
7257 | case BPF_JSLT: |
7258 | { | |
3f50f132 JF |
7259 | if (is_jmp32) { |
7260 | s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; | |
7261 | s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; | |
a72dafaf | 7262 | |
3f50f132 JF |
7263 | false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); |
7264 | true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); | |
7265 | } else { | |
7266 | s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; | |
7267 | s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; | |
7268 | ||
7269 | false_reg->smin_value = max(false_reg->smin_value, false_smin); | |
7270 | true_reg->smax_value = min(true_reg->smax_value, true_smax); | |
7271 | } | |
b4e432f1 | 7272 | break; |
a72dafaf | 7273 | } |
48461135 | 7274 | default: |
0fc31b10 | 7275 | return; |
48461135 JB |
7276 | } |
7277 | ||
3f50f132 JF |
7278 | if (is_jmp32) { |
7279 | false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), | |
7280 | tnum_subreg(false_32off)); | |
7281 | true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), | |
7282 | tnum_subreg(true_32off)); | |
7283 | __reg_combine_32_into_64(false_reg); | |
7284 | __reg_combine_32_into_64(true_reg); | |
7285 | } else { | |
7286 | false_reg->var_off = false_64off; | |
7287 | true_reg->var_off = true_64off; | |
7288 | __reg_combine_64_into_32(false_reg); | |
7289 | __reg_combine_64_into_32(true_reg); | |
7290 | } | |
48461135 JB |
7291 | } |
7292 | ||
f1174f77 EC |
7293 | /* Same as above, but for the case that dst_reg holds a constant and src_reg is |
7294 | * the variable reg. | |
48461135 JB |
7295 | */ |
7296 | static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, | |
3f50f132 JF |
7297 | struct bpf_reg_state *false_reg, |
7298 | u64 val, u32 val32, | |
092ed096 | 7299 | u8 opcode, bool is_jmp32) |
48461135 | 7300 | { |
6d94e741 | 7301 | opcode = flip_opcode(opcode); |
0fc31b10 JH |
7302 | /* This uses zero as "not present in table"; luckily the zero opcode, |
7303 | * BPF_JA, can't get here. | |
b03c9f9f | 7304 | */ |
0fc31b10 | 7305 | if (opcode) |
3f50f132 | 7306 | reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); |
f1174f77 EC |
7307 | } |
7308 | ||
7309 | /* Regs are known to be equal, so intersect their min/max/var_off */ | |
7310 | static void __reg_combine_min_max(struct bpf_reg_state *src_reg, | |
7311 | struct bpf_reg_state *dst_reg) | |
7312 | { | |
b03c9f9f EC |
7313 | src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, |
7314 | dst_reg->umin_value); | |
7315 | src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, | |
7316 | dst_reg->umax_value); | |
7317 | src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, | |
7318 | dst_reg->smin_value); | |
7319 | src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, | |
7320 | dst_reg->smax_value); | |
f1174f77 EC |
7321 | src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, |
7322 | dst_reg->var_off); | |
b03c9f9f EC |
7323 | /* We might have learned new bounds from the var_off. */ |
7324 | __update_reg_bounds(src_reg); | |
7325 | __update_reg_bounds(dst_reg); | |
7326 | /* We might have learned something about the sign bit. */ | |
7327 | __reg_deduce_bounds(src_reg); | |
7328 | __reg_deduce_bounds(dst_reg); | |
7329 | /* We might have learned some bits from the bounds. */ | |
7330 | __reg_bound_offset(src_reg); | |
7331 | __reg_bound_offset(dst_reg); | |
7332 | /* Intersecting with the old var_off might have improved our bounds | |
7333 | * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), | |
7334 | * then new var_off is (0; 0x7f...fc) which improves our umax. | |
7335 | */ | |
7336 | __update_reg_bounds(src_reg); | |
7337 | __update_reg_bounds(dst_reg); | |
f1174f77 EC |
7338 | } |
7339 | ||
7340 | static void reg_combine_min_max(struct bpf_reg_state *true_src, | |
7341 | struct bpf_reg_state *true_dst, | |
7342 | struct bpf_reg_state *false_src, | |
7343 | struct bpf_reg_state *false_dst, | |
7344 | u8 opcode) | |
7345 | { | |
7346 | switch (opcode) { | |
7347 | case BPF_JEQ: | |
7348 | __reg_combine_min_max(true_src, true_dst); | |
7349 | break; | |
7350 | case BPF_JNE: | |
7351 | __reg_combine_min_max(false_src, false_dst); | |
b03c9f9f | 7352 | break; |
4cabc5b1 | 7353 | } |
48461135 JB |
7354 | } |
7355 | ||
fd978bf7 JS |
7356 | static void mark_ptr_or_null_reg(struct bpf_func_state *state, |
7357 | struct bpf_reg_state *reg, u32 id, | |
840b9615 | 7358 | bool is_null) |
57a09bf0 | 7359 | { |
93c230e3 MKL |
7360 | if (reg_type_may_be_null(reg->type) && reg->id == id && |
7361 | !WARN_ON_ONCE(!reg->id)) { | |
f1174f77 EC |
7362 | /* Old offset (both fixed and variable parts) should |
7363 | * have been known-zero, because we don't allow pointer | |
7364 | * arithmetic on pointers that might be NULL. | |
7365 | */ | |
b03c9f9f EC |
7366 | if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || |
7367 | !tnum_equals_const(reg->var_off, 0) || | |
f1174f77 | 7368 | reg->off)) { |
b03c9f9f EC |
7369 | __mark_reg_known_zero(reg); |
7370 | reg->off = 0; | |
f1174f77 EC |
7371 | } |
7372 | if (is_null) { | |
7373 | reg->type = SCALAR_VALUE; | |
840b9615 | 7374 | } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { |
64d85290 JS |
7375 | const struct bpf_map *map = reg->map_ptr; |
7376 | ||
7377 | if (map->inner_map_meta) { | |
840b9615 | 7378 | reg->type = CONST_PTR_TO_MAP; |
64d85290 JS |
7379 | reg->map_ptr = map->inner_map_meta; |
7380 | } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { | |
fada7fdc | 7381 | reg->type = PTR_TO_XDP_SOCK; |
64d85290 JS |
7382 | } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || |
7383 | map->map_type == BPF_MAP_TYPE_SOCKHASH) { | |
7384 | reg->type = PTR_TO_SOCKET; | |
840b9615 JS |
7385 | } else { |
7386 | reg->type = PTR_TO_MAP_VALUE; | |
7387 | } | |
c64b7983 JS |
7388 | } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { |
7389 | reg->type = PTR_TO_SOCKET; | |
46f8bc92 MKL |
7390 | } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { |
7391 | reg->type = PTR_TO_SOCK_COMMON; | |
655a51e5 MKL |
7392 | } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { |
7393 | reg->type = PTR_TO_TCP_SOCK; | |
b121b341 YS |
7394 | } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { |
7395 | reg->type = PTR_TO_BTF_ID; | |
457f4436 AN |
7396 | } else if (reg->type == PTR_TO_MEM_OR_NULL) { |
7397 | reg->type = PTR_TO_MEM; | |
afbf21dc YS |
7398 | } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { |
7399 | reg->type = PTR_TO_RDONLY_BUF; | |
7400 | } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { | |
7401 | reg->type = PTR_TO_RDWR_BUF; | |
56f668df | 7402 | } |
1b986589 MKL |
7403 | if (is_null) { |
7404 | /* We don't need id and ref_obj_id from this point | |
7405 | * onwards anymore, thus we should better reset it, | |
7406 | * so that state pruning has chances to take effect. | |
7407 | */ | |
7408 | reg->id = 0; | |
7409 | reg->ref_obj_id = 0; | |
7410 | } else if (!reg_may_point_to_spin_lock(reg)) { | |
7411 | /* For not-NULL ptr, reg->ref_obj_id will be reset | |
7412 | * in release_reg_references(). | |
7413 | * | |
7414 | * reg->id is still used by spin_lock ptr. Other | |
7415 | * than spin_lock ptr type, reg->id can be reset. | |
fd978bf7 JS |
7416 | */ |
7417 | reg->id = 0; | |
56f668df | 7418 | } |
57a09bf0 TG |
7419 | } |
7420 | } | |
7421 | ||
c6a9efa1 PC |
7422 | static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, |
7423 | bool is_null) | |
7424 | { | |
7425 | struct bpf_reg_state *reg; | |
7426 | int i; | |
7427 | ||
7428 | for (i = 0; i < MAX_BPF_REG; i++) | |
7429 | mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); | |
7430 | ||
7431 | bpf_for_each_spilled_reg(i, state, reg) { | |
7432 | if (!reg) | |
7433 | continue; | |
7434 | mark_ptr_or_null_reg(state, reg, id, is_null); | |
7435 | } | |
7436 | } | |
7437 | ||
57a09bf0 TG |
7438 | /* The logic is similar to find_good_pkt_pointers(), both could eventually |
7439 | * be folded together at some point. | |
7440 | */ | |
840b9615 JS |
7441 | static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, |
7442 | bool is_null) | |
57a09bf0 | 7443 | { |
f4d7e40a | 7444 | struct bpf_func_state *state = vstate->frame[vstate->curframe]; |
c6a9efa1 | 7445 | struct bpf_reg_state *regs = state->regs; |
1b986589 | 7446 | u32 ref_obj_id = regs[regno].ref_obj_id; |
a08dd0da | 7447 | u32 id = regs[regno].id; |
c6a9efa1 | 7448 | int i; |
57a09bf0 | 7449 | |
1b986589 MKL |
7450 | if (ref_obj_id && ref_obj_id == id && is_null) |
7451 | /* regs[regno] is in the " == NULL" branch. | |
7452 | * No one could have freed the reference state before | |
7453 | * doing the NULL check. | |
7454 | */ | |
7455 | WARN_ON_ONCE(release_reference_state(state, id)); | |
fd978bf7 | 7456 | |
c6a9efa1 PC |
7457 | for (i = 0; i <= vstate->curframe; i++) |
7458 | __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); | |
57a09bf0 TG |
7459 | } |
7460 | ||
5beca081 DB |
7461 | static bool try_match_pkt_pointers(const struct bpf_insn *insn, |
7462 | struct bpf_reg_state *dst_reg, | |
7463 | struct bpf_reg_state *src_reg, | |
7464 | struct bpf_verifier_state *this_branch, | |
7465 | struct bpf_verifier_state *other_branch) | |
7466 | { | |
7467 | if (BPF_SRC(insn->code) != BPF_X) | |
7468 | return false; | |
7469 | ||
092ed096 JW |
7470 | /* Pointers are always 64-bit. */ |
7471 | if (BPF_CLASS(insn->code) == BPF_JMP32) | |
7472 | return false; | |
7473 | ||
5beca081 DB |
7474 | switch (BPF_OP(insn->code)) { |
7475 | case BPF_JGT: | |
7476 | if ((dst_reg->type == PTR_TO_PACKET && | |
7477 | src_reg->type == PTR_TO_PACKET_END) || | |
7478 | (dst_reg->type == PTR_TO_PACKET_META && | |
7479 | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | |
7480 | /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ | |
7481 | find_good_pkt_pointers(this_branch, dst_reg, | |
7482 | dst_reg->type, false); | |
6d94e741 | 7483 | mark_pkt_end(other_branch, insn->dst_reg, true); |
5beca081 DB |
7484 | } else if ((dst_reg->type == PTR_TO_PACKET_END && |
7485 | src_reg->type == PTR_TO_PACKET) || | |
7486 | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | |
7487 | src_reg->type == PTR_TO_PACKET_META)) { | |
7488 | /* pkt_end > pkt_data', pkt_data > pkt_meta' */ | |
7489 | find_good_pkt_pointers(other_branch, src_reg, | |
7490 | src_reg->type, true); | |
6d94e741 | 7491 | mark_pkt_end(this_branch, insn->src_reg, false); |
5beca081 DB |
7492 | } else { |
7493 | return false; | |
7494 | } | |
7495 | break; | |
7496 | case BPF_JLT: | |
7497 | if ((dst_reg->type == PTR_TO_PACKET && | |
7498 | src_reg->type == PTR_TO_PACKET_END) || | |
7499 | (dst_reg->type == PTR_TO_PACKET_META && | |
7500 | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | |
7501 | /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ | |
7502 | find_good_pkt_pointers(other_branch, dst_reg, | |
7503 | dst_reg->type, true); | |
6d94e741 | 7504 | mark_pkt_end(this_branch, insn->dst_reg, false); |
5beca081 DB |
7505 | } else if ((dst_reg->type == PTR_TO_PACKET_END && |
7506 | src_reg->type == PTR_TO_PACKET) || | |
7507 | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | |
7508 | src_reg->type == PTR_TO_PACKET_META)) { | |
7509 | /* pkt_end < pkt_data', pkt_data > pkt_meta' */ | |
7510 | find_good_pkt_pointers(this_branch, src_reg, | |
7511 | src_reg->type, false); | |
6d94e741 | 7512 | mark_pkt_end(other_branch, insn->src_reg, true); |
5beca081 DB |
7513 | } else { |
7514 | return false; | |
7515 | } | |
7516 | break; | |
7517 | case BPF_JGE: | |
7518 | if ((dst_reg->type == PTR_TO_PACKET && | |
7519 | src_reg->type == PTR_TO_PACKET_END) || | |
7520 | (dst_reg->type == PTR_TO_PACKET_META && | |
7521 | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | |
7522 | /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ | |
7523 | find_good_pkt_pointers(this_branch, dst_reg, | |
7524 | dst_reg->type, true); | |
6d94e741 | 7525 | mark_pkt_end(other_branch, insn->dst_reg, false); |
5beca081 DB |
7526 | } else if ((dst_reg->type == PTR_TO_PACKET_END && |
7527 | src_reg->type == PTR_TO_PACKET) || | |
7528 | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | |
7529 | src_reg->type == PTR_TO_PACKET_META)) { | |
7530 | /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ | |
7531 | find_good_pkt_pointers(other_branch, src_reg, | |
7532 | src_reg->type, false); | |
6d94e741 | 7533 | mark_pkt_end(this_branch, insn->src_reg, true); |
5beca081 DB |
7534 | } else { |
7535 | return false; | |
7536 | } | |
7537 | break; | |
7538 | case BPF_JLE: | |
7539 | if ((dst_reg->type == PTR_TO_PACKET && | |
7540 | src_reg->type == PTR_TO_PACKET_END) || | |
7541 | (dst_reg->type == PTR_TO_PACKET_META && | |
7542 | reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { | |
7543 | /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ | |
7544 | find_good_pkt_pointers(other_branch, dst_reg, | |
7545 | dst_reg->type, false); | |
6d94e741 | 7546 | mark_pkt_end(this_branch, insn->dst_reg, true); |
5beca081 DB |
7547 | } else if ((dst_reg->type == PTR_TO_PACKET_END && |
7548 | src_reg->type == PTR_TO_PACKET) || | |
7549 | (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && | |
7550 | src_reg->type == PTR_TO_PACKET_META)) { | |
7551 | /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ | |
7552 | find_good_pkt_pointers(this_branch, src_reg, | |
7553 | src_reg->type, true); | |
6d94e741 | 7554 | mark_pkt_end(other_branch, insn->src_reg, false); |
5beca081 DB |
7555 | } else { |
7556 | return false; | |
7557 | } | |
7558 | break; | |
7559 | default: | |
7560 | return false; | |
7561 | } | |
7562 | ||
7563 | return true; | |
7564 | } | |
7565 | ||
75748837 AS |
7566 | static void find_equal_scalars(struct bpf_verifier_state *vstate, |
7567 | struct bpf_reg_state *known_reg) | |
7568 | { | |
7569 | struct bpf_func_state *state; | |
7570 | struct bpf_reg_state *reg; | |
7571 | int i, j; | |
7572 | ||
7573 | for (i = 0; i <= vstate->curframe; i++) { | |
7574 | state = vstate->frame[i]; | |
7575 | for (j = 0; j < MAX_BPF_REG; j++) { | |
7576 | reg = &state->regs[j]; | |
7577 | if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) | |
7578 | *reg = *known_reg; | |
7579 | } | |
7580 | ||
7581 | bpf_for_each_spilled_reg(j, state, reg) { | |
7582 | if (!reg) | |
7583 | continue; | |
7584 | if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) | |
7585 | *reg = *known_reg; | |
7586 | } | |
7587 | } | |
7588 | } | |
7589 | ||
58e2af8b | 7590 | static int check_cond_jmp_op(struct bpf_verifier_env *env, |
17a52670 AS |
7591 | struct bpf_insn *insn, int *insn_idx) |
7592 | { | |
f4d7e40a AS |
7593 | struct bpf_verifier_state *this_branch = env->cur_state; |
7594 | struct bpf_verifier_state *other_branch; | |
7595 | struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; | |
fb8d251e | 7596 | struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; |
17a52670 | 7597 | u8 opcode = BPF_OP(insn->code); |
092ed096 | 7598 | bool is_jmp32; |
fb8d251e | 7599 | int pred = -1; |
17a52670 AS |
7600 | int err; |
7601 | ||
092ed096 JW |
7602 | /* Only conditional jumps are expected to reach here. */ |
7603 | if (opcode == BPF_JA || opcode > BPF_JSLE) { | |
7604 | verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); | |
17a52670 AS |
7605 | return -EINVAL; |
7606 | } | |
7607 | ||
7608 | if (BPF_SRC(insn->code) == BPF_X) { | |
7609 | if (insn->imm != 0) { | |
092ed096 | 7610 | verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); |
17a52670 AS |
7611 | return -EINVAL; |
7612 | } | |
7613 | ||
7614 | /* check src1 operand */ | |
dc503a8a | 7615 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
7616 | if (err) |
7617 | return err; | |
1be7f75d AS |
7618 | |
7619 | if (is_pointer_value(env, insn->src_reg)) { | |
61bd5218 | 7620 | verbose(env, "R%d pointer comparison prohibited\n", |
1be7f75d AS |
7621 | insn->src_reg); |
7622 | return -EACCES; | |
7623 | } | |
fb8d251e | 7624 | src_reg = ®s[insn->src_reg]; |
17a52670 AS |
7625 | } else { |
7626 | if (insn->src_reg != BPF_REG_0) { | |
092ed096 | 7627 | verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); |
17a52670 AS |
7628 | return -EINVAL; |
7629 | } | |
7630 | } | |
7631 | ||
7632 | /* check src2 operand */ | |
dc503a8a | 7633 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
7634 | if (err) |
7635 | return err; | |
7636 | ||
1a0dc1ac | 7637 | dst_reg = ®s[insn->dst_reg]; |
092ed096 | 7638 | is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; |
1a0dc1ac | 7639 | |
3f50f132 JF |
7640 | if (BPF_SRC(insn->code) == BPF_K) { |
7641 | pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); | |
7642 | } else if (src_reg->type == SCALAR_VALUE && | |
7643 | is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { | |
7644 | pred = is_branch_taken(dst_reg, | |
7645 | tnum_subreg(src_reg->var_off).value, | |
7646 | opcode, | |
7647 | is_jmp32); | |
7648 | } else if (src_reg->type == SCALAR_VALUE && | |
7649 | !is_jmp32 && tnum_is_const(src_reg->var_off)) { | |
7650 | pred = is_branch_taken(dst_reg, | |
7651 | src_reg->var_off.value, | |
7652 | opcode, | |
7653 | is_jmp32); | |
6d94e741 AS |
7654 | } else if (reg_is_pkt_pointer_any(dst_reg) && |
7655 | reg_is_pkt_pointer_any(src_reg) && | |
7656 | !is_jmp32) { | |
7657 | pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); | |
3f50f132 JF |
7658 | } |
7659 | ||
b5dc0163 | 7660 | if (pred >= 0) { |
cac616db JF |
7661 | /* If we get here with a dst_reg pointer type it is because |
7662 | * above is_branch_taken() special cased the 0 comparison. | |
7663 | */ | |
7664 | if (!__is_pointer_value(false, dst_reg)) | |
7665 | err = mark_chain_precision(env, insn->dst_reg); | |
6d94e741 AS |
7666 | if (BPF_SRC(insn->code) == BPF_X && !err && |
7667 | !__is_pointer_value(false, src_reg)) | |
b5dc0163 AS |
7668 | err = mark_chain_precision(env, insn->src_reg); |
7669 | if (err) | |
7670 | return err; | |
7671 | } | |
fb8d251e AS |
7672 | if (pred == 1) { |
7673 | /* only follow the goto, ignore fall-through */ | |
7674 | *insn_idx += insn->off; | |
7675 | return 0; | |
7676 | } else if (pred == 0) { | |
7677 | /* only follow fall-through branch, since | |
7678 | * that's where the program will go | |
7679 | */ | |
7680 | return 0; | |
17a52670 AS |
7681 | } |
7682 | ||
979d63d5 DB |
7683 | other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, |
7684 | false); | |
17a52670 AS |
7685 | if (!other_branch) |
7686 | return -EFAULT; | |
f4d7e40a | 7687 | other_branch_regs = other_branch->frame[other_branch->curframe]->regs; |
17a52670 | 7688 | |
48461135 JB |
7689 | /* detect if we are comparing against a constant value so we can adjust |
7690 | * our min/max values for our dst register. | |
f1174f77 EC |
7691 | * this is only legit if both are scalars (or pointers to the same |
7692 | * object, I suppose, but we don't support that right now), because | |
7693 | * otherwise the different base pointers mean the offsets aren't | |
7694 | * comparable. | |
48461135 JB |
7695 | */ |
7696 | if (BPF_SRC(insn->code) == BPF_X) { | |
092ed096 | 7697 | struct bpf_reg_state *src_reg = ®s[insn->src_reg]; |
092ed096 | 7698 | |
f1174f77 | 7699 | if (dst_reg->type == SCALAR_VALUE && |
092ed096 JW |
7700 | src_reg->type == SCALAR_VALUE) { |
7701 | if (tnum_is_const(src_reg->var_off) || | |
3f50f132 JF |
7702 | (is_jmp32 && |
7703 | tnum_is_const(tnum_subreg(src_reg->var_off)))) | |
f4d7e40a | 7704 | reg_set_min_max(&other_branch_regs[insn->dst_reg], |
092ed096 | 7705 | dst_reg, |
3f50f132 JF |
7706 | src_reg->var_off.value, |
7707 | tnum_subreg(src_reg->var_off).value, | |
092ed096 JW |
7708 | opcode, is_jmp32); |
7709 | else if (tnum_is_const(dst_reg->var_off) || | |
3f50f132 JF |
7710 | (is_jmp32 && |
7711 | tnum_is_const(tnum_subreg(dst_reg->var_off)))) | |
f4d7e40a | 7712 | reg_set_min_max_inv(&other_branch_regs[insn->src_reg], |
092ed096 | 7713 | src_reg, |
3f50f132 JF |
7714 | dst_reg->var_off.value, |
7715 | tnum_subreg(dst_reg->var_off).value, | |
092ed096 JW |
7716 | opcode, is_jmp32); |
7717 | else if (!is_jmp32 && | |
7718 | (opcode == BPF_JEQ || opcode == BPF_JNE)) | |
f1174f77 | 7719 | /* Comparing for equality, we can combine knowledge */ |
f4d7e40a AS |
7720 | reg_combine_min_max(&other_branch_regs[insn->src_reg], |
7721 | &other_branch_regs[insn->dst_reg], | |
092ed096 | 7722 | src_reg, dst_reg, opcode); |
e688c3db AS |
7723 | if (src_reg->id && |
7724 | !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { | |
75748837 AS |
7725 | find_equal_scalars(this_branch, src_reg); |
7726 | find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); | |
7727 | } | |
7728 | ||
f1174f77 EC |
7729 | } |
7730 | } else if (dst_reg->type == SCALAR_VALUE) { | |
f4d7e40a | 7731 | reg_set_min_max(&other_branch_regs[insn->dst_reg], |
3f50f132 JF |
7732 | dst_reg, insn->imm, (u32)insn->imm, |
7733 | opcode, is_jmp32); | |
48461135 JB |
7734 | } |
7735 | ||
e688c3db AS |
7736 | if (dst_reg->type == SCALAR_VALUE && dst_reg->id && |
7737 | !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { | |
75748837 AS |
7738 | find_equal_scalars(this_branch, dst_reg); |
7739 | find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); | |
7740 | } | |
7741 | ||
092ed096 JW |
7742 | /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). |
7743 | * NOTE: these optimizations below are related with pointer comparison | |
7744 | * which will never be JMP32. | |
7745 | */ | |
7746 | if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && | |
1a0dc1ac | 7747 | insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && |
840b9615 JS |
7748 | reg_type_may_be_null(dst_reg->type)) { |
7749 | /* Mark all identical registers in each branch as either | |
57a09bf0 TG |
7750 | * safe or unknown depending R == 0 or R != 0 conditional. |
7751 | */ | |
840b9615 JS |
7752 | mark_ptr_or_null_regs(this_branch, insn->dst_reg, |
7753 | opcode == BPF_JNE); | |
7754 | mark_ptr_or_null_regs(other_branch, insn->dst_reg, | |
7755 | opcode == BPF_JEQ); | |
5beca081 DB |
7756 | } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], |
7757 | this_branch, other_branch) && | |
7758 | is_pointer_value(env, insn->dst_reg)) { | |
61bd5218 JK |
7759 | verbose(env, "R%d pointer comparison prohibited\n", |
7760 | insn->dst_reg); | |
1be7f75d | 7761 | return -EACCES; |
17a52670 | 7762 | } |
06ee7115 | 7763 | if (env->log.level & BPF_LOG_LEVEL) |
f4d7e40a | 7764 | print_verifier_state(env, this_branch->frame[this_branch->curframe]); |
17a52670 AS |
7765 | return 0; |
7766 | } | |
7767 | ||
17a52670 | 7768 | /* verify BPF_LD_IMM64 instruction */ |
58e2af8b | 7769 | static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) |
17a52670 | 7770 | { |
d8eca5bb | 7771 | struct bpf_insn_aux_data *aux = cur_aux(env); |
638f5b90 | 7772 | struct bpf_reg_state *regs = cur_regs(env); |
4976b718 | 7773 | struct bpf_reg_state *dst_reg; |
d8eca5bb | 7774 | struct bpf_map *map; |
17a52670 AS |
7775 | int err; |
7776 | ||
7777 | if (BPF_SIZE(insn->code) != BPF_DW) { | |
61bd5218 | 7778 | verbose(env, "invalid BPF_LD_IMM insn\n"); |
17a52670 AS |
7779 | return -EINVAL; |
7780 | } | |
7781 | if (insn->off != 0) { | |
61bd5218 | 7782 | verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); |
17a52670 AS |
7783 | return -EINVAL; |
7784 | } | |
7785 | ||
dc503a8a | 7786 | err = check_reg_arg(env, insn->dst_reg, DST_OP); |
17a52670 AS |
7787 | if (err) |
7788 | return err; | |
7789 | ||
4976b718 | 7790 | dst_reg = ®s[insn->dst_reg]; |
6b173873 | 7791 | if (insn->src_reg == 0) { |
6b173873 JK |
7792 | u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; |
7793 | ||
4976b718 | 7794 | dst_reg->type = SCALAR_VALUE; |
b03c9f9f | 7795 | __mark_reg_known(®s[insn->dst_reg], imm); |
17a52670 | 7796 | return 0; |
6b173873 | 7797 | } |
17a52670 | 7798 | |
4976b718 HL |
7799 | if (insn->src_reg == BPF_PSEUDO_BTF_ID) { |
7800 | mark_reg_known_zero(env, regs, insn->dst_reg); | |
7801 | ||
7802 | dst_reg->type = aux->btf_var.reg_type; | |
7803 | switch (dst_reg->type) { | |
7804 | case PTR_TO_MEM: | |
7805 | dst_reg->mem_size = aux->btf_var.mem_size; | |
7806 | break; | |
7807 | case PTR_TO_BTF_ID: | |
eaa6bcb7 | 7808 | case PTR_TO_PERCPU_BTF_ID: |
22dc4a0f | 7809 | dst_reg->btf = aux->btf_var.btf; |
4976b718 HL |
7810 | dst_reg->btf_id = aux->btf_var.btf_id; |
7811 | break; | |
7812 | default: | |
7813 | verbose(env, "bpf verifier is misconfigured\n"); | |
7814 | return -EFAULT; | |
7815 | } | |
7816 | return 0; | |
7817 | } | |
7818 | ||
d8eca5bb DB |
7819 | map = env->used_maps[aux->map_index]; |
7820 | mark_reg_known_zero(env, regs, insn->dst_reg); | |
4976b718 | 7821 | dst_reg->map_ptr = map; |
d8eca5bb DB |
7822 | |
7823 | if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { | |
4976b718 HL |
7824 | dst_reg->type = PTR_TO_MAP_VALUE; |
7825 | dst_reg->off = aux->map_off; | |
d8eca5bb | 7826 | if (map_value_has_spin_lock(map)) |
4976b718 | 7827 | dst_reg->id = ++env->id_gen; |
d8eca5bb | 7828 | } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { |
4976b718 | 7829 | dst_reg->type = CONST_PTR_TO_MAP; |
d8eca5bb DB |
7830 | } else { |
7831 | verbose(env, "bpf verifier is misconfigured\n"); | |
7832 | return -EINVAL; | |
7833 | } | |
17a52670 | 7834 | |
17a52670 AS |
7835 | return 0; |
7836 | } | |
7837 | ||
96be4325 DB |
7838 | static bool may_access_skb(enum bpf_prog_type type) |
7839 | { | |
7840 | switch (type) { | |
7841 | case BPF_PROG_TYPE_SOCKET_FILTER: | |
7842 | case BPF_PROG_TYPE_SCHED_CLS: | |
94caee8c | 7843 | case BPF_PROG_TYPE_SCHED_ACT: |
96be4325 DB |
7844 | return true; |
7845 | default: | |
7846 | return false; | |
7847 | } | |
7848 | } | |
7849 | ||
ddd872bc AS |
7850 | /* verify safety of LD_ABS|LD_IND instructions: |
7851 | * - they can only appear in the programs where ctx == skb | |
7852 | * - since they are wrappers of function calls, they scratch R1-R5 registers, | |
7853 | * preserve R6-R9, and store return value into R0 | |
7854 | * | |
7855 | * Implicit input: | |
7856 | * ctx == skb == R6 == CTX | |
7857 | * | |
7858 | * Explicit input: | |
7859 | * SRC == any register | |
7860 | * IMM == 32-bit immediate | |
7861 | * | |
7862 | * Output: | |
7863 | * R0 - 8/16/32-bit skb data converted to cpu endianness | |
7864 | */ | |
58e2af8b | 7865 | static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) |
ddd872bc | 7866 | { |
638f5b90 | 7867 | struct bpf_reg_state *regs = cur_regs(env); |
6d4f151a | 7868 | static const int ctx_reg = BPF_REG_6; |
ddd872bc | 7869 | u8 mode = BPF_MODE(insn->code); |
ddd872bc AS |
7870 | int i, err; |
7871 | ||
7e40781c | 7872 | if (!may_access_skb(resolve_prog_type(env->prog))) { |
61bd5218 | 7873 | verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); |
ddd872bc AS |
7874 | return -EINVAL; |
7875 | } | |
7876 | ||
e0cea7ce DB |
7877 | if (!env->ops->gen_ld_abs) { |
7878 | verbose(env, "bpf verifier is misconfigured\n"); | |
7879 | return -EINVAL; | |
7880 | } | |
7881 | ||
ddd872bc | 7882 | if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || |
d82bccc6 | 7883 | BPF_SIZE(insn->code) == BPF_DW || |
ddd872bc | 7884 | (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { |
61bd5218 | 7885 | verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); |
ddd872bc AS |
7886 | return -EINVAL; |
7887 | } | |
7888 | ||
7889 | /* check whether implicit source operand (register R6) is readable */ | |
6d4f151a | 7890 | err = check_reg_arg(env, ctx_reg, SRC_OP); |
ddd872bc AS |
7891 | if (err) |
7892 | return err; | |
7893 | ||
fd978bf7 JS |
7894 | /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as |
7895 | * gen_ld_abs() may terminate the program at runtime, leading to | |
7896 | * reference leak. | |
7897 | */ | |
7898 | err = check_reference_leak(env); | |
7899 | if (err) { | |
7900 | verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); | |
7901 | return err; | |
7902 | } | |
7903 | ||
d83525ca AS |
7904 | if (env->cur_state->active_spin_lock) { |
7905 | verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); | |
7906 | return -EINVAL; | |
7907 | } | |
7908 | ||
6d4f151a | 7909 | if (regs[ctx_reg].type != PTR_TO_CTX) { |
61bd5218 JK |
7910 | verbose(env, |
7911 | "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); | |
ddd872bc AS |
7912 | return -EINVAL; |
7913 | } | |
7914 | ||
7915 | if (mode == BPF_IND) { | |
7916 | /* check explicit source operand */ | |
dc503a8a | 7917 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
ddd872bc AS |
7918 | if (err) |
7919 | return err; | |
7920 | } | |
7921 | ||
6d4f151a DB |
7922 | err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); |
7923 | if (err < 0) | |
7924 | return err; | |
7925 | ||
ddd872bc | 7926 | /* reset caller saved regs to unreadable */ |
dc503a8a | 7927 | for (i = 0; i < CALLER_SAVED_REGS; i++) { |
61bd5218 | 7928 | mark_reg_not_init(env, regs, caller_saved[i]); |
dc503a8a EC |
7929 | check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
7930 | } | |
ddd872bc AS |
7931 | |
7932 | /* mark destination R0 register as readable, since it contains | |
dc503a8a EC |
7933 | * the value fetched from the packet. |
7934 | * Already marked as written above. | |
ddd872bc | 7935 | */ |
61bd5218 | 7936 | mark_reg_unknown(env, regs, BPF_REG_0); |
5327ed3d JW |
7937 | /* ld_abs load up to 32-bit skb data. */ |
7938 | regs[BPF_REG_0].subreg_def = env->insn_idx + 1; | |
ddd872bc AS |
7939 | return 0; |
7940 | } | |
7941 | ||
390ee7e2 AS |
7942 | static int check_return_code(struct bpf_verifier_env *env) |
7943 | { | |
5cf1e914 | 7944 | struct tnum enforce_attach_type_range = tnum_unknown; |
27ae7997 | 7945 | const struct bpf_prog *prog = env->prog; |
390ee7e2 AS |
7946 | struct bpf_reg_state *reg; |
7947 | struct tnum range = tnum_range(0, 1); | |
7e40781c | 7948 | enum bpf_prog_type prog_type = resolve_prog_type(env->prog); |
27ae7997 | 7949 | int err; |
f782e2c3 | 7950 | const bool is_subprog = env->cur_state->frame[0]->subprogno; |
27ae7997 | 7951 | |
9e4e01df | 7952 | /* LSM and struct_ops func-ptr's return type could be "void" */ |
f782e2c3 DB |
7953 | if (!is_subprog && |
7954 | (prog_type == BPF_PROG_TYPE_STRUCT_OPS || | |
7e40781c | 7955 | prog_type == BPF_PROG_TYPE_LSM) && |
27ae7997 MKL |
7956 | !prog->aux->attach_func_proto->type) |
7957 | return 0; | |
7958 | ||
7959 | /* eBPF calling convetion is such that R0 is used | |
7960 | * to return the value from eBPF program. | |
7961 | * Make sure that it's readable at this time | |
7962 | * of bpf_exit, which means that program wrote | |
7963 | * something into it earlier | |
7964 | */ | |
7965 | err = check_reg_arg(env, BPF_REG_0, SRC_OP); | |
7966 | if (err) | |
7967 | return err; | |
7968 | ||
7969 | if (is_pointer_value(env, BPF_REG_0)) { | |
7970 | verbose(env, "R0 leaks addr as return value\n"); | |
7971 | return -EACCES; | |
7972 | } | |
390ee7e2 | 7973 | |
f782e2c3 DB |
7974 | reg = cur_regs(env) + BPF_REG_0; |
7975 | if (is_subprog) { | |
7976 | if (reg->type != SCALAR_VALUE) { | |
7977 | verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", | |
7978 | reg_type_str[reg->type]); | |
7979 | return -EINVAL; | |
7980 | } | |
7981 | return 0; | |
7982 | } | |
7983 | ||
7e40781c | 7984 | switch (prog_type) { |
983695fa DB |
7985 | case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: |
7986 | if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || | |
1b66d253 DB |
7987 | env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || |
7988 | env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || | |
7989 | env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || | |
7990 | env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || | |
7991 | env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) | |
983695fa | 7992 | range = tnum_range(1, 1); |
77241217 SF |
7993 | if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || |
7994 | env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) | |
7995 | range = tnum_range(0, 3); | |
ed4ed404 | 7996 | break; |
390ee7e2 | 7997 | case BPF_PROG_TYPE_CGROUP_SKB: |
5cf1e914 | 7998 | if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { |
7999 | range = tnum_range(0, 3); | |
8000 | enforce_attach_type_range = tnum_range(2, 3); | |
8001 | } | |
ed4ed404 | 8002 | break; |
390ee7e2 AS |
8003 | case BPF_PROG_TYPE_CGROUP_SOCK: |
8004 | case BPF_PROG_TYPE_SOCK_OPS: | |
ebc614f6 | 8005 | case BPF_PROG_TYPE_CGROUP_DEVICE: |
7b146ceb | 8006 | case BPF_PROG_TYPE_CGROUP_SYSCTL: |
0d01da6a | 8007 | case BPF_PROG_TYPE_CGROUP_SOCKOPT: |
390ee7e2 | 8008 | break; |
15ab09bd AS |
8009 | case BPF_PROG_TYPE_RAW_TRACEPOINT: |
8010 | if (!env->prog->aux->attach_btf_id) | |
8011 | return 0; | |
8012 | range = tnum_const(0); | |
8013 | break; | |
15d83c4d | 8014 | case BPF_PROG_TYPE_TRACING: |
e92888c7 YS |
8015 | switch (env->prog->expected_attach_type) { |
8016 | case BPF_TRACE_FENTRY: | |
8017 | case BPF_TRACE_FEXIT: | |
8018 | range = tnum_const(0); | |
8019 | break; | |
8020 | case BPF_TRACE_RAW_TP: | |
8021 | case BPF_MODIFY_RETURN: | |
15d83c4d | 8022 | return 0; |
2ec0616e DB |
8023 | case BPF_TRACE_ITER: |
8024 | break; | |
e92888c7 YS |
8025 | default: |
8026 | return -ENOTSUPP; | |
8027 | } | |
15d83c4d | 8028 | break; |
e9ddbb77 JS |
8029 | case BPF_PROG_TYPE_SK_LOOKUP: |
8030 | range = tnum_range(SK_DROP, SK_PASS); | |
8031 | break; | |
e92888c7 YS |
8032 | case BPF_PROG_TYPE_EXT: |
8033 | /* freplace program can return anything as its return value | |
8034 | * depends on the to-be-replaced kernel func or bpf program. | |
8035 | */ | |
390ee7e2 AS |
8036 | default: |
8037 | return 0; | |
8038 | } | |
8039 | ||
390ee7e2 | 8040 | if (reg->type != SCALAR_VALUE) { |
61bd5218 | 8041 | verbose(env, "At program exit the register R0 is not a known value (%s)\n", |
390ee7e2 AS |
8042 | reg_type_str[reg->type]); |
8043 | return -EINVAL; | |
8044 | } | |
8045 | ||
8046 | if (!tnum_in(range, reg->var_off)) { | |
5cf1e914 | 8047 | char tn_buf[48]; |
8048 | ||
61bd5218 | 8049 | verbose(env, "At program exit the register R0 "); |
390ee7e2 | 8050 | if (!tnum_is_unknown(reg->var_off)) { |
390ee7e2 | 8051 | tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
61bd5218 | 8052 | verbose(env, "has value %s", tn_buf); |
390ee7e2 | 8053 | } else { |
61bd5218 | 8054 | verbose(env, "has unknown scalar value"); |
390ee7e2 | 8055 | } |
5cf1e914 | 8056 | tnum_strn(tn_buf, sizeof(tn_buf), range); |
983695fa | 8057 | verbose(env, " should have been in %s\n", tn_buf); |
390ee7e2 AS |
8058 | return -EINVAL; |
8059 | } | |
5cf1e914 | 8060 | |
8061 | if (!tnum_is_unknown(enforce_attach_type_range) && | |
8062 | tnum_in(enforce_attach_type_range, reg->var_off)) | |
8063 | env->prog->enforce_expected_attach_type = 1; | |
390ee7e2 AS |
8064 | return 0; |
8065 | } | |
8066 | ||
475fb78f AS |
8067 | /* non-recursive DFS pseudo code |
8068 | * 1 procedure DFS-iterative(G,v): | |
8069 | * 2 label v as discovered | |
8070 | * 3 let S be a stack | |
8071 | * 4 S.push(v) | |
8072 | * 5 while S is not empty | |
8073 | * 6 t <- S.pop() | |
8074 | * 7 if t is what we're looking for: | |
8075 | * 8 return t | |
8076 | * 9 for all edges e in G.adjacentEdges(t) do | |
8077 | * 10 if edge e is already labelled | |
8078 | * 11 continue with the next edge | |
8079 | * 12 w <- G.adjacentVertex(t,e) | |
8080 | * 13 if vertex w is not discovered and not explored | |
8081 | * 14 label e as tree-edge | |
8082 | * 15 label w as discovered | |
8083 | * 16 S.push(w) | |
8084 | * 17 continue at 5 | |
8085 | * 18 else if vertex w is discovered | |
8086 | * 19 label e as back-edge | |
8087 | * 20 else | |
8088 | * 21 // vertex w is explored | |
8089 | * 22 label e as forward- or cross-edge | |
8090 | * 23 label t as explored | |
8091 | * 24 S.pop() | |
8092 | * | |
8093 | * convention: | |
8094 | * 0x10 - discovered | |
8095 | * 0x11 - discovered and fall-through edge labelled | |
8096 | * 0x12 - discovered and fall-through and branch edges labelled | |
8097 | * 0x20 - explored | |
8098 | */ | |
8099 | ||
8100 | enum { | |
8101 | DISCOVERED = 0x10, | |
8102 | EXPLORED = 0x20, | |
8103 | FALLTHROUGH = 1, | |
8104 | BRANCH = 2, | |
8105 | }; | |
8106 | ||
dc2a4ebc AS |
8107 | static u32 state_htab_size(struct bpf_verifier_env *env) |
8108 | { | |
8109 | return env->prog->len; | |
8110 | } | |
8111 | ||
5d839021 AS |
8112 | static struct bpf_verifier_state_list **explored_state( |
8113 | struct bpf_verifier_env *env, | |
8114 | int idx) | |
8115 | { | |
dc2a4ebc AS |
8116 | struct bpf_verifier_state *cur = env->cur_state; |
8117 | struct bpf_func_state *state = cur->frame[cur->curframe]; | |
8118 | ||
8119 | return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; | |
5d839021 AS |
8120 | } |
8121 | ||
8122 | static void init_explored_state(struct bpf_verifier_env *env, int idx) | |
8123 | { | |
a8f500af | 8124 | env->insn_aux_data[idx].prune_point = true; |
5d839021 | 8125 | } |
f1bca824 | 8126 | |
59e2e27d WAF |
8127 | enum { |
8128 | DONE_EXPLORING = 0, | |
8129 | KEEP_EXPLORING = 1, | |
8130 | }; | |
8131 | ||
475fb78f AS |
8132 | /* t, w, e - match pseudo-code above: |
8133 | * t - index of current instruction | |
8134 | * w - next instruction | |
8135 | * e - edge | |
8136 | */ | |
2589726d AS |
8137 | static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, |
8138 | bool loop_ok) | |
475fb78f | 8139 | { |
7df737e9 AS |
8140 | int *insn_stack = env->cfg.insn_stack; |
8141 | int *insn_state = env->cfg.insn_state; | |
8142 | ||
475fb78f | 8143 | if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) |
59e2e27d | 8144 | return DONE_EXPLORING; |
475fb78f AS |
8145 | |
8146 | if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) | |
59e2e27d | 8147 | return DONE_EXPLORING; |
475fb78f AS |
8148 | |
8149 | if (w < 0 || w >= env->prog->len) { | |
d9762e84 | 8150 | verbose_linfo(env, t, "%d: ", t); |
61bd5218 | 8151 | verbose(env, "jump out of range from insn %d to %d\n", t, w); |
475fb78f AS |
8152 | return -EINVAL; |
8153 | } | |
8154 | ||
f1bca824 AS |
8155 | if (e == BRANCH) |
8156 | /* mark branch target for state pruning */ | |
5d839021 | 8157 | init_explored_state(env, w); |
f1bca824 | 8158 | |
475fb78f AS |
8159 | if (insn_state[w] == 0) { |
8160 | /* tree-edge */ | |
8161 | insn_state[t] = DISCOVERED | e; | |
8162 | insn_state[w] = DISCOVERED; | |
7df737e9 | 8163 | if (env->cfg.cur_stack >= env->prog->len) |
475fb78f | 8164 | return -E2BIG; |
7df737e9 | 8165 | insn_stack[env->cfg.cur_stack++] = w; |
59e2e27d | 8166 | return KEEP_EXPLORING; |
475fb78f | 8167 | } else if ((insn_state[w] & 0xF0) == DISCOVERED) { |
2c78ee89 | 8168 | if (loop_ok && env->bpf_capable) |
59e2e27d | 8169 | return DONE_EXPLORING; |
d9762e84 MKL |
8170 | verbose_linfo(env, t, "%d: ", t); |
8171 | verbose_linfo(env, w, "%d: ", w); | |
61bd5218 | 8172 | verbose(env, "back-edge from insn %d to %d\n", t, w); |
475fb78f AS |
8173 | return -EINVAL; |
8174 | } else if (insn_state[w] == EXPLORED) { | |
8175 | /* forward- or cross-edge */ | |
8176 | insn_state[t] = DISCOVERED | e; | |
8177 | } else { | |
61bd5218 | 8178 | verbose(env, "insn state internal bug\n"); |
475fb78f AS |
8179 | return -EFAULT; |
8180 | } | |
59e2e27d WAF |
8181 | return DONE_EXPLORING; |
8182 | } | |
8183 | ||
8184 | /* Visits the instruction at index t and returns one of the following: | |
8185 | * < 0 - an error occurred | |
8186 | * DONE_EXPLORING - the instruction was fully explored | |
8187 | * KEEP_EXPLORING - there is still work to be done before it is fully explored | |
8188 | */ | |
8189 | static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) | |
8190 | { | |
8191 | struct bpf_insn *insns = env->prog->insnsi; | |
8192 | int ret; | |
8193 | ||
8194 | /* All non-branch instructions have a single fall-through edge. */ | |
8195 | if (BPF_CLASS(insns[t].code) != BPF_JMP && | |
8196 | BPF_CLASS(insns[t].code) != BPF_JMP32) | |
8197 | return push_insn(t, t + 1, FALLTHROUGH, env, false); | |
8198 | ||
8199 | switch (BPF_OP(insns[t].code)) { | |
8200 | case BPF_EXIT: | |
8201 | return DONE_EXPLORING; | |
8202 | ||
8203 | case BPF_CALL: | |
8204 | ret = push_insn(t, t + 1, FALLTHROUGH, env, false); | |
8205 | if (ret) | |
8206 | return ret; | |
8207 | ||
8208 | if (t + 1 < insn_cnt) | |
8209 | init_explored_state(env, t + 1); | |
8210 | if (insns[t].src_reg == BPF_PSEUDO_CALL) { | |
8211 | init_explored_state(env, t); | |
8212 | ret = push_insn(t, t + insns[t].imm + 1, BRANCH, | |
8213 | env, false); | |
8214 | } | |
8215 | return ret; | |
8216 | ||
8217 | case BPF_JA: | |
8218 | if (BPF_SRC(insns[t].code) != BPF_K) | |
8219 | return -EINVAL; | |
8220 | ||
8221 | /* unconditional jump with single edge */ | |
8222 | ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, | |
8223 | true); | |
8224 | if (ret) | |
8225 | return ret; | |
8226 | ||
8227 | /* unconditional jmp is not a good pruning point, | |
8228 | * but it's marked, since backtracking needs | |
8229 | * to record jmp history in is_state_visited(). | |
8230 | */ | |
8231 | init_explored_state(env, t + insns[t].off + 1); | |
8232 | /* tell verifier to check for equivalent states | |
8233 | * after every call and jump | |
8234 | */ | |
8235 | if (t + 1 < insn_cnt) | |
8236 | init_explored_state(env, t + 1); | |
8237 | ||
8238 | return ret; | |
8239 | ||
8240 | default: | |
8241 | /* conditional jump with two edges */ | |
8242 | init_explored_state(env, t); | |
8243 | ret = push_insn(t, t + 1, FALLTHROUGH, env, true); | |
8244 | if (ret) | |
8245 | return ret; | |
8246 | ||
8247 | return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); | |
8248 | } | |
475fb78f AS |
8249 | } |
8250 | ||
8251 | /* non-recursive depth-first-search to detect loops in BPF program | |
8252 | * loop == back-edge in directed graph | |
8253 | */ | |
58e2af8b | 8254 | static int check_cfg(struct bpf_verifier_env *env) |
475fb78f | 8255 | { |
475fb78f | 8256 | int insn_cnt = env->prog->len; |
7df737e9 | 8257 | int *insn_stack, *insn_state; |
475fb78f | 8258 | int ret = 0; |
59e2e27d | 8259 | int i; |
475fb78f | 8260 | |
7df737e9 | 8261 | insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
475fb78f AS |
8262 | if (!insn_state) |
8263 | return -ENOMEM; | |
8264 | ||
7df737e9 | 8265 | insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
475fb78f | 8266 | if (!insn_stack) { |
71dde681 | 8267 | kvfree(insn_state); |
475fb78f AS |
8268 | return -ENOMEM; |
8269 | } | |
8270 | ||
8271 | insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ | |
8272 | insn_stack[0] = 0; /* 0 is the first instruction */ | |
7df737e9 | 8273 | env->cfg.cur_stack = 1; |
475fb78f | 8274 | |
59e2e27d WAF |
8275 | while (env->cfg.cur_stack > 0) { |
8276 | int t = insn_stack[env->cfg.cur_stack - 1]; | |
475fb78f | 8277 | |
59e2e27d WAF |
8278 | ret = visit_insn(t, insn_cnt, env); |
8279 | switch (ret) { | |
8280 | case DONE_EXPLORING: | |
8281 | insn_state[t] = EXPLORED; | |
8282 | env->cfg.cur_stack--; | |
8283 | break; | |
8284 | case KEEP_EXPLORING: | |
8285 | break; | |
8286 | default: | |
8287 | if (ret > 0) { | |
8288 | verbose(env, "visit_insn internal bug\n"); | |
8289 | ret = -EFAULT; | |
475fb78f | 8290 | } |
475fb78f | 8291 | goto err_free; |
59e2e27d | 8292 | } |
475fb78f AS |
8293 | } |
8294 | ||
59e2e27d | 8295 | if (env->cfg.cur_stack < 0) { |
61bd5218 | 8296 | verbose(env, "pop stack internal bug\n"); |
475fb78f AS |
8297 | ret = -EFAULT; |
8298 | goto err_free; | |
8299 | } | |
475fb78f | 8300 | |
475fb78f AS |
8301 | for (i = 0; i < insn_cnt; i++) { |
8302 | if (insn_state[i] != EXPLORED) { | |
61bd5218 | 8303 | verbose(env, "unreachable insn %d\n", i); |
475fb78f AS |
8304 | ret = -EINVAL; |
8305 | goto err_free; | |
8306 | } | |
8307 | } | |
8308 | ret = 0; /* cfg looks good */ | |
8309 | ||
8310 | err_free: | |
71dde681 AS |
8311 | kvfree(insn_state); |
8312 | kvfree(insn_stack); | |
7df737e9 | 8313 | env->cfg.insn_state = env->cfg.insn_stack = NULL; |
475fb78f AS |
8314 | return ret; |
8315 | } | |
8316 | ||
09b28d76 AS |
8317 | static int check_abnormal_return(struct bpf_verifier_env *env) |
8318 | { | |
8319 | int i; | |
8320 | ||
8321 | for (i = 1; i < env->subprog_cnt; i++) { | |
8322 | if (env->subprog_info[i].has_ld_abs) { | |
8323 | verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); | |
8324 | return -EINVAL; | |
8325 | } | |
8326 | if (env->subprog_info[i].has_tail_call) { | |
8327 | verbose(env, "tail_call is not allowed in subprogs without BTF\n"); | |
8328 | return -EINVAL; | |
8329 | } | |
8330 | } | |
8331 | return 0; | |
8332 | } | |
8333 | ||
838e9690 YS |
8334 | /* The minimum supported BTF func info size */ |
8335 | #define MIN_BPF_FUNCINFO_SIZE 8 | |
8336 | #define MAX_FUNCINFO_REC_SIZE 252 | |
8337 | ||
c454a46b MKL |
8338 | static int check_btf_func(struct bpf_verifier_env *env, |
8339 | const union bpf_attr *attr, | |
8340 | union bpf_attr __user *uattr) | |
838e9690 | 8341 | { |
09b28d76 | 8342 | const struct btf_type *type, *func_proto, *ret_type; |
d0b2818e | 8343 | u32 i, nfuncs, urec_size, min_size; |
838e9690 | 8344 | u32 krec_size = sizeof(struct bpf_func_info); |
c454a46b | 8345 | struct bpf_func_info *krecord; |
8c1b6e69 | 8346 | struct bpf_func_info_aux *info_aux = NULL; |
c454a46b MKL |
8347 | struct bpf_prog *prog; |
8348 | const struct btf *btf; | |
838e9690 | 8349 | void __user *urecord; |
d0b2818e | 8350 | u32 prev_offset = 0; |
09b28d76 | 8351 | bool scalar_return; |
e7ed83d6 | 8352 | int ret = -ENOMEM; |
838e9690 YS |
8353 | |
8354 | nfuncs = attr->func_info_cnt; | |
09b28d76 AS |
8355 | if (!nfuncs) { |
8356 | if (check_abnormal_return(env)) | |
8357 | return -EINVAL; | |
838e9690 | 8358 | return 0; |
09b28d76 | 8359 | } |
838e9690 YS |
8360 | |
8361 | if (nfuncs != env->subprog_cnt) { | |
8362 | verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); | |
8363 | return -EINVAL; | |
8364 | } | |
8365 | ||
8366 | urec_size = attr->func_info_rec_size; | |
8367 | if (urec_size < MIN_BPF_FUNCINFO_SIZE || | |
8368 | urec_size > MAX_FUNCINFO_REC_SIZE || | |
8369 | urec_size % sizeof(u32)) { | |
8370 | verbose(env, "invalid func info rec size %u\n", urec_size); | |
8371 | return -EINVAL; | |
8372 | } | |
8373 | ||
c454a46b MKL |
8374 | prog = env->prog; |
8375 | btf = prog->aux->btf; | |
838e9690 YS |
8376 | |
8377 | urecord = u64_to_user_ptr(attr->func_info); | |
8378 | min_size = min_t(u32, krec_size, urec_size); | |
8379 | ||
ba64e7d8 | 8380 | krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); |
c454a46b MKL |
8381 | if (!krecord) |
8382 | return -ENOMEM; | |
8c1b6e69 AS |
8383 | info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); |
8384 | if (!info_aux) | |
8385 | goto err_free; | |
ba64e7d8 | 8386 | |
838e9690 YS |
8387 | for (i = 0; i < nfuncs; i++) { |
8388 | ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); | |
8389 | if (ret) { | |
8390 | if (ret == -E2BIG) { | |
8391 | verbose(env, "nonzero tailing record in func info"); | |
8392 | /* set the size kernel expects so loader can zero | |
8393 | * out the rest of the record. | |
8394 | */ | |
8395 | if (put_user(min_size, &uattr->func_info_rec_size)) | |
8396 | ret = -EFAULT; | |
8397 | } | |
c454a46b | 8398 | goto err_free; |
838e9690 YS |
8399 | } |
8400 | ||
ba64e7d8 | 8401 | if (copy_from_user(&krecord[i], urecord, min_size)) { |
838e9690 | 8402 | ret = -EFAULT; |
c454a46b | 8403 | goto err_free; |
838e9690 YS |
8404 | } |
8405 | ||
d30d42e0 | 8406 | /* check insn_off */ |
09b28d76 | 8407 | ret = -EINVAL; |
838e9690 | 8408 | if (i == 0) { |
d30d42e0 | 8409 | if (krecord[i].insn_off) { |
838e9690 | 8410 | verbose(env, |
d30d42e0 MKL |
8411 | "nonzero insn_off %u for the first func info record", |
8412 | krecord[i].insn_off); | |
c454a46b | 8413 | goto err_free; |
838e9690 | 8414 | } |
d30d42e0 | 8415 | } else if (krecord[i].insn_off <= prev_offset) { |
838e9690 YS |
8416 | verbose(env, |
8417 | "same or smaller insn offset (%u) than previous func info record (%u)", | |
d30d42e0 | 8418 | krecord[i].insn_off, prev_offset); |
c454a46b | 8419 | goto err_free; |
838e9690 YS |
8420 | } |
8421 | ||
d30d42e0 | 8422 | if (env->subprog_info[i].start != krecord[i].insn_off) { |
838e9690 | 8423 | verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); |
c454a46b | 8424 | goto err_free; |
838e9690 YS |
8425 | } |
8426 | ||
8427 | /* check type_id */ | |
ba64e7d8 | 8428 | type = btf_type_by_id(btf, krecord[i].type_id); |
51c39bb1 | 8429 | if (!type || !btf_type_is_func(type)) { |
838e9690 | 8430 | verbose(env, "invalid type id %d in func info", |
ba64e7d8 | 8431 | krecord[i].type_id); |
c454a46b | 8432 | goto err_free; |
838e9690 | 8433 | } |
51c39bb1 | 8434 | info_aux[i].linkage = BTF_INFO_VLEN(type->info); |
09b28d76 AS |
8435 | |
8436 | func_proto = btf_type_by_id(btf, type->type); | |
8437 | if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) | |
8438 | /* btf_func_check() already verified it during BTF load */ | |
8439 | goto err_free; | |
8440 | ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); | |
8441 | scalar_return = | |
8442 | btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); | |
8443 | if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { | |
8444 | verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); | |
8445 | goto err_free; | |
8446 | } | |
8447 | if (i && !scalar_return && env->subprog_info[i].has_tail_call) { | |
8448 | verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); | |
8449 | goto err_free; | |
8450 | } | |
8451 | ||
d30d42e0 | 8452 | prev_offset = krecord[i].insn_off; |
838e9690 YS |
8453 | urecord += urec_size; |
8454 | } | |
8455 | ||
ba64e7d8 YS |
8456 | prog->aux->func_info = krecord; |
8457 | prog->aux->func_info_cnt = nfuncs; | |
8c1b6e69 | 8458 | prog->aux->func_info_aux = info_aux; |
838e9690 YS |
8459 | return 0; |
8460 | ||
c454a46b | 8461 | err_free: |
ba64e7d8 | 8462 | kvfree(krecord); |
8c1b6e69 | 8463 | kfree(info_aux); |
838e9690 YS |
8464 | return ret; |
8465 | } | |
8466 | ||
ba64e7d8 YS |
8467 | static void adjust_btf_func(struct bpf_verifier_env *env) |
8468 | { | |
8c1b6e69 | 8469 | struct bpf_prog_aux *aux = env->prog->aux; |
ba64e7d8 YS |
8470 | int i; |
8471 | ||
8c1b6e69 | 8472 | if (!aux->func_info) |
ba64e7d8 YS |
8473 | return; |
8474 | ||
8475 | for (i = 0; i < env->subprog_cnt; i++) | |
8c1b6e69 | 8476 | aux->func_info[i].insn_off = env->subprog_info[i].start; |
ba64e7d8 YS |
8477 | } |
8478 | ||
c454a46b MKL |
8479 | #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ |
8480 | sizeof(((struct bpf_line_info *)(0))->line_col)) | |
8481 | #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE | |
8482 | ||
8483 | static int check_btf_line(struct bpf_verifier_env *env, | |
8484 | const union bpf_attr *attr, | |
8485 | union bpf_attr __user *uattr) | |
8486 | { | |
8487 | u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; | |
8488 | struct bpf_subprog_info *sub; | |
8489 | struct bpf_line_info *linfo; | |
8490 | struct bpf_prog *prog; | |
8491 | const struct btf *btf; | |
8492 | void __user *ulinfo; | |
8493 | int err; | |
8494 | ||
8495 | nr_linfo = attr->line_info_cnt; | |
8496 | if (!nr_linfo) | |
8497 | return 0; | |
8498 | ||
8499 | rec_size = attr->line_info_rec_size; | |
8500 | if (rec_size < MIN_BPF_LINEINFO_SIZE || | |
8501 | rec_size > MAX_LINEINFO_REC_SIZE || | |
8502 | rec_size & (sizeof(u32) - 1)) | |
8503 | return -EINVAL; | |
8504 | ||
8505 | /* Need to zero it in case the userspace may | |
8506 | * pass in a smaller bpf_line_info object. | |
8507 | */ | |
8508 | linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), | |
8509 | GFP_KERNEL | __GFP_NOWARN); | |
8510 | if (!linfo) | |
8511 | return -ENOMEM; | |
8512 | ||
8513 | prog = env->prog; | |
8514 | btf = prog->aux->btf; | |
8515 | ||
8516 | s = 0; | |
8517 | sub = env->subprog_info; | |
8518 | ulinfo = u64_to_user_ptr(attr->line_info); | |
8519 | expected_size = sizeof(struct bpf_line_info); | |
8520 | ncopy = min_t(u32, expected_size, rec_size); | |
8521 | for (i = 0; i < nr_linfo; i++) { | |
8522 | err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); | |
8523 | if (err) { | |
8524 | if (err == -E2BIG) { | |
8525 | verbose(env, "nonzero tailing record in line_info"); | |
8526 | if (put_user(expected_size, | |
8527 | &uattr->line_info_rec_size)) | |
8528 | err = -EFAULT; | |
8529 | } | |
8530 | goto err_free; | |
8531 | } | |
8532 | ||
8533 | if (copy_from_user(&linfo[i], ulinfo, ncopy)) { | |
8534 | err = -EFAULT; | |
8535 | goto err_free; | |
8536 | } | |
8537 | ||
8538 | /* | |
8539 | * Check insn_off to ensure | |
8540 | * 1) strictly increasing AND | |
8541 | * 2) bounded by prog->len | |
8542 | * | |
8543 | * The linfo[0].insn_off == 0 check logically falls into | |
8544 | * the later "missing bpf_line_info for func..." case | |
8545 | * because the first linfo[0].insn_off must be the | |
8546 | * first sub also and the first sub must have | |
8547 | * subprog_info[0].start == 0. | |
8548 | */ | |
8549 | if ((i && linfo[i].insn_off <= prev_offset) || | |
8550 | linfo[i].insn_off >= prog->len) { | |
8551 | verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", | |
8552 | i, linfo[i].insn_off, prev_offset, | |
8553 | prog->len); | |
8554 | err = -EINVAL; | |
8555 | goto err_free; | |
8556 | } | |
8557 | ||
fdbaa0be MKL |
8558 | if (!prog->insnsi[linfo[i].insn_off].code) { |
8559 | verbose(env, | |
8560 | "Invalid insn code at line_info[%u].insn_off\n", | |
8561 | i); | |
8562 | err = -EINVAL; | |
8563 | goto err_free; | |
8564 | } | |
8565 | ||
23127b33 MKL |
8566 | if (!btf_name_by_offset(btf, linfo[i].line_off) || |
8567 | !btf_name_by_offset(btf, linfo[i].file_name_off)) { | |
c454a46b MKL |
8568 | verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); |
8569 | err = -EINVAL; | |
8570 | goto err_free; | |
8571 | } | |
8572 | ||
8573 | if (s != env->subprog_cnt) { | |
8574 | if (linfo[i].insn_off == sub[s].start) { | |
8575 | sub[s].linfo_idx = i; | |
8576 | s++; | |
8577 | } else if (sub[s].start < linfo[i].insn_off) { | |
8578 | verbose(env, "missing bpf_line_info for func#%u\n", s); | |
8579 | err = -EINVAL; | |
8580 | goto err_free; | |
8581 | } | |
8582 | } | |
8583 | ||
8584 | prev_offset = linfo[i].insn_off; | |
8585 | ulinfo += rec_size; | |
8586 | } | |
8587 | ||
8588 | if (s != env->subprog_cnt) { | |
8589 | verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", | |
8590 | env->subprog_cnt - s, s); | |
8591 | err = -EINVAL; | |
8592 | goto err_free; | |
8593 | } | |
8594 | ||
8595 | prog->aux->linfo = linfo; | |
8596 | prog->aux->nr_linfo = nr_linfo; | |
8597 | ||
8598 | return 0; | |
8599 | ||
8600 | err_free: | |
8601 | kvfree(linfo); | |
8602 | return err; | |
8603 | } | |
8604 | ||
8605 | static int check_btf_info(struct bpf_verifier_env *env, | |
8606 | const union bpf_attr *attr, | |
8607 | union bpf_attr __user *uattr) | |
8608 | { | |
8609 | struct btf *btf; | |
8610 | int err; | |
8611 | ||
09b28d76 AS |
8612 | if (!attr->func_info_cnt && !attr->line_info_cnt) { |
8613 | if (check_abnormal_return(env)) | |
8614 | return -EINVAL; | |
c454a46b | 8615 | return 0; |
09b28d76 | 8616 | } |
c454a46b MKL |
8617 | |
8618 | btf = btf_get_by_fd(attr->prog_btf_fd); | |
8619 | if (IS_ERR(btf)) | |
8620 | return PTR_ERR(btf); | |
8621 | env->prog->aux->btf = btf; | |
8622 | ||
8623 | err = check_btf_func(env, attr, uattr); | |
8624 | if (err) | |
8625 | return err; | |
8626 | ||
8627 | err = check_btf_line(env, attr, uattr); | |
8628 | if (err) | |
8629 | return err; | |
8630 | ||
8631 | return 0; | |
ba64e7d8 YS |
8632 | } |
8633 | ||
f1174f77 EC |
8634 | /* check %cur's range satisfies %old's */ |
8635 | static bool range_within(struct bpf_reg_state *old, | |
8636 | struct bpf_reg_state *cur) | |
8637 | { | |
b03c9f9f EC |
8638 | return old->umin_value <= cur->umin_value && |
8639 | old->umax_value >= cur->umax_value && | |
8640 | old->smin_value <= cur->smin_value && | |
8641 | old->smax_value >= cur->smax_value; | |
f1174f77 EC |
8642 | } |
8643 | ||
8644 | /* Maximum number of register states that can exist at once */ | |
8645 | #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) | |
8646 | struct idpair { | |
8647 | u32 old; | |
8648 | u32 cur; | |
8649 | }; | |
8650 | ||
8651 | /* If in the old state two registers had the same id, then they need to have | |
8652 | * the same id in the new state as well. But that id could be different from | |
8653 | * the old state, so we need to track the mapping from old to new ids. | |
8654 | * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent | |
8655 | * regs with old id 5 must also have new id 9 for the new state to be safe. But | |
8656 | * regs with a different old id could still have new id 9, we don't care about | |
8657 | * that. | |
8658 | * So we look through our idmap to see if this old id has been seen before. If | |
8659 | * so, we require the new id to match; otherwise, we add the id pair to the map. | |
969bf05e | 8660 | */ |
f1174f77 | 8661 | static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) |
969bf05e | 8662 | { |
f1174f77 | 8663 | unsigned int i; |
969bf05e | 8664 | |
f1174f77 EC |
8665 | for (i = 0; i < ID_MAP_SIZE; i++) { |
8666 | if (!idmap[i].old) { | |
8667 | /* Reached an empty slot; haven't seen this id before */ | |
8668 | idmap[i].old = old_id; | |
8669 | idmap[i].cur = cur_id; | |
8670 | return true; | |
8671 | } | |
8672 | if (idmap[i].old == old_id) | |
8673 | return idmap[i].cur == cur_id; | |
8674 | } | |
8675 | /* We ran out of idmap slots, which should be impossible */ | |
8676 | WARN_ON_ONCE(1); | |
8677 | return false; | |
8678 | } | |
8679 | ||
9242b5f5 AS |
8680 | static void clean_func_state(struct bpf_verifier_env *env, |
8681 | struct bpf_func_state *st) | |
8682 | { | |
8683 | enum bpf_reg_liveness live; | |
8684 | int i, j; | |
8685 | ||
8686 | for (i = 0; i < BPF_REG_FP; i++) { | |
8687 | live = st->regs[i].live; | |
8688 | /* liveness must not touch this register anymore */ | |
8689 | st->regs[i].live |= REG_LIVE_DONE; | |
8690 | if (!(live & REG_LIVE_READ)) | |
8691 | /* since the register is unused, clear its state | |
8692 | * to make further comparison simpler | |
8693 | */ | |
f54c7898 | 8694 | __mark_reg_not_init(env, &st->regs[i]); |
9242b5f5 AS |
8695 | } |
8696 | ||
8697 | for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { | |
8698 | live = st->stack[i].spilled_ptr.live; | |
8699 | /* liveness must not touch this stack slot anymore */ | |
8700 | st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; | |
8701 | if (!(live & REG_LIVE_READ)) { | |
f54c7898 | 8702 | __mark_reg_not_init(env, &st->stack[i].spilled_ptr); |
9242b5f5 AS |
8703 | for (j = 0; j < BPF_REG_SIZE; j++) |
8704 | st->stack[i].slot_type[j] = STACK_INVALID; | |
8705 | } | |
8706 | } | |
8707 | } | |
8708 | ||
8709 | static void clean_verifier_state(struct bpf_verifier_env *env, | |
8710 | struct bpf_verifier_state *st) | |
8711 | { | |
8712 | int i; | |
8713 | ||
8714 | if (st->frame[0]->regs[0].live & REG_LIVE_DONE) | |
8715 | /* all regs in this state in all frames were already marked */ | |
8716 | return; | |
8717 | ||
8718 | for (i = 0; i <= st->curframe; i++) | |
8719 | clean_func_state(env, st->frame[i]); | |
8720 | } | |
8721 | ||
8722 | /* the parentage chains form a tree. | |
8723 | * the verifier states are added to state lists at given insn and | |
8724 | * pushed into state stack for future exploration. | |
8725 | * when the verifier reaches bpf_exit insn some of the verifer states | |
8726 | * stored in the state lists have their final liveness state already, | |
8727 | * but a lot of states will get revised from liveness point of view when | |
8728 | * the verifier explores other branches. | |
8729 | * Example: | |
8730 | * 1: r0 = 1 | |
8731 | * 2: if r1 == 100 goto pc+1 | |
8732 | * 3: r0 = 2 | |
8733 | * 4: exit | |
8734 | * when the verifier reaches exit insn the register r0 in the state list of | |
8735 | * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch | |
8736 | * of insn 2 and goes exploring further. At the insn 4 it will walk the | |
8737 | * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. | |
8738 | * | |
8739 | * Since the verifier pushes the branch states as it sees them while exploring | |
8740 | * the program the condition of walking the branch instruction for the second | |
8741 | * time means that all states below this branch were already explored and | |
8742 | * their final liveness markes are already propagated. | |
8743 | * Hence when the verifier completes the search of state list in is_state_visited() | |
8744 | * we can call this clean_live_states() function to mark all liveness states | |
8745 | * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' | |
8746 | * will not be used. | |
8747 | * This function also clears the registers and stack for states that !READ | |
8748 | * to simplify state merging. | |
8749 | * | |
8750 | * Important note here that walking the same branch instruction in the callee | |
8751 | * doesn't meant that the states are DONE. The verifier has to compare | |
8752 | * the callsites | |
8753 | */ | |
8754 | static void clean_live_states(struct bpf_verifier_env *env, int insn, | |
8755 | struct bpf_verifier_state *cur) | |
8756 | { | |
8757 | struct bpf_verifier_state_list *sl; | |
8758 | int i; | |
8759 | ||
5d839021 | 8760 | sl = *explored_state(env, insn); |
a8f500af | 8761 | while (sl) { |
2589726d AS |
8762 | if (sl->state.branches) |
8763 | goto next; | |
dc2a4ebc AS |
8764 | if (sl->state.insn_idx != insn || |
8765 | sl->state.curframe != cur->curframe) | |
9242b5f5 AS |
8766 | goto next; |
8767 | for (i = 0; i <= cur->curframe; i++) | |
8768 | if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) | |
8769 | goto next; | |
8770 | clean_verifier_state(env, &sl->state); | |
8771 | next: | |
8772 | sl = sl->next; | |
8773 | } | |
8774 | } | |
8775 | ||
f1174f77 | 8776 | /* Returns true if (rold safe implies rcur safe) */ |
1b688a19 EC |
8777 | static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, |
8778 | struct idpair *idmap) | |
f1174f77 | 8779 | { |
f4d7e40a AS |
8780 | bool equal; |
8781 | ||
dc503a8a EC |
8782 | if (!(rold->live & REG_LIVE_READ)) |
8783 | /* explored state didn't use this */ | |
8784 | return true; | |
8785 | ||
679c782d | 8786 | equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; |
f4d7e40a AS |
8787 | |
8788 | if (rold->type == PTR_TO_STACK) | |
8789 | /* two stack pointers are equal only if they're pointing to | |
8790 | * the same stack frame, since fp-8 in foo != fp-8 in bar | |
8791 | */ | |
8792 | return equal && rold->frameno == rcur->frameno; | |
8793 | ||
8794 | if (equal) | |
969bf05e AS |
8795 | return true; |
8796 | ||
f1174f77 EC |
8797 | if (rold->type == NOT_INIT) |
8798 | /* explored state can't have used this */ | |
969bf05e | 8799 | return true; |
f1174f77 EC |
8800 | if (rcur->type == NOT_INIT) |
8801 | return false; | |
8802 | switch (rold->type) { | |
8803 | case SCALAR_VALUE: | |
8804 | if (rcur->type == SCALAR_VALUE) { | |
b5dc0163 AS |
8805 | if (!rold->precise && !rcur->precise) |
8806 | return true; | |
f1174f77 EC |
8807 | /* new val must satisfy old val knowledge */ |
8808 | return range_within(rold, rcur) && | |
8809 | tnum_in(rold->var_off, rcur->var_off); | |
8810 | } else { | |
179d1c56 JH |
8811 | /* We're trying to use a pointer in place of a scalar. |
8812 | * Even if the scalar was unbounded, this could lead to | |
8813 | * pointer leaks because scalars are allowed to leak | |
8814 | * while pointers are not. We could make this safe in | |
8815 | * special cases if root is calling us, but it's | |
8816 | * probably not worth the hassle. | |
f1174f77 | 8817 | */ |
179d1c56 | 8818 | return false; |
f1174f77 EC |
8819 | } |
8820 | case PTR_TO_MAP_VALUE: | |
1b688a19 EC |
8821 | /* If the new min/max/var_off satisfy the old ones and |
8822 | * everything else matches, we are OK. | |
d83525ca AS |
8823 | * 'id' is not compared, since it's only used for maps with |
8824 | * bpf_spin_lock inside map element and in such cases if | |
8825 | * the rest of the prog is valid for one map element then | |
8826 | * it's valid for all map elements regardless of the key | |
8827 | * used in bpf_map_lookup() | |
1b688a19 EC |
8828 | */ |
8829 | return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && | |
8830 | range_within(rold, rcur) && | |
8831 | tnum_in(rold->var_off, rcur->var_off); | |
f1174f77 EC |
8832 | case PTR_TO_MAP_VALUE_OR_NULL: |
8833 | /* a PTR_TO_MAP_VALUE could be safe to use as a | |
8834 | * PTR_TO_MAP_VALUE_OR_NULL into the same map. | |
8835 | * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- | |
8836 | * checked, doing so could have affected others with the same | |
8837 | * id, and we can't check for that because we lost the id when | |
8838 | * we converted to a PTR_TO_MAP_VALUE. | |
8839 | */ | |
8840 | if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) | |
8841 | return false; | |
8842 | if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) | |
8843 | return false; | |
8844 | /* Check our ids match any regs they're supposed to */ | |
8845 | return check_ids(rold->id, rcur->id, idmap); | |
de8f3a83 | 8846 | case PTR_TO_PACKET_META: |
f1174f77 | 8847 | case PTR_TO_PACKET: |
de8f3a83 | 8848 | if (rcur->type != rold->type) |
f1174f77 EC |
8849 | return false; |
8850 | /* We must have at least as much range as the old ptr | |
8851 | * did, so that any accesses which were safe before are | |
8852 | * still safe. This is true even if old range < old off, | |
8853 | * since someone could have accessed through (ptr - k), or | |
8854 | * even done ptr -= k in a register, to get a safe access. | |
8855 | */ | |
8856 | if (rold->range > rcur->range) | |
8857 | return false; | |
8858 | /* If the offsets don't match, we can't trust our alignment; | |
8859 | * nor can we be sure that we won't fall out of range. | |
8860 | */ | |
8861 | if (rold->off != rcur->off) | |
8862 | return false; | |
8863 | /* id relations must be preserved */ | |
8864 | if (rold->id && !check_ids(rold->id, rcur->id, idmap)) | |
8865 | return false; | |
8866 | /* new val must satisfy old val knowledge */ | |
8867 | return range_within(rold, rcur) && | |
8868 | tnum_in(rold->var_off, rcur->var_off); | |
8869 | case PTR_TO_CTX: | |
8870 | case CONST_PTR_TO_MAP: | |
f1174f77 | 8871 | case PTR_TO_PACKET_END: |
d58e468b | 8872 | case PTR_TO_FLOW_KEYS: |
c64b7983 JS |
8873 | case PTR_TO_SOCKET: |
8874 | case PTR_TO_SOCKET_OR_NULL: | |
46f8bc92 MKL |
8875 | case PTR_TO_SOCK_COMMON: |
8876 | case PTR_TO_SOCK_COMMON_OR_NULL: | |
655a51e5 MKL |
8877 | case PTR_TO_TCP_SOCK: |
8878 | case PTR_TO_TCP_SOCK_OR_NULL: | |
fada7fdc | 8879 | case PTR_TO_XDP_SOCK: |
f1174f77 EC |
8880 | /* Only valid matches are exact, which memcmp() above |
8881 | * would have accepted | |
8882 | */ | |
8883 | default: | |
8884 | /* Don't know what's going on, just say it's not safe */ | |
8885 | return false; | |
8886 | } | |
969bf05e | 8887 | |
f1174f77 EC |
8888 | /* Shouldn't get here; if we do, say it's not safe */ |
8889 | WARN_ON_ONCE(1); | |
969bf05e AS |
8890 | return false; |
8891 | } | |
8892 | ||
f4d7e40a AS |
8893 | static bool stacksafe(struct bpf_func_state *old, |
8894 | struct bpf_func_state *cur, | |
638f5b90 AS |
8895 | struct idpair *idmap) |
8896 | { | |
8897 | int i, spi; | |
8898 | ||
638f5b90 AS |
8899 | /* walk slots of the explored stack and ignore any additional |
8900 | * slots in the current stack, since explored(safe) state | |
8901 | * didn't use them | |
8902 | */ | |
8903 | for (i = 0; i < old->allocated_stack; i++) { | |
8904 | spi = i / BPF_REG_SIZE; | |
8905 | ||
b233920c AS |
8906 | if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { |
8907 | i += BPF_REG_SIZE - 1; | |
cc2b14d5 | 8908 | /* explored state didn't use this */ |
fd05e57b | 8909 | continue; |
b233920c | 8910 | } |
cc2b14d5 | 8911 | |
638f5b90 AS |
8912 | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) |
8913 | continue; | |
19e2dbb7 AS |
8914 | |
8915 | /* explored stack has more populated slots than current stack | |
8916 | * and these slots were used | |
8917 | */ | |
8918 | if (i >= cur->allocated_stack) | |
8919 | return false; | |
8920 | ||
cc2b14d5 AS |
8921 | /* if old state was safe with misc data in the stack |
8922 | * it will be safe with zero-initialized stack. | |
8923 | * The opposite is not true | |
8924 | */ | |
8925 | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && | |
8926 | cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) | |
8927 | continue; | |
638f5b90 AS |
8928 | if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != |
8929 | cur->stack[spi].slot_type[i % BPF_REG_SIZE]) | |
8930 | /* Ex: old explored (safe) state has STACK_SPILL in | |
b8c1a309 | 8931 | * this stack slot, but current has STACK_MISC -> |
638f5b90 AS |
8932 | * this verifier states are not equivalent, |
8933 | * return false to continue verification of this path | |
8934 | */ | |
8935 | return false; | |
8936 | if (i % BPF_REG_SIZE) | |
8937 | continue; | |
8938 | if (old->stack[spi].slot_type[0] != STACK_SPILL) | |
8939 | continue; | |
8940 | if (!regsafe(&old->stack[spi].spilled_ptr, | |
8941 | &cur->stack[spi].spilled_ptr, | |
8942 | idmap)) | |
8943 | /* when explored and current stack slot are both storing | |
8944 | * spilled registers, check that stored pointers types | |
8945 | * are the same as well. | |
8946 | * Ex: explored safe path could have stored | |
8947 | * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} | |
8948 | * but current path has stored: | |
8949 | * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} | |
8950 | * such verifier states are not equivalent. | |
8951 | * return false to continue verification of this path | |
8952 | */ | |
8953 | return false; | |
8954 | } | |
8955 | return true; | |
8956 | } | |
8957 | ||
fd978bf7 JS |
8958 | static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) |
8959 | { | |
8960 | if (old->acquired_refs != cur->acquired_refs) | |
8961 | return false; | |
8962 | return !memcmp(old->refs, cur->refs, | |
8963 | sizeof(*old->refs) * old->acquired_refs); | |
8964 | } | |
8965 | ||
f1bca824 AS |
8966 | /* compare two verifier states |
8967 | * | |
8968 | * all states stored in state_list are known to be valid, since | |
8969 | * verifier reached 'bpf_exit' instruction through them | |
8970 | * | |
8971 | * this function is called when verifier exploring different branches of | |
8972 | * execution popped from the state stack. If it sees an old state that has | |
8973 | * more strict register state and more strict stack state then this execution | |
8974 | * branch doesn't need to be explored further, since verifier already | |
8975 | * concluded that more strict state leads to valid finish. | |
8976 | * | |
8977 | * Therefore two states are equivalent if register state is more conservative | |
8978 | * and explored stack state is more conservative than the current one. | |
8979 | * Example: | |
8980 | * explored current | |
8981 | * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) | |
8982 | * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) | |
8983 | * | |
8984 | * In other words if current stack state (one being explored) has more | |
8985 | * valid slots than old one that already passed validation, it means | |
8986 | * the verifier can stop exploring and conclude that current state is valid too | |
8987 | * | |
8988 | * Similarly with registers. If explored state has register type as invalid | |
8989 | * whereas register type in current state is meaningful, it means that | |
8990 | * the current state will reach 'bpf_exit' instruction safely | |
8991 | */ | |
f4d7e40a AS |
8992 | static bool func_states_equal(struct bpf_func_state *old, |
8993 | struct bpf_func_state *cur) | |
f1bca824 | 8994 | { |
f1174f77 EC |
8995 | struct idpair *idmap; |
8996 | bool ret = false; | |
f1bca824 AS |
8997 | int i; |
8998 | ||
f1174f77 EC |
8999 | idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); |
9000 | /* If we failed to allocate the idmap, just say it's not safe */ | |
9001 | if (!idmap) | |
1a0dc1ac | 9002 | return false; |
f1174f77 EC |
9003 | |
9004 | for (i = 0; i < MAX_BPF_REG; i++) { | |
1b688a19 | 9005 | if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) |
f1174f77 | 9006 | goto out_free; |
f1bca824 AS |
9007 | } |
9008 | ||
638f5b90 AS |
9009 | if (!stacksafe(old, cur, idmap)) |
9010 | goto out_free; | |
fd978bf7 JS |
9011 | |
9012 | if (!refsafe(old, cur)) | |
9013 | goto out_free; | |
f1174f77 EC |
9014 | ret = true; |
9015 | out_free: | |
9016 | kfree(idmap); | |
9017 | return ret; | |
f1bca824 AS |
9018 | } |
9019 | ||
f4d7e40a AS |
9020 | static bool states_equal(struct bpf_verifier_env *env, |
9021 | struct bpf_verifier_state *old, | |
9022 | struct bpf_verifier_state *cur) | |
9023 | { | |
9024 | int i; | |
9025 | ||
9026 | if (old->curframe != cur->curframe) | |
9027 | return false; | |
9028 | ||
979d63d5 DB |
9029 | /* Verification state from speculative execution simulation |
9030 | * must never prune a non-speculative execution one. | |
9031 | */ | |
9032 | if (old->speculative && !cur->speculative) | |
9033 | return false; | |
9034 | ||
d83525ca AS |
9035 | if (old->active_spin_lock != cur->active_spin_lock) |
9036 | return false; | |
9037 | ||
f4d7e40a AS |
9038 | /* for states to be equal callsites have to be the same |
9039 | * and all frame states need to be equivalent | |
9040 | */ | |
9041 | for (i = 0; i <= old->curframe; i++) { | |
9042 | if (old->frame[i]->callsite != cur->frame[i]->callsite) | |
9043 | return false; | |
9044 | if (!func_states_equal(old->frame[i], cur->frame[i])) | |
9045 | return false; | |
9046 | } | |
9047 | return true; | |
9048 | } | |
9049 | ||
5327ed3d JW |
9050 | /* Return 0 if no propagation happened. Return negative error code if error |
9051 | * happened. Otherwise, return the propagated bit. | |
9052 | */ | |
55e7f3b5 JW |
9053 | static int propagate_liveness_reg(struct bpf_verifier_env *env, |
9054 | struct bpf_reg_state *reg, | |
9055 | struct bpf_reg_state *parent_reg) | |
9056 | { | |
5327ed3d JW |
9057 | u8 parent_flag = parent_reg->live & REG_LIVE_READ; |
9058 | u8 flag = reg->live & REG_LIVE_READ; | |
55e7f3b5 JW |
9059 | int err; |
9060 | ||
5327ed3d JW |
9061 | /* When comes here, read flags of PARENT_REG or REG could be any of |
9062 | * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need | |
9063 | * of propagation if PARENT_REG has strongest REG_LIVE_READ64. | |
9064 | */ | |
9065 | if (parent_flag == REG_LIVE_READ64 || | |
9066 | /* Or if there is no read flag from REG. */ | |
9067 | !flag || | |
9068 | /* Or if the read flag from REG is the same as PARENT_REG. */ | |
9069 | parent_flag == flag) | |
55e7f3b5 JW |
9070 | return 0; |
9071 | ||
5327ed3d | 9072 | err = mark_reg_read(env, reg, parent_reg, flag); |
55e7f3b5 JW |
9073 | if (err) |
9074 | return err; | |
9075 | ||
5327ed3d | 9076 | return flag; |
55e7f3b5 JW |
9077 | } |
9078 | ||
8e9cd9ce | 9079 | /* A write screens off any subsequent reads; but write marks come from the |
f4d7e40a AS |
9080 | * straight-line code between a state and its parent. When we arrive at an |
9081 | * equivalent state (jump target or such) we didn't arrive by the straight-line | |
9082 | * code, so read marks in the state must propagate to the parent regardless | |
9083 | * of the state's write marks. That's what 'parent == state->parent' comparison | |
679c782d | 9084 | * in mark_reg_read() is for. |
8e9cd9ce | 9085 | */ |
f4d7e40a AS |
9086 | static int propagate_liveness(struct bpf_verifier_env *env, |
9087 | const struct bpf_verifier_state *vstate, | |
9088 | struct bpf_verifier_state *vparent) | |
dc503a8a | 9089 | { |
3f8cafa4 | 9090 | struct bpf_reg_state *state_reg, *parent_reg; |
f4d7e40a | 9091 | struct bpf_func_state *state, *parent; |
3f8cafa4 | 9092 | int i, frame, err = 0; |
dc503a8a | 9093 | |
f4d7e40a AS |
9094 | if (vparent->curframe != vstate->curframe) { |
9095 | WARN(1, "propagate_live: parent frame %d current frame %d\n", | |
9096 | vparent->curframe, vstate->curframe); | |
9097 | return -EFAULT; | |
9098 | } | |
dc503a8a EC |
9099 | /* Propagate read liveness of registers... */ |
9100 | BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); | |
83d16312 | 9101 | for (frame = 0; frame <= vstate->curframe; frame++) { |
3f8cafa4 JW |
9102 | parent = vparent->frame[frame]; |
9103 | state = vstate->frame[frame]; | |
9104 | parent_reg = parent->regs; | |
9105 | state_reg = state->regs; | |
83d16312 JK |
9106 | /* We don't need to worry about FP liveness, it's read-only */ |
9107 | for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { | |
55e7f3b5 JW |
9108 | err = propagate_liveness_reg(env, &state_reg[i], |
9109 | &parent_reg[i]); | |
5327ed3d | 9110 | if (err < 0) |
3f8cafa4 | 9111 | return err; |
5327ed3d JW |
9112 | if (err == REG_LIVE_READ64) |
9113 | mark_insn_zext(env, &parent_reg[i]); | |
dc503a8a | 9114 | } |
f4d7e40a | 9115 | |
1b04aee7 | 9116 | /* Propagate stack slots. */ |
f4d7e40a AS |
9117 | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && |
9118 | i < parent->allocated_stack / BPF_REG_SIZE; i++) { | |
3f8cafa4 JW |
9119 | parent_reg = &parent->stack[i].spilled_ptr; |
9120 | state_reg = &state->stack[i].spilled_ptr; | |
55e7f3b5 JW |
9121 | err = propagate_liveness_reg(env, state_reg, |
9122 | parent_reg); | |
5327ed3d | 9123 | if (err < 0) |
3f8cafa4 | 9124 | return err; |
dc503a8a EC |
9125 | } |
9126 | } | |
5327ed3d | 9127 | return 0; |
dc503a8a EC |
9128 | } |
9129 | ||
a3ce685d AS |
9130 | /* find precise scalars in the previous equivalent state and |
9131 | * propagate them into the current state | |
9132 | */ | |
9133 | static int propagate_precision(struct bpf_verifier_env *env, | |
9134 | const struct bpf_verifier_state *old) | |
9135 | { | |
9136 | struct bpf_reg_state *state_reg; | |
9137 | struct bpf_func_state *state; | |
9138 | int i, err = 0; | |
9139 | ||
9140 | state = old->frame[old->curframe]; | |
9141 | state_reg = state->regs; | |
9142 | for (i = 0; i < BPF_REG_FP; i++, state_reg++) { | |
9143 | if (state_reg->type != SCALAR_VALUE || | |
9144 | !state_reg->precise) | |
9145 | continue; | |
9146 | if (env->log.level & BPF_LOG_LEVEL2) | |
9147 | verbose(env, "propagating r%d\n", i); | |
9148 | err = mark_chain_precision(env, i); | |
9149 | if (err < 0) | |
9150 | return err; | |
9151 | } | |
9152 | ||
9153 | for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { | |
9154 | if (state->stack[i].slot_type[0] != STACK_SPILL) | |
9155 | continue; | |
9156 | state_reg = &state->stack[i].spilled_ptr; | |
9157 | if (state_reg->type != SCALAR_VALUE || | |
9158 | !state_reg->precise) | |
9159 | continue; | |
9160 | if (env->log.level & BPF_LOG_LEVEL2) | |
9161 | verbose(env, "propagating fp%d\n", | |
9162 | (-i - 1) * BPF_REG_SIZE); | |
9163 | err = mark_chain_precision_stack(env, i); | |
9164 | if (err < 0) | |
9165 | return err; | |
9166 | } | |
9167 | return 0; | |
9168 | } | |
9169 | ||
2589726d AS |
9170 | static bool states_maybe_looping(struct bpf_verifier_state *old, |
9171 | struct bpf_verifier_state *cur) | |
9172 | { | |
9173 | struct bpf_func_state *fold, *fcur; | |
9174 | int i, fr = cur->curframe; | |
9175 | ||
9176 | if (old->curframe != fr) | |
9177 | return false; | |
9178 | ||
9179 | fold = old->frame[fr]; | |
9180 | fcur = cur->frame[fr]; | |
9181 | for (i = 0; i < MAX_BPF_REG; i++) | |
9182 | if (memcmp(&fold->regs[i], &fcur->regs[i], | |
9183 | offsetof(struct bpf_reg_state, parent))) | |
9184 | return false; | |
9185 | return true; | |
9186 | } | |
9187 | ||
9188 | ||
58e2af8b | 9189 | static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) |
f1bca824 | 9190 | { |
58e2af8b | 9191 | struct bpf_verifier_state_list *new_sl; |
9f4686c4 | 9192 | struct bpf_verifier_state_list *sl, **pprev; |
679c782d | 9193 | struct bpf_verifier_state *cur = env->cur_state, *new; |
ceefbc96 | 9194 | int i, j, err, states_cnt = 0; |
10d274e8 | 9195 | bool add_new_state = env->test_state_freq ? true : false; |
f1bca824 | 9196 | |
b5dc0163 | 9197 | cur->last_insn_idx = env->prev_insn_idx; |
a8f500af | 9198 | if (!env->insn_aux_data[insn_idx].prune_point) |
f1bca824 AS |
9199 | /* this 'insn_idx' instruction wasn't marked, so we will not |
9200 | * be doing state search here | |
9201 | */ | |
9202 | return 0; | |
9203 | ||
2589726d AS |
9204 | /* bpf progs typically have pruning point every 4 instructions |
9205 | * http://vger.kernel.org/bpfconf2019.html#session-1 | |
9206 | * Do not add new state for future pruning if the verifier hasn't seen | |
9207 | * at least 2 jumps and at least 8 instructions. | |
9208 | * This heuristics helps decrease 'total_states' and 'peak_states' metric. | |
9209 | * In tests that amounts to up to 50% reduction into total verifier | |
9210 | * memory consumption and 20% verifier time speedup. | |
9211 | */ | |
9212 | if (env->jmps_processed - env->prev_jmps_processed >= 2 && | |
9213 | env->insn_processed - env->prev_insn_processed >= 8) | |
9214 | add_new_state = true; | |
9215 | ||
a8f500af AS |
9216 | pprev = explored_state(env, insn_idx); |
9217 | sl = *pprev; | |
9218 | ||
9242b5f5 AS |
9219 | clean_live_states(env, insn_idx, cur); |
9220 | ||
a8f500af | 9221 | while (sl) { |
dc2a4ebc AS |
9222 | states_cnt++; |
9223 | if (sl->state.insn_idx != insn_idx) | |
9224 | goto next; | |
2589726d AS |
9225 | if (sl->state.branches) { |
9226 | if (states_maybe_looping(&sl->state, cur) && | |
9227 | states_equal(env, &sl->state, cur)) { | |
9228 | verbose_linfo(env, insn_idx, "; "); | |
9229 | verbose(env, "infinite loop detected at insn %d\n", insn_idx); | |
9230 | return -EINVAL; | |
9231 | } | |
9232 | /* if the verifier is processing a loop, avoid adding new state | |
9233 | * too often, since different loop iterations have distinct | |
9234 | * states and may not help future pruning. | |
9235 | * This threshold shouldn't be too low to make sure that | |
9236 | * a loop with large bound will be rejected quickly. | |
9237 | * The most abusive loop will be: | |
9238 | * r1 += 1 | |
9239 | * if r1 < 1000000 goto pc-2 | |
9240 | * 1M insn_procssed limit / 100 == 10k peak states. | |
9241 | * This threshold shouldn't be too high either, since states | |
9242 | * at the end of the loop are likely to be useful in pruning. | |
9243 | */ | |
9244 | if (env->jmps_processed - env->prev_jmps_processed < 20 && | |
9245 | env->insn_processed - env->prev_insn_processed < 100) | |
9246 | add_new_state = false; | |
9247 | goto miss; | |
9248 | } | |
638f5b90 | 9249 | if (states_equal(env, &sl->state, cur)) { |
9f4686c4 | 9250 | sl->hit_cnt++; |
f1bca824 | 9251 | /* reached equivalent register/stack state, |
dc503a8a EC |
9252 | * prune the search. |
9253 | * Registers read by the continuation are read by us. | |
8e9cd9ce EC |
9254 | * If we have any write marks in env->cur_state, they |
9255 | * will prevent corresponding reads in the continuation | |
9256 | * from reaching our parent (an explored_state). Our | |
9257 | * own state will get the read marks recorded, but | |
9258 | * they'll be immediately forgotten as we're pruning | |
9259 | * this state and will pop a new one. | |
f1bca824 | 9260 | */ |
f4d7e40a | 9261 | err = propagate_liveness(env, &sl->state, cur); |
a3ce685d AS |
9262 | |
9263 | /* if previous state reached the exit with precision and | |
9264 | * current state is equivalent to it (except precsion marks) | |
9265 | * the precision needs to be propagated back in | |
9266 | * the current state. | |
9267 | */ | |
9268 | err = err ? : push_jmp_history(env, cur); | |
9269 | err = err ? : propagate_precision(env, &sl->state); | |
f4d7e40a AS |
9270 | if (err) |
9271 | return err; | |
f1bca824 | 9272 | return 1; |
dc503a8a | 9273 | } |
2589726d AS |
9274 | miss: |
9275 | /* when new state is not going to be added do not increase miss count. | |
9276 | * Otherwise several loop iterations will remove the state | |
9277 | * recorded earlier. The goal of these heuristics is to have | |
9278 | * states from some iterations of the loop (some in the beginning | |
9279 | * and some at the end) to help pruning. | |
9280 | */ | |
9281 | if (add_new_state) | |
9282 | sl->miss_cnt++; | |
9f4686c4 AS |
9283 | /* heuristic to determine whether this state is beneficial |
9284 | * to keep checking from state equivalence point of view. | |
9285 | * Higher numbers increase max_states_per_insn and verification time, | |
9286 | * but do not meaningfully decrease insn_processed. | |
9287 | */ | |
9288 | if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { | |
9289 | /* the state is unlikely to be useful. Remove it to | |
9290 | * speed up verification | |
9291 | */ | |
9292 | *pprev = sl->next; | |
9293 | if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { | |
2589726d AS |
9294 | u32 br = sl->state.branches; |
9295 | ||
9296 | WARN_ONCE(br, | |
9297 | "BUG live_done but branches_to_explore %d\n", | |
9298 | br); | |
9f4686c4 AS |
9299 | free_verifier_state(&sl->state, false); |
9300 | kfree(sl); | |
9301 | env->peak_states--; | |
9302 | } else { | |
9303 | /* cannot free this state, since parentage chain may | |
9304 | * walk it later. Add it for free_list instead to | |
9305 | * be freed at the end of verification | |
9306 | */ | |
9307 | sl->next = env->free_list; | |
9308 | env->free_list = sl; | |
9309 | } | |
9310 | sl = *pprev; | |
9311 | continue; | |
9312 | } | |
dc2a4ebc | 9313 | next: |
9f4686c4 AS |
9314 | pprev = &sl->next; |
9315 | sl = *pprev; | |
f1bca824 AS |
9316 | } |
9317 | ||
06ee7115 AS |
9318 | if (env->max_states_per_insn < states_cnt) |
9319 | env->max_states_per_insn = states_cnt; | |
9320 | ||
2c78ee89 | 9321 | if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) |
b5dc0163 | 9322 | return push_jmp_history(env, cur); |
ceefbc96 | 9323 | |
2589726d | 9324 | if (!add_new_state) |
b5dc0163 | 9325 | return push_jmp_history(env, cur); |
ceefbc96 | 9326 | |
2589726d AS |
9327 | /* There were no equivalent states, remember the current one. |
9328 | * Technically the current state is not proven to be safe yet, | |
f4d7e40a | 9329 | * but it will either reach outer most bpf_exit (which means it's safe) |
2589726d | 9330 | * or it will be rejected. When there are no loops the verifier won't be |
f4d7e40a | 9331 | * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) |
2589726d AS |
9332 | * again on the way to bpf_exit. |
9333 | * When looping the sl->state.branches will be > 0 and this state | |
9334 | * will not be considered for equivalence until branches == 0. | |
f1bca824 | 9335 | */ |
638f5b90 | 9336 | new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); |
f1bca824 AS |
9337 | if (!new_sl) |
9338 | return -ENOMEM; | |
06ee7115 AS |
9339 | env->total_states++; |
9340 | env->peak_states++; | |
2589726d AS |
9341 | env->prev_jmps_processed = env->jmps_processed; |
9342 | env->prev_insn_processed = env->insn_processed; | |
f1bca824 AS |
9343 | |
9344 | /* add new state to the head of linked list */ | |
679c782d EC |
9345 | new = &new_sl->state; |
9346 | err = copy_verifier_state(new, cur); | |
1969db47 | 9347 | if (err) { |
679c782d | 9348 | free_verifier_state(new, false); |
1969db47 AS |
9349 | kfree(new_sl); |
9350 | return err; | |
9351 | } | |
dc2a4ebc | 9352 | new->insn_idx = insn_idx; |
2589726d AS |
9353 | WARN_ONCE(new->branches != 1, |
9354 | "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); | |
b5dc0163 | 9355 | |
2589726d | 9356 | cur->parent = new; |
b5dc0163 AS |
9357 | cur->first_insn_idx = insn_idx; |
9358 | clear_jmp_history(cur); | |
5d839021 AS |
9359 | new_sl->next = *explored_state(env, insn_idx); |
9360 | *explored_state(env, insn_idx) = new_sl; | |
7640ead9 JK |
9361 | /* connect new state to parentage chain. Current frame needs all |
9362 | * registers connected. Only r6 - r9 of the callers are alive (pushed | |
9363 | * to the stack implicitly by JITs) so in callers' frames connect just | |
9364 | * r6 - r9 as an optimization. Callers will have r1 - r5 connected to | |
9365 | * the state of the call instruction (with WRITTEN set), and r0 comes | |
9366 | * from callee with its full parentage chain, anyway. | |
9367 | */ | |
8e9cd9ce EC |
9368 | /* clear write marks in current state: the writes we did are not writes |
9369 | * our child did, so they don't screen off its reads from us. | |
9370 | * (There are no read marks in current state, because reads always mark | |
9371 | * their parent and current state never has children yet. Only | |
9372 | * explored_states can get read marks.) | |
9373 | */ | |
eea1c227 AS |
9374 | for (j = 0; j <= cur->curframe; j++) { |
9375 | for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) | |
9376 | cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; | |
9377 | for (i = 0; i < BPF_REG_FP; i++) | |
9378 | cur->frame[j]->regs[i].live = REG_LIVE_NONE; | |
9379 | } | |
f4d7e40a AS |
9380 | |
9381 | /* all stack frames are accessible from callee, clear them all */ | |
9382 | for (j = 0; j <= cur->curframe; j++) { | |
9383 | struct bpf_func_state *frame = cur->frame[j]; | |
679c782d | 9384 | struct bpf_func_state *newframe = new->frame[j]; |
f4d7e40a | 9385 | |
679c782d | 9386 | for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { |
cc2b14d5 | 9387 | frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; |
679c782d EC |
9388 | frame->stack[i].spilled_ptr.parent = |
9389 | &newframe->stack[i].spilled_ptr; | |
9390 | } | |
f4d7e40a | 9391 | } |
f1bca824 AS |
9392 | return 0; |
9393 | } | |
9394 | ||
c64b7983 JS |
9395 | /* Return true if it's OK to have the same insn return a different type. */ |
9396 | static bool reg_type_mismatch_ok(enum bpf_reg_type type) | |
9397 | { | |
9398 | switch (type) { | |
9399 | case PTR_TO_CTX: | |
9400 | case PTR_TO_SOCKET: | |
9401 | case PTR_TO_SOCKET_OR_NULL: | |
46f8bc92 MKL |
9402 | case PTR_TO_SOCK_COMMON: |
9403 | case PTR_TO_SOCK_COMMON_OR_NULL: | |
655a51e5 MKL |
9404 | case PTR_TO_TCP_SOCK: |
9405 | case PTR_TO_TCP_SOCK_OR_NULL: | |
fada7fdc | 9406 | case PTR_TO_XDP_SOCK: |
2a02759e | 9407 | case PTR_TO_BTF_ID: |
b121b341 | 9408 | case PTR_TO_BTF_ID_OR_NULL: |
c64b7983 JS |
9409 | return false; |
9410 | default: | |
9411 | return true; | |
9412 | } | |
9413 | } | |
9414 | ||
9415 | /* If an instruction was previously used with particular pointer types, then we | |
9416 | * need to be careful to avoid cases such as the below, where it may be ok | |
9417 | * for one branch accessing the pointer, but not ok for the other branch: | |
9418 | * | |
9419 | * R1 = sock_ptr | |
9420 | * goto X; | |
9421 | * ... | |
9422 | * R1 = some_other_valid_ptr; | |
9423 | * goto X; | |
9424 | * ... | |
9425 | * R2 = *(u32 *)(R1 + 0); | |
9426 | */ | |
9427 | static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) | |
9428 | { | |
9429 | return src != prev && (!reg_type_mismatch_ok(src) || | |
9430 | !reg_type_mismatch_ok(prev)); | |
9431 | } | |
9432 | ||
58e2af8b | 9433 | static int do_check(struct bpf_verifier_env *env) |
17a52670 | 9434 | { |
6f8a57cc | 9435 | bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); |
51c39bb1 | 9436 | struct bpf_verifier_state *state = env->cur_state; |
17a52670 | 9437 | struct bpf_insn *insns = env->prog->insnsi; |
638f5b90 | 9438 | struct bpf_reg_state *regs; |
06ee7115 | 9439 | int insn_cnt = env->prog->len; |
17a52670 | 9440 | bool do_print_state = false; |
b5dc0163 | 9441 | int prev_insn_idx = -1; |
17a52670 | 9442 | |
17a52670 AS |
9443 | for (;;) { |
9444 | struct bpf_insn *insn; | |
9445 | u8 class; | |
9446 | int err; | |
9447 | ||
b5dc0163 | 9448 | env->prev_insn_idx = prev_insn_idx; |
c08435ec | 9449 | if (env->insn_idx >= insn_cnt) { |
61bd5218 | 9450 | verbose(env, "invalid insn idx %d insn_cnt %d\n", |
c08435ec | 9451 | env->insn_idx, insn_cnt); |
17a52670 AS |
9452 | return -EFAULT; |
9453 | } | |
9454 | ||
c08435ec | 9455 | insn = &insns[env->insn_idx]; |
17a52670 AS |
9456 | class = BPF_CLASS(insn->code); |
9457 | ||
06ee7115 | 9458 | if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { |
61bd5218 JK |
9459 | verbose(env, |
9460 | "BPF program is too large. Processed %d insn\n", | |
06ee7115 | 9461 | env->insn_processed); |
17a52670 AS |
9462 | return -E2BIG; |
9463 | } | |
9464 | ||
c08435ec | 9465 | err = is_state_visited(env, env->insn_idx); |
f1bca824 AS |
9466 | if (err < 0) |
9467 | return err; | |
9468 | if (err == 1) { | |
9469 | /* found equivalent state, can prune the search */ | |
06ee7115 | 9470 | if (env->log.level & BPF_LOG_LEVEL) { |
f1bca824 | 9471 | if (do_print_state) |
979d63d5 DB |
9472 | verbose(env, "\nfrom %d to %d%s: safe\n", |
9473 | env->prev_insn_idx, env->insn_idx, | |
9474 | env->cur_state->speculative ? | |
9475 | " (speculative execution)" : ""); | |
f1bca824 | 9476 | else |
c08435ec | 9477 | verbose(env, "%d: safe\n", env->insn_idx); |
f1bca824 AS |
9478 | } |
9479 | goto process_bpf_exit; | |
9480 | } | |
9481 | ||
c3494801 AS |
9482 | if (signal_pending(current)) |
9483 | return -EAGAIN; | |
9484 | ||
3c2ce60b DB |
9485 | if (need_resched()) |
9486 | cond_resched(); | |
9487 | ||
06ee7115 AS |
9488 | if (env->log.level & BPF_LOG_LEVEL2 || |
9489 | (env->log.level & BPF_LOG_LEVEL && do_print_state)) { | |
9490 | if (env->log.level & BPF_LOG_LEVEL2) | |
c08435ec | 9491 | verbose(env, "%d:", env->insn_idx); |
c5fc9692 | 9492 | else |
979d63d5 DB |
9493 | verbose(env, "\nfrom %d to %d%s:", |
9494 | env->prev_insn_idx, env->insn_idx, | |
9495 | env->cur_state->speculative ? | |
9496 | " (speculative execution)" : ""); | |
f4d7e40a | 9497 | print_verifier_state(env, state->frame[state->curframe]); |
17a52670 AS |
9498 | do_print_state = false; |
9499 | } | |
9500 | ||
06ee7115 | 9501 | if (env->log.level & BPF_LOG_LEVEL) { |
7105e828 DB |
9502 | const struct bpf_insn_cbs cbs = { |
9503 | .cb_print = verbose, | |
abe08840 | 9504 | .private_data = env, |
7105e828 DB |
9505 | }; |
9506 | ||
c08435ec DB |
9507 | verbose_linfo(env, env->insn_idx, "; "); |
9508 | verbose(env, "%d: ", env->insn_idx); | |
abe08840 | 9509 | print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); |
17a52670 AS |
9510 | } |
9511 | ||
cae1927c | 9512 | if (bpf_prog_is_dev_bound(env->prog->aux)) { |
c08435ec DB |
9513 | err = bpf_prog_offload_verify_insn(env, env->insn_idx, |
9514 | env->prev_insn_idx); | |
cae1927c JK |
9515 | if (err) |
9516 | return err; | |
9517 | } | |
13a27dfc | 9518 | |
638f5b90 | 9519 | regs = cur_regs(env); |
51c39bb1 | 9520 | env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; |
b5dc0163 | 9521 | prev_insn_idx = env->insn_idx; |
fd978bf7 | 9522 | |
17a52670 | 9523 | if (class == BPF_ALU || class == BPF_ALU64) { |
1be7f75d | 9524 | err = check_alu_op(env, insn); |
17a52670 AS |
9525 | if (err) |
9526 | return err; | |
9527 | ||
9528 | } else if (class == BPF_LDX) { | |
3df126f3 | 9529 | enum bpf_reg_type *prev_src_type, src_reg_type; |
9bac3d6d AS |
9530 | |
9531 | /* check for reserved fields is already done */ | |
9532 | ||
17a52670 | 9533 | /* check src operand */ |
dc503a8a | 9534 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
9535 | if (err) |
9536 | return err; | |
9537 | ||
dc503a8a | 9538 | err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
17a52670 AS |
9539 | if (err) |
9540 | return err; | |
9541 | ||
725f9dcd AS |
9542 | src_reg_type = regs[insn->src_reg].type; |
9543 | ||
17a52670 AS |
9544 | /* check that memory (src_reg + off) is readable, |
9545 | * the state of dst_reg will be updated by this func | |
9546 | */ | |
c08435ec DB |
9547 | err = check_mem_access(env, env->insn_idx, insn->src_reg, |
9548 | insn->off, BPF_SIZE(insn->code), | |
9549 | BPF_READ, insn->dst_reg, false); | |
17a52670 AS |
9550 | if (err) |
9551 | return err; | |
9552 | ||
c08435ec | 9553 | prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; |
3df126f3 JK |
9554 | |
9555 | if (*prev_src_type == NOT_INIT) { | |
9bac3d6d AS |
9556 | /* saw a valid insn |
9557 | * dst_reg = *(u32 *)(src_reg + off) | |
3df126f3 | 9558 | * save type to validate intersecting paths |
9bac3d6d | 9559 | */ |
3df126f3 | 9560 | *prev_src_type = src_reg_type; |
9bac3d6d | 9561 | |
c64b7983 | 9562 | } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { |
9bac3d6d AS |
9563 | /* ABuser program is trying to use the same insn |
9564 | * dst_reg = *(u32*) (src_reg + off) | |
9565 | * with different pointer types: | |
9566 | * src_reg == ctx in one branch and | |
9567 | * src_reg == stack|map in some other branch. | |
9568 | * Reject it. | |
9569 | */ | |
61bd5218 | 9570 | verbose(env, "same insn cannot be used with different pointers\n"); |
9bac3d6d AS |
9571 | return -EINVAL; |
9572 | } | |
9573 | ||
17a52670 | 9574 | } else if (class == BPF_STX) { |
3df126f3 | 9575 | enum bpf_reg_type *prev_dst_type, dst_reg_type; |
d691f9e8 | 9576 | |
91c960b0 BJ |
9577 | if (BPF_MODE(insn->code) == BPF_ATOMIC) { |
9578 | err = check_atomic(env, env->insn_idx, insn); | |
17a52670 AS |
9579 | if (err) |
9580 | return err; | |
c08435ec | 9581 | env->insn_idx++; |
17a52670 AS |
9582 | continue; |
9583 | } | |
9584 | ||
5ca419f2 BJ |
9585 | if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { |
9586 | verbose(env, "BPF_STX uses reserved fields\n"); | |
9587 | return -EINVAL; | |
9588 | } | |
9589 | ||
17a52670 | 9590 | /* check src1 operand */ |
dc503a8a | 9591 | err = check_reg_arg(env, insn->src_reg, SRC_OP); |
17a52670 AS |
9592 | if (err) |
9593 | return err; | |
9594 | /* check src2 operand */ | |
dc503a8a | 9595 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
9596 | if (err) |
9597 | return err; | |
9598 | ||
d691f9e8 AS |
9599 | dst_reg_type = regs[insn->dst_reg].type; |
9600 | ||
17a52670 | 9601 | /* check that memory (dst_reg + off) is writeable */ |
c08435ec DB |
9602 | err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
9603 | insn->off, BPF_SIZE(insn->code), | |
9604 | BPF_WRITE, insn->src_reg, false); | |
17a52670 AS |
9605 | if (err) |
9606 | return err; | |
9607 | ||
c08435ec | 9608 | prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; |
3df126f3 JK |
9609 | |
9610 | if (*prev_dst_type == NOT_INIT) { | |
9611 | *prev_dst_type = dst_reg_type; | |
c64b7983 | 9612 | } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { |
61bd5218 | 9613 | verbose(env, "same insn cannot be used with different pointers\n"); |
d691f9e8 AS |
9614 | return -EINVAL; |
9615 | } | |
9616 | ||
17a52670 AS |
9617 | } else if (class == BPF_ST) { |
9618 | if (BPF_MODE(insn->code) != BPF_MEM || | |
9619 | insn->src_reg != BPF_REG_0) { | |
61bd5218 | 9620 | verbose(env, "BPF_ST uses reserved fields\n"); |
17a52670 AS |
9621 | return -EINVAL; |
9622 | } | |
9623 | /* check src operand */ | |
dc503a8a | 9624 | err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
17a52670 AS |
9625 | if (err) |
9626 | return err; | |
9627 | ||
f37a8cb8 | 9628 | if (is_ctx_reg(env, insn->dst_reg)) { |
9d2be44a | 9629 | verbose(env, "BPF_ST stores into R%d %s is not allowed\n", |
2a159c6f DB |
9630 | insn->dst_reg, |
9631 | reg_type_str[reg_state(env, insn->dst_reg)->type]); | |
f37a8cb8 DB |
9632 | return -EACCES; |
9633 | } | |
9634 | ||
17a52670 | 9635 | /* check that memory (dst_reg + off) is writeable */ |
c08435ec DB |
9636 | err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
9637 | insn->off, BPF_SIZE(insn->code), | |
9638 | BPF_WRITE, -1, false); | |
17a52670 AS |
9639 | if (err) |
9640 | return err; | |
9641 | ||
092ed096 | 9642 | } else if (class == BPF_JMP || class == BPF_JMP32) { |
17a52670 AS |
9643 | u8 opcode = BPF_OP(insn->code); |
9644 | ||
2589726d | 9645 | env->jmps_processed++; |
17a52670 AS |
9646 | if (opcode == BPF_CALL) { |
9647 | if (BPF_SRC(insn->code) != BPF_K || | |
9648 | insn->off != 0 || | |
f4d7e40a AS |
9649 | (insn->src_reg != BPF_REG_0 && |
9650 | insn->src_reg != BPF_PSEUDO_CALL) || | |
092ed096 JW |
9651 | insn->dst_reg != BPF_REG_0 || |
9652 | class == BPF_JMP32) { | |
61bd5218 | 9653 | verbose(env, "BPF_CALL uses reserved fields\n"); |
17a52670 AS |
9654 | return -EINVAL; |
9655 | } | |
9656 | ||
d83525ca AS |
9657 | if (env->cur_state->active_spin_lock && |
9658 | (insn->src_reg == BPF_PSEUDO_CALL || | |
9659 | insn->imm != BPF_FUNC_spin_unlock)) { | |
9660 | verbose(env, "function calls are not allowed while holding a lock\n"); | |
9661 | return -EINVAL; | |
9662 | } | |
f4d7e40a | 9663 | if (insn->src_reg == BPF_PSEUDO_CALL) |
c08435ec | 9664 | err = check_func_call(env, insn, &env->insn_idx); |
f4d7e40a | 9665 | else |
c08435ec | 9666 | err = check_helper_call(env, insn->imm, env->insn_idx); |
17a52670 AS |
9667 | if (err) |
9668 | return err; | |
9669 | ||
9670 | } else if (opcode == BPF_JA) { | |
9671 | if (BPF_SRC(insn->code) != BPF_K || | |
9672 | insn->imm != 0 || | |
9673 | insn->src_reg != BPF_REG_0 || | |
092ed096 JW |
9674 | insn->dst_reg != BPF_REG_0 || |
9675 | class == BPF_JMP32) { | |
61bd5218 | 9676 | verbose(env, "BPF_JA uses reserved fields\n"); |
17a52670 AS |
9677 | return -EINVAL; |
9678 | } | |
9679 | ||
c08435ec | 9680 | env->insn_idx += insn->off + 1; |
17a52670 AS |
9681 | continue; |
9682 | ||
9683 | } else if (opcode == BPF_EXIT) { | |
9684 | if (BPF_SRC(insn->code) != BPF_K || | |
9685 | insn->imm != 0 || | |
9686 | insn->src_reg != BPF_REG_0 || | |
092ed096 JW |
9687 | insn->dst_reg != BPF_REG_0 || |
9688 | class == BPF_JMP32) { | |
61bd5218 | 9689 | verbose(env, "BPF_EXIT uses reserved fields\n"); |
17a52670 AS |
9690 | return -EINVAL; |
9691 | } | |
9692 | ||
d83525ca AS |
9693 | if (env->cur_state->active_spin_lock) { |
9694 | verbose(env, "bpf_spin_unlock is missing\n"); | |
9695 | return -EINVAL; | |
9696 | } | |
9697 | ||
f4d7e40a AS |
9698 | if (state->curframe) { |
9699 | /* exit from nested function */ | |
c08435ec | 9700 | err = prepare_func_exit(env, &env->insn_idx); |
f4d7e40a AS |
9701 | if (err) |
9702 | return err; | |
9703 | do_print_state = true; | |
9704 | continue; | |
9705 | } | |
9706 | ||
fd978bf7 JS |
9707 | err = check_reference_leak(env); |
9708 | if (err) | |
9709 | return err; | |
9710 | ||
390ee7e2 AS |
9711 | err = check_return_code(env); |
9712 | if (err) | |
9713 | return err; | |
f1bca824 | 9714 | process_bpf_exit: |
2589726d | 9715 | update_branch_counts(env, env->cur_state); |
b5dc0163 | 9716 | err = pop_stack(env, &prev_insn_idx, |
6f8a57cc | 9717 | &env->insn_idx, pop_log); |
638f5b90 AS |
9718 | if (err < 0) { |
9719 | if (err != -ENOENT) | |
9720 | return err; | |
17a52670 AS |
9721 | break; |
9722 | } else { | |
9723 | do_print_state = true; | |
9724 | continue; | |
9725 | } | |
9726 | } else { | |
c08435ec | 9727 | err = check_cond_jmp_op(env, insn, &env->insn_idx); |
17a52670 AS |
9728 | if (err) |
9729 | return err; | |
9730 | } | |
9731 | } else if (class == BPF_LD) { | |
9732 | u8 mode = BPF_MODE(insn->code); | |
9733 | ||
9734 | if (mode == BPF_ABS || mode == BPF_IND) { | |
ddd872bc AS |
9735 | err = check_ld_abs(env, insn); |
9736 | if (err) | |
9737 | return err; | |
9738 | ||
17a52670 AS |
9739 | } else if (mode == BPF_IMM) { |
9740 | err = check_ld_imm(env, insn); | |
9741 | if (err) | |
9742 | return err; | |
9743 | ||
c08435ec | 9744 | env->insn_idx++; |
51c39bb1 | 9745 | env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; |
17a52670 | 9746 | } else { |
61bd5218 | 9747 | verbose(env, "invalid BPF_LD mode\n"); |
17a52670 AS |
9748 | return -EINVAL; |
9749 | } | |
9750 | } else { | |
61bd5218 | 9751 | verbose(env, "unknown insn class %d\n", class); |
17a52670 AS |
9752 | return -EINVAL; |
9753 | } | |
9754 | ||
c08435ec | 9755 | env->insn_idx++; |
17a52670 AS |
9756 | } |
9757 | ||
9758 | return 0; | |
9759 | } | |
9760 | ||
541c3bad AN |
9761 | static int find_btf_percpu_datasec(struct btf *btf) |
9762 | { | |
9763 | const struct btf_type *t; | |
9764 | const char *tname; | |
9765 | int i, n; | |
9766 | ||
9767 | /* | |
9768 | * Both vmlinux and module each have their own ".data..percpu" | |
9769 | * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF | |
9770 | * types to look at only module's own BTF types. | |
9771 | */ | |
9772 | n = btf_nr_types(btf); | |
9773 | if (btf_is_module(btf)) | |
9774 | i = btf_nr_types(btf_vmlinux); | |
9775 | else | |
9776 | i = 1; | |
9777 | ||
9778 | for(; i < n; i++) { | |
9779 | t = btf_type_by_id(btf, i); | |
9780 | if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) | |
9781 | continue; | |
9782 | ||
9783 | tname = btf_name_by_offset(btf, t->name_off); | |
9784 | if (!strcmp(tname, ".data..percpu")) | |
9785 | return i; | |
9786 | } | |
9787 | ||
9788 | return -ENOENT; | |
9789 | } | |
9790 | ||
4976b718 HL |
9791 | /* replace pseudo btf_id with kernel symbol address */ |
9792 | static int check_pseudo_btf_id(struct bpf_verifier_env *env, | |
9793 | struct bpf_insn *insn, | |
9794 | struct bpf_insn_aux_data *aux) | |
9795 | { | |
eaa6bcb7 HL |
9796 | const struct btf_var_secinfo *vsi; |
9797 | const struct btf_type *datasec; | |
541c3bad | 9798 | struct btf_mod_pair *btf_mod; |
4976b718 HL |
9799 | const struct btf_type *t; |
9800 | const char *sym_name; | |
eaa6bcb7 | 9801 | bool percpu = false; |
f16e6313 | 9802 | u32 type, id = insn->imm; |
541c3bad | 9803 | struct btf *btf; |
f16e6313 | 9804 | s32 datasec_id; |
4976b718 | 9805 | u64 addr; |
541c3bad | 9806 | int i, btf_fd, err; |
4976b718 | 9807 | |
541c3bad AN |
9808 | btf_fd = insn[1].imm; |
9809 | if (btf_fd) { | |
9810 | btf = btf_get_by_fd(btf_fd); | |
9811 | if (IS_ERR(btf)) { | |
9812 | verbose(env, "invalid module BTF object FD specified.\n"); | |
9813 | return -EINVAL; | |
9814 | } | |
9815 | } else { | |
9816 | if (!btf_vmlinux) { | |
9817 | verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); | |
9818 | return -EINVAL; | |
9819 | } | |
9820 | btf = btf_vmlinux; | |
9821 | btf_get(btf); | |
4976b718 HL |
9822 | } |
9823 | ||
541c3bad | 9824 | t = btf_type_by_id(btf, id); |
4976b718 HL |
9825 | if (!t) { |
9826 | verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); | |
541c3bad AN |
9827 | err = -ENOENT; |
9828 | goto err_put; | |
4976b718 HL |
9829 | } |
9830 | ||
9831 | if (!btf_type_is_var(t)) { | |
541c3bad AN |
9832 | verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); |
9833 | err = -EINVAL; | |
9834 | goto err_put; | |
4976b718 HL |
9835 | } |
9836 | ||
541c3bad | 9837 | sym_name = btf_name_by_offset(btf, t->name_off); |
4976b718 HL |
9838 | addr = kallsyms_lookup_name(sym_name); |
9839 | if (!addr) { | |
9840 | verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", | |
9841 | sym_name); | |
541c3bad AN |
9842 | err = -ENOENT; |
9843 | goto err_put; | |
4976b718 HL |
9844 | } |
9845 | ||
541c3bad | 9846 | datasec_id = find_btf_percpu_datasec(btf); |
eaa6bcb7 | 9847 | if (datasec_id > 0) { |
541c3bad | 9848 | datasec = btf_type_by_id(btf, datasec_id); |
eaa6bcb7 HL |
9849 | for_each_vsi(i, datasec, vsi) { |
9850 | if (vsi->type == id) { | |
9851 | percpu = true; | |
9852 | break; | |
9853 | } | |
9854 | } | |
9855 | } | |
9856 | ||
4976b718 HL |
9857 | insn[0].imm = (u32)addr; |
9858 | insn[1].imm = addr >> 32; | |
9859 | ||
9860 | type = t->type; | |
541c3bad | 9861 | t = btf_type_skip_modifiers(btf, type, NULL); |
eaa6bcb7 HL |
9862 | if (percpu) { |
9863 | aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; | |
541c3bad | 9864 | aux->btf_var.btf = btf; |
eaa6bcb7 HL |
9865 | aux->btf_var.btf_id = type; |
9866 | } else if (!btf_type_is_struct(t)) { | |
4976b718 HL |
9867 | const struct btf_type *ret; |
9868 | const char *tname; | |
9869 | u32 tsize; | |
9870 | ||
9871 | /* resolve the type size of ksym. */ | |
541c3bad | 9872 | ret = btf_resolve_size(btf, t, &tsize); |
4976b718 | 9873 | if (IS_ERR(ret)) { |
541c3bad | 9874 | tname = btf_name_by_offset(btf, t->name_off); |
4976b718 HL |
9875 | verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", |
9876 | tname, PTR_ERR(ret)); | |
541c3bad AN |
9877 | err = -EINVAL; |
9878 | goto err_put; | |
4976b718 HL |
9879 | } |
9880 | aux->btf_var.reg_type = PTR_TO_MEM; | |
9881 | aux->btf_var.mem_size = tsize; | |
9882 | } else { | |
9883 | aux->btf_var.reg_type = PTR_TO_BTF_ID; | |
541c3bad | 9884 | aux->btf_var.btf = btf; |
4976b718 HL |
9885 | aux->btf_var.btf_id = type; |
9886 | } | |
541c3bad AN |
9887 | |
9888 | /* check whether we recorded this BTF (and maybe module) already */ | |
9889 | for (i = 0; i < env->used_btf_cnt; i++) { | |
9890 | if (env->used_btfs[i].btf == btf) { | |
9891 | btf_put(btf); | |
9892 | return 0; | |
9893 | } | |
9894 | } | |
9895 | ||
9896 | if (env->used_btf_cnt >= MAX_USED_BTFS) { | |
9897 | err = -E2BIG; | |
9898 | goto err_put; | |
9899 | } | |
9900 | ||
9901 | btf_mod = &env->used_btfs[env->used_btf_cnt]; | |
9902 | btf_mod->btf = btf; | |
9903 | btf_mod->module = NULL; | |
9904 | ||
9905 | /* if we reference variables from kernel module, bump its refcount */ | |
9906 | if (btf_is_module(btf)) { | |
9907 | btf_mod->module = btf_try_get_module(btf); | |
9908 | if (!btf_mod->module) { | |
9909 | err = -ENXIO; | |
9910 | goto err_put; | |
9911 | } | |
9912 | } | |
9913 | ||
9914 | env->used_btf_cnt++; | |
9915 | ||
4976b718 | 9916 | return 0; |
541c3bad AN |
9917 | err_put: |
9918 | btf_put(btf); | |
9919 | return err; | |
4976b718 HL |
9920 | } |
9921 | ||
56f668df MKL |
9922 | static int check_map_prealloc(struct bpf_map *map) |
9923 | { | |
9924 | return (map->map_type != BPF_MAP_TYPE_HASH && | |
bcc6b1b7 MKL |
9925 | map->map_type != BPF_MAP_TYPE_PERCPU_HASH && |
9926 | map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || | |
56f668df MKL |
9927 | !(map->map_flags & BPF_F_NO_PREALLOC); |
9928 | } | |
9929 | ||
d83525ca AS |
9930 | static bool is_tracing_prog_type(enum bpf_prog_type type) |
9931 | { | |
9932 | switch (type) { | |
9933 | case BPF_PROG_TYPE_KPROBE: | |
9934 | case BPF_PROG_TYPE_TRACEPOINT: | |
9935 | case BPF_PROG_TYPE_PERF_EVENT: | |
9936 | case BPF_PROG_TYPE_RAW_TRACEPOINT: | |
9937 | return true; | |
9938 | default: | |
9939 | return false; | |
9940 | } | |
9941 | } | |
9942 | ||
94dacdbd TG |
9943 | static bool is_preallocated_map(struct bpf_map *map) |
9944 | { | |
9945 | if (!check_map_prealloc(map)) | |
9946 | return false; | |
9947 | if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) | |
9948 | return false; | |
9949 | return true; | |
9950 | } | |
9951 | ||
61bd5218 JK |
9952 | static int check_map_prog_compatibility(struct bpf_verifier_env *env, |
9953 | struct bpf_map *map, | |
fdc15d38 AS |
9954 | struct bpf_prog *prog) |
9955 | ||
9956 | { | |
7e40781c | 9957 | enum bpf_prog_type prog_type = resolve_prog_type(prog); |
94dacdbd TG |
9958 | /* |
9959 | * Validate that trace type programs use preallocated hash maps. | |
9960 | * | |
9961 | * For programs attached to PERF events this is mandatory as the | |
9962 | * perf NMI can hit any arbitrary code sequence. | |
9963 | * | |
9964 | * All other trace types using preallocated hash maps are unsafe as | |
9965 | * well because tracepoint or kprobes can be inside locked regions | |
9966 | * of the memory allocator or at a place where a recursion into the | |
9967 | * memory allocator would see inconsistent state. | |
9968 | * | |
2ed905c5 TG |
9969 | * On RT enabled kernels run-time allocation of all trace type |
9970 | * programs is strictly prohibited due to lock type constraints. On | |
9971 | * !RT kernels it is allowed for backwards compatibility reasons for | |
9972 | * now, but warnings are emitted so developers are made aware of | |
9973 | * the unsafety and can fix their programs before this is enforced. | |
56f668df | 9974 | */ |
7e40781c UP |
9975 | if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { |
9976 | if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { | |
61bd5218 | 9977 | verbose(env, "perf_event programs can only use preallocated hash map\n"); |
56f668df MKL |
9978 | return -EINVAL; |
9979 | } | |
2ed905c5 TG |
9980 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
9981 | verbose(env, "trace type programs can only use preallocated hash map\n"); | |
9982 | return -EINVAL; | |
9983 | } | |
94dacdbd TG |
9984 | WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); |
9985 | verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); | |
fdc15d38 | 9986 | } |
a3884572 | 9987 | |
9e7a4d98 KS |
9988 | if (map_value_has_spin_lock(map)) { |
9989 | if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { | |
9990 | verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); | |
9991 | return -EINVAL; | |
9992 | } | |
9993 | ||
9994 | if (is_tracing_prog_type(prog_type)) { | |
9995 | verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); | |
9996 | return -EINVAL; | |
9997 | } | |
9998 | ||
9999 | if (prog->aux->sleepable) { | |
10000 | verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); | |
10001 | return -EINVAL; | |
10002 | } | |
d83525ca AS |
10003 | } |
10004 | ||
a3884572 | 10005 | if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && |
09728266 | 10006 | !bpf_offload_prog_map_match(prog, map)) { |
a3884572 JK |
10007 | verbose(env, "offload device mismatch between prog and map\n"); |
10008 | return -EINVAL; | |
10009 | } | |
10010 | ||
85d33df3 MKL |
10011 | if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { |
10012 | verbose(env, "bpf_struct_ops map cannot be used in prog\n"); | |
10013 | return -EINVAL; | |
10014 | } | |
10015 | ||
1e6c62a8 AS |
10016 | if (prog->aux->sleepable) |
10017 | switch (map->map_type) { | |
10018 | case BPF_MAP_TYPE_HASH: | |
10019 | case BPF_MAP_TYPE_LRU_HASH: | |
10020 | case BPF_MAP_TYPE_ARRAY: | |
10021 | if (!is_preallocated_map(map)) { | |
10022 | verbose(env, | |
10023 | "Sleepable programs can only use preallocated hash maps\n"); | |
10024 | return -EINVAL; | |
10025 | } | |
10026 | break; | |
10027 | default: | |
10028 | verbose(env, | |
10029 | "Sleepable programs can only use array and hash maps\n"); | |
10030 | return -EINVAL; | |
10031 | } | |
10032 | ||
fdc15d38 AS |
10033 | return 0; |
10034 | } | |
10035 | ||
b741f163 RG |
10036 | static bool bpf_map_is_cgroup_storage(struct bpf_map *map) |
10037 | { | |
10038 | return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || | |
10039 | map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); | |
10040 | } | |
10041 | ||
4976b718 HL |
10042 | /* find and rewrite pseudo imm in ld_imm64 instructions: |
10043 | * | |
10044 | * 1. if it accesses map FD, replace it with actual map pointer. | |
10045 | * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. | |
10046 | * | |
10047 | * NOTE: btf_vmlinux is required for converting pseudo btf_id. | |
0246e64d | 10048 | */ |
4976b718 | 10049 | static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) |
0246e64d AS |
10050 | { |
10051 | struct bpf_insn *insn = env->prog->insnsi; | |
10052 | int insn_cnt = env->prog->len; | |
fdc15d38 | 10053 | int i, j, err; |
0246e64d | 10054 | |
f1f7714e | 10055 | err = bpf_prog_calc_tag(env->prog); |
aafe6ae9 DB |
10056 | if (err) |
10057 | return err; | |
10058 | ||
0246e64d | 10059 | for (i = 0; i < insn_cnt; i++, insn++) { |
9bac3d6d | 10060 | if (BPF_CLASS(insn->code) == BPF_LDX && |
d691f9e8 | 10061 | (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { |
61bd5218 | 10062 | verbose(env, "BPF_LDX uses reserved fields\n"); |
d691f9e8 AS |
10063 | return -EINVAL; |
10064 | } | |
10065 | ||
0246e64d | 10066 | if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { |
d8eca5bb | 10067 | struct bpf_insn_aux_data *aux; |
0246e64d AS |
10068 | struct bpf_map *map; |
10069 | struct fd f; | |
d8eca5bb | 10070 | u64 addr; |
0246e64d AS |
10071 | |
10072 | if (i == insn_cnt - 1 || insn[1].code != 0 || | |
10073 | insn[1].dst_reg != 0 || insn[1].src_reg != 0 || | |
10074 | insn[1].off != 0) { | |
61bd5218 | 10075 | verbose(env, "invalid bpf_ld_imm64 insn\n"); |
0246e64d AS |
10076 | return -EINVAL; |
10077 | } | |
10078 | ||
d8eca5bb | 10079 | if (insn[0].src_reg == 0) |
0246e64d AS |
10080 | /* valid generic load 64-bit imm */ |
10081 | goto next_insn; | |
10082 | ||
4976b718 HL |
10083 | if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { |
10084 | aux = &env->insn_aux_data[i]; | |
10085 | err = check_pseudo_btf_id(env, insn, aux); | |
10086 | if (err) | |
10087 | return err; | |
10088 | goto next_insn; | |
10089 | } | |
10090 | ||
d8eca5bb DB |
10091 | /* In final convert_pseudo_ld_imm64() step, this is |
10092 | * converted into regular 64-bit imm load insn. | |
10093 | */ | |
10094 | if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && | |
10095 | insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || | |
10096 | (insn[0].src_reg == BPF_PSEUDO_MAP_FD && | |
10097 | insn[1].imm != 0)) { | |
10098 | verbose(env, | |
10099 | "unrecognized bpf_ld_imm64 insn\n"); | |
0246e64d AS |
10100 | return -EINVAL; |
10101 | } | |
10102 | ||
20182390 | 10103 | f = fdget(insn[0].imm); |
c2101297 | 10104 | map = __bpf_map_get(f); |
0246e64d | 10105 | if (IS_ERR(map)) { |
61bd5218 | 10106 | verbose(env, "fd %d is not pointing to valid bpf_map\n", |
20182390 | 10107 | insn[0].imm); |
0246e64d AS |
10108 | return PTR_ERR(map); |
10109 | } | |
10110 | ||
61bd5218 | 10111 | err = check_map_prog_compatibility(env, map, env->prog); |
fdc15d38 AS |
10112 | if (err) { |
10113 | fdput(f); | |
10114 | return err; | |
10115 | } | |
10116 | ||
d8eca5bb DB |
10117 | aux = &env->insn_aux_data[i]; |
10118 | if (insn->src_reg == BPF_PSEUDO_MAP_FD) { | |
10119 | addr = (unsigned long)map; | |
10120 | } else { | |
10121 | u32 off = insn[1].imm; | |
10122 | ||
10123 | if (off >= BPF_MAX_VAR_OFF) { | |
10124 | verbose(env, "direct value offset of %u is not allowed\n", off); | |
10125 | fdput(f); | |
10126 | return -EINVAL; | |
10127 | } | |
10128 | ||
10129 | if (!map->ops->map_direct_value_addr) { | |
10130 | verbose(env, "no direct value access support for this map type\n"); | |
10131 | fdput(f); | |
10132 | return -EINVAL; | |
10133 | } | |
10134 | ||
10135 | err = map->ops->map_direct_value_addr(map, &addr, off); | |
10136 | if (err) { | |
10137 | verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", | |
10138 | map->value_size, off); | |
10139 | fdput(f); | |
10140 | return err; | |
10141 | } | |
10142 | ||
10143 | aux->map_off = off; | |
10144 | addr += off; | |
10145 | } | |
10146 | ||
10147 | insn[0].imm = (u32)addr; | |
10148 | insn[1].imm = addr >> 32; | |
0246e64d AS |
10149 | |
10150 | /* check whether we recorded this map already */ | |
d8eca5bb | 10151 | for (j = 0; j < env->used_map_cnt; j++) { |
0246e64d | 10152 | if (env->used_maps[j] == map) { |
d8eca5bb | 10153 | aux->map_index = j; |
0246e64d AS |
10154 | fdput(f); |
10155 | goto next_insn; | |
10156 | } | |
d8eca5bb | 10157 | } |
0246e64d AS |
10158 | |
10159 | if (env->used_map_cnt >= MAX_USED_MAPS) { | |
10160 | fdput(f); | |
10161 | return -E2BIG; | |
10162 | } | |
10163 | ||
0246e64d AS |
10164 | /* hold the map. If the program is rejected by verifier, |
10165 | * the map will be released by release_maps() or it | |
10166 | * will be used by the valid program until it's unloaded | |
ab7f5bf0 | 10167 | * and all maps are released in free_used_maps() |
0246e64d | 10168 | */ |
1e0bd5a0 | 10169 | bpf_map_inc(map); |
d8eca5bb DB |
10170 | |
10171 | aux->map_index = env->used_map_cnt; | |
92117d84 AS |
10172 | env->used_maps[env->used_map_cnt++] = map; |
10173 | ||
b741f163 | 10174 | if (bpf_map_is_cgroup_storage(map) && |
e4730423 | 10175 | bpf_cgroup_storage_assign(env->prog->aux, map)) { |
b741f163 | 10176 | verbose(env, "only one cgroup storage of each type is allowed\n"); |
de9cbbaa RG |
10177 | fdput(f); |
10178 | return -EBUSY; | |
10179 | } | |
10180 | ||
0246e64d AS |
10181 | fdput(f); |
10182 | next_insn: | |
10183 | insn++; | |
10184 | i++; | |
5e581dad DB |
10185 | continue; |
10186 | } | |
10187 | ||
10188 | /* Basic sanity check before we invest more work here. */ | |
10189 | if (!bpf_opcode_in_insntable(insn->code)) { | |
10190 | verbose(env, "unknown opcode %02x\n", insn->code); | |
10191 | return -EINVAL; | |
0246e64d AS |
10192 | } |
10193 | } | |
10194 | ||
10195 | /* now all pseudo BPF_LD_IMM64 instructions load valid | |
10196 | * 'struct bpf_map *' into a register instead of user map_fd. | |
10197 | * These pointers will be used later by verifier to validate map access. | |
10198 | */ | |
10199 | return 0; | |
10200 | } | |
10201 | ||
10202 | /* drop refcnt of maps used by the rejected program */ | |
58e2af8b | 10203 | static void release_maps(struct bpf_verifier_env *env) |
0246e64d | 10204 | { |
a2ea0746 DB |
10205 | __bpf_free_used_maps(env->prog->aux, env->used_maps, |
10206 | env->used_map_cnt); | |
0246e64d AS |
10207 | } |
10208 | ||
541c3bad AN |
10209 | /* drop refcnt of maps used by the rejected program */ |
10210 | static void release_btfs(struct bpf_verifier_env *env) | |
10211 | { | |
10212 | __bpf_free_used_btfs(env->prog->aux, env->used_btfs, | |
10213 | env->used_btf_cnt); | |
10214 | } | |
10215 | ||
0246e64d | 10216 | /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ |
58e2af8b | 10217 | static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) |
0246e64d AS |
10218 | { |
10219 | struct bpf_insn *insn = env->prog->insnsi; | |
10220 | int insn_cnt = env->prog->len; | |
10221 | int i; | |
10222 | ||
10223 | for (i = 0; i < insn_cnt; i++, insn++) | |
10224 | if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) | |
10225 | insn->src_reg = 0; | |
10226 | } | |
10227 | ||
8041902d AS |
10228 | /* single env->prog->insni[off] instruction was replaced with the range |
10229 | * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying | |
10230 | * [0, off) and [off, end) to new locations, so the patched range stays zero | |
10231 | */ | |
b325fbca JW |
10232 | static int adjust_insn_aux_data(struct bpf_verifier_env *env, |
10233 | struct bpf_prog *new_prog, u32 off, u32 cnt) | |
8041902d AS |
10234 | { |
10235 | struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; | |
b325fbca JW |
10236 | struct bpf_insn *insn = new_prog->insnsi; |
10237 | u32 prog_len; | |
c131187d | 10238 | int i; |
8041902d | 10239 | |
b325fbca JW |
10240 | /* aux info at OFF always needs adjustment, no matter fast path |
10241 | * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the | |
10242 | * original insn at old prog. | |
10243 | */ | |
10244 | old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); | |
10245 | ||
8041902d AS |
10246 | if (cnt == 1) |
10247 | return 0; | |
b325fbca | 10248 | prog_len = new_prog->len; |
fad953ce KC |
10249 | new_data = vzalloc(array_size(prog_len, |
10250 | sizeof(struct bpf_insn_aux_data))); | |
8041902d AS |
10251 | if (!new_data) |
10252 | return -ENOMEM; | |
10253 | memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); | |
10254 | memcpy(new_data + off + cnt - 1, old_data + off, | |
10255 | sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); | |
b325fbca | 10256 | for (i = off; i < off + cnt - 1; i++) { |
51c39bb1 | 10257 | new_data[i].seen = env->pass_cnt; |
b325fbca JW |
10258 | new_data[i].zext_dst = insn_has_def32(env, insn + i); |
10259 | } | |
8041902d AS |
10260 | env->insn_aux_data = new_data; |
10261 | vfree(old_data); | |
10262 | return 0; | |
10263 | } | |
10264 | ||
cc8b0b92 AS |
10265 | static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) |
10266 | { | |
10267 | int i; | |
10268 | ||
10269 | if (len == 1) | |
10270 | return; | |
4cb3d99c JW |
10271 | /* NOTE: fake 'exit' subprog should be updated as well. */ |
10272 | for (i = 0; i <= env->subprog_cnt; i++) { | |
afd59424 | 10273 | if (env->subprog_info[i].start <= off) |
cc8b0b92 | 10274 | continue; |
9c8105bd | 10275 | env->subprog_info[i].start += len - 1; |
cc8b0b92 AS |
10276 | } |
10277 | } | |
10278 | ||
a748c697 MF |
10279 | static void adjust_poke_descs(struct bpf_prog *prog, u32 len) |
10280 | { | |
10281 | struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; | |
10282 | int i, sz = prog->aux->size_poke_tab; | |
10283 | struct bpf_jit_poke_descriptor *desc; | |
10284 | ||
10285 | for (i = 0; i < sz; i++) { | |
10286 | desc = &tab[i]; | |
10287 | desc->insn_idx += len - 1; | |
10288 | } | |
10289 | } | |
10290 | ||
8041902d AS |
10291 | static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, |
10292 | const struct bpf_insn *patch, u32 len) | |
10293 | { | |
10294 | struct bpf_prog *new_prog; | |
10295 | ||
10296 | new_prog = bpf_patch_insn_single(env->prog, off, patch, len); | |
4f73379e AS |
10297 | if (IS_ERR(new_prog)) { |
10298 | if (PTR_ERR(new_prog) == -ERANGE) | |
10299 | verbose(env, | |
10300 | "insn %d cannot be patched due to 16-bit range\n", | |
10301 | env->insn_aux_data[off].orig_idx); | |
8041902d | 10302 | return NULL; |
4f73379e | 10303 | } |
b325fbca | 10304 | if (adjust_insn_aux_data(env, new_prog, off, len)) |
8041902d | 10305 | return NULL; |
cc8b0b92 | 10306 | adjust_subprog_starts(env, off, len); |
a748c697 | 10307 | adjust_poke_descs(new_prog, len); |
8041902d AS |
10308 | return new_prog; |
10309 | } | |
10310 | ||
52875a04 JK |
10311 | static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, |
10312 | u32 off, u32 cnt) | |
10313 | { | |
10314 | int i, j; | |
10315 | ||
10316 | /* find first prog starting at or after off (first to remove) */ | |
10317 | for (i = 0; i < env->subprog_cnt; i++) | |
10318 | if (env->subprog_info[i].start >= off) | |
10319 | break; | |
10320 | /* find first prog starting at or after off + cnt (first to stay) */ | |
10321 | for (j = i; j < env->subprog_cnt; j++) | |
10322 | if (env->subprog_info[j].start >= off + cnt) | |
10323 | break; | |
10324 | /* if j doesn't start exactly at off + cnt, we are just removing | |
10325 | * the front of previous prog | |
10326 | */ | |
10327 | if (env->subprog_info[j].start != off + cnt) | |
10328 | j--; | |
10329 | ||
10330 | if (j > i) { | |
10331 | struct bpf_prog_aux *aux = env->prog->aux; | |
10332 | int move; | |
10333 | ||
10334 | /* move fake 'exit' subprog as well */ | |
10335 | move = env->subprog_cnt + 1 - j; | |
10336 | ||
10337 | memmove(env->subprog_info + i, | |
10338 | env->subprog_info + j, | |
10339 | sizeof(*env->subprog_info) * move); | |
10340 | env->subprog_cnt -= j - i; | |
10341 | ||
10342 | /* remove func_info */ | |
10343 | if (aux->func_info) { | |
10344 | move = aux->func_info_cnt - j; | |
10345 | ||
10346 | memmove(aux->func_info + i, | |
10347 | aux->func_info + j, | |
10348 | sizeof(*aux->func_info) * move); | |
10349 | aux->func_info_cnt -= j - i; | |
10350 | /* func_info->insn_off is set after all code rewrites, | |
10351 | * in adjust_btf_func() - no need to adjust | |
10352 | */ | |
10353 | } | |
10354 | } else { | |
10355 | /* convert i from "first prog to remove" to "first to adjust" */ | |
10356 | if (env->subprog_info[i].start == off) | |
10357 | i++; | |
10358 | } | |
10359 | ||
10360 | /* update fake 'exit' subprog as well */ | |
10361 | for (; i <= env->subprog_cnt; i++) | |
10362 | env->subprog_info[i].start -= cnt; | |
10363 | ||
10364 | return 0; | |
10365 | } | |
10366 | ||
10367 | static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, | |
10368 | u32 cnt) | |
10369 | { | |
10370 | struct bpf_prog *prog = env->prog; | |
10371 | u32 i, l_off, l_cnt, nr_linfo; | |
10372 | struct bpf_line_info *linfo; | |
10373 | ||
10374 | nr_linfo = prog->aux->nr_linfo; | |
10375 | if (!nr_linfo) | |
10376 | return 0; | |
10377 | ||
10378 | linfo = prog->aux->linfo; | |
10379 | ||
10380 | /* find first line info to remove, count lines to be removed */ | |
10381 | for (i = 0; i < nr_linfo; i++) | |
10382 | if (linfo[i].insn_off >= off) | |
10383 | break; | |
10384 | ||
10385 | l_off = i; | |
10386 | l_cnt = 0; | |
10387 | for (; i < nr_linfo; i++) | |
10388 | if (linfo[i].insn_off < off + cnt) | |
10389 | l_cnt++; | |
10390 | else | |
10391 | break; | |
10392 | ||
10393 | /* First live insn doesn't match first live linfo, it needs to "inherit" | |
10394 | * last removed linfo. prog is already modified, so prog->len == off | |
10395 | * means no live instructions after (tail of the program was removed). | |
10396 | */ | |
10397 | if (prog->len != off && l_cnt && | |
10398 | (i == nr_linfo || linfo[i].insn_off != off + cnt)) { | |
10399 | l_cnt--; | |
10400 | linfo[--i].insn_off = off + cnt; | |
10401 | } | |
10402 | ||
10403 | /* remove the line info which refer to the removed instructions */ | |
10404 | if (l_cnt) { | |
10405 | memmove(linfo + l_off, linfo + i, | |
10406 | sizeof(*linfo) * (nr_linfo - i)); | |
10407 | ||
10408 | prog->aux->nr_linfo -= l_cnt; | |
10409 | nr_linfo = prog->aux->nr_linfo; | |
10410 | } | |
10411 | ||
10412 | /* pull all linfo[i].insn_off >= off + cnt in by cnt */ | |
10413 | for (i = l_off; i < nr_linfo; i++) | |
10414 | linfo[i].insn_off -= cnt; | |
10415 | ||
10416 | /* fix up all subprogs (incl. 'exit') which start >= off */ | |
10417 | for (i = 0; i <= env->subprog_cnt; i++) | |
10418 | if (env->subprog_info[i].linfo_idx > l_off) { | |
10419 | /* program may have started in the removed region but | |
10420 | * may not be fully removed | |
10421 | */ | |
10422 | if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) | |
10423 | env->subprog_info[i].linfo_idx -= l_cnt; | |
10424 | else | |
10425 | env->subprog_info[i].linfo_idx = l_off; | |
10426 | } | |
10427 | ||
10428 | return 0; | |
10429 | } | |
10430 | ||
10431 | static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) | |
10432 | { | |
10433 | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | |
10434 | unsigned int orig_prog_len = env->prog->len; | |
10435 | int err; | |
10436 | ||
08ca90af JK |
10437 | if (bpf_prog_is_dev_bound(env->prog->aux)) |
10438 | bpf_prog_offload_remove_insns(env, off, cnt); | |
10439 | ||
52875a04 JK |
10440 | err = bpf_remove_insns(env->prog, off, cnt); |
10441 | if (err) | |
10442 | return err; | |
10443 | ||
10444 | err = adjust_subprog_starts_after_remove(env, off, cnt); | |
10445 | if (err) | |
10446 | return err; | |
10447 | ||
10448 | err = bpf_adj_linfo_after_remove(env, off, cnt); | |
10449 | if (err) | |
10450 | return err; | |
10451 | ||
10452 | memmove(aux_data + off, aux_data + off + cnt, | |
10453 | sizeof(*aux_data) * (orig_prog_len - off - cnt)); | |
10454 | ||
10455 | return 0; | |
10456 | } | |
10457 | ||
2a5418a1 DB |
10458 | /* The verifier does more data flow analysis than llvm and will not |
10459 | * explore branches that are dead at run time. Malicious programs can | |
10460 | * have dead code too. Therefore replace all dead at-run-time code | |
10461 | * with 'ja -1'. | |
10462 | * | |
10463 | * Just nops are not optimal, e.g. if they would sit at the end of the | |
10464 | * program and through another bug we would manage to jump there, then | |
10465 | * we'd execute beyond program memory otherwise. Returning exception | |
10466 | * code also wouldn't work since we can have subprogs where the dead | |
10467 | * code could be located. | |
c131187d AS |
10468 | */ |
10469 | static void sanitize_dead_code(struct bpf_verifier_env *env) | |
10470 | { | |
10471 | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | |
2a5418a1 | 10472 | struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); |
c131187d AS |
10473 | struct bpf_insn *insn = env->prog->insnsi; |
10474 | const int insn_cnt = env->prog->len; | |
10475 | int i; | |
10476 | ||
10477 | for (i = 0; i < insn_cnt; i++) { | |
10478 | if (aux_data[i].seen) | |
10479 | continue; | |
2a5418a1 | 10480 | memcpy(insn + i, &trap, sizeof(trap)); |
c131187d AS |
10481 | } |
10482 | } | |
10483 | ||
e2ae4ca2 JK |
10484 | static bool insn_is_cond_jump(u8 code) |
10485 | { | |
10486 | u8 op; | |
10487 | ||
092ed096 JW |
10488 | if (BPF_CLASS(code) == BPF_JMP32) |
10489 | return true; | |
10490 | ||
e2ae4ca2 JK |
10491 | if (BPF_CLASS(code) != BPF_JMP) |
10492 | return false; | |
10493 | ||
10494 | op = BPF_OP(code); | |
10495 | return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; | |
10496 | } | |
10497 | ||
10498 | static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) | |
10499 | { | |
10500 | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | |
10501 | struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); | |
10502 | struct bpf_insn *insn = env->prog->insnsi; | |
10503 | const int insn_cnt = env->prog->len; | |
10504 | int i; | |
10505 | ||
10506 | for (i = 0; i < insn_cnt; i++, insn++) { | |
10507 | if (!insn_is_cond_jump(insn->code)) | |
10508 | continue; | |
10509 | ||
10510 | if (!aux_data[i + 1].seen) | |
10511 | ja.off = insn->off; | |
10512 | else if (!aux_data[i + 1 + insn->off].seen) | |
10513 | ja.off = 0; | |
10514 | else | |
10515 | continue; | |
10516 | ||
08ca90af JK |
10517 | if (bpf_prog_is_dev_bound(env->prog->aux)) |
10518 | bpf_prog_offload_replace_insn(env, i, &ja); | |
10519 | ||
e2ae4ca2 JK |
10520 | memcpy(insn, &ja, sizeof(ja)); |
10521 | } | |
10522 | } | |
10523 | ||
52875a04 JK |
10524 | static int opt_remove_dead_code(struct bpf_verifier_env *env) |
10525 | { | |
10526 | struct bpf_insn_aux_data *aux_data = env->insn_aux_data; | |
10527 | int insn_cnt = env->prog->len; | |
10528 | int i, err; | |
10529 | ||
10530 | for (i = 0; i < insn_cnt; i++) { | |
10531 | int j; | |
10532 | ||
10533 | j = 0; | |
10534 | while (i + j < insn_cnt && !aux_data[i + j].seen) | |
10535 | j++; | |
10536 | if (!j) | |
10537 | continue; | |
10538 | ||
10539 | err = verifier_remove_insns(env, i, j); | |
10540 | if (err) | |
10541 | return err; | |
10542 | insn_cnt = env->prog->len; | |
10543 | } | |
10544 | ||
10545 | return 0; | |
10546 | } | |
10547 | ||
a1b14abc JK |
10548 | static int opt_remove_nops(struct bpf_verifier_env *env) |
10549 | { | |
10550 | const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); | |
10551 | struct bpf_insn *insn = env->prog->insnsi; | |
10552 | int insn_cnt = env->prog->len; | |
10553 | int i, err; | |
10554 | ||
10555 | for (i = 0; i < insn_cnt; i++) { | |
10556 | if (memcmp(&insn[i], &ja, sizeof(ja))) | |
10557 | continue; | |
10558 | ||
10559 | err = verifier_remove_insns(env, i, 1); | |
10560 | if (err) | |
10561 | return err; | |
10562 | insn_cnt--; | |
10563 | i--; | |
10564 | } | |
10565 | ||
10566 | return 0; | |
10567 | } | |
10568 | ||
d6c2308c JW |
10569 | static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, |
10570 | const union bpf_attr *attr) | |
a4b1d3c1 | 10571 | { |
d6c2308c | 10572 | struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; |
a4b1d3c1 | 10573 | struct bpf_insn_aux_data *aux = env->insn_aux_data; |
d6c2308c | 10574 | int i, patch_len, delta = 0, len = env->prog->len; |
a4b1d3c1 | 10575 | struct bpf_insn *insns = env->prog->insnsi; |
a4b1d3c1 | 10576 | struct bpf_prog *new_prog; |
d6c2308c | 10577 | bool rnd_hi32; |
a4b1d3c1 | 10578 | |
d6c2308c | 10579 | rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; |
a4b1d3c1 | 10580 | zext_patch[1] = BPF_ZEXT_REG(0); |
d6c2308c JW |
10581 | rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); |
10582 | rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); | |
10583 | rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); | |
a4b1d3c1 JW |
10584 | for (i = 0; i < len; i++) { |
10585 | int adj_idx = i + delta; | |
10586 | struct bpf_insn insn; | |
10587 | ||
d6c2308c JW |
10588 | insn = insns[adj_idx]; |
10589 | if (!aux[adj_idx].zext_dst) { | |
10590 | u8 code, class; | |
10591 | u32 imm_rnd; | |
10592 | ||
10593 | if (!rnd_hi32) | |
10594 | continue; | |
10595 | ||
10596 | code = insn.code; | |
10597 | class = BPF_CLASS(code); | |
10598 | if (insn_no_def(&insn)) | |
10599 | continue; | |
10600 | ||
10601 | /* NOTE: arg "reg" (the fourth one) is only used for | |
10602 | * BPF_STX which has been ruled out in above | |
10603 | * check, it is safe to pass NULL here. | |
10604 | */ | |
10605 | if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { | |
10606 | if (class == BPF_LD && | |
10607 | BPF_MODE(code) == BPF_IMM) | |
10608 | i++; | |
10609 | continue; | |
10610 | } | |
10611 | ||
10612 | /* ctx load could be transformed into wider load. */ | |
10613 | if (class == BPF_LDX && | |
10614 | aux[adj_idx].ptr_type == PTR_TO_CTX) | |
10615 | continue; | |
10616 | ||
10617 | imm_rnd = get_random_int(); | |
10618 | rnd_hi32_patch[0] = insn; | |
10619 | rnd_hi32_patch[1].imm = imm_rnd; | |
10620 | rnd_hi32_patch[3].dst_reg = insn.dst_reg; | |
10621 | patch = rnd_hi32_patch; | |
10622 | patch_len = 4; | |
10623 | goto apply_patch_buffer; | |
10624 | } | |
10625 | ||
10626 | if (!bpf_jit_needs_zext()) | |
a4b1d3c1 JW |
10627 | continue; |
10628 | ||
a4b1d3c1 JW |
10629 | zext_patch[0] = insn; |
10630 | zext_patch[1].dst_reg = insn.dst_reg; | |
10631 | zext_patch[1].src_reg = insn.dst_reg; | |
d6c2308c JW |
10632 | patch = zext_patch; |
10633 | patch_len = 2; | |
10634 | apply_patch_buffer: | |
10635 | new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); | |
a4b1d3c1 JW |
10636 | if (!new_prog) |
10637 | return -ENOMEM; | |
10638 | env->prog = new_prog; | |
10639 | insns = new_prog->insnsi; | |
10640 | aux = env->insn_aux_data; | |
d6c2308c | 10641 | delta += patch_len - 1; |
a4b1d3c1 JW |
10642 | } |
10643 | ||
10644 | return 0; | |
10645 | } | |
10646 | ||
c64b7983 JS |
10647 | /* convert load instructions that access fields of a context type into a |
10648 | * sequence of instructions that access fields of the underlying structure: | |
10649 | * struct __sk_buff -> struct sk_buff | |
10650 | * struct bpf_sock_ops -> struct sock | |
9bac3d6d | 10651 | */ |
58e2af8b | 10652 | static int convert_ctx_accesses(struct bpf_verifier_env *env) |
9bac3d6d | 10653 | { |
00176a34 | 10654 | const struct bpf_verifier_ops *ops = env->ops; |
f96da094 | 10655 | int i, cnt, size, ctx_field_size, delta = 0; |
3df126f3 | 10656 | const int insn_cnt = env->prog->len; |
36bbef52 | 10657 | struct bpf_insn insn_buf[16], *insn; |
46f53a65 | 10658 | u32 target_size, size_default, off; |
9bac3d6d | 10659 | struct bpf_prog *new_prog; |
d691f9e8 | 10660 | enum bpf_access_type type; |
f96da094 | 10661 | bool is_narrower_load; |
9bac3d6d | 10662 | |
b09928b9 DB |
10663 | if (ops->gen_prologue || env->seen_direct_write) { |
10664 | if (!ops->gen_prologue) { | |
10665 | verbose(env, "bpf verifier is misconfigured\n"); | |
10666 | return -EINVAL; | |
10667 | } | |
36bbef52 DB |
10668 | cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, |
10669 | env->prog); | |
10670 | if (cnt >= ARRAY_SIZE(insn_buf)) { | |
61bd5218 | 10671 | verbose(env, "bpf verifier is misconfigured\n"); |
36bbef52 DB |
10672 | return -EINVAL; |
10673 | } else if (cnt) { | |
8041902d | 10674 | new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); |
36bbef52 DB |
10675 | if (!new_prog) |
10676 | return -ENOMEM; | |
8041902d | 10677 | |
36bbef52 | 10678 | env->prog = new_prog; |
3df126f3 | 10679 | delta += cnt - 1; |
36bbef52 DB |
10680 | } |
10681 | } | |
10682 | ||
c64b7983 | 10683 | if (bpf_prog_is_dev_bound(env->prog->aux)) |
9bac3d6d AS |
10684 | return 0; |
10685 | ||
3df126f3 | 10686 | insn = env->prog->insnsi + delta; |
36bbef52 | 10687 | |
9bac3d6d | 10688 | for (i = 0; i < insn_cnt; i++, insn++) { |
c64b7983 JS |
10689 | bpf_convert_ctx_access_t convert_ctx_access; |
10690 | ||
62c7989b DB |
10691 | if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || |
10692 | insn->code == (BPF_LDX | BPF_MEM | BPF_H) || | |
10693 | insn->code == (BPF_LDX | BPF_MEM | BPF_W) || | |
ea2e7ce5 | 10694 | insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) |
d691f9e8 | 10695 | type = BPF_READ; |
62c7989b DB |
10696 | else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || |
10697 | insn->code == (BPF_STX | BPF_MEM | BPF_H) || | |
10698 | insn->code == (BPF_STX | BPF_MEM | BPF_W) || | |
ea2e7ce5 | 10699 | insn->code == (BPF_STX | BPF_MEM | BPF_DW)) |
d691f9e8 AS |
10700 | type = BPF_WRITE; |
10701 | else | |
9bac3d6d AS |
10702 | continue; |
10703 | ||
af86ca4e AS |
10704 | if (type == BPF_WRITE && |
10705 | env->insn_aux_data[i + delta].sanitize_stack_off) { | |
10706 | struct bpf_insn patch[] = { | |
10707 | /* Sanitize suspicious stack slot with zero. | |
10708 | * There are no memory dependencies for this store, | |
10709 | * since it's only using frame pointer and immediate | |
10710 | * constant of zero | |
10711 | */ | |
10712 | BPF_ST_MEM(BPF_DW, BPF_REG_FP, | |
10713 | env->insn_aux_data[i + delta].sanitize_stack_off, | |
10714 | 0), | |
10715 | /* the original STX instruction will immediately | |
10716 | * overwrite the same stack slot with appropriate value | |
10717 | */ | |
10718 | *insn, | |
10719 | }; | |
10720 | ||
10721 | cnt = ARRAY_SIZE(patch); | |
10722 | new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); | |
10723 | if (!new_prog) | |
10724 | return -ENOMEM; | |
10725 | ||
10726 | delta += cnt - 1; | |
10727 | env->prog = new_prog; | |
10728 | insn = new_prog->insnsi + i + delta; | |
10729 | continue; | |
10730 | } | |
10731 | ||
c64b7983 JS |
10732 | switch (env->insn_aux_data[i + delta].ptr_type) { |
10733 | case PTR_TO_CTX: | |
10734 | if (!ops->convert_ctx_access) | |
10735 | continue; | |
10736 | convert_ctx_access = ops->convert_ctx_access; | |
10737 | break; | |
10738 | case PTR_TO_SOCKET: | |
46f8bc92 | 10739 | case PTR_TO_SOCK_COMMON: |
c64b7983 JS |
10740 | convert_ctx_access = bpf_sock_convert_ctx_access; |
10741 | break; | |
655a51e5 MKL |
10742 | case PTR_TO_TCP_SOCK: |
10743 | convert_ctx_access = bpf_tcp_sock_convert_ctx_access; | |
10744 | break; | |
fada7fdc JL |
10745 | case PTR_TO_XDP_SOCK: |
10746 | convert_ctx_access = bpf_xdp_sock_convert_ctx_access; | |
10747 | break; | |
2a02759e | 10748 | case PTR_TO_BTF_ID: |
27ae7997 MKL |
10749 | if (type == BPF_READ) { |
10750 | insn->code = BPF_LDX | BPF_PROBE_MEM | | |
10751 | BPF_SIZE((insn)->code); | |
10752 | env->prog->aux->num_exentries++; | |
7e40781c | 10753 | } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { |
2a02759e AS |
10754 | verbose(env, "Writes through BTF pointers are not allowed\n"); |
10755 | return -EINVAL; | |
10756 | } | |
2a02759e | 10757 | continue; |
c64b7983 | 10758 | default: |
9bac3d6d | 10759 | continue; |
c64b7983 | 10760 | } |
9bac3d6d | 10761 | |
31fd8581 | 10762 | ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; |
f96da094 | 10763 | size = BPF_LDST_BYTES(insn); |
31fd8581 YS |
10764 | |
10765 | /* If the read access is a narrower load of the field, | |
10766 | * convert to a 4/8-byte load, to minimum program type specific | |
10767 | * convert_ctx_access changes. If conversion is successful, | |
10768 | * we will apply proper mask to the result. | |
10769 | */ | |
f96da094 | 10770 | is_narrower_load = size < ctx_field_size; |
46f53a65 AI |
10771 | size_default = bpf_ctx_off_adjust_machine(ctx_field_size); |
10772 | off = insn->off; | |
31fd8581 | 10773 | if (is_narrower_load) { |
f96da094 DB |
10774 | u8 size_code; |
10775 | ||
10776 | if (type == BPF_WRITE) { | |
61bd5218 | 10777 | verbose(env, "bpf verifier narrow ctx access misconfigured\n"); |
f96da094 DB |
10778 | return -EINVAL; |
10779 | } | |
31fd8581 | 10780 | |
f96da094 | 10781 | size_code = BPF_H; |
31fd8581 YS |
10782 | if (ctx_field_size == 4) |
10783 | size_code = BPF_W; | |
10784 | else if (ctx_field_size == 8) | |
10785 | size_code = BPF_DW; | |
f96da094 | 10786 | |
bc23105c | 10787 | insn->off = off & ~(size_default - 1); |
31fd8581 YS |
10788 | insn->code = BPF_LDX | BPF_MEM | size_code; |
10789 | } | |
f96da094 DB |
10790 | |
10791 | target_size = 0; | |
c64b7983 JS |
10792 | cnt = convert_ctx_access(type, insn, insn_buf, env->prog, |
10793 | &target_size); | |
f96da094 DB |
10794 | if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || |
10795 | (ctx_field_size && !target_size)) { | |
61bd5218 | 10796 | verbose(env, "bpf verifier is misconfigured\n"); |
9bac3d6d AS |
10797 | return -EINVAL; |
10798 | } | |
f96da094 DB |
10799 | |
10800 | if (is_narrower_load && size < target_size) { | |
d895a0f1 IL |
10801 | u8 shift = bpf_ctx_narrow_access_offset( |
10802 | off, size, size_default) * 8; | |
46f53a65 AI |
10803 | if (ctx_field_size <= 4) { |
10804 | if (shift) | |
10805 | insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, | |
10806 | insn->dst_reg, | |
10807 | shift); | |
31fd8581 | 10808 | insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, |
f96da094 | 10809 | (1 << size * 8) - 1); |
46f53a65 AI |
10810 | } else { |
10811 | if (shift) | |
10812 | insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, | |
10813 | insn->dst_reg, | |
10814 | shift); | |
31fd8581 | 10815 | insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, |
e2f7fc0a | 10816 | (1ULL << size * 8) - 1); |
46f53a65 | 10817 | } |
31fd8581 | 10818 | } |
9bac3d6d | 10819 | |
8041902d | 10820 | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
9bac3d6d AS |
10821 | if (!new_prog) |
10822 | return -ENOMEM; | |
10823 | ||
3df126f3 | 10824 | delta += cnt - 1; |
9bac3d6d AS |
10825 | |
10826 | /* keep walking new program and skip insns we just inserted */ | |
10827 | env->prog = new_prog; | |
3df126f3 | 10828 | insn = new_prog->insnsi + i + delta; |
9bac3d6d AS |
10829 | } |
10830 | ||
10831 | return 0; | |
10832 | } | |
10833 | ||
1c2a088a AS |
10834 | static int jit_subprogs(struct bpf_verifier_env *env) |
10835 | { | |
10836 | struct bpf_prog *prog = env->prog, **func, *tmp; | |
10837 | int i, j, subprog_start, subprog_end = 0, len, subprog; | |
a748c697 | 10838 | struct bpf_map *map_ptr; |
7105e828 | 10839 | struct bpf_insn *insn; |
1c2a088a | 10840 | void *old_bpf_func; |
c4c0bdc0 | 10841 | int err, num_exentries; |
1c2a088a | 10842 | |
f910cefa | 10843 | if (env->subprog_cnt <= 1) |
1c2a088a AS |
10844 | return 0; |
10845 | ||
7105e828 | 10846 | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { |
1c2a088a AS |
10847 | if (insn->code != (BPF_JMP | BPF_CALL) || |
10848 | insn->src_reg != BPF_PSEUDO_CALL) | |
10849 | continue; | |
c7a89784 DB |
10850 | /* Upon error here we cannot fall back to interpreter but |
10851 | * need a hard reject of the program. Thus -EFAULT is | |
10852 | * propagated in any case. | |
10853 | */ | |
1c2a088a AS |
10854 | subprog = find_subprog(env, i + insn->imm + 1); |
10855 | if (subprog < 0) { | |
10856 | WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", | |
10857 | i + insn->imm + 1); | |
10858 | return -EFAULT; | |
10859 | } | |
10860 | /* temporarily remember subprog id inside insn instead of | |
10861 | * aux_data, since next loop will split up all insns into funcs | |
10862 | */ | |
f910cefa | 10863 | insn->off = subprog; |
1c2a088a AS |
10864 | /* remember original imm in case JIT fails and fallback |
10865 | * to interpreter will be needed | |
10866 | */ | |
10867 | env->insn_aux_data[i].call_imm = insn->imm; | |
10868 | /* point imm to __bpf_call_base+1 from JITs point of view */ | |
10869 | insn->imm = 1; | |
10870 | } | |
10871 | ||
c454a46b MKL |
10872 | err = bpf_prog_alloc_jited_linfo(prog); |
10873 | if (err) | |
10874 | goto out_undo_insn; | |
10875 | ||
10876 | err = -ENOMEM; | |
6396bb22 | 10877 | func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); |
1c2a088a | 10878 | if (!func) |
c7a89784 | 10879 | goto out_undo_insn; |
1c2a088a | 10880 | |
f910cefa | 10881 | for (i = 0; i < env->subprog_cnt; i++) { |
1c2a088a | 10882 | subprog_start = subprog_end; |
4cb3d99c | 10883 | subprog_end = env->subprog_info[i + 1].start; |
1c2a088a AS |
10884 | |
10885 | len = subprog_end - subprog_start; | |
492ecee8 AS |
10886 | /* BPF_PROG_RUN doesn't call subprogs directly, |
10887 | * hence main prog stats include the runtime of subprogs. | |
10888 | * subprogs don't have IDs and not reachable via prog_get_next_id | |
10889 | * func[i]->aux->stats will never be accessed and stays NULL | |
10890 | */ | |
10891 | func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); | |
1c2a088a AS |
10892 | if (!func[i]) |
10893 | goto out_free; | |
10894 | memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], | |
10895 | len * sizeof(struct bpf_insn)); | |
4f74d809 | 10896 | func[i]->type = prog->type; |
1c2a088a | 10897 | func[i]->len = len; |
4f74d809 DB |
10898 | if (bpf_prog_calc_tag(func[i])) |
10899 | goto out_free; | |
1c2a088a | 10900 | func[i]->is_func = 1; |
ba64e7d8 YS |
10901 | func[i]->aux->func_idx = i; |
10902 | /* the btf and func_info will be freed only at prog->aux */ | |
10903 | func[i]->aux->btf = prog->aux->btf; | |
10904 | func[i]->aux->func_info = prog->aux->func_info; | |
10905 | ||
a748c697 MF |
10906 | for (j = 0; j < prog->aux->size_poke_tab; j++) { |
10907 | u32 insn_idx = prog->aux->poke_tab[j].insn_idx; | |
10908 | int ret; | |
10909 | ||
10910 | if (!(insn_idx >= subprog_start && | |
10911 | insn_idx <= subprog_end)) | |
10912 | continue; | |
10913 | ||
10914 | ret = bpf_jit_add_poke_descriptor(func[i], | |
10915 | &prog->aux->poke_tab[j]); | |
10916 | if (ret < 0) { | |
10917 | verbose(env, "adding tail call poke descriptor failed\n"); | |
10918 | goto out_free; | |
10919 | } | |
10920 | ||
10921 | func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; | |
10922 | ||
10923 | map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; | |
10924 | ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); | |
10925 | if (ret < 0) { | |
10926 | verbose(env, "tracking tail call prog failed\n"); | |
10927 | goto out_free; | |
10928 | } | |
10929 | } | |
10930 | ||
1c2a088a AS |
10931 | /* Use bpf_prog_F_tag to indicate functions in stack traces. |
10932 | * Long term would need debug info to populate names | |
10933 | */ | |
10934 | func[i]->aux->name[0] = 'F'; | |
9c8105bd | 10935 | func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; |
1c2a088a | 10936 | func[i]->jit_requested = 1; |
c454a46b MKL |
10937 | func[i]->aux->linfo = prog->aux->linfo; |
10938 | func[i]->aux->nr_linfo = prog->aux->nr_linfo; | |
10939 | func[i]->aux->jited_linfo = prog->aux->jited_linfo; | |
10940 | func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; | |
c4c0bdc0 YS |
10941 | num_exentries = 0; |
10942 | insn = func[i]->insnsi; | |
10943 | for (j = 0; j < func[i]->len; j++, insn++) { | |
10944 | if (BPF_CLASS(insn->code) == BPF_LDX && | |
10945 | BPF_MODE(insn->code) == BPF_PROBE_MEM) | |
10946 | num_exentries++; | |
10947 | } | |
10948 | func[i]->aux->num_exentries = num_exentries; | |
ebf7d1f5 | 10949 | func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; |
1c2a088a AS |
10950 | func[i] = bpf_int_jit_compile(func[i]); |
10951 | if (!func[i]->jited) { | |
10952 | err = -ENOTSUPP; | |
10953 | goto out_free; | |
10954 | } | |
10955 | cond_resched(); | |
10956 | } | |
a748c697 MF |
10957 | |
10958 | /* Untrack main program's aux structs so that during map_poke_run() | |
10959 | * we will not stumble upon the unfilled poke descriptors; each | |
10960 | * of the main program's poke descs got distributed across subprogs | |
10961 | * and got tracked onto map, so we are sure that none of them will | |
10962 | * be missed after the operation below | |
10963 | */ | |
10964 | for (i = 0; i < prog->aux->size_poke_tab; i++) { | |
10965 | map_ptr = prog->aux->poke_tab[i].tail_call.map; | |
10966 | ||
10967 | map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); | |
10968 | } | |
10969 | ||
1c2a088a AS |
10970 | /* at this point all bpf functions were successfully JITed |
10971 | * now populate all bpf_calls with correct addresses and | |
10972 | * run last pass of JIT | |
10973 | */ | |
f910cefa | 10974 | for (i = 0; i < env->subprog_cnt; i++) { |
1c2a088a AS |
10975 | insn = func[i]->insnsi; |
10976 | for (j = 0; j < func[i]->len; j++, insn++) { | |
10977 | if (insn->code != (BPF_JMP | BPF_CALL) || | |
10978 | insn->src_reg != BPF_PSEUDO_CALL) | |
10979 | continue; | |
10980 | subprog = insn->off; | |
0d306c31 PB |
10981 | insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - |
10982 | __bpf_call_base; | |
1c2a088a | 10983 | } |
2162fed4 SD |
10984 | |
10985 | /* we use the aux data to keep a list of the start addresses | |
10986 | * of the JITed images for each function in the program | |
10987 | * | |
10988 | * for some architectures, such as powerpc64, the imm field | |
10989 | * might not be large enough to hold the offset of the start | |
10990 | * address of the callee's JITed image from __bpf_call_base | |
10991 | * | |
10992 | * in such cases, we can lookup the start address of a callee | |
10993 | * by using its subprog id, available from the off field of | |
10994 | * the call instruction, as an index for this list | |
10995 | */ | |
10996 | func[i]->aux->func = func; | |
10997 | func[i]->aux->func_cnt = env->subprog_cnt; | |
1c2a088a | 10998 | } |
f910cefa | 10999 | for (i = 0; i < env->subprog_cnt; i++) { |
1c2a088a AS |
11000 | old_bpf_func = func[i]->bpf_func; |
11001 | tmp = bpf_int_jit_compile(func[i]); | |
11002 | if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { | |
11003 | verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); | |
c7a89784 | 11004 | err = -ENOTSUPP; |
1c2a088a AS |
11005 | goto out_free; |
11006 | } | |
11007 | cond_resched(); | |
11008 | } | |
11009 | ||
11010 | /* finally lock prog and jit images for all functions and | |
11011 | * populate kallsysm | |
11012 | */ | |
f910cefa | 11013 | for (i = 0; i < env->subprog_cnt; i++) { |
1c2a088a AS |
11014 | bpf_prog_lock_ro(func[i]); |
11015 | bpf_prog_kallsyms_add(func[i]); | |
11016 | } | |
7105e828 DB |
11017 | |
11018 | /* Last step: make now unused interpreter insns from main | |
11019 | * prog consistent for later dump requests, so they can | |
11020 | * later look the same as if they were interpreted only. | |
11021 | */ | |
11022 | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | |
7105e828 DB |
11023 | if (insn->code != (BPF_JMP | BPF_CALL) || |
11024 | insn->src_reg != BPF_PSEUDO_CALL) | |
11025 | continue; | |
11026 | insn->off = env->insn_aux_data[i].call_imm; | |
11027 | subprog = find_subprog(env, i + insn->off + 1); | |
dbecd738 | 11028 | insn->imm = subprog; |
7105e828 DB |
11029 | } |
11030 | ||
1c2a088a AS |
11031 | prog->jited = 1; |
11032 | prog->bpf_func = func[0]->bpf_func; | |
11033 | prog->aux->func = func; | |
f910cefa | 11034 | prog->aux->func_cnt = env->subprog_cnt; |
c454a46b | 11035 | bpf_prog_free_unused_jited_linfo(prog); |
1c2a088a AS |
11036 | return 0; |
11037 | out_free: | |
a748c697 MF |
11038 | for (i = 0; i < env->subprog_cnt; i++) { |
11039 | if (!func[i]) | |
11040 | continue; | |
11041 | ||
11042 | for (j = 0; j < func[i]->aux->size_poke_tab; j++) { | |
11043 | map_ptr = func[i]->aux->poke_tab[j].tail_call.map; | |
11044 | map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); | |
11045 | } | |
11046 | bpf_jit_free(func[i]); | |
11047 | } | |
1c2a088a | 11048 | kfree(func); |
c7a89784 | 11049 | out_undo_insn: |
1c2a088a AS |
11050 | /* cleanup main prog to be interpreted */ |
11051 | prog->jit_requested = 0; | |
11052 | for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { | |
11053 | if (insn->code != (BPF_JMP | BPF_CALL) || | |
11054 | insn->src_reg != BPF_PSEUDO_CALL) | |
11055 | continue; | |
11056 | insn->off = 0; | |
11057 | insn->imm = env->insn_aux_data[i].call_imm; | |
11058 | } | |
c454a46b | 11059 | bpf_prog_free_jited_linfo(prog); |
1c2a088a AS |
11060 | return err; |
11061 | } | |
11062 | ||
1ea47e01 AS |
11063 | static int fixup_call_args(struct bpf_verifier_env *env) |
11064 | { | |
19d28fbd | 11065 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON |
1ea47e01 AS |
11066 | struct bpf_prog *prog = env->prog; |
11067 | struct bpf_insn *insn = prog->insnsi; | |
11068 | int i, depth; | |
19d28fbd | 11069 | #endif |
e4052d06 | 11070 | int err = 0; |
1ea47e01 | 11071 | |
e4052d06 QM |
11072 | if (env->prog->jit_requested && |
11073 | !bpf_prog_is_dev_bound(env->prog->aux)) { | |
19d28fbd DM |
11074 | err = jit_subprogs(env); |
11075 | if (err == 0) | |
1c2a088a | 11076 | return 0; |
c7a89784 DB |
11077 | if (err == -EFAULT) |
11078 | return err; | |
19d28fbd DM |
11079 | } |
11080 | #ifndef CONFIG_BPF_JIT_ALWAYS_ON | |
e411901c MF |
11081 | if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { |
11082 | /* When JIT fails the progs with bpf2bpf calls and tail_calls | |
11083 | * have to be rejected, since interpreter doesn't support them yet. | |
11084 | */ | |
11085 | verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); | |
11086 | return -EINVAL; | |
11087 | } | |
1ea47e01 AS |
11088 | for (i = 0; i < prog->len; i++, insn++) { |
11089 | if (insn->code != (BPF_JMP | BPF_CALL) || | |
11090 | insn->src_reg != BPF_PSEUDO_CALL) | |
11091 | continue; | |
11092 | depth = get_callee_stack_depth(env, insn, i); | |
11093 | if (depth < 0) | |
11094 | return depth; | |
11095 | bpf_patch_call_args(insn, depth); | |
11096 | } | |
19d28fbd DM |
11097 | err = 0; |
11098 | #endif | |
11099 | return err; | |
1ea47e01 AS |
11100 | } |
11101 | ||
79741b3b | 11102 | /* fixup insn->imm field of bpf_call instructions |
81ed18ab | 11103 | * and inline eligible helpers as explicit sequence of BPF instructions |
e245c5c6 AS |
11104 | * |
11105 | * this function is called after eBPF program passed verification | |
11106 | */ | |
79741b3b | 11107 | static int fixup_bpf_calls(struct bpf_verifier_env *env) |
e245c5c6 | 11108 | { |
79741b3b | 11109 | struct bpf_prog *prog = env->prog; |
d2e4c1e6 | 11110 | bool expect_blinding = bpf_jit_blinding_enabled(prog); |
79741b3b | 11111 | struct bpf_insn *insn = prog->insnsi; |
e245c5c6 | 11112 | const struct bpf_func_proto *fn; |
79741b3b | 11113 | const int insn_cnt = prog->len; |
09772d92 | 11114 | const struct bpf_map_ops *ops; |
c93552c4 | 11115 | struct bpf_insn_aux_data *aux; |
81ed18ab AS |
11116 | struct bpf_insn insn_buf[16]; |
11117 | struct bpf_prog *new_prog; | |
11118 | struct bpf_map *map_ptr; | |
d2e4c1e6 | 11119 | int i, ret, cnt, delta = 0; |
e245c5c6 | 11120 | |
79741b3b | 11121 | for (i = 0; i < insn_cnt; i++, insn++) { |
f6b1b3bf DB |
11122 | if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || |
11123 | insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || | |
11124 | insn->code == (BPF_ALU | BPF_MOD | BPF_X) || | |
68fda450 | 11125 | insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { |
f6b1b3bf DB |
11126 | bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; |
11127 | struct bpf_insn mask_and_div[] = { | |
11128 | BPF_MOV32_REG(insn->src_reg, insn->src_reg), | |
11129 | /* Rx div 0 -> 0 */ | |
11130 | BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), | |
11131 | BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), | |
11132 | BPF_JMP_IMM(BPF_JA, 0, 0, 1), | |
11133 | *insn, | |
11134 | }; | |
11135 | struct bpf_insn mask_and_mod[] = { | |
11136 | BPF_MOV32_REG(insn->src_reg, insn->src_reg), | |
11137 | /* Rx mod 0 -> Rx */ | |
11138 | BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), | |
11139 | *insn, | |
11140 | }; | |
11141 | struct bpf_insn *patchlet; | |
11142 | ||
11143 | if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || | |
11144 | insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { | |
11145 | patchlet = mask_and_div + (is64 ? 1 : 0); | |
11146 | cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); | |
11147 | } else { | |
11148 | patchlet = mask_and_mod + (is64 ? 1 : 0); | |
11149 | cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); | |
11150 | } | |
11151 | ||
11152 | new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); | |
68fda450 AS |
11153 | if (!new_prog) |
11154 | return -ENOMEM; | |
11155 | ||
11156 | delta += cnt - 1; | |
11157 | env->prog = prog = new_prog; | |
11158 | insn = new_prog->insnsi + i + delta; | |
11159 | continue; | |
11160 | } | |
11161 | ||
e0cea7ce DB |
11162 | if (BPF_CLASS(insn->code) == BPF_LD && |
11163 | (BPF_MODE(insn->code) == BPF_ABS || | |
11164 | BPF_MODE(insn->code) == BPF_IND)) { | |
11165 | cnt = env->ops->gen_ld_abs(insn, insn_buf); | |
11166 | if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { | |
11167 | verbose(env, "bpf verifier is misconfigured\n"); | |
11168 | return -EINVAL; | |
11169 | } | |
11170 | ||
11171 | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | |
11172 | if (!new_prog) | |
11173 | return -ENOMEM; | |
11174 | ||
11175 | delta += cnt - 1; | |
11176 | env->prog = prog = new_prog; | |
11177 | insn = new_prog->insnsi + i + delta; | |
11178 | continue; | |
11179 | } | |
11180 | ||
979d63d5 DB |
11181 | if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || |
11182 | insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { | |
11183 | const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; | |
11184 | const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; | |
11185 | struct bpf_insn insn_buf[16]; | |
11186 | struct bpf_insn *patch = &insn_buf[0]; | |
11187 | bool issrc, isneg; | |
11188 | u32 off_reg; | |
11189 | ||
11190 | aux = &env->insn_aux_data[i + delta]; | |
3612af78 DB |
11191 | if (!aux->alu_state || |
11192 | aux->alu_state == BPF_ALU_NON_POINTER) | |
979d63d5 DB |
11193 | continue; |
11194 | ||
11195 | isneg = aux->alu_state & BPF_ALU_NEG_VALUE; | |
11196 | issrc = (aux->alu_state & BPF_ALU_SANITIZE) == | |
11197 | BPF_ALU_SANITIZE_SRC; | |
11198 | ||
11199 | off_reg = issrc ? insn->src_reg : insn->dst_reg; | |
11200 | if (isneg) | |
11201 | *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); | |
11202 | *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); | |
11203 | *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); | |
11204 | *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); | |
11205 | *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); | |
11206 | *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); | |
11207 | if (issrc) { | |
11208 | *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, | |
11209 | off_reg); | |
11210 | insn->src_reg = BPF_REG_AX; | |
11211 | } else { | |
11212 | *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, | |
11213 | BPF_REG_AX); | |
11214 | } | |
11215 | if (isneg) | |
11216 | insn->code = insn->code == code_add ? | |
11217 | code_sub : code_add; | |
11218 | *patch++ = *insn; | |
11219 | if (issrc && isneg) | |
11220 | *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); | |
11221 | cnt = patch - insn_buf; | |
11222 | ||
11223 | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | |
11224 | if (!new_prog) | |
11225 | return -ENOMEM; | |
11226 | ||
11227 | delta += cnt - 1; | |
11228 | env->prog = prog = new_prog; | |
11229 | insn = new_prog->insnsi + i + delta; | |
11230 | continue; | |
11231 | } | |
11232 | ||
79741b3b AS |
11233 | if (insn->code != (BPF_JMP | BPF_CALL)) |
11234 | continue; | |
cc8b0b92 AS |
11235 | if (insn->src_reg == BPF_PSEUDO_CALL) |
11236 | continue; | |
e245c5c6 | 11237 | |
79741b3b AS |
11238 | if (insn->imm == BPF_FUNC_get_route_realm) |
11239 | prog->dst_needed = 1; | |
11240 | if (insn->imm == BPF_FUNC_get_prandom_u32) | |
11241 | bpf_user_rnd_init_once(); | |
9802d865 JB |
11242 | if (insn->imm == BPF_FUNC_override_return) |
11243 | prog->kprobe_override = 1; | |
79741b3b | 11244 | if (insn->imm == BPF_FUNC_tail_call) { |
7b9f6da1 DM |
11245 | /* If we tail call into other programs, we |
11246 | * cannot make any assumptions since they can | |
11247 | * be replaced dynamically during runtime in | |
11248 | * the program array. | |
11249 | */ | |
11250 | prog->cb_access = 1; | |
e411901c MF |
11251 | if (!allow_tail_call_in_subprogs(env)) |
11252 | prog->aux->stack_depth = MAX_BPF_STACK; | |
11253 | prog->aux->max_pkt_offset = MAX_PACKET_OFF; | |
7b9f6da1 | 11254 | |
79741b3b AS |
11255 | /* mark bpf_tail_call as different opcode to avoid |
11256 | * conditional branch in the interpeter for every normal | |
11257 | * call and to prevent accidental JITing by JIT compiler | |
11258 | * that doesn't support bpf_tail_call yet | |
e245c5c6 | 11259 | */ |
79741b3b | 11260 | insn->imm = 0; |
71189fa9 | 11261 | insn->code = BPF_JMP | BPF_TAIL_CALL; |
b2157399 | 11262 | |
c93552c4 | 11263 | aux = &env->insn_aux_data[i + delta]; |
2c78ee89 | 11264 | if (env->bpf_capable && !expect_blinding && |
cc52d914 | 11265 | prog->jit_requested && |
d2e4c1e6 DB |
11266 | !bpf_map_key_poisoned(aux) && |
11267 | !bpf_map_ptr_poisoned(aux) && | |
11268 | !bpf_map_ptr_unpriv(aux)) { | |
11269 | struct bpf_jit_poke_descriptor desc = { | |
11270 | .reason = BPF_POKE_REASON_TAIL_CALL, | |
11271 | .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), | |
11272 | .tail_call.key = bpf_map_key_immediate(aux), | |
a748c697 | 11273 | .insn_idx = i + delta, |
d2e4c1e6 DB |
11274 | }; |
11275 | ||
11276 | ret = bpf_jit_add_poke_descriptor(prog, &desc); | |
11277 | if (ret < 0) { | |
11278 | verbose(env, "adding tail call poke descriptor failed\n"); | |
11279 | return ret; | |
11280 | } | |
11281 | ||
11282 | insn->imm = ret + 1; | |
11283 | continue; | |
11284 | } | |
11285 | ||
c93552c4 DB |
11286 | if (!bpf_map_ptr_unpriv(aux)) |
11287 | continue; | |
11288 | ||
b2157399 AS |
11289 | /* instead of changing every JIT dealing with tail_call |
11290 | * emit two extra insns: | |
11291 | * if (index >= max_entries) goto out; | |
11292 | * index &= array->index_mask; | |
11293 | * to avoid out-of-bounds cpu speculation | |
11294 | */ | |
c93552c4 | 11295 | if (bpf_map_ptr_poisoned(aux)) { |
40950343 | 11296 | verbose(env, "tail_call abusing map_ptr\n"); |
b2157399 AS |
11297 | return -EINVAL; |
11298 | } | |
c93552c4 | 11299 | |
d2e4c1e6 | 11300 | map_ptr = BPF_MAP_PTR(aux->map_ptr_state); |
b2157399 AS |
11301 | insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, |
11302 | map_ptr->max_entries, 2); | |
11303 | insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, | |
11304 | container_of(map_ptr, | |
11305 | struct bpf_array, | |
11306 | map)->index_mask); | |
11307 | insn_buf[2] = *insn; | |
11308 | cnt = 3; | |
11309 | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); | |
11310 | if (!new_prog) | |
11311 | return -ENOMEM; | |
11312 | ||
11313 | delta += cnt - 1; | |
11314 | env->prog = prog = new_prog; | |
11315 | insn = new_prog->insnsi + i + delta; | |
79741b3b AS |
11316 | continue; |
11317 | } | |
e245c5c6 | 11318 | |
89c63074 | 11319 | /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup |
09772d92 DB |
11320 | * and other inlining handlers are currently limited to 64 bit |
11321 | * only. | |
89c63074 | 11322 | */ |
60b58afc | 11323 | if (prog->jit_requested && BITS_PER_LONG == 64 && |
09772d92 DB |
11324 | (insn->imm == BPF_FUNC_map_lookup_elem || |
11325 | insn->imm == BPF_FUNC_map_update_elem || | |
84430d42 DB |
11326 | insn->imm == BPF_FUNC_map_delete_elem || |
11327 | insn->imm == BPF_FUNC_map_push_elem || | |
11328 | insn->imm == BPF_FUNC_map_pop_elem || | |
11329 | insn->imm == BPF_FUNC_map_peek_elem)) { | |
c93552c4 DB |
11330 | aux = &env->insn_aux_data[i + delta]; |
11331 | if (bpf_map_ptr_poisoned(aux)) | |
11332 | goto patch_call_imm; | |
11333 | ||
d2e4c1e6 | 11334 | map_ptr = BPF_MAP_PTR(aux->map_ptr_state); |
09772d92 DB |
11335 | ops = map_ptr->ops; |
11336 | if (insn->imm == BPF_FUNC_map_lookup_elem && | |
11337 | ops->map_gen_lookup) { | |
11338 | cnt = ops->map_gen_lookup(map_ptr, insn_buf); | |
4a8f87e6 DB |
11339 | if (cnt == -EOPNOTSUPP) |
11340 | goto patch_map_ops_generic; | |
11341 | if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { | |
09772d92 DB |
11342 | verbose(env, "bpf verifier is misconfigured\n"); |
11343 | return -EINVAL; | |
11344 | } | |
81ed18ab | 11345 | |
09772d92 DB |
11346 | new_prog = bpf_patch_insn_data(env, i + delta, |
11347 | insn_buf, cnt); | |
11348 | if (!new_prog) | |
11349 | return -ENOMEM; | |
81ed18ab | 11350 | |
09772d92 DB |
11351 | delta += cnt - 1; |
11352 | env->prog = prog = new_prog; | |
11353 | insn = new_prog->insnsi + i + delta; | |
11354 | continue; | |
11355 | } | |
81ed18ab | 11356 | |
09772d92 DB |
11357 | BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, |
11358 | (void *(*)(struct bpf_map *map, void *key))NULL)); | |
11359 | BUILD_BUG_ON(!__same_type(ops->map_delete_elem, | |
11360 | (int (*)(struct bpf_map *map, void *key))NULL)); | |
11361 | BUILD_BUG_ON(!__same_type(ops->map_update_elem, | |
11362 | (int (*)(struct bpf_map *map, void *key, void *value, | |
11363 | u64 flags))NULL)); | |
84430d42 DB |
11364 | BUILD_BUG_ON(!__same_type(ops->map_push_elem, |
11365 | (int (*)(struct bpf_map *map, void *value, | |
11366 | u64 flags))NULL)); | |
11367 | BUILD_BUG_ON(!__same_type(ops->map_pop_elem, | |
11368 | (int (*)(struct bpf_map *map, void *value))NULL)); | |
11369 | BUILD_BUG_ON(!__same_type(ops->map_peek_elem, | |
11370 | (int (*)(struct bpf_map *map, void *value))NULL)); | |
4a8f87e6 | 11371 | patch_map_ops_generic: |
09772d92 DB |
11372 | switch (insn->imm) { |
11373 | case BPF_FUNC_map_lookup_elem: | |
11374 | insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - | |
11375 | __bpf_call_base; | |
11376 | continue; | |
11377 | case BPF_FUNC_map_update_elem: | |
11378 | insn->imm = BPF_CAST_CALL(ops->map_update_elem) - | |
11379 | __bpf_call_base; | |
11380 | continue; | |
11381 | case BPF_FUNC_map_delete_elem: | |
11382 | insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - | |
11383 | __bpf_call_base; | |
11384 | continue; | |
84430d42 DB |
11385 | case BPF_FUNC_map_push_elem: |
11386 | insn->imm = BPF_CAST_CALL(ops->map_push_elem) - | |
11387 | __bpf_call_base; | |
11388 | continue; | |
11389 | case BPF_FUNC_map_pop_elem: | |
11390 | insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - | |
11391 | __bpf_call_base; | |
11392 | continue; | |
11393 | case BPF_FUNC_map_peek_elem: | |
11394 | insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - | |
11395 | __bpf_call_base; | |
11396 | continue; | |
09772d92 | 11397 | } |
81ed18ab | 11398 | |
09772d92 | 11399 | goto patch_call_imm; |
81ed18ab AS |
11400 | } |
11401 | ||
5576b991 MKL |
11402 | if (prog->jit_requested && BITS_PER_LONG == 64 && |
11403 | insn->imm == BPF_FUNC_jiffies64) { | |
11404 | struct bpf_insn ld_jiffies_addr[2] = { | |
11405 | BPF_LD_IMM64(BPF_REG_0, | |
11406 | (unsigned long)&jiffies), | |
11407 | }; | |
11408 | ||
11409 | insn_buf[0] = ld_jiffies_addr[0]; | |
11410 | insn_buf[1] = ld_jiffies_addr[1]; | |
11411 | insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, | |
11412 | BPF_REG_0, 0); | |
11413 | cnt = 3; | |
11414 | ||
11415 | new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, | |
11416 | cnt); | |
11417 | if (!new_prog) | |
11418 | return -ENOMEM; | |
11419 | ||
11420 | delta += cnt - 1; | |
11421 | env->prog = prog = new_prog; | |
11422 | insn = new_prog->insnsi + i + delta; | |
11423 | continue; | |
11424 | } | |
11425 | ||
81ed18ab | 11426 | patch_call_imm: |
5e43f899 | 11427 | fn = env->ops->get_func_proto(insn->imm, env->prog); |
79741b3b AS |
11428 | /* all functions that have prototype and verifier allowed |
11429 | * programs to call them, must be real in-kernel functions | |
11430 | */ | |
11431 | if (!fn->func) { | |
61bd5218 JK |
11432 | verbose(env, |
11433 | "kernel subsystem misconfigured func %s#%d\n", | |
79741b3b AS |
11434 | func_id_name(insn->imm), insn->imm); |
11435 | return -EFAULT; | |
e245c5c6 | 11436 | } |
79741b3b | 11437 | insn->imm = fn->func - __bpf_call_base; |
e245c5c6 | 11438 | } |
e245c5c6 | 11439 | |
d2e4c1e6 DB |
11440 | /* Since poke tab is now finalized, publish aux to tracker. */ |
11441 | for (i = 0; i < prog->aux->size_poke_tab; i++) { | |
11442 | map_ptr = prog->aux->poke_tab[i].tail_call.map; | |
11443 | if (!map_ptr->ops->map_poke_track || | |
11444 | !map_ptr->ops->map_poke_untrack || | |
11445 | !map_ptr->ops->map_poke_run) { | |
11446 | verbose(env, "bpf verifier is misconfigured\n"); | |
11447 | return -EINVAL; | |
11448 | } | |
11449 | ||
11450 | ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); | |
11451 | if (ret < 0) { | |
11452 | verbose(env, "tracking tail call prog failed\n"); | |
11453 | return ret; | |
11454 | } | |
11455 | } | |
11456 | ||
79741b3b AS |
11457 | return 0; |
11458 | } | |
e245c5c6 | 11459 | |
58e2af8b | 11460 | static void free_states(struct bpf_verifier_env *env) |
f1bca824 | 11461 | { |
58e2af8b | 11462 | struct bpf_verifier_state_list *sl, *sln; |
f1bca824 AS |
11463 | int i; |
11464 | ||
9f4686c4 AS |
11465 | sl = env->free_list; |
11466 | while (sl) { | |
11467 | sln = sl->next; | |
11468 | free_verifier_state(&sl->state, false); | |
11469 | kfree(sl); | |
11470 | sl = sln; | |
11471 | } | |
51c39bb1 | 11472 | env->free_list = NULL; |
9f4686c4 | 11473 | |
f1bca824 AS |
11474 | if (!env->explored_states) |
11475 | return; | |
11476 | ||
dc2a4ebc | 11477 | for (i = 0; i < state_htab_size(env); i++) { |
f1bca824 AS |
11478 | sl = env->explored_states[i]; |
11479 | ||
a8f500af AS |
11480 | while (sl) { |
11481 | sln = sl->next; | |
11482 | free_verifier_state(&sl->state, false); | |
11483 | kfree(sl); | |
11484 | sl = sln; | |
11485 | } | |
51c39bb1 | 11486 | env->explored_states[i] = NULL; |
f1bca824 | 11487 | } |
51c39bb1 | 11488 | } |
f1bca824 | 11489 | |
51c39bb1 AS |
11490 | /* The verifier is using insn_aux_data[] to store temporary data during |
11491 | * verification and to store information for passes that run after the | |
11492 | * verification like dead code sanitization. do_check_common() for subprogram N | |
11493 | * may analyze many other subprograms. sanitize_insn_aux_data() clears all | |
11494 | * temporary data after do_check_common() finds that subprogram N cannot be | |
11495 | * verified independently. pass_cnt counts the number of times | |
11496 | * do_check_common() was run and insn->aux->seen tells the pass number | |
11497 | * insn_aux_data was touched. These variables are compared to clear temporary | |
11498 | * data from failed pass. For testing and experiments do_check_common() can be | |
11499 | * run multiple times even when prior attempt to verify is unsuccessful. | |
11500 | */ | |
11501 | static void sanitize_insn_aux_data(struct bpf_verifier_env *env) | |
11502 | { | |
11503 | struct bpf_insn *insn = env->prog->insnsi; | |
11504 | struct bpf_insn_aux_data *aux; | |
11505 | int i, class; | |
11506 | ||
11507 | for (i = 0; i < env->prog->len; i++) { | |
11508 | class = BPF_CLASS(insn[i].code); | |
11509 | if (class != BPF_LDX && class != BPF_STX) | |
11510 | continue; | |
11511 | aux = &env->insn_aux_data[i]; | |
11512 | if (aux->seen != env->pass_cnt) | |
11513 | continue; | |
11514 | memset(aux, 0, offsetof(typeof(*aux), orig_idx)); | |
11515 | } | |
f1bca824 AS |
11516 | } |
11517 | ||
51c39bb1 AS |
11518 | static int do_check_common(struct bpf_verifier_env *env, int subprog) |
11519 | { | |
6f8a57cc | 11520 | bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); |
51c39bb1 AS |
11521 | struct bpf_verifier_state *state; |
11522 | struct bpf_reg_state *regs; | |
11523 | int ret, i; | |
11524 | ||
11525 | env->prev_linfo = NULL; | |
11526 | env->pass_cnt++; | |
11527 | ||
11528 | state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); | |
11529 | if (!state) | |
11530 | return -ENOMEM; | |
11531 | state->curframe = 0; | |
11532 | state->speculative = false; | |
11533 | state->branches = 1; | |
11534 | state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); | |
11535 | if (!state->frame[0]) { | |
11536 | kfree(state); | |
11537 | return -ENOMEM; | |
11538 | } | |
11539 | env->cur_state = state; | |
11540 | init_func_state(env, state->frame[0], | |
11541 | BPF_MAIN_FUNC /* callsite */, | |
11542 | 0 /* frameno */, | |
11543 | subprog); | |
11544 | ||
11545 | regs = state->frame[state->curframe]->regs; | |
be8704ff | 11546 | if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { |
51c39bb1 AS |
11547 | ret = btf_prepare_func_args(env, subprog, regs); |
11548 | if (ret) | |
11549 | goto out; | |
11550 | for (i = BPF_REG_1; i <= BPF_REG_5; i++) { | |
11551 | if (regs[i].type == PTR_TO_CTX) | |
11552 | mark_reg_known_zero(env, regs, i); | |
11553 | else if (regs[i].type == SCALAR_VALUE) | |
11554 | mark_reg_unknown(env, regs, i); | |
11555 | } | |
11556 | } else { | |
11557 | /* 1st arg to a function */ | |
11558 | regs[BPF_REG_1].type = PTR_TO_CTX; | |
11559 | mark_reg_known_zero(env, regs, BPF_REG_1); | |
11560 | ret = btf_check_func_arg_match(env, subprog, regs); | |
11561 | if (ret == -EFAULT) | |
11562 | /* unlikely verifier bug. abort. | |
11563 | * ret == 0 and ret < 0 are sadly acceptable for | |
11564 | * main() function due to backward compatibility. | |
11565 | * Like socket filter program may be written as: | |
11566 | * int bpf_prog(struct pt_regs *ctx) | |
11567 | * and never dereference that ctx in the program. | |
11568 | * 'struct pt_regs' is a type mismatch for socket | |
11569 | * filter that should be using 'struct __sk_buff'. | |
11570 | */ | |
11571 | goto out; | |
11572 | } | |
11573 | ||
11574 | ret = do_check(env); | |
11575 | out: | |
f59bbfc2 AS |
11576 | /* check for NULL is necessary, since cur_state can be freed inside |
11577 | * do_check() under memory pressure. | |
11578 | */ | |
11579 | if (env->cur_state) { | |
11580 | free_verifier_state(env->cur_state, true); | |
11581 | env->cur_state = NULL; | |
11582 | } | |
6f8a57cc AN |
11583 | while (!pop_stack(env, NULL, NULL, false)); |
11584 | if (!ret && pop_log) | |
11585 | bpf_vlog_reset(&env->log, 0); | |
51c39bb1 AS |
11586 | free_states(env); |
11587 | if (ret) | |
11588 | /* clean aux data in case subprog was rejected */ | |
11589 | sanitize_insn_aux_data(env); | |
11590 | return ret; | |
11591 | } | |
11592 | ||
11593 | /* Verify all global functions in a BPF program one by one based on their BTF. | |
11594 | * All global functions must pass verification. Otherwise the whole program is rejected. | |
11595 | * Consider: | |
11596 | * int bar(int); | |
11597 | * int foo(int f) | |
11598 | * { | |
11599 | * return bar(f); | |
11600 | * } | |
11601 | * int bar(int b) | |
11602 | * { | |
11603 | * ... | |
11604 | * } | |
11605 | * foo() will be verified first for R1=any_scalar_value. During verification it | |
11606 | * will be assumed that bar() already verified successfully and call to bar() | |
11607 | * from foo() will be checked for type match only. Later bar() will be verified | |
11608 | * independently to check that it's safe for R1=any_scalar_value. | |
11609 | */ | |
11610 | static int do_check_subprogs(struct bpf_verifier_env *env) | |
11611 | { | |
11612 | struct bpf_prog_aux *aux = env->prog->aux; | |
11613 | int i, ret; | |
11614 | ||
11615 | if (!aux->func_info) | |
11616 | return 0; | |
11617 | ||
11618 | for (i = 1; i < env->subprog_cnt; i++) { | |
11619 | if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) | |
11620 | continue; | |
11621 | env->insn_idx = env->subprog_info[i].start; | |
11622 | WARN_ON_ONCE(env->insn_idx == 0); | |
11623 | ret = do_check_common(env, i); | |
11624 | if (ret) { | |
11625 | return ret; | |
11626 | } else if (env->log.level & BPF_LOG_LEVEL) { | |
11627 | verbose(env, | |
11628 | "Func#%d is safe for any args that match its prototype\n", | |
11629 | i); | |
11630 | } | |
11631 | } | |
11632 | return 0; | |
11633 | } | |
11634 | ||
11635 | static int do_check_main(struct bpf_verifier_env *env) | |
11636 | { | |
11637 | int ret; | |
11638 | ||
11639 | env->insn_idx = 0; | |
11640 | ret = do_check_common(env, 0); | |
11641 | if (!ret) | |
11642 | env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; | |
11643 | return ret; | |
11644 | } | |
11645 | ||
11646 | ||
06ee7115 AS |
11647 | static void print_verification_stats(struct bpf_verifier_env *env) |
11648 | { | |
11649 | int i; | |
11650 | ||
11651 | if (env->log.level & BPF_LOG_STATS) { | |
11652 | verbose(env, "verification time %lld usec\n", | |
11653 | div_u64(env->verification_time, 1000)); | |
11654 | verbose(env, "stack depth "); | |
11655 | for (i = 0; i < env->subprog_cnt; i++) { | |
11656 | u32 depth = env->subprog_info[i].stack_depth; | |
11657 | ||
11658 | verbose(env, "%d", depth); | |
11659 | if (i + 1 < env->subprog_cnt) | |
11660 | verbose(env, "+"); | |
11661 | } | |
11662 | verbose(env, "\n"); | |
11663 | } | |
11664 | verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " | |
11665 | "total_states %d peak_states %d mark_read %d\n", | |
11666 | env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, | |
11667 | env->max_states_per_insn, env->total_states, | |
11668 | env->peak_states, env->longest_mark_read_walk); | |
f1bca824 AS |
11669 | } |
11670 | ||
27ae7997 MKL |
11671 | static int check_struct_ops_btf_id(struct bpf_verifier_env *env) |
11672 | { | |
11673 | const struct btf_type *t, *func_proto; | |
11674 | const struct bpf_struct_ops *st_ops; | |
11675 | const struct btf_member *member; | |
11676 | struct bpf_prog *prog = env->prog; | |
11677 | u32 btf_id, member_idx; | |
11678 | const char *mname; | |
11679 | ||
11680 | btf_id = prog->aux->attach_btf_id; | |
11681 | st_ops = bpf_struct_ops_find(btf_id); | |
11682 | if (!st_ops) { | |
11683 | verbose(env, "attach_btf_id %u is not a supported struct\n", | |
11684 | btf_id); | |
11685 | return -ENOTSUPP; | |
11686 | } | |
11687 | ||
11688 | t = st_ops->type; | |
11689 | member_idx = prog->expected_attach_type; | |
11690 | if (member_idx >= btf_type_vlen(t)) { | |
11691 | verbose(env, "attach to invalid member idx %u of struct %s\n", | |
11692 | member_idx, st_ops->name); | |
11693 | return -EINVAL; | |
11694 | } | |
11695 | ||
11696 | member = &btf_type_member(t)[member_idx]; | |
11697 | mname = btf_name_by_offset(btf_vmlinux, member->name_off); | |
11698 | func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, | |
11699 | NULL); | |
11700 | if (!func_proto) { | |
11701 | verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", | |
11702 | mname, member_idx, st_ops->name); | |
11703 | return -EINVAL; | |
11704 | } | |
11705 | ||
11706 | if (st_ops->check_member) { | |
11707 | int err = st_ops->check_member(t, member); | |
11708 | ||
11709 | if (err) { | |
11710 | verbose(env, "attach to unsupported member %s of struct %s\n", | |
11711 | mname, st_ops->name); | |
11712 | return err; | |
11713 | } | |
11714 | } | |
11715 | ||
11716 | prog->aux->attach_func_proto = func_proto; | |
11717 | prog->aux->attach_func_name = mname; | |
11718 | env->ops = st_ops->verifier_ops; | |
11719 | ||
11720 | return 0; | |
11721 | } | |
6ba43b76 KS |
11722 | #define SECURITY_PREFIX "security_" |
11723 | ||
f7b12b6f | 11724 | static int check_attach_modify_return(unsigned long addr, const char *func_name) |
6ba43b76 | 11725 | { |
69191754 | 11726 | if (within_error_injection_list(addr) || |
f7b12b6f | 11727 | !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) |
6ba43b76 | 11728 | return 0; |
6ba43b76 | 11729 | |
6ba43b76 KS |
11730 | return -EINVAL; |
11731 | } | |
27ae7997 | 11732 | |
1e6c62a8 AS |
11733 | /* list of non-sleepable functions that are otherwise on |
11734 | * ALLOW_ERROR_INJECTION list | |
11735 | */ | |
11736 | BTF_SET_START(btf_non_sleepable_error_inject) | |
11737 | /* Three functions below can be called from sleepable and non-sleepable context. | |
11738 | * Assume non-sleepable from bpf safety point of view. | |
11739 | */ | |
11740 | BTF_ID(func, __add_to_page_cache_locked) | |
11741 | BTF_ID(func, should_fail_alloc_page) | |
11742 | BTF_ID(func, should_failslab) | |
11743 | BTF_SET_END(btf_non_sleepable_error_inject) | |
11744 | ||
11745 | static int check_non_sleepable_error_inject(u32 btf_id) | |
11746 | { | |
11747 | return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); | |
11748 | } | |
11749 | ||
f7b12b6f THJ |
11750 | int bpf_check_attach_target(struct bpf_verifier_log *log, |
11751 | const struct bpf_prog *prog, | |
11752 | const struct bpf_prog *tgt_prog, | |
11753 | u32 btf_id, | |
11754 | struct bpf_attach_target_info *tgt_info) | |
38207291 | 11755 | { |
be8704ff | 11756 | bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; |
f1b9509c | 11757 | const char prefix[] = "btf_trace_"; |
5b92a28a | 11758 | int ret = 0, subprog = -1, i; |
38207291 | 11759 | const struct btf_type *t; |
5b92a28a | 11760 | bool conservative = true; |
38207291 | 11761 | const char *tname; |
5b92a28a | 11762 | struct btf *btf; |
f7b12b6f | 11763 | long addr = 0; |
38207291 | 11764 | |
f1b9509c | 11765 | if (!btf_id) { |
efc68158 | 11766 | bpf_log(log, "Tracing programs must provide btf_id\n"); |
f1b9509c AS |
11767 | return -EINVAL; |
11768 | } | |
22dc4a0f | 11769 | btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; |
5b92a28a | 11770 | if (!btf) { |
efc68158 | 11771 | bpf_log(log, |
5b92a28a AS |
11772 | "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); |
11773 | return -EINVAL; | |
11774 | } | |
11775 | t = btf_type_by_id(btf, btf_id); | |
f1b9509c | 11776 | if (!t) { |
efc68158 | 11777 | bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); |
f1b9509c AS |
11778 | return -EINVAL; |
11779 | } | |
5b92a28a | 11780 | tname = btf_name_by_offset(btf, t->name_off); |
f1b9509c | 11781 | if (!tname) { |
efc68158 | 11782 | bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); |
f1b9509c AS |
11783 | return -EINVAL; |
11784 | } | |
5b92a28a AS |
11785 | if (tgt_prog) { |
11786 | struct bpf_prog_aux *aux = tgt_prog->aux; | |
11787 | ||
11788 | for (i = 0; i < aux->func_info_cnt; i++) | |
11789 | if (aux->func_info[i].type_id == btf_id) { | |
11790 | subprog = i; | |
11791 | break; | |
11792 | } | |
11793 | if (subprog == -1) { | |
efc68158 | 11794 | bpf_log(log, "Subprog %s doesn't exist\n", tname); |
5b92a28a AS |
11795 | return -EINVAL; |
11796 | } | |
11797 | conservative = aux->func_info_aux[subprog].unreliable; | |
be8704ff AS |
11798 | if (prog_extension) { |
11799 | if (conservative) { | |
efc68158 | 11800 | bpf_log(log, |
be8704ff AS |
11801 | "Cannot replace static functions\n"); |
11802 | return -EINVAL; | |
11803 | } | |
11804 | if (!prog->jit_requested) { | |
efc68158 | 11805 | bpf_log(log, |
be8704ff AS |
11806 | "Extension programs should be JITed\n"); |
11807 | return -EINVAL; | |
11808 | } | |
be8704ff AS |
11809 | } |
11810 | if (!tgt_prog->jited) { | |
efc68158 | 11811 | bpf_log(log, "Can attach to only JITed progs\n"); |
be8704ff AS |
11812 | return -EINVAL; |
11813 | } | |
11814 | if (tgt_prog->type == prog->type) { | |
11815 | /* Cannot fentry/fexit another fentry/fexit program. | |
11816 | * Cannot attach program extension to another extension. | |
11817 | * It's ok to attach fentry/fexit to extension program. | |
11818 | */ | |
efc68158 | 11819 | bpf_log(log, "Cannot recursively attach\n"); |
be8704ff AS |
11820 | return -EINVAL; |
11821 | } | |
11822 | if (tgt_prog->type == BPF_PROG_TYPE_TRACING && | |
11823 | prog_extension && | |
11824 | (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || | |
11825 | tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { | |
11826 | /* Program extensions can extend all program types | |
11827 | * except fentry/fexit. The reason is the following. | |
11828 | * The fentry/fexit programs are used for performance | |
11829 | * analysis, stats and can be attached to any program | |
11830 | * type except themselves. When extension program is | |
11831 | * replacing XDP function it is necessary to allow | |
11832 | * performance analysis of all functions. Both original | |
11833 | * XDP program and its program extension. Hence | |
11834 | * attaching fentry/fexit to BPF_PROG_TYPE_EXT is | |
11835 | * allowed. If extending of fentry/fexit was allowed it | |
11836 | * would be possible to create long call chain | |
11837 | * fentry->extension->fentry->extension beyond | |
11838 | * reasonable stack size. Hence extending fentry is not | |
11839 | * allowed. | |
11840 | */ | |
efc68158 | 11841 | bpf_log(log, "Cannot extend fentry/fexit\n"); |
be8704ff AS |
11842 | return -EINVAL; |
11843 | } | |
5b92a28a | 11844 | } else { |
be8704ff | 11845 | if (prog_extension) { |
efc68158 | 11846 | bpf_log(log, "Cannot replace kernel functions\n"); |
be8704ff AS |
11847 | return -EINVAL; |
11848 | } | |
5b92a28a | 11849 | } |
f1b9509c AS |
11850 | |
11851 | switch (prog->expected_attach_type) { | |
11852 | case BPF_TRACE_RAW_TP: | |
5b92a28a | 11853 | if (tgt_prog) { |
efc68158 | 11854 | bpf_log(log, |
5b92a28a AS |
11855 | "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); |
11856 | return -EINVAL; | |
11857 | } | |
38207291 | 11858 | if (!btf_type_is_typedef(t)) { |
efc68158 | 11859 | bpf_log(log, "attach_btf_id %u is not a typedef\n", |
38207291 MKL |
11860 | btf_id); |
11861 | return -EINVAL; | |
11862 | } | |
f1b9509c | 11863 | if (strncmp(prefix, tname, sizeof(prefix) - 1)) { |
efc68158 | 11864 | bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", |
38207291 MKL |
11865 | btf_id, tname); |
11866 | return -EINVAL; | |
11867 | } | |
11868 | tname += sizeof(prefix) - 1; | |
5b92a28a | 11869 | t = btf_type_by_id(btf, t->type); |
38207291 MKL |
11870 | if (!btf_type_is_ptr(t)) |
11871 | /* should never happen in valid vmlinux build */ | |
11872 | return -EINVAL; | |
5b92a28a | 11873 | t = btf_type_by_id(btf, t->type); |
38207291 MKL |
11874 | if (!btf_type_is_func_proto(t)) |
11875 | /* should never happen in valid vmlinux build */ | |
11876 | return -EINVAL; | |
11877 | ||
f7b12b6f | 11878 | break; |
15d83c4d YS |
11879 | case BPF_TRACE_ITER: |
11880 | if (!btf_type_is_func(t)) { | |
efc68158 | 11881 | bpf_log(log, "attach_btf_id %u is not a function\n", |
15d83c4d YS |
11882 | btf_id); |
11883 | return -EINVAL; | |
11884 | } | |
11885 | t = btf_type_by_id(btf, t->type); | |
11886 | if (!btf_type_is_func_proto(t)) | |
11887 | return -EINVAL; | |
f7b12b6f THJ |
11888 | ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); |
11889 | if (ret) | |
11890 | return ret; | |
11891 | break; | |
be8704ff AS |
11892 | default: |
11893 | if (!prog_extension) | |
11894 | return -EINVAL; | |
df561f66 | 11895 | fallthrough; |
ae240823 | 11896 | case BPF_MODIFY_RETURN: |
9e4e01df | 11897 | case BPF_LSM_MAC: |
fec56f58 AS |
11898 | case BPF_TRACE_FENTRY: |
11899 | case BPF_TRACE_FEXIT: | |
11900 | if (!btf_type_is_func(t)) { | |
efc68158 | 11901 | bpf_log(log, "attach_btf_id %u is not a function\n", |
fec56f58 AS |
11902 | btf_id); |
11903 | return -EINVAL; | |
11904 | } | |
be8704ff | 11905 | if (prog_extension && |
efc68158 | 11906 | btf_check_type_match(log, prog, btf, t)) |
be8704ff | 11907 | return -EINVAL; |
5b92a28a | 11908 | t = btf_type_by_id(btf, t->type); |
fec56f58 AS |
11909 | if (!btf_type_is_func_proto(t)) |
11910 | return -EINVAL; | |
f7b12b6f | 11911 | |
4a1e7c0c THJ |
11912 | if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && |
11913 | (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || | |
11914 | prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) | |
11915 | return -EINVAL; | |
11916 | ||
f7b12b6f | 11917 | if (tgt_prog && conservative) |
5b92a28a | 11918 | t = NULL; |
f7b12b6f THJ |
11919 | |
11920 | ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); | |
fec56f58 | 11921 | if (ret < 0) |
f7b12b6f THJ |
11922 | return ret; |
11923 | ||
5b92a28a | 11924 | if (tgt_prog) { |
e9eeec58 YS |
11925 | if (subprog == 0) |
11926 | addr = (long) tgt_prog->bpf_func; | |
11927 | else | |
11928 | addr = (long) tgt_prog->aux->func[subprog]->bpf_func; | |
5b92a28a AS |
11929 | } else { |
11930 | addr = kallsyms_lookup_name(tname); | |
11931 | if (!addr) { | |
efc68158 | 11932 | bpf_log(log, |
5b92a28a AS |
11933 | "The address of function %s cannot be found\n", |
11934 | tname); | |
f7b12b6f | 11935 | return -ENOENT; |
5b92a28a | 11936 | } |
fec56f58 | 11937 | } |
18644cec | 11938 | |
1e6c62a8 AS |
11939 | if (prog->aux->sleepable) { |
11940 | ret = -EINVAL; | |
11941 | switch (prog->type) { | |
11942 | case BPF_PROG_TYPE_TRACING: | |
11943 | /* fentry/fexit/fmod_ret progs can be sleepable only if they are | |
11944 | * attached to ALLOW_ERROR_INJECTION and are not in denylist. | |
11945 | */ | |
11946 | if (!check_non_sleepable_error_inject(btf_id) && | |
11947 | within_error_injection_list(addr)) | |
11948 | ret = 0; | |
11949 | break; | |
11950 | case BPF_PROG_TYPE_LSM: | |
11951 | /* LSM progs check that they are attached to bpf_lsm_*() funcs. | |
11952 | * Only some of them are sleepable. | |
11953 | */ | |
423f1610 | 11954 | if (bpf_lsm_is_sleepable_hook(btf_id)) |
1e6c62a8 AS |
11955 | ret = 0; |
11956 | break; | |
11957 | default: | |
11958 | break; | |
11959 | } | |
f7b12b6f THJ |
11960 | if (ret) { |
11961 | bpf_log(log, "%s is not sleepable\n", tname); | |
11962 | return ret; | |
11963 | } | |
1e6c62a8 | 11964 | } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { |
1af9270e | 11965 | if (tgt_prog) { |
efc68158 | 11966 | bpf_log(log, "can't modify return codes of BPF programs\n"); |
f7b12b6f THJ |
11967 | return -EINVAL; |
11968 | } | |
11969 | ret = check_attach_modify_return(addr, tname); | |
11970 | if (ret) { | |
11971 | bpf_log(log, "%s() is not modifiable\n", tname); | |
11972 | return ret; | |
1af9270e | 11973 | } |
18644cec | 11974 | } |
f7b12b6f THJ |
11975 | |
11976 | break; | |
11977 | } | |
11978 | tgt_info->tgt_addr = addr; | |
11979 | tgt_info->tgt_name = tname; | |
11980 | tgt_info->tgt_type = t; | |
11981 | return 0; | |
11982 | } | |
11983 | ||
11984 | static int check_attach_btf_id(struct bpf_verifier_env *env) | |
11985 | { | |
11986 | struct bpf_prog *prog = env->prog; | |
3aac1ead | 11987 | struct bpf_prog *tgt_prog = prog->aux->dst_prog; |
f7b12b6f THJ |
11988 | struct bpf_attach_target_info tgt_info = {}; |
11989 | u32 btf_id = prog->aux->attach_btf_id; | |
11990 | struct bpf_trampoline *tr; | |
11991 | int ret; | |
11992 | u64 key; | |
11993 | ||
11994 | if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && | |
11995 | prog->type != BPF_PROG_TYPE_LSM) { | |
11996 | verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); | |
11997 | return -EINVAL; | |
11998 | } | |
11999 | ||
12000 | if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) | |
12001 | return check_struct_ops_btf_id(env); | |
12002 | ||
12003 | if (prog->type != BPF_PROG_TYPE_TRACING && | |
12004 | prog->type != BPF_PROG_TYPE_LSM && | |
12005 | prog->type != BPF_PROG_TYPE_EXT) | |
12006 | return 0; | |
12007 | ||
12008 | ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); | |
12009 | if (ret) | |
fec56f58 | 12010 | return ret; |
f7b12b6f THJ |
12011 | |
12012 | if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { | |
3aac1ead THJ |
12013 | /* to make freplace equivalent to their targets, they need to |
12014 | * inherit env->ops and expected_attach_type for the rest of the | |
12015 | * verification | |
12016 | */ | |
f7b12b6f THJ |
12017 | env->ops = bpf_verifier_ops[tgt_prog->type]; |
12018 | prog->expected_attach_type = tgt_prog->expected_attach_type; | |
12019 | } | |
12020 | ||
12021 | /* store info about the attachment target that will be used later */ | |
12022 | prog->aux->attach_func_proto = tgt_info.tgt_type; | |
12023 | prog->aux->attach_func_name = tgt_info.tgt_name; | |
12024 | ||
4a1e7c0c THJ |
12025 | if (tgt_prog) { |
12026 | prog->aux->saved_dst_prog_type = tgt_prog->type; | |
12027 | prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; | |
12028 | } | |
12029 | ||
f7b12b6f THJ |
12030 | if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { |
12031 | prog->aux->attach_btf_trace = true; | |
12032 | return 0; | |
12033 | } else if (prog->expected_attach_type == BPF_TRACE_ITER) { | |
12034 | if (!bpf_iter_prog_supported(prog)) | |
12035 | return -EINVAL; | |
12036 | return 0; | |
12037 | } | |
12038 | ||
12039 | if (prog->type == BPF_PROG_TYPE_LSM) { | |
12040 | ret = bpf_lsm_verify_prog(&env->log, prog); | |
12041 | if (ret < 0) | |
12042 | return ret; | |
38207291 | 12043 | } |
f7b12b6f | 12044 | |
22dc4a0f | 12045 | key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); |
f7b12b6f THJ |
12046 | tr = bpf_trampoline_get(key, &tgt_info); |
12047 | if (!tr) | |
12048 | return -ENOMEM; | |
12049 | ||
3aac1ead | 12050 | prog->aux->dst_trampoline = tr; |
f7b12b6f | 12051 | return 0; |
38207291 MKL |
12052 | } |
12053 | ||
76654e67 AM |
12054 | struct btf *bpf_get_btf_vmlinux(void) |
12055 | { | |
12056 | if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { | |
12057 | mutex_lock(&bpf_verifier_lock); | |
12058 | if (!btf_vmlinux) | |
12059 | btf_vmlinux = btf_parse_vmlinux(); | |
12060 | mutex_unlock(&bpf_verifier_lock); | |
12061 | } | |
12062 | return btf_vmlinux; | |
12063 | } | |
12064 | ||
838e9690 YS |
12065 | int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, |
12066 | union bpf_attr __user *uattr) | |
51580e79 | 12067 | { |
06ee7115 | 12068 | u64 start_time = ktime_get_ns(); |
58e2af8b | 12069 | struct bpf_verifier_env *env; |
b9193c1b | 12070 | struct bpf_verifier_log *log; |
9e4c24e7 | 12071 | int i, len, ret = -EINVAL; |
e2ae4ca2 | 12072 | bool is_priv; |
51580e79 | 12073 | |
eba0c929 AB |
12074 | /* no program is valid */ |
12075 | if (ARRAY_SIZE(bpf_verifier_ops) == 0) | |
12076 | return -EINVAL; | |
12077 | ||
58e2af8b | 12078 | /* 'struct bpf_verifier_env' can be global, but since it's not small, |
cbd35700 AS |
12079 | * allocate/free it every time bpf_check() is called |
12080 | */ | |
58e2af8b | 12081 | env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); |
cbd35700 AS |
12082 | if (!env) |
12083 | return -ENOMEM; | |
61bd5218 | 12084 | log = &env->log; |
cbd35700 | 12085 | |
9e4c24e7 | 12086 | len = (*prog)->len; |
fad953ce | 12087 | env->insn_aux_data = |
9e4c24e7 | 12088 | vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); |
3df126f3 JK |
12089 | ret = -ENOMEM; |
12090 | if (!env->insn_aux_data) | |
12091 | goto err_free_env; | |
9e4c24e7 JK |
12092 | for (i = 0; i < len; i++) |
12093 | env->insn_aux_data[i].orig_idx = i; | |
9bac3d6d | 12094 | env->prog = *prog; |
00176a34 | 12095 | env->ops = bpf_verifier_ops[env->prog->type]; |
2c78ee89 | 12096 | is_priv = bpf_capable(); |
0246e64d | 12097 | |
76654e67 | 12098 | bpf_get_btf_vmlinux(); |
8580ac94 | 12099 | |
cbd35700 | 12100 | /* grab the mutex to protect few globals used by verifier */ |
45a73c17 AS |
12101 | if (!is_priv) |
12102 | mutex_lock(&bpf_verifier_lock); | |
cbd35700 AS |
12103 | |
12104 | if (attr->log_level || attr->log_buf || attr->log_size) { | |
12105 | /* user requested verbose verifier output | |
12106 | * and supplied buffer to store the verification trace | |
12107 | */ | |
e7bf8249 JK |
12108 | log->level = attr->log_level; |
12109 | log->ubuf = (char __user *) (unsigned long) attr->log_buf; | |
12110 | log->len_total = attr->log_size; | |
cbd35700 AS |
12111 | |
12112 | ret = -EINVAL; | |
e7bf8249 | 12113 | /* log attributes have to be sane */ |
7a9f5c65 | 12114 | if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || |
06ee7115 | 12115 | !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) |
3df126f3 | 12116 | goto err_unlock; |
cbd35700 | 12117 | } |
1ad2f583 | 12118 | |
8580ac94 AS |
12119 | if (IS_ERR(btf_vmlinux)) { |
12120 | /* Either gcc or pahole or kernel are broken. */ | |
12121 | verbose(env, "in-kernel BTF is malformed\n"); | |
12122 | ret = PTR_ERR(btf_vmlinux); | |
38207291 | 12123 | goto skip_full_check; |
8580ac94 AS |
12124 | } |
12125 | ||
1ad2f583 DB |
12126 | env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); |
12127 | if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) | |
e07b98d9 | 12128 | env->strict_alignment = true; |
e9ee9efc DM |
12129 | if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) |
12130 | env->strict_alignment = false; | |
cbd35700 | 12131 | |
2c78ee89 | 12132 | env->allow_ptr_leaks = bpf_allow_ptr_leaks(); |
41c48f3a | 12133 | env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); |
2c78ee89 AS |
12134 | env->bypass_spec_v1 = bpf_bypass_spec_v1(); |
12135 | env->bypass_spec_v4 = bpf_bypass_spec_v4(); | |
12136 | env->bpf_capable = bpf_capable(); | |
e2ae4ca2 | 12137 | |
10d274e8 AS |
12138 | if (is_priv) |
12139 | env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; | |
12140 | ||
cae1927c | 12141 | if (bpf_prog_is_dev_bound(env->prog->aux)) { |
a40a2632 | 12142 | ret = bpf_prog_offload_verifier_prep(env->prog); |
ab3f0063 | 12143 | if (ret) |
f4e3ec0d | 12144 | goto skip_full_check; |
ab3f0063 JK |
12145 | } |
12146 | ||
dc2a4ebc | 12147 | env->explored_states = kvcalloc(state_htab_size(env), |
58e2af8b | 12148 | sizeof(struct bpf_verifier_state_list *), |
f1bca824 AS |
12149 | GFP_USER); |
12150 | ret = -ENOMEM; | |
12151 | if (!env->explored_states) | |
12152 | goto skip_full_check; | |
12153 | ||
d9762e84 | 12154 | ret = check_subprogs(env); |
475fb78f AS |
12155 | if (ret < 0) |
12156 | goto skip_full_check; | |
12157 | ||
c454a46b | 12158 | ret = check_btf_info(env, attr, uattr); |
838e9690 YS |
12159 | if (ret < 0) |
12160 | goto skip_full_check; | |
12161 | ||
be8704ff AS |
12162 | ret = check_attach_btf_id(env); |
12163 | if (ret) | |
12164 | goto skip_full_check; | |
12165 | ||
4976b718 HL |
12166 | ret = resolve_pseudo_ldimm64(env); |
12167 | if (ret < 0) | |
12168 | goto skip_full_check; | |
12169 | ||
d9762e84 MKL |
12170 | ret = check_cfg(env); |
12171 | if (ret < 0) | |
12172 | goto skip_full_check; | |
12173 | ||
51c39bb1 AS |
12174 | ret = do_check_subprogs(env); |
12175 | ret = ret ?: do_check_main(env); | |
cbd35700 | 12176 | |
c941ce9c QM |
12177 | if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) |
12178 | ret = bpf_prog_offload_finalize(env); | |
12179 | ||
0246e64d | 12180 | skip_full_check: |
51c39bb1 | 12181 | kvfree(env->explored_states); |
0246e64d | 12182 | |
c131187d | 12183 | if (ret == 0) |
9b38c405 | 12184 | ret = check_max_stack_depth(env); |
c131187d | 12185 | |
9b38c405 | 12186 | /* instruction rewrites happen after this point */ |
e2ae4ca2 JK |
12187 | if (is_priv) { |
12188 | if (ret == 0) | |
12189 | opt_hard_wire_dead_code_branches(env); | |
52875a04 JK |
12190 | if (ret == 0) |
12191 | ret = opt_remove_dead_code(env); | |
a1b14abc JK |
12192 | if (ret == 0) |
12193 | ret = opt_remove_nops(env); | |
52875a04 JK |
12194 | } else { |
12195 | if (ret == 0) | |
12196 | sanitize_dead_code(env); | |
e2ae4ca2 JK |
12197 | } |
12198 | ||
9bac3d6d AS |
12199 | if (ret == 0) |
12200 | /* program is valid, convert *(u32*)(ctx + off) accesses */ | |
12201 | ret = convert_ctx_accesses(env); | |
12202 | ||
e245c5c6 | 12203 | if (ret == 0) |
79741b3b | 12204 | ret = fixup_bpf_calls(env); |
e245c5c6 | 12205 | |
a4b1d3c1 JW |
12206 | /* do 32-bit optimization after insn patching has done so those patched |
12207 | * insns could be handled correctly. | |
12208 | */ | |
d6c2308c JW |
12209 | if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { |
12210 | ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); | |
12211 | env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret | |
12212 | : false; | |
a4b1d3c1 JW |
12213 | } |
12214 | ||
1ea47e01 AS |
12215 | if (ret == 0) |
12216 | ret = fixup_call_args(env); | |
12217 | ||
06ee7115 AS |
12218 | env->verification_time = ktime_get_ns() - start_time; |
12219 | print_verification_stats(env); | |
12220 | ||
a2a7d570 | 12221 | if (log->level && bpf_verifier_log_full(log)) |
cbd35700 | 12222 | ret = -ENOSPC; |
a2a7d570 | 12223 | if (log->level && !log->ubuf) { |
cbd35700 | 12224 | ret = -EFAULT; |
a2a7d570 | 12225 | goto err_release_maps; |
cbd35700 AS |
12226 | } |
12227 | ||
541c3bad AN |
12228 | if (ret) |
12229 | goto err_release_maps; | |
12230 | ||
12231 | if (env->used_map_cnt) { | |
0246e64d | 12232 | /* if program passed verifier, update used_maps in bpf_prog_info */ |
9bac3d6d AS |
12233 | env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, |
12234 | sizeof(env->used_maps[0]), | |
12235 | GFP_KERNEL); | |
0246e64d | 12236 | |
9bac3d6d | 12237 | if (!env->prog->aux->used_maps) { |
0246e64d | 12238 | ret = -ENOMEM; |
a2a7d570 | 12239 | goto err_release_maps; |
0246e64d AS |
12240 | } |
12241 | ||
9bac3d6d | 12242 | memcpy(env->prog->aux->used_maps, env->used_maps, |
0246e64d | 12243 | sizeof(env->used_maps[0]) * env->used_map_cnt); |
9bac3d6d | 12244 | env->prog->aux->used_map_cnt = env->used_map_cnt; |
541c3bad AN |
12245 | } |
12246 | if (env->used_btf_cnt) { | |
12247 | /* if program passed verifier, update used_btfs in bpf_prog_aux */ | |
12248 | env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, | |
12249 | sizeof(env->used_btfs[0]), | |
12250 | GFP_KERNEL); | |
12251 | if (!env->prog->aux->used_btfs) { | |
12252 | ret = -ENOMEM; | |
12253 | goto err_release_maps; | |
12254 | } | |
0246e64d | 12255 | |
541c3bad AN |
12256 | memcpy(env->prog->aux->used_btfs, env->used_btfs, |
12257 | sizeof(env->used_btfs[0]) * env->used_btf_cnt); | |
12258 | env->prog->aux->used_btf_cnt = env->used_btf_cnt; | |
12259 | } | |
12260 | if (env->used_map_cnt || env->used_btf_cnt) { | |
0246e64d AS |
12261 | /* program is valid. Convert pseudo bpf_ld_imm64 into generic |
12262 | * bpf_ld_imm64 instructions | |
12263 | */ | |
12264 | convert_pseudo_ld_imm64(env); | |
12265 | } | |
cbd35700 | 12266 | |
541c3bad | 12267 | adjust_btf_func(env); |
ba64e7d8 | 12268 | |
a2a7d570 | 12269 | err_release_maps: |
9bac3d6d | 12270 | if (!env->prog->aux->used_maps) |
0246e64d | 12271 | /* if we didn't copy map pointers into bpf_prog_info, release |
ab7f5bf0 | 12272 | * them now. Otherwise free_used_maps() will release them. |
0246e64d AS |
12273 | */ |
12274 | release_maps(env); | |
541c3bad AN |
12275 | if (!env->prog->aux->used_btfs) |
12276 | release_btfs(env); | |
03f87c0b THJ |
12277 | |
12278 | /* extension progs temporarily inherit the attach_type of their targets | |
12279 | for verification purposes, so set it back to zero before returning | |
12280 | */ | |
12281 | if (env->prog->type == BPF_PROG_TYPE_EXT) | |
12282 | env->prog->expected_attach_type = 0; | |
12283 | ||
9bac3d6d | 12284 | *prog = env->prog; |
3df126f3 | 12285 | err_unlock: |
45a73c17 AS |
12286 | if (!is_priv) |
12287 | mutex_unlock(&bpf_verifier_lock); | |
3df126f3 JK |
12288 | vfree(env->insn_aux_data); |
12289 | err_free_env: | |
12290 | kfree(env); | |
51580e79 AS |
12291 | return ret; |
12292 | } |