]>
Commit | Line | Data |
---|---|---|
6aa8b732 AK |
1 | /* |
2 | * Kernel-based Virtual Machine driver for Linux | |
3 | * | |
4 | * This module enables machines with Intel VT-x extensions to run virtual | |
5 | * machines without emulation or binary translation. | |
6 | * | |
7 | * MMU support | |
8 | * | |
9 | * Copyright (C) 2006 Qumranet, Inc. | |
9611c187 | 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
6aa8b732 AK |
11 | * |
12 | * Authors: | |
13 | * Yaniv Kamay <[email protected]> | |
14 | * Avi Kivity <[email protected]> | |
15 | * | |
16 | * This work is licensed under the terms of the GNU GPL, version 2. See | |
17 | * the COPYING file in the top-level directory. | |
18 | * | |
19 | */ | |
e495606d | 20 | |
af585b92 | 21 | #include "irq.h" |
1d737c8a | 22 | #include "mmu.h" |
836a1b3c | 23 | #include "x86.h" |
6de4f3ad | 24 | #include "kvm_cache_regs.h" |
5f7dde7b | 25 | #include "cpuid.h" |
e495606d | 26 | |
edf88417 | 27 | #include <linux/kvm_host.h> |
6aa8b732 AK |
28 | #include <linux/types.h> |
29 | #include <linux/string.h> | |
6aa8b732 AK |
30 | #include <linux/mm.h> |
31 | #include <linux/highmem.h> | |
1767e931 PG |
32 | #include <linux/moduleparam.h> |
33 | #include <linux/export.h> | |
448353ca | 34 | #include <linux/swap.h> |
05da4558 | 35 | #include <linux/hugetlb.h> |
2f333bcb | 36 | #include <linux/compiler.h> |
bc6678a3 | 37 | #include <linux/srcu.h> |
5a0e3ad6 | 38 | #include <linux/slab.h> |
3f07c014 | 39 | #include <linux/sched/signal.h> |
bf998156 | 40 | #include <linux/uaccess.h> |
114df303 | 41 | #include <linux/hash.h> |
f160c7b7 | 42 | #include <linux/kern_levels.h> |
6aa8b732 | 43 | |
e495606d | 44 | #include <asm/page.h> |
aa2e063a | 45 | #include <asm/pat.h> |
e495606d | 46 | #include <asm/cmpxchg.h> |
4e542370 | 47 | #include <asm/io.h> |
13673a90 | 48 | #include <asm/vmx.h> |
3d0c27ad | 49 | #include <asm/kvm_page_track.h> |
1261bfa3 | 50 | #include "trace.h" |
6aa8b732 | 51 | |
18552672 JR |
52 | /* |
53 | * When setting this variable to true it enables Two-Dimensional-Paging | |
54 | * where the hardware walks 2 page tables: | |
55 | * 1. the guest-virtual to guest-physical | |
56 | * 2. while doing 1. it walks guest-physical to host-physical | |
57 | * If the hardware supports that we don't need to do shadow paging. | |
58 | */ | |
2f333bcb | 59 | bool tdp_enabled = false; |
18552672 | 60 | |
8b1fe17c XG |
61 | enum { |
62 | AUDIT_PRE_PAGE_FAULT, | |
63 | AUDIT_POST_PAGE_FAULT, | |
64 | AUDIT_PRE_PTE_WRITE, | |
6903074c XG |
65 | AUDIT_POST_PTE_WRITE, |
66 | AUDIT_PRE_SYNC, | |
67 | AUDIT_POST_SYNC | |
8b1fe17c | 68 | }; |
37a7d8b0 | 69 | |
8b1fe17c | 70 | #undef MMU_DEBUG |
37a7d8b0 AK |
71 | |
72 | #ifdef MMU_DEBUG | |
fa4a2c08 PB |
73 | static bool dbg = 0; |
74 | module_param(dbg, bool, 0644); | |
37a7d8b0 AK |
75 | |
76 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | |
77 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | |
fa4a2c08 | 78 | #define MMU_WARN_ON(x) WARN_ON(x) |
37a7d8b0 | 79 | #else |
37a7d8b0 AK |
80 | #define pgprintk(x...) do { } while (0) |
81 | #define rmap_printk(x...) do { } while (0) | |
fa4a2c08 | 82 | #define MMU_WARN_ON(x) do { } while (0) |
d6c69ee9 | 83 | #endif |
6aa8b732 | 84 | |
957ed9ef XG |
85 | #define PTE_PREFETCH_NUM 8 |
86 | ||
00763e41 | 87 | #define PT_FIRST_AVAIL_BITS_SHIFT 10 |
6aa8b732 AK |
88 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
89 | ||
6aa8b732 AK |
90 | #define PT64_LEVEL_BITS 9 |
91 | ||
92 | #define PT64_LEVEL_SHIFT(level) \ | |
d77c26fc | 93 | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) |
6aa8b732 | 94 | |
6aa8b732 AK |
95 | #define PT64_INDEX(address, level)\ |
96 | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | |
97 | ||
98 | ||
99 | #define PT32_LEVEL_BITS 10 | |
100 | ||
101 | #define PT32_LEVEL_SHIFT(level) \ | |
d77c26fc | 102 | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) |
6aa8b732 | 103 | |
e04da980 JR |
104 | #define PT32_LVL_OFFSET_MASK(level) \ |
105 | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
106 | * PT32_LEVEL_BITS))) - 1)) | |
6aa8b732 AK |
107 | |
108 | #define PT32_INDEX(address, level)\ | |
109 | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | |
110 | ||
111 | ||
d0ec49d4 | 112 | #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) |
6aa8b732 AK |
113 | #define PT64_DIR_BASE_ADDR_MASK \ |
114 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | |
e04da980 JR |
115 | #define PT64_LVL_ADDR_MASK(level) \ |
116 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
117 | * PT64_LEVEL_BITS))) - 1)) | |
118 | #define PT64_LVL_OFFSET_MASK(level) \ | |
119 | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
120 | * PT64_LEVEL_BITS))) - 1)) | |
6aa8b732 AK |
121 | |
122 | #define PT32_BASE_ADDR_MASK PAGE_MASK | |
123 | #define PT32_DIR_BASE_ADDR_MASK \ | |
124 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | |
e04da980 JR |
125 | #define PT32_LVL_ADDR_MASK(level) \ |
126 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ | |
127 | * PT32_LEVEL_BITS))) - 1)) | |
6aa8b732 | 128 | |
53166229 | 129 | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ |
d0ec49d4 | 130 | | shadow_x_mask | shadow_nx_mask | shadow_me_mask) |
6aa8b732 | 131 | |
fe135d2c AK |
132 | #define ACC_EXEC_MASK 1 |
133 | #define ACC_WRITE_MASK PT_WRITABLE_MASK | |
134 | #define ACC_USER_MASK PT_USER_MASK | |
135 | #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) | |
136 | ||
f160c7b7 JS |
137 | /* The mask for the R/X bits in EPT PTEs */ |
138 | #define PT64_EPT_READABLE_MASK 0x1ull | |
139 | #define PT64_EPT_EXECUTABLE_MASK 0x4ull | |
140 | ||
90bb6fc5 AK |
141 | #include <trace/events/kvm.h> |
142 | ||
07420171 AK |
143 | #define CREATE_TRACE_POINTS |
144 | #include "mmutrace.h" | |
145 | ||
49fde340 XG |
146 | #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
147 | #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) | |
1403283a | 148 | |
135f8c2b AK |
149 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
150 | ||
220f773a TY |
151 | /* make pte_list_desc fit well in cache line */ |
152 | #define PTE_LIST_EXT 3 | |
153 | ||
9b8ebbdb PB |
154 | /* |
155 | * Return values of handle_mmio_page_fault and mmu.page_fault: | |
156 | * RET_PF_RETRY: let CPU fault again on the address. | |
157 | * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. | |
158 | * | |
159 | * For handle_mmio_page_fault only: | |
160 | * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. | |
161 | */ | |
162 | enum { | |
163 | RET_PF_RETRY = 0, | |
164 | RET_PF_EMULATE = 1, | |
165 | RET_PF_INVALID = 2, | |
166 | }; | |
167 | ||
53c07b18 XG |
168 | struct pte_list_desc { |
169 | u64 *sptes[PTE_LIST_EXT]; | |
170 | struct pte_list_desc *more; | |
cd4a4e53 AK |
171 | }; |
172 | ||
2d11123a AK |
173 | struct kvm_shadow_walk_iterator { |
174 | u64 addr; | |
175 | hpa_t shadow_addr; | |
2d11123a | 176 | u64 *sptep; |
dd3bfd59 | 177 | int level; |
2d11123a AK |
178 | unsigned index; |
179 | }; | |
180 | ||
9fa72119 JS |
181 | static const union kvm_mmu_page_role mmu_base_role_mask = { |
182 | .cr0_wp = 1, | |
183 | .cr4_pae = 1, | |
184 | .nxe = 1, | |
185 | .smep_andnot_wp = 1, | |
186 | .smap_andnot_wp = 1, | |
187 | .smm = 1, | |
188 | .guest_mode = 1, | |
189 | .ad_disabled = 1, | |
190 | }; | |
191 | ||
7eb77e9f JS |
192 | #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ |
193 | for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ | |
194 | (_root), (_addr)); \ | |
195 | shadow_walk_okay(&(_walker)); \ | |
196 | shadow_walk_next(&(_walker))) | |
197 | ||
198 | #define for_each_shadow_entry(_vcpu, _addr, _walker) \ | |
2d11123a AK |
199 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
200 | shadow_walk_okay(&(_walker)); \ | |
201 | shadow_walk_next(&(_walker))) | |
202 | ||
c2a2ac2b XG |
203 | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ |
204 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ | |
205 | shadow_walk_okay(&(_walker)) && \ | |
206 | ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ | |
207 | __shadow_walk_next(&(_walker), spte)) | |
208 | ||
53c07b18 | 209 | static struct kmem_cache *pte_list_desc_cache; |
d3d25b04 | 210 | static struct kmem_cache *mmu_page_header_cache; |
45221ab6 | 211 | static struct percpu_counter kvm_total_used_mmu_pages; |
b5a33a75 | 212 | |
7b52345e SY |
213 | static u64 __read_mostly shadow_nx_mask; |
214 | static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ | |
215 | static u64 __read_mostly shadow_user_mask; | |
216 | static u64 __read_mostly shadow_accessed_mask; | |
217 | static u64 __read_mostly shadow_dirty_mask; | |
ce88decf | 218 | static u64 __read_mostly shadow_mmio_mask; |
dcdca5fe | 219 | static u64 __read_mostly shadow_mmio_value; |
ffb128c8 | 220 | static u64 __read_mostly shadow_present_mask; |
d0ec49d4 | 221 | static u64 __read_mostly shadow_me_mask; |
ce88decf | 222 | |
f160c7b7 | 223 | /* |
ac8d57e5 PF |
224 | * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value. |
225 | * Non-present SPTEs with shadow_acc_track_value set are in place for access | |
226 | * tracking. | |
f160c7b7 JS |
227 | */ |
228 | static u64 __read_mostly shadow_acc_track_mask; | |
229 | static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK; | |
230 | ||
231 | /* | |
232 | * The mask/shift to use for saving the original R/X bits when marking the PTE | |
233 | * as not-present for access tracking purposes. We do not save the W bit as the | |
234 | * PTEs being access tracked also need to be dirty tracked, so the W bit will be | |
235 | * restored only when a write is attempted to the page. | |
236 | */ | |
237 | static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | | |
238 | PT64_EPT_EXECUTABLE_MASK; | |
239 | static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; | |
240 | ||
28a1f3ac JS |
241 | /* |
242 | * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order | |
243 | * to guard against L1TF attacks. | |
244 | */ | |
245 | static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; | |
246 | ||
247 | /* | |
248 | * The number of high-order 1 bits to use in the mask above. | |
249 | */ | |
250 | static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; | |
251 | ||
daa07cbc SC |
252 | /* |
253 | * In some cases, we need to preserve the GFN of a non-present or reserved | |
254 | * SPTE when we usurp the upper five bits of the physical address space to | |
255 | * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll | |
256 | * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask | |
257 | * left into the reserved bits, i.e. the GFN in the SPTE will be split into | |
258 | * high and low parts. This mask covers the lower bits of the GFN. | |
259 | */ | |
260 | static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; | |
261 | ||
262 | ||
ce88decf | 263 | static void mmu_spte_set(u64 *sptep, u64 spte); |
9fa72119 JS |
264 | static union kvm_mmu_page_role |
265 | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); | |
ce88decf | 266 | |
dcdca5fe | 267 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) |
ce88decf | 268 | { |
dcdca5fe PF |
269 | BUG_ON((mmio_mask & mmio_value) != mmio_value); |
270 | shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK; | |
312b616b | 271 | shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; |
ce88decf XG |
272 | } |
273 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); | |
274 | ||
ac8d57e5 PF |
275 | static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) |
276 | { | |
277 | return sp->role.ad_disabled; | |
278 | } | |
279 | ||
280 | static inline bool spte_ad_enabled(u64 spte) | |
281 | { | |
282 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
283 | return !(spte & shadow_acc_track_value); | |
284 | } | |
285 | ||
286 | static inline u64 spte_shadow_accessed_mask(u64 spte) | |
287 | { | |
288 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
289 | return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; | |
290 | } | |
291 | ||
292 | static inline u64 spte_shadow_dirty_mask(u64 spte) | |
293 | { | |
294 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); | |
295 | return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; | |
296 | } | |
297 | ||
f160c7b7 JS |
298 | static inline bool is_access_track_spte(u64 spte) |
299 | { | |
ac8d57e5 | 300 | return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; |
f160c7b7 JS |
301 | } |
302 | ||
f2fd125d | 303 | /* |
ee3d1570 DM |
304 | * the low bit of the generation number is always presumed to be zero. |
305 | * This disables mmio caching during memslot updates. The concept is | |
306 | * similar to a seqcount but instead of retrying the access we just punt | |
307 | * and ignore the cache. | |
308 | * | |
309 | * spte bits 3-11 are used as bits 1-9 of the generation number, | |
310 | * the bits 52-61 are used as bits 10-19 of the generation number. | |
f2fd125d | 311 | */ |
ee3d1570 | 312 | #define MMIO_SPTE_GEN_LOW_SHIFT 2 |
f2fd125d XG |
313 | #define MMIO_SPTE_GEN_HIGH_SHIFT 52 |
314 | ||
ee3d1570 DM |
315 | #define MMIO_GEN_SHIFT 20 |
316 | #define MMIO_GEN_LOW_SHIFT 10 | |
317 | #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2) | |
f8f55942 | 318 | #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1) |
f2fd125d XG |
319 | |
320 | static u64 generation_mmio_spte_mask(unsigned int gen) | |
321 | { | |
322 | u64 mask; | |
323 | ||
842bb26a | 324 | WARN_ON(gen & ~MMIO_GEN_MASK); |
f2fd125d XG |
325 | |
326 | mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; | |
327 | mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; | |
328 | return mask; | |
329 | } | |
330 | ||
331 | static unsigned int get_mmio_spte_generation(u64 spte) | |
332 | { | |
333 | unsigned int gen; | |
334 | ||
335 | spte &= ~shadow_mmio_mask; | |
336 | ||
337 | gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; | |
338 | gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; | |
339 | return gen; | |
340 | } | |
341 | ||
54bf36aa | 342 | static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu) |
f8f55942 | 343 | { |
54bf36aa | 344 | return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK; |
f8f55942 XG |
345 | } |
346 | ||
54bf36aa | 347 | static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, |
f2fd125d | 348 | unsigned access) |
ce88decf | 349 | { |
54bf36aa | 350 | unsigned int gen = kvm_current_mmio_generation(vcpu); |
f8f55942 | 351 | u64 mask = generation_mmio_spte_mask(gen); |
28a1f3ac | 352 | u64 gpa = gfn << PAGE_SHIFT; |
95b0430d | 353 | |
ce88decf | 354 | access &= ACC_WRITE_MASK | ACC_USER_MASK; |
28a1f3ac JS |
355 | mask |= shadow_mmio_value | access; |
356 | mask |= gpa | shadow_nonpresent_or_rsvd_mask; | |
357 | mask |= (gpa & shadow_nonpresent_or_rsvd_mask) | |
358 | << shadow_nonpresent_or_rsvd_mask_len; | |
f2fd125d | 359 | |
f8f55942 | 360 | trace_mark_mmio_spte(sptep, gfn, access, gen); |
f2fd125d | 361 | mmu_spte_set(sptep, mask); |
ce88decf XG |
362 | } |
363 | ||
364 | static bool is_mmio_spte(u64 spte) | |
365 | { | |
dcdca5fe | 366 | return (spte & shadow_mmio_mask) == shadow_mmio_value; |
ce88decf XG |
367 | } |
368 | ||
369 | static gfn_t get_mmio_spte_gfn(u64 spte) | |
370 | { | |
daa07cbc | 371 | u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; |
28a1f3ac JS |
372 | |
373 | gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) | |
374 | & shadow_nonpresent_or_rsvd_mask; | |
375 | ||
376 | return gpa >> PAGE_SHIFT; | |
ce88decf XG |
377 | } |
378 | ||
379 | static unsigned get_mmio_spte_access(u64 spte) | |
380 | { | |
842bb26a | 381 | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; |
f2fd125d | 382 | return (spte & ~mask) & ~PAGE_MASK; |
ce88decf XG |
383 | } |
384 | ||
54bf36aa | 385 | static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
ba049e93 | 386 | kvm_pfn_t pfn, unsigned access) |
ce88decf XG |
387 | { |
388 | if (unlikely(is_noslot_pfn(pfn))) { | |
54bf36aa | 389 | mark_mmio_spte(vcpu, sptep, gfn, access); |
ce88decf XG |
390 | return true; |
391 | } | |
392 | ||
393 | return false; | |
394 | } | |
c7addb90 | 395 | |
54bf36aa | 396 | static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) |
f8f55942 | 397 | { |
089504c0 XG |
398 | unsigned int kvm_gen, spte_gen; |
399 | ||
54bf36aa | 400 | kvm_gen = kvm_current_mmio_generation(vcpu); |
089504c0 XG |
401 | spte_gen = get_mmio_spte_generation(spte); |
402 | ||
403 | trace_check_mmio_spte(spte, kvm_gen, spte_gen); | |
404 | return likely(kvm_gen == spte_gen); | |
f8f55942 XG |
405 | } |
406 | ||
ce00053b PF |
407 | /* |
408 | * Sets the shadow PTE masks used by the MMU. | |
409 | * | |
410 | * Assumptions: | |
411 | * - Setting either @accessed_mask or @dirty_mask requires setting both | |
412 | * - At least one of @accessed_mask or @acc_track_mask must be set | |
413 | */ | |
7b52345e | 414 | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
f160c7b7 | 415 | u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, |
d0ec49d4 | 416 | u64 acc_track_mask, u64 me_mask) |
7b52345e | 417 | { |
ce00053b PF |
418 | BUG_ON(!dirty_mask != !accessed_mask); |
419 | BUG_ON(!accessed_mask && !acc_track_mask); | |
ac8d57e5 | 420 | BUG_ON(acc_track_mask & shadow_acc_track_value); |
312b616b | 421 | |
7b52345e SY |
422 | shadow_user_mask = user_mask; |
423 | shadow_accessed_mask = accessed_mask; | |
424 | shadow_dirty_mask = dirty_mask; | |
425 | shadow_nx_mask = nx_mask; | |
426 | shadow_x_mask = x_mask; | |
ffb128c8 | 427 | shadow_present_mask = p_mask; |
f160c7b7 | 428 | shadow_acc_track_mask = acc_track_mask; |
d0ec49d4 | 429 | shadow_me_mask = me_mask; |
7b52345e SY |
430 | } |
431 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); | |
432 | ||
28a1f3ac | 433 | static void kvm_mmu_reset_all_pte_masks(void) |
f160c7b7 | 434 | { |
daa07cbc SC |
435 | u8 low_phys_bits; |
436 | ||
f160c7b7 JS |
437 | shadow_user_mask = 0; |
438 | shadow_accessed_mask = 0; | |
439 | shadow_dirty_mask = 0; | |
440 | shadow_nx_mask = 0; | |
441 | shadow_x_mask = 0; | |
442 | shadow_mmio_mask = 0; | |
443 | shadow_present_mask = 0; | |
444 | shadow_acc_track_mask = 0; | |
28a1f3ac JS |
445 | |
446 | /* | |
447 | * If the CPU has 46 or less physical address bits, then set an | |
448 | * appropriate mask to guard against L1TF attacks. Otherwise, it is | |
449 | * assumed that the CPU is not vulnerable to L1TF. | |
450 | */ | |
daa07cbc | 451 | low_phys_bits = boot_cpu_data.x86_phys_bits; |
28a1f3ac | 452 | if (boot_cpu_data.x86_phys_bits < |
daa07cbc | 453 | 52 - shadow_nonpresent_or_rsvd_mask_len) { |
28a1f3ac JS |
454 | shadow_nonpresent_or_rsvd_mask = |
455 | rsvd_bits(boot_cpu_data.x86_phys_bits - | |
456 | shadow_nonpresent_or_rsvd_mask_len, | |
457 | boot_cpu_data.x86_phys_bits - 1); | |
daa07cbc SC |
458 | low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len; |
459 | } | |
460 | shadow_nonpresent_or_rsvd_lower_gfn_mask = | |
461 | GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); | |
f160c7b7 JS |
462 | } |
463 | ||
6aa8b732 AK |
464 | static int is_cpuid_PSE36(void) |
465 | { | |
466 | return 1; | |
467 | } | |
468 | ||
73b1087e AK |
469 | static int is_nx(struct kvm_vcpu *vcpu) |
470 | { | |
f6801dff | 471 | return vcpu->arch.efer & EFER_NX; |
73b1087e AK |
472 | } |
473 | ||
c7addb90 AK |
474 | static int is_shadow_present_pte(u64 pte) |
475 | { | |
f160c7b7 | 476 | return (pte != 0) && !is_mmio_spte(pte); |
c7addb90 AK |
477 | } |
478 | ||
05da4558 MT |
479 | static int is_large_pte(u64 pte) |
480 | { | |
481 | return pte & PT_PAGE_SIZE_MASK; | |
482 | } | |
483 | ||
776e6633 MT |
484 | static int is_last_spte(u64 pte, int level) |
485 | { | |
486 | if (level == PT_PAGE_TABLE_LEVEL) | |
487 | return 1; | |
852e3c19 | 488 | if (is_large_pte(pte)) |
776e6633 MT |
489 | return 1; |
490 | return 0; | |
491 | } | |
492 | ||
d3e328f2 JS |
493 | static bool is_executable_pte(u64 spte) |
494 | { | |
495 | return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; | |
496 | } | |
497 | ||
ba049e93 | 498 | static kvm_pfn_t spte_to_pfn(u64 pte) |
0b49ea86 | 499 | { |
35149e21 | 500 | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
0b49ea86 AK |
501 | } |
502 | ||
da928521 AK |
503 | static gfn_t pse36_gfn_delta(u32 gpte) |
504 | { | |
505 | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; | |
506 | ||
507 | return (gpte & PT32_DIR_PSE36_MASK) << shift; | |
508 | } | |
509 | ||
603e0651 | 510 | #ifdef CONFIG_X86_64 |
d555c333 | 511 | static void __set_spte(u64 *sptep, u64 spte) |
e663ee64 | 512 | { |
b19ee2ff | 513 | WRITE_ONCE(*sptep, spte); |
e663ee64 AK |
514 | } |
515 | ||
603e0651 | 516 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
a9221dd5 | 517 | { |
b19ee2ff | 518 | WRITE_ONCE(*sptep, spte); |
603e0651 XG |
519 | } |
520 | ||
521 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | |
522 | { | |
523 | return xchg(sptep, spte); | |
524 | } | |
c2a2ac2b XG |
525 | |
526 | static u64 __get_spte_lockless(u64 *sptep) | |
527 | { | |
6aa7de05 | 528 | return READ_ONCE(*sptep); |
c2a2ac2b | 529 | } |
a9221dd5 | 530 | #else |
603e0651 XG |
531 | union split_spte { |
532 | struct { | |
533 | u32 spte_low; | |
534 | u32 spte_high; | |
535 | }; | |
536 | u64 spte; | |
537 | }; | |
a9221dd5 | 538 | |
c2a2ac2b XG |
539 | static void count_spte_clear(u64 *sptep, u64 spte) |
540 | { | |
541 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | |
542 | ||
543 | if (is_shadow_present_pte(spte)) | |
544 | return; | |
545 | ||
546 | /* Ensure the spte is completely set before we increase the count */ | |
547 | smp_wmb(); | |
548 | sp->clear_spte_count++; | |
549 | } | |
550 | ||
603e0651 XG |
551 | static void __set_spte(u64 *sptep, u64 spte) |
552 | { | |
553 | union split_spte *ssptep, sspte; | |
a9221dd5 | 554 | |
603e0651 XG |
555 | ssptep = (union split_spte *)sptep; |
556 | sspte = (union split_spte)spte; | |
557 | ||
558 | ssptep->spte_high = sspte.spte_high; | |
559 | ||
560 | /* | |
561 | * If we map the spte from nonpresent to present, We should store | |
562 | * the high bits firstly, then set present bit, so cpu can not | |
563 | * fetch this spte while we are setting the spte. | |
564 | */ | |
565 | smp_wmb(); | |
566 | ||
b19ee2ff | 567 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
a9221dd5 AK |
568 | } |
569 | ||
603e0651 XG |
570 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
571 | { | |
572 | union split_spte *ssptep, sspte; | |
573 | ||
574 | ssptep = (union split_spte *)sptep; | |
575 | sspte = (union split_spte)spte; | |
576 | ||
b19ee2ff | 577 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
603e0651 XG |
578 | |
579 | /* | |
580 | * If we map the spte from present to nonpresent, we should clear | |
581 | * present bit firstly to avoid vcpu fetch the old high bits. | |
582 | */ | |
583 | smp_wmb(); | |
584 | ||
585 | ssptep->spte_high = sspte.spte_high; | |
c2a2ac2b | 586 | count_spte_clear(sptep, spte); |
603e0651 XG |
587 | } |
588 | ||
589 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) | |
590 | { | |
591 | union split_spte *ssptep, sspte, orig; | |
592 | ||
593 | ssptep = (union split_spte *)sptep; | |
594 | sspte = (union split_spte)spte; | |
595 | ||
596 | /* xchg acts as a barrier before the setting of the high bits */ | |
597 | orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); | |
41bc3186 ZJ |
598 | orig.spte_high = ssptep->spte_high; |
599 | ssptep->spte_high = sspte.spte_high; | |
c2a2ac2b | 600 | count_spte_clear(sptep, spte); |
603e0651 XG |
601 | |
602 | return orig.spte; | |
603 | } | |
c2a2ac2b XG |
604 | |
605 | /* | |
606 | * The idea using the light way get the spte on x86_32 guest is from | |
607 | * gup_get_pte(arch/x86/mm/gup.c). | |
accaefe0 XG |
608 | * |
609 | * An spte tlb flush may be pending, because kvm_set_pte_rmapp | |
610 | * coalesces them and we are running out of the MMU lock. Therefore | |
611 | * we need to protect against in-progress updates of the spte. | |
612 | * | |
613 | * Reading the spte while an update is in progress may get the old value | |
614 | * for the high part of the spte. The race is fine for a present->non-present | |
615 | * change (because the high part of the spte is ignored for non-present spte), | |
616 | * but for a present->present change we must reread the spte. | |
617 | * | |
618 | * All such changes are done in two steps (present->non-present and | |
619 | * non-present->present), hence it is enough to count the number of | |
620 | * present->non-present updates: if it changed while reading the spte, | |
621 | * we might have hit the race. This is done using clear_spte_count. | |
c2a2ac2b XG |
622 | */ |
623 | static u64 __get_spte_lockless(u64 *sptep) | |
624 | { | |
625 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); | |
626 | union split_spte spte, *orig = (union split_spte *)sptep; | |
627 | int count; | |
628 | ||
629 | retry: | |
630 | count = sp->clear_spte_count; | |
631 | smp_rmb(); | |
632 | ||
633 | spte.spte_low = orig->spte_low; | |
634 | smp_rmb(); | |
635 | ||
636 | spte.spte_high = orig->spte_high; | |
637 | smp_rmb(); | |
638 | ||
639 | if (unlikely(spte.spte_low != orig->spte_low || | |
640 | count != sp->clear_spte_count)) | |
641 | goto retry; | |
642 | ||
643 | return spte.spte; | |
644 | } | |
603e0651 XG |
645 | #endif |
646 | ||
ea4114bc | 647 | static bool spte_can_locklessly_be_made_writable(u64 spte) |
c7ba5b48 | 648 | { |
feb3eb70 GN |
649 | return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == |
650 | (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); | |
c7ba5b48 XG |
651 | } |
652 | ||
8672b721 XG |
653 | static bool spte_has_volatile_bits(u64 spte) |
654 | { | |
f160c7b7 JS |
655 | if (!is_shadow_present_pte(spte)) |
656 | return false; | |
657 | ||
c7ba5b48 | 658 | /* |
6a6256f9 | 659 | * Always atomically update spte if it can be updated |
c7ba5b48 XG |
660 | * out of mmu-lock, it can ensure dirty bit is not lost, |
661 | * also, it can help us to get a stable is_writable_pte() | |
662 | * to ensure tlb flush is not missed. | |
663 | */ | |
f160c7b7 JS |
664 | if (spte_can_locklessly_be_made_writable(spte) || |
665 | is_access_track_spte(spte)) | |
c7ba5b48 XG |
666 | return true; |
667 | ||
ac8d57e5 | 668 | if (spte_ad_enabled(spte)) { |
f160c7b7 JS |
669 | if ((spte & shadow_accessed_mask) == 0 || |
670 | (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) | |
671 | return true; | |
672 | } | |
8672b721 | 673 | |
f160c7b7 | 674 | return false; |
8672b721 XG |
675 | } |
676 | ||
83ef6c81 | 677 | static bool is_accessed_spte(u64 spte) |
4132779b | 678 | { |
ac8d57e5 PF |
679 | u64 accessed_mask = spte_shadow_accessed_mask(spte); |
680 | ||
681 | return accessed_mask ? spte & accessed_mask | |
682 | : !is_access_track_spte(spte); | |
4132779b XG |
683 | } |
684 | ||
83ef6c81 | 685 | static bool is_dirty_spte(u64 spte) |
7e71a59b | 686 | { |
ac8d57e5 PF |
687 | u64 dirty_mask = spte_shadow_dirty_mask(spte); |
688 | ||
689 | return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; | |
7e71a59b KH |
690 | } |
691 | ||
1df9f2dc XG |
692 | /* Rules for using mmu_spte_set: |
693 | * Set the sptep from nonpresent to present. | |
694 | * Note: the sptep being assigned *must* be either not present | |
695 | * or in a state where the hardware will not attempt to update | |
696 | * the spte. | |
697 | */ | |
698 | static void mmu_spte_set(u64 *sptep, u64 new_spte) | |
699 | { | |
700 | WARN_ON(is_shadow_present_pte(*sptep)); | |
701 | __set_spte(sptep, new_spte); | |
702 | } | |
703 | ||
f39a058d JS |
704 | /* |
705 | * Update the SPTE (excluding the PFN), but do not track changes in its | |
706 | * accessed/dirty status. | |
1df9f2dc | 707 | */ |
f39a058d | 708 | static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) |
b79b93f9 | 709 | { |
c7ba5b48 | 710 | u64 old_spte = *sptep; |
4132779b | 711 | |
afd28fe1 | 712 | WARN_ON(!is_shadow_present_pte(new_spte)); |
b79b93f9 | 713 | |
6e7d0354 XG |
714 | if (!is_shadow_present_pte(old_spte)) { |
715 | mmu_spte_set(sptep, new_spte); | |
f39a058d | 716 | return old_spte; |
6e7d0354 | 717 | } |
4132779b | 718 | |
c7ba5b48 | 719 | if (!spte_has_volatile_bits(old_spte)) |
603e0651 | 720 | __update_clear_spte_fast(sptep, new_spte); |
4132779b | 721 | else |
603e0651 | 722 | old_spte = __update_clear_spte_slow(sptep, new_spte); |
4132779b | 723 | |
83ef6c81 JS |
724 | WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); |
725 | ||
f39a058d JS |
726 | return old_spte; |
727 | } | |
728 | ||
729 | /* Rules for using mmu_spte_update: | |
730 | * Update the state bits, it means the mapped pfn is not changed. | |
731 | * | |
732 | * Whenever we overwrite a writable spte with a read-only one we | |
733 | * should flush remote TLBs. Otherwise rmap_write_protect | |
734 | * will find a read-only spte, even though the writable spte | |
735 | * might be cached on a CPU's TLB, the return value indicates this | |
736 | * case. | |
737 | * | |
738 | * Returns true if the TLB needs to be flushed | |
739 | */ | |
740 | static bool mmu_spte_update(u64 *sptep, u64 new_spte) | |
741 | { | |
742 | bool flush = false; | |
743 | u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); | |
744 | ||
745 | if (!is_shadow_present_pte(old_spte)) | |
746 | return false; | |
747 | ||
c7ba5b48 XG |
748 | /* |
749 | * For the spte updated out of mmu-lock is safe, since | |
6a6256f9 | 750 | * we always atomically update it, see the comments in |
c7ba5b48 XG |
751 | * spte_has_volatile_bits(). |
752 | */ | |
ea4114bc | 753 | if (spte_can_locklessly_be_made_writable(old_spte) && |
7f31c959 | 754 | !is_writable_pte(new_spte)) |
83ef6c81 | 755 | flush = true; |
4132779b | 756 | |
7e71a59b | 757 | /* |
83ef6c81 | 758 | * Flush TLB when accessed/dirty states are changed in the page tables, |
7e71a59b KH |
759 | * to guarantee consistency between TLB and page tables. |
760 | */ | |
7e71a59b | 761 | |
83ef6c81 JS |
762 | if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { |
763 | flush = true; | |
4132779b | 764 | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
83ef6c81 JS |
765 | } |
766 | ||
767 | if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { | |
768 | flush = true; | |
4132779b | 769 | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
83ef6c81 | 770 | } |
6e7d0354 | 771 | |
83ef6c81 | 772 | return flush; |
b79b93f9 AK |
773 | } |
774 | ||
1df9f2dc XG |
775 | /* |
776 | * Rules for using mmu_spte_clear_track_bits: | |
777 | * It sets the sptep from present to nonpresent, and track the | |
778 | * state bits, it is used to clear the last level sptep. | |
83ef6c81 | 779 | * Returns non-zero if the PTE was previously valid. |
1df9f2dc XG |
780 | */ |
781 | static int mmu_spte_clear_track_bits(u64 *sptep) | |
782 | { | |
ba049e93 | 783 | kvm_pfn_t pfn; |
1df9f2dc XG |
784 | u64 old_spte = *sptep; |
785 | ||
786 | if (!spte_has_volatile_bits(old_spte)) | |
603e0651 | 787 | __update_clear_spte_fast(sptep, 0ull); |
1df9f2dc | 788 | else |
603e0651 | 789 | old_spte = __update_clear_spte_slow(sptep, 0ull); |
1df9f2dc | 790 | |
afd28fe1 | 791 | if (!is_shadow_present_pte(old_spte)) |
1df9f2dc XG |
792 | return 0; |
793 | ||
794 | pfn = spte_to_pfn(old_spte); | |
86fde74c XG |
795 | |
796 | /* | |
797 | * KVM does not hold the refcount of the page used by | |
798 | * kvm mmu, before reclaiming the page, we should | |
799 | * unmap it from mmu first. | |
800 | */ | |
bf4bea8e | 801 | WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); |
86fde74c | 802 | |
83ef6c81 | 803 | if (is_accessed_spte(old_spte)) |
1df9f2dc | 804 | kvm_set_pfn_accessed(pfn); |
83ef6c81 JS |
805 | |
806 | if (is_dirty_spte(old_spte)) | |
1df9f2dc | 807 | kvm_set_pfn_dirty(pfn); |
83ef6c81 | 808 | |
1df9f2dc XG |
809 | return 1; |
810 | } | |
811 | ||
812 | /* | |
813 | * Rules for using mmu_spte_clear_no_track: | |
814 | * Directly clear spte without caring the state bits of sptep, | |
815 | * it is used to set the upper level spte. | |
816 | */ | |
817 | static void mmu_spte_clear_no_track(u64 *sptep) | |
818 | { | |
603e0651 | 819 | __update_clear_spte_fast(sptep, 0ull); |
1df9f2dc XG |
820 | } |
821 | ||
c2a2ac2b XG |
822 | static u64 mmu_spte_get_lockless(u64 *sptep) |
823 | { | |
824 | return __get_spte_lockless(sptep); | |
825 | } | |
826 | ||
f160c7b7 JS |
827 | static u64 mark_spte_for_access_track(u64 spte) |
828 | { | |
ac8d57e5 | 829 | if (spte_ad_enabled(spte)) |
f160c7b7 JS |
830 | return spte & ~shadow_accessed_mask; |
831 | ||
ac8d57e5 | 832 | if (is_access_track_spte(spte)) |
f160c7b7 JS |
833 | return spte; |
834 | ||
835 | /* | |
20d65236 JS |
836 | * Making an Access Tracking PTE will result in removal of write access |
837 | * from the PTE. So, verify that we will be able to restore the write | |
838 | * access in the fast page fault path later on. | |
f160c7b7 JS |
839 | */ |
840 | WARN_ONCE((spte & PT_WRITABLE_MASK) && | |
841 | !spte_can_locklessly_be_made_writable(spte), | |
842 | "kvm: Writable SPTE is not locklessly dirty-trackable\n"); | |
843 | ||
844 | WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << | |
845 | shadow_acc_track_saved_bits_shift), | |
846 | "kvm: Access Tracking saved bit locations are not zero\n"); | |
847 | ||
848 | spte |= (spte & shadow_acc_track_saved_bits_mask) << | |
849 | shadow_acc_track_saved_bits_shift; | |
850 | spte &= ~shadow_acc_track_mask; | |
f160c7b7 JS |
851 | |
852 | return spte; | |
853 | } | |
854 | ||
d3e328f2 JS |
855 | /* Restore an acc-track PTE back to a regular PTE */ |
856 | static u64 restore_acc_track_spte(u64 spte) | |
857 | { | |
858 | u64 new_spte = spte; | |
859 | u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) | |
860 | & shadow_acc_track_saved_bits_mask; | |
861 | ||
ac8d57e5 | 862 | WARN_ON_ONCE(spte_ad_enabled(spte)); |
d3e328f2 JS |
863 | WARN_ON_ONCE(!is_access_track_spte(spte)); |
864 | ||
865 | new_spte &= ~shadow_acc_track_mask; | |
866 | new_spte &= ~(shadow_acc_track_saved_bits_mask << | |
867 | shadow_acc_track_saved_bits_shift); | |
868 | new_spte |= saved_bits; | |
869 | ||
870 | return new_spte; | |
871 | } | |
872 | ||
f160c7b7 JS |
873 | /* Returns the Accessed status of the PTE and resets it at the same time. */ |
874 | static bool mmu_spte_age(u64 *sptep) | |
875 | { | |
876 | u64 spte = mmu_spte_get_lockless(sptep); | |
877 | ||
878 | if (!is_accessed_spte(spte)) | |
879 | return false; | |
880 | ||
ac8d57e5 | 881 | if (spte_ad_enabled(spte)) { |
f160c7b7 JS |
882 | clear_bit((ffs(shadow_accessed_mask) - 1), |
883 | (unsigned long *)sptep); | |
884 | } else { | |
885 | /* | |
886 | * Capture the dirty status of the page, so that it doesn't get | |
887 | * lost when the SPTE is marked for access tracking. | |
888 | */ | |
889 | if (is_writable_pte(spte)) | |
890 | kvm_set_pfn_dirty(spte_to_pfn(spte)); | |
891 | ||
892 | spte = mark_spte_for_access_track(spte); | |
893 | mmu_spte_update_no_track(sptep, spte); | |
894 | } | |
895 | ||
896 | return true; | |
897 | } | |
898 | ||
c2a2ac2b XG |
899 | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) |
900 | { | |
c142786c AK |
901 | /* |
902 | * Prevent page table teardown by making any free-er wait during | |
903 | * kvm_flush_remote_tlbs() IPI to all active vcpus. | |
904 | */ | |
905 | local_irq_disable(); | |
36ca7e0a | 906 | |
c142786c AK |
907 | /* |
908 | * Make sure a following spte read is not reordered ahead of the write | |
909 | * to vcpu->mode. | |
910 | */ | |
36ca7e0a | 911 | smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
c2a2ac2b XG |
912 | } |
913 | ||
914 | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) | |
915 | { | |
c142786c AK |
916 | /* |
917 | * Make sure the write to vcpu->mode is not reordered in front of | |
9a984586 | 918 | * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us |
c142786c AK |
919 | * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. |
920 | */ | |
36ca7e0a | 921 | smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
c142786c | 922 | local_irq_enable(); |
c2a2ac2b XG |
923 | } |
924 | ||
e2dec939 | 925 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
2e3e5882 | 926 | struct kmem_cache *base_cache, int min) |
714b93da AK |
927 | { |
928 | void *obj; | |
929 | ||
930 | if (cache->nobjs >= min) | |
e2dec939 | 931 | return 0; |
714b93da | 932 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
2e3e5882 | 933 | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); |
714b93da | 934 | if (!obj) |
daefb794 | 935 | return cache->nobjs >= min ? 0 : -ENOMEM; |
714b93da AK |
936 | cache->objects[cache->nobjs++] = obj; |
937 | } | |
e2dec939 | 938 | return 0; |
714b93da AK |
939 | } |
940 | ||
f759e2b4 XG |
941 | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) |
942 | { | |
943 | return cache->nobjs; | |
944 | } | |
945 | ||
e8ad9a70 XG |
946 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, |
947 | struct kmem_cache *cache) | |
714b93da AK |
948 | { |
949 | while (mc->nobjs) | |
e8ad9a70 | 950 | kmem_cache_free(cache, mc->objects[--mc->nobjs]); |
714b93da AK |
951 | } |
952 | ||
c1158e63 | 953 | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, |
2e3e5882 | 954 | int min) |
c1158e63 | 955 | { |
842f22ed | 956 | void *page; |
c1158e63 AK |
957 | |
958 | if (cache->nobjs >= min) | |
959 | return 0; | |
960 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | |
d97e5e61 | 961 | page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT); |
c1158e63 | 962 | if (!page) |
daefb794 | 963 | return cache->nobjs >= min ? 0 : -ENOMEM; |
842f22ed | 964 | cache->objects[cache->nobjs++] = page; |
c1158e63 AK |
965 | } |
966 | return 0; | |
967 | } | |
968 | ||
969 | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) | |
970 | { | |
971 | while (mc->nobjs) | |
c4d198d5 | 972 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
c1158e63 AK |
973 | } |
974 | ||
2e3e5882 | 975 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) |
714b93da | 976 | { |
e2dec939 AK |
977 | int r; |
978 | ||
53c07b18 | 979 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
67052b35 | 980 | pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); |
d3d25b04 AK |
981 | if (r) |
982 | goto out; | |
ad312c7c | 983 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); |
d3d25b04 AK |
984 | if (r) |
985 | goto out; | |
ad312c7c | 986 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
2e3e5882 | 987 | mmu_page_header_cache, 4); |
e2dec939 AK |
988 | out: |
989 | return r; | |
714b93da AK |
990 | } |
991 | ||
992 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | |
993 | { | |
53c07b18 XG |
994 | mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
995 | pte_list_desc_cache); | |
ad312c7c | 996 | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); |
e8ad9a70 XG |
997 | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, |
998 | mmu_page_header_cache); | |
714b93da AK |
999 | } |
1000 | ||
80feb89a | 1001 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
714b93da AK |
1002 | { |
1003 | void *p; | |
1004 | ||
1005 | BUG_ON(!mc->nobjs); | |
1006 | p = mc->objects[--mc->nobjs]; | |
714b93da AK |
1007 | return p; |
1008 | } | |
1009 | ||
53c07b18 | 1010 | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) |
714b93da | 1011 | { |
80feb89a | 1012 | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); |
714b93da AK |
1013 | } |
1014 | ||
53c07b18 | 1015 | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) |
714b93da | 1016 | { |
53c07b18 | 1017 | kmem_cache_free(pte_list_desc_cache, pte_list_desc); |
714b93da AK |
1018 | } |
1019 | ||
2032a93d LJ |
1020 | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
1021 | { | |
1022 | if (!sp->role.direct) | |
1023 | return sp->gfns[index]; | |
1024 | ||
1025 | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); | |
1026 | } | |
1027 | ||
1028 | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) | |
1029 | { | |
1030 | if (sp->role.direct) | |
1031 | BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index)); | |
1032 | else | |
1033 | sp->gfns[index] = gfn; | |
1034 | } | |
1035 | ||
05da4558 | 1036 | /* |
d4dbf470 TY |
1037 | * Return the pointer to the large page information for a given gfn, |
1038 | * handling slots that are not large page aligned. | |
05da4558 | 1039 | */ |
d4dbf470 TY |
1040 | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, |
1041 | struct kvm_memory_slot *slot, | |
1042 | int level) | |
05da4558 MT |
1043 | { |
1044 | unsigned long idx; | |
1045 | ||
fb03cb6f | 1046 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
db3fe4eb | 1047 | return &slot->arch.lpage_info[level - 2][idx]; |
05da4558 MT |
1048 | } |
1049 | ||
547ffaed XG |
1050 | static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, |
1051 | gfn_t gfn, int count) | |
1052 | { | |
1053 | struct kvm_lpage_info *linfo; | |
1054 | int i; | |
1055 | ||
1056 | for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { | |
1057 | linfo = lpage_info_slot(gfn, slot, i); | |
1058 | linfo->disallow_lpage += count; | |
1059 | WARN_ON(linfo->disallow_lpage < 0); | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | |
1064 | { | |
1065 | update_gfn_disallow_lpage_count(slot, gfn, 1); | |
1066 | } | |
1067 | ||
1068 | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) | |
1069 | { | |
1070 | update_gfn_disallow_lpage_count(slot, gfn, -1); | |
1071 | } | |
1072 | ||
3ed1a478 | 1073 | static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
05da4558 | 1074 | { |
699023e2 | 1075 | struct kvm_memslots *slots; |
d25797b2 | 1076 | struct kvm_memory_slot *slot; |
3ed1a478 | 1077 | gfn_t gfn; |
05da4558 | 1078 | |
56ca57f9 | 1079 | kvm->arch.indirect_shadow_pages++; |
3ed1a478 | 1080 | gfn = sp->gfn; |
699023e2 PB |
1081 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1082 | slot = __gfn_to_memslot(slots, gfn); | |
56ca57f9 XG |
1083 | |
1084 | /* the non-leaf shadow pages are keeping readonly. */ | |
1085 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) | |
1086 | return kvm_slot_page_track_add_page(kvm, slot, gfn, | |
1087 | KVM_PAGE_TRACK_WRITE); | |
1088 | ||
547ffaed | 1089 | kvm_mmu_gfn_disallow_lpage(slot, gfn); |
05da4558 MT |
1090 | } |
1091 | ||
3ed1a478 | 1092 | static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
05da4558 | 1093 | { |
699023e2 | 1094 | struct kvm_memslots *slots; |
d25797b2 | 1095 | struct kvm_memory_slot *slot; |
3ed1a478 | 1096 | gfn_t gfn; |
05da4558 | 1097 | |
56ca57f9 | 1098 | kvm->arch.indirect_shadow_pages--; |
3ed1a478 | 1099 | gfn = sp->gfn; |
699023e2 PB |
1100 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1101 | slot = __gfn_to_memslot(slots, gfn); | |
56ca57f9 XG |
1102 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
1103 | return kvm_slot_page_track_remove_page(kvm, slot, gfn, | |
1104 | KVM_PAGE_TRACK_WRITE); | |
1105 | ||
547ffaed | 1106 | kvm_mmu_gfn_allow_lpage(slot, gfn); |
05da4558 MT |
1107 | } |
1108 | ||
92f94f1e XG |
1109 | static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level, |
1110 | struct kvm_memory_slot *slot) | |
05da4558 | 1111 | { |
d4dbf470 | 1112 | struct kvm_lpage_info *linfo; |
05da4558 MT |
1113 | |
1114 | if (slot) { | |
d4dbf470 | 1115 | linfo = lpage_info_slot(gfn, slot, level); |
92f94f1e | 1116 | return !!linfo->disallow_lpage; |
05da4558 MT |
1117 | } |
1118 | ||
92f94f1e | 1119 | return true; |
05da4558 MT |
1120 | } |
1121 | ||
92f94f1e XG |
1122 | static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn, |
1123 | int level) | |
5225fdf8 TY |
1124 | { |
1125 | struct kvm_memory_slot *slot; | |
1126 | ||
1127 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | |
92f94f1e | 1128 | return __mmu_gfn_lpage_is_disallowed(gfn, level, slot); |
5225fdf8 TY |
1129 | } |
1130 | ||
d25797b2 | 1131 | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) |
05da4558 | 1132 | { |
8f0b1ab6 | 1133 | unsigned long page_size; |
d25797b2 | 1134 | int i, ret = 0; |
05da4558 | 1135 | |
8f0b1ab6 | 1136 | page_size = kvm_host_page_size(kvm, gfn); |
05da4558 | 1137 | |
8a3d08f1 | 1138 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
d25797b2 JR |
1139 | if (page_size >= KVM_HPAGE_SIZE(i)) |
1140 | ret = i; | |
1141 | else | |
1142 | break; | |
1143 | } | |
1144 | ||
4c2155ce | 1145 | return ret; |
05da4558 MT |
1146 | } |
1147 | ||
d8aacf5d TY |
1148 | static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot, |
1149 | bool no_dirty_log) | |
1150 | { | |
1151 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) | |
1152 | return false; | |
1153 | if (no_dirty_log && slot->dirty_bitmap) | |
1154 | return false; | |
1155 | ||
1156 | return true; | |
1157 | } | |
1158 | ||
5d163b1c XG |
1159 | static struct kvm_memory_slot * |
1160 | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, | |
1161 | bool no_dirty_log) | |
05da4558 MT |
1162 | { |
1163 | struct kvm_memory_slot *slot; | |
5d163b1c | 1164 | |
54bf36aa | 1165 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
d8aacf5d | 1166 | if (!memslot_valid_for_gpte(slot, no_dirty_log)) |
5d163b1c XG |
1167 | slot = NULL; |
1168 | ||
1169 | return slot; | |
1170 | } | |
1171 | ||
fd136902 TY |
1172 | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn, |
1173 | bool *force_pt_level) | |
936a5fe6 AA |
1174 | { |
1175 | int host_level, level, max_level; | |
d8aacf5d TY |
1176 | struct kvm_memory_slot *slot; |
1177 | ||
8c85ac1c TY |
1178 | if (unlikely(*force_pt_level)) |
1179 | return PT_PAGE_TABLE_LEVEL; | |
05da4558 | 1180 | |
8c85ac1c TY |
1181 | slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn); |
1182 | *force_pt_level = !memslot_valid_for_gpte(slot, true); | |
fd136902 TY |
1183 | if (unlikely(*force_pt_level)) |
1184 | return PT_PAGE_TABLE_LEVEL; | |
1185 | ||
d25797b2 JR |
1186 | host_level = host_mapping_level(vcpu->kvm, large_gfn); |
1187 | ||
1188 | if (host_level == PT_PAGE_TABLE_LEVEL) | |
1189 | return host_level; | |
1190 | ||
55dd98c3 | 1191 | max_level = min(kvm_x86_ops->get_lpage_level(), host_level); |
878403b7 SY |
1192 | |
1193 | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) | |
92f94f1e | 1194 | if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot)) |
d25797b2 | 1195 | break; |
d25797b2 JR |
1196 | |
1197 | return level - 1; | |
05da4558 MT |
1198 | } |
1199 | ||
290fc38d | 1200 | /* |
018aabb5 | 1201 | * About rmap_head encoding: |
cd4a4e53 | 1202 | * |
018aabb5 TY |
1203 | * If the bit zero of rmap_head->val is clear, then it points to the only spte |
1204 | * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct | |
53c07b18 | 1205 | * pte_list_desc containing more mappings. |
018aabb5 TY |
1206 | */ |
1207 | ||
1208 | /* | |
1209 | * Returns the number of pointers in the rmap chain, not counting the new one. | |
cd4a4e53 | 1210 | */ |
53c07b18 | 1211 | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, |
018aabb5 | 1212 | struct kvm_rmap_head *rmap_head) |
cd4a4e53 | 1213 | { |
53c07b18 | 1214 | struct pte_list_desc *desc; |
53a27b39 | 1215 | int i, count = 0; |
cd4a4e53 | 1216 | |
018aabb5 | 1217 | if (!rmap_head->val) { |
53c07b18 | 1218 | rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); |
018aabb5 TY |
1219 | rmap_head->val = (unsigned long)spte; |
1220 | } else if (!(rmap_head->val & 1)) { | |
53c07b18 XG |
1221 | rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); |
1222 | desc = mmu_alloc_pte_list_desc(vcpu); | |
018aabb5 | 1223 | desc->sptes[0] = (u64 *)rmap_head->val; |
d555c333 | 1224 | desc->sptes[1] = spte; |
018aabb5 | 1225 | rmap_head->val = (unsigned long)desc | 1; |
cb16a7b3 | 1226 | ++count; |
cd4a4e53 | 1227 | } else { |
53c07b18 | 1228 | rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); |
018aabb5 | 1229 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
53c07b18 | 1230 | while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { |
cd4a4e53 | 1231 | desc = desc->more; |
53c07b18 | 1232 | count += PTE_LIST_EXT; |
53a27b39 | 1233 | } |
53c07b18 XG |
1234 | if (desc->sptes[PTE_LIST_EXT-1]) { |
1235 | desc->more = mmu_alloc_pte_list_desc(vcpu); | |
cd4a4e53 AK |
1236 | desc = desc->more; |
1237 | } | |
d555c333 | 1238 | for (i = 0; desc->sptes[i]; ++i) |
cb16a7b3 | 1239 | ++count; |
d555c333 | 1240 | desc->sptes[i] = spte; |
cd4a4e53 | 1241 | } |
53a27b39 | 1242 | return count; |
cd4a4e53 AK |
1243 | } |
1244 | ||
53c07b18 | 1245 | static void |
018aabb5 TY |
1246 | pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, |
1247 | struct pte_list_desc *desc, int i, | |
1248 | struct pte_list_desc *prev_desc) | |
cd4a4e53 AK |
1249 | { |
1250 | int j; | |
1251 | ||
53c07b18 | 1252 | for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) |
cd4a4e53 | 1253 | ; |
d555c333 AK |
1254 | desc->sptes[i] = desc->sptes[j]; |
1255 | desc->sptes[j] = NULL; | |
cd4a4e53 AK |
1256 | if (j != 0) |
1257 | return; | |
1258 | if (!prev_desc && !desc->more) | |
018aabb5 | 1259 | rmap_head->val = (unsigned long)desc->sptes[0]; |
cd4a4e53 AK |
1260 | else |
1261 | if (prev_desc) | |
1262 | prev_desc->more = desc->more; | |
1263 | else | |
018aabb5 | 1264 | rmap_head->val = (unsigned long)desc->more | 1; |
53c07b18 | 1265 | mmu_free_pte_list_desc(desc); |
cd4a4e53 AK |
1266 | } |
1267 | ||
018aabb5 | 1268 | static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) |
cd4a4e53 | 1269 | { |
53c07b18 XG |
1270 | struct pte_list_desc *desc; |
1271 | struct pte_list_desc *prev_desc; | |
cd4a4e53 AK |
1272 | int i; |
1273 | ||
018aabb5 | 1274 | if (!rmap_head->val) { |
53c07b18 | 1275 | printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); |
cd4a4e53 | 1276 | BUG(); |
018aabb5 | 1277 | } else if (!(rmap_head->val & 1)) { |
53c07b18 | 1278 | rmap_printk("pte_list_remove: %p 1->0\n", spte); |
018aabb5 | 1279 | if ((u64 *)rmap_head->val != spte) { |
53c07b18 | 1280 | printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte); |
cd4a4e53 AK |
1281 | BUG(); |
1282 | } | |
018aabb5 | 1283 | rmap_head->val = 0; |
cd4a4e53 | 1284 | } else { |
53c07b18 | 1285 | rmap_printk("pte_list_remove: %p many->many\n", spte); |
018aabb5 | 1286 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
cd4a4e53 AK |
1287 | prev_desc = NULL; |
1288 | while (desc) { | |
018aabb5 | 1289 | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { |
d555c333 | 1290 | if (desc->sptes[i] == spte) { |
018aabb5 TY |
1291 | pte_list_desc_remove_entry(rmap_head, |
1292 | desc, i, prev_desc); | |
cd4a4e53 AK |
1293 | return; |
1294 | } | |
018aabb5 | 1295 | } |
cd4a4e53 AK |
1296 | prev_desc = desc; |
1297 | desc = desc->more; | |
1298 | } | |
53c07b18 | 1299 | pr_err("pte_list_remove: %p many->many\n", spte); |
cd4a4e53 AK |
1300 | BUG(); |
1301 | } | |
1302 | } | |
1303 | ||
018aabb5 TY |
1304 | static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, |
1305 | struct kvm_memory_slot *slot) | |
53c07b18 | 1306 | { |
77d11309 | 1307 | unsigned long idx; |
53c07b18 | 1308 | |
77d11309 | 1309 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
d89cc617 | 1310 | return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; |
53c07b18 XG |
1311 | } |
1312 | ||
018aabb5 TY |
1313 | static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, |
1314 | struct kvm_mmu_page *sp) | |
9b9b1492 | 1315 | { |
699023e2 | 1316 | struct kvm_memslots *slots; |
9b9b1492 TY |
1317 | struct kvm_memory_slot *slot; |
1318 | ||
699023e2 PB |
1319 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
1320 | slot = __gfn_to_memslot(slots, gfn); | |
e4cd1da9 | 1321 | return __gfn_to_rmap(gfn, sp->role.level, slot); |
9b9b1492 TY |
1322 | } |
1323 | ||
f759e2b4 XG |
1324 | static bool rmap_can_add(struct kvm_vcpu *vcpu) |
1325 | { | |
1326 | struct kvm_mmu_memory_cache *cache; | |
1327 | ||
1328 | cache = &vcpu->arch.mmu_pte_list_desc_cache; | |
1329 | return mmu_memory_cache_free_objects(cache); | |
1330 | } | |
1331 | ||
53c07b18 XG |
1332 | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
1333 | { | |
1334 | struct kvm_mmu_page *sp; | |
018aabb5 | 1335 | struct kvm_rmap_head *rmap_head; |
53c07b18 | 1336 | |
53c07b18 XG |
1337 | sp = page_header(__pa(spte)); |
1338 | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); | |
018aabb5 TY |
1339 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
1340 | return pte_list_add(vcpu, spte, rmap_head); | |
53c07b18 XG |
1341 | } |
1342 | ||
53c07b18 XG |
1343 | static void rmap_remove(struct kvm *kvm, u64 *spte) |
1344 | { | |
1345 | struct kvm_mmu_page *sp; | |
1346 | gfn_t gfn; | |
018aabb5 | 1347 | struct kvm_rmap_head *rmap_head; |
53c07b18 XG |
1348 | |
1349 | sp = page_header(__pa(spte)); | |
1350 | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); | |
018aabb5 TY |
1351 | rmap_head = gfn_to_rmap(kvm, gfn, sp); |
1352 | pte_list_remove(spte, rmap_head); | |
53c07b18 XG |
1353 | } |
1354 | ||
1e3f42f0 TY |
1355 | /* |
1356 | * Used by the following functions to iterate through the sptes linked by a | |
1357 | * rmap. All fields are private and not assumed to be used outside. | |
1358 | */ | |
1359 | struct rmap_iterator { | |
1360 | /* private fields */ | |
1361 | struct pte_list_desc *desc; /* holds the sptep if not NULL */ | |
1362 | int pos; /* index of the sptep */ | |
1363 | }; | |
1364 | ||
1365 | /* | |
1366 | * Iteration must be started by this function. This should also be used after | |
1367 | * removing/dropping sptes from the rmap link because in such cases the | |
1368 | * information in the itererator may not be valid. | |
1369 | * | |
1370 | * Returns sptep if found, NULL otherwise. | |
1371 | */ | |
018aabb5 TY |
1372 | static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, |
1373 | struct rmap_iterator *iter) | |
1e3f42f0 | 1374 | { |
77fbbbd2 TY |
1375 | u64 *sptep; |
1376 | ||
018aabb5 | 1377 | if (!rmap_head->val) |
1e3f42f0 TY |
1378 | return NULL; |
1379 | ||
018aabb5 | 1380 | if (!(rmap_head->val & 1)) { |
1e3f42f0 | 1381 | iter->desc = NULL; |
77fbbbd2 TY |
1382 | sptep = (u64 *)rmap_head->val; |
1383 | goto out; | |
1e3f42f0 TY |
1384 | } |
1385 | ||
018aabb5 | 1386 | iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
1e3f42f0 | 1387 | iter->pos = 0; |
77fbbbd2 TY |
1388 | sptep = iter->desc->sptes[iter->pos]; |
1389 | out: | |
1390 | BUG_ON(!is_shadow_present_pte(*sptep)); | |
1391 | return sptep; | |
1e3f42f0 TY |
1392 | } |
1393 | ||
1394 | /* | |
1395 | * Must be used with a valid iterator: e.g. after rmap_get_first(). | |
1396 | * | |
1397 | * Returns sptep if found, NULL otherwise. | |
1398 | */ | |
1399 | static u64 *rmap_get_next(struct rmap_iterator *iter) | |
1400 | { | |
77fbbbd2 TY |
1401 | u64 *sptep; |
1402 | ||
1e3f42f0 TY |
1403 | if (iter->desc) { |
1404 | if (iter->pos < PTE_LIST_EXT - 1) { | |
1e3f42f0 TY |
1405 | ++iter->pos; |
1406 | sptep = iter->desc->sptes[iter->pos]; | |
1407 | if (sptep) | |
77fbbbd2 | 1408 | goto out; |
1e3f42f0 TY |
1409 | } |
1410 | ||
1411 | iter->desc = iter->desc->more; | |
1412 | ||
1413 | if (iter->desc) { | |
1414 | iter->pos = 0; | |
1415 | /* desc->sptes[0] cannot be NULL */ | |
77fbbbd2 TY |
1416 | sptep = iter->desc->sptes[iter->pos]; |
1417 | goto out; | |
1e3f42f0 TY |
1418 | } |
1419 | } | |
1420 | ||
1421 | return NULL; | |
77fbbbd2 TY |
1422 | out: |
1423 | BUG_ON(!is_shadow_present_pte(*sptep)); | |
1424 | return sptep; | |
1e3f42f0 TY |
1425 | } |
1426 | ||
018aabb5 TY |
1427 | #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ |
1428 | for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ | |
77fbbbd2 | 1429 | _spte_; _spte_ = rmap_get_next(_iter_)) |
0d536790 | 1430 | |
c3707958 | 1431 | static void drop_spte(struct kvm *kvm, u64 *sptep) |
e4b502ea | 1432 | { |
1df9f2dc | 1433 | if (mmu_spte_clear_track_bits(sptep)) |
eb45fda4 | 1434 | rmap_remove(kvm, sptep); |
be38d276 AK |
1435 | } |
1436 | ||
8e22f955 XG |
1437 | |
1438 | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) | |
1439 | { | |
1440 | if (is_large_pte(*sptep)) { | |
1441 | WARN_ON(page_header(__pa(sptep))->role.level == | |
1442 | PT_PAGE_TABLE_LEVEL); | |
1443 | drop_spte(kvm, sptep); | |
1444 | --kvm->stat.lpages; | |
1445 | return true; | |
1446 | } | |
1447 | ||
1448 | return false; | |
1449 | } | |
1450 | ||
1451 | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) | |
1452 | { | |
1453 | if (__drop_large_spte(vcpu->kvm, sptep)) | |
1454 | kvm_flush_remote_tlbs(vcpu->kvm); | |
1455 | } | |
1456 | ||
1457 | /* | |
49fde340 | 1458 | * Write-protect on the specified @sptep, @pt_protect indicates whether |
c126d94f | 1459 | * spte write-protection is caused by protecting shadow page table. |
49fde340 | 1460 | * |
b4619660 | 1461 | * Note: write protection is difference between dirty logging and spte |
49fde340 XG |
1462 | * protection: |
1463 | * - for dirty logging, the spte can be set to writable at anytime if | |
1464 | * its dirty bitmap is properly set. | |
1465 | * - for spte protection, the spte can be writable only after unsync-ing | |
1466 | * shadow page. | |
8e22f955 | 1467 | * |
c126d94f | 1468 | * Return true if tlb need be flushed. |
8e22f955 | 1469 | */ |
c4f138b4 | 1470 | static bool spte_write_protect(u64 *sptep, bool pt_protect) |
d13bc5b5 XG |
1471 | { |
1472 | u64 spte = *sptep; | |
1473 | ||
49fde340 | 1474 | if (!is_writable_pte(spte) && |
ea4114bc | 1475 | !(pt_protect && spte_can_locklessly_be_made_writable(spte))) |
d13bc5b5 XG |
1476 | return false; |
1477 | ||
1478 | rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); | |
1479 | ||
49fde340 XG |
1480 | if (pt_protect) |
1481 | spte &= ~SPTE_MMU_WRITEABLE; | |
d13bc5b5 | 1482 | spte = spte & ~PT_WRITABLE_MASK; |
49fde340 | 1483 | |
c126d94f | 1484 | return mmu_spte_update(sptep, spte); |
d13bc5b5 XG |
1485 | } |
1486 | ||
018aabb5 TY |
1487 | static bool __rmap_write_protect(struct kvm *kvm, |
1488 | struct kvm_rmap_head *rmap_head, | |
245c3912 | 1489 | bool pt_protect) |
98348e95 | 1490 | { |
1e3f42f0 TY |
1491 | u64 *sptep; |
1492 | struct rmap_iterator iter; | |
d13bc5b5 | 1493 | bool flush = false; |
374cbac0 | 1494 | |
018aabb5 | 1495 | for_each_rmap_spte(rmap_head, &iter, sptep) |
c4f138b4 | 1496 | flush |= spte_write_protect(sptep, pt_protect); |
855149aa | 1497 | |
d13bc5b5 | 1498 | return flush; |
a0ed4607 TY |
1499 | } |
1500 | ||
c4f138b4 | 1501 | static bool spte_clear_dirty(u64 *sptep) |
f4b4b180 KH |
1502 | { |
1503 | u64 spte = *sptep; | |
1504 | ||
1505 | rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); | |
1506 | ||
1507 | spte &= ~shadow_dirty_mask; | |
1508 | ||
1509 | return mmu_spte_update(sptep, spte); | |
1510 | } | |
1511 | ||
ac8d57e5 PF |
1512 | static bool wrprot_ad_disabled_spte(u64 *sptep) |
1513 | { | |
1514 | bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, | |
1515 | (unsigned long *)sptep); | |
1516 | if (was_writable) | |
1517 | kvm_set_pfn_dirty(spte_to_pfn(*sptep)); | |
1518 | ||
1519 | return was_writable; | |
1520 | } | |
1521 | ||
1522 | /* | |
1523 | * Gets the GFN ready for another round of dirty logging by clearing the | |
1524 | * - D bit on ad-enabled SPTEs, and | |
1525 | * - W bit on ad-disabled SPTEs. | |
1526 | * Returns true iff any D or W bits were cleared. | |
1527 | */ | |
018aabb5 | 1528 | static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
f4b4b180 KH |
1529 | { |
1530 | u64 *sptep; | |
1531 | struct rmap_iterator iter; | |
1532 | bool flush = false; | |
1533 | ||
018aabb5 | 1534 | for_each_rmap_spte(rmap_head, &iter, sptep) |
ac8d57e5 PF |
1535 | if (spte_ad_enabled(*sptep)) |
1536 | flush |= spte_clear_dirty(sptep); | |
1537 | else | |
1538 | flush |= wrprot_ad_disabled_spte(sptep); | |
f4b4b180 KH |
1539 | |
1540 | return flush; | |
1541 | } | |
1542 | ||
c4f138b4 | 1543 | static bool spte_set_dirty(u64 *sptep) |
f4b4b180 KH |
1544 | { |
1545 | u64 spte = *sptep; | |
1546 | ||
1547 | rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); | |
1548 | ||
1549 | spte |= shadow_dirty_mask; | |
1550 | ||
1551 | return mmu_spte_update(sptep, spte); | |
1552 | } | |
1553 | ||
018aabb5 | 1554 | static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
f4b4b180 KH |
1555 | { |
1556 | u64 *sptep; | |
1557 | struct rmap_iterator iter; | |
1558 | bool flush = false; | |
1559 | ||
018aabb5 | 1560 | for_each_rmap_spte(rmap_head, &iter, sptep) |
ac8d57e5 PF |
1561 | if (spte_ad_enabled(*sptep)) |
1562 | flush |= spte_set_dirty(sptep); | |
f4b4b180 KH |
1563 | |
1564 | return flush; | |
1565 | } | |
1566 | ||
5dc99b23 | 1567 | /** |
3b0f1d01 | 1568 | * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages |
5dc99b23 TY |
1569 | * @kvm: kvm instance |
1570 | * @slot: slot to protect | |
1571 | * @gfn_offset: start of the BITS_PER_LONG pages we care about | |
1572 | * @mask: indicates which pages we should protect | |
1573 | * | |
1574 | * Used when we do not need to care about huge page mappings: e.g. during dirty | |
1575 | * logging we do not have any such mappings. | |
1576 | */ | |
3b0f1d01 | 1577 | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
5dc99b23 TY |
1578 | struct kvm_memory_slot *slot, |
1579 | gfn_t gfn_offset, unsigned long mask) | |
a0ed4607 | 1580 | { |
018aabb5 | 1581 | struct kvm_rmap_head *rmap_head; |
a0ed4607 | 1582 | |
5dc99b23 | 1583 | while (mask) { |
018aabb5 TY |
1584 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
1585 | PT_PAGE_TABLE_LEVEL, slot); | |
1586 | __rmap_write_protect(kvm, rmap_head, false); | |
05da4558 | 1587 | |
5dc99b23 TY |
1588 | /* clear the first set bit */ |
1589 | mask &= mask - 1; | |
1590 | } | |
374cbac0 AK |
1591 | } |
1592 | ||
f4b4b180 | 1593 | /** |
ac8d57e5 PF |
1594 | * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write |
1595 | * protect the page if the D-bit isn't supported. | |
f4b4b180 KH |
1596 | * @kvm: kvm instance |
1597 | * @slot: slot to clear D-bit | |
1598 | * @gfn_offset: start of the BITS_PER_LONG pages we care about | |
1599 | * @mask: indicates which pages we should clear D-bit | |
1600 | * | |
1601 | * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. | |
1602 | */ | |
1603 | void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, | |
1604 | struct kvm_memory_slot *slot, | |
1605 | gfn_t gfn_offset, unsigned long mask) | |
1606 | { | |
018aabb5 | 1607 | struct kvm_rmap_head *rmap_head; |
f4b4b180 KH |
1608 | |
1609 | while (mask) { | |
018aabb5 TY |
1610 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
1611 | PT_PAGE_TABLE_LEVEL, slot); | |
1612 | __rmap_clear_dirty(kvm, rmap_head); | |
f4b4b180 KH |
1613 | |
1614 | /* clear the first set bit */ | |
1615 | mask &= mask - 1; | |
1616 | } | |
1617 | } | |
1618 | EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); | |
1619 | ||
3b0f1d01 KH |
1620 | /** |
1621 | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected | |
1622 | * PT level pages. | |
1623 | * | |
1624 | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to | |
1625 | * enable dirty logging for them. | |
1626 | * | |
1627 | * Used when we do not need to care about huge page mappings: e.g. during dirty | |
1628 | * logging we do not have any such mappings. | |
1629 | */ | |
1630 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, | |
1631 | struct kvm_memory_slot *slot, | |
1632 | gfn_t gfn_offset, unsigned long mask) | |
1633 | { | |
88178fd4 KH |
1634 | if (kvm_x86_ops->enable_log_dirty_pt_masked) |
1635 | kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, | |
1636 | mask); | |
1637 | else | |
1638 | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); | |
3b0f1d01 KH |
1639 | } |
1640 | ||
bab4165e BD |
1641 | /** |
1642 | * kvm_arch_write_log_dirty - emulate dirty page logging | |
1643 | * @vcpu: Guest mode vcpu | |
1644 | * | |
1645 | * Emulate arch specific page modification logging for the | |
1646 | * nested hypervisor | |
1647 | */ | |
1648 | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) | |
1649 | { | |
1650 | if (kvm_x86_ops->write_log_dirty) | |
1651 | return kvm_x86_ops->write_log_dirty(vcpu); | |
1652 | ||
1653 | return 0; | |
1654 | } | |
1655 | ||
aeecee2e XG |
1656 | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
1657 | struct kvm_memory_slot *slot, u64 gfn) | |
95d4c16c | 1658 | { |
018aabb5 | 1659 | struct kvm_rmap_head *rmap_head; |
5dc99b23 | 1660 | int i; |
2f84569f | 1661 | bool write_protected = false; |
95d4c16c | 1662 | |
8a3d08f1 | 1663 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
018aabb5 | 1664 | rmap_head = __gfn_to_rmap(gfn, i, slot); |
aeecee2e | 1665 | write_protected |= __rmap_write_protect(kvm, rmap_head, true); |
5dc99b23 TY |
1666 | } |
1667 | ||
1668 | return write_protected; | |
95d4c16c TY |
1669 | } |
1670 | ||
aeecee2e XG |
1671 | static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) |
1672 | { | |
1673 | struct kvm_memory_slot *slot; | |
1674 | ||
1675 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); | |
1676 | return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); | |
1677 | } | |
1678 | ||
018aabb5 | 1679 | static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
e930bffe | 1680 | { |
1e3f42f0 TY |
1681 | u64 *sptep; |
1682 | struct rmap_iterator iter; | |
6a49f85c | 1683 | bool flush = false; |
e930bffe | 1684 | |
018aabb5 | 1685 | while ((sptep = rmap_get_first(rmap_head, &iter))) { |
6a49f85c | 1686 | rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); |
1e3f42f0 TY |
1687 | |
1688 | drop_spte(kvm, sptep); | |
6a49f85c | 1689 | flush = true; |
e930bffe | 1690 | } |
1e3f42f0 | 1691 | |
6a49f85c XG |
1692 | return flush; |
1693 | } | |
1694 | ||
018aabb5 | 1695 | static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
6a49f85c XG |
1696 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1697 | unsigned long data) | |
1698 | { | |
018aabb5 | 1699 | return kvm_zap_rmapp(kvm, rmap_head); |
e930bffe AA |
1700 | } |
1701 | ||
018aabb5 | 1702 | static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1703 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1704 | unsigned long data) | |
3da0dd43 | 1705 | { |
1e3f42f0 TY |
1706 | u64 *sptep; |
1707 | struct rmap_iterator iter; | |
3da0dd43 | 1708 | int need_flush = 0; |
1e3f42f0 | 1709 | u64 new_spte; |
3da0dd43 | 1710 | pte_t *ptep = (pte_t *)data; |
ba049e93 | 1711 | kvm_pfn_t new_pfn; |
3da0dd43 IE |
1712 | |
1713 | WARN_ON(pte_huge(*ptep)); | |
1714 | new_pfn = pte_pfn(*ptep); | |
1e3f42f0 | 1715 | |
0d536790 | 1716 | restart: |
018aabb5 | 1717 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
8a9522d2 | 1718 | rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", |
f160c7b7 | 1719 | sptep, *sptep, gfn, level); |
1e3f42f0 | 1720 | |
3da0dd43 | 1721 | need_flush = 1; |
1e3f42f0 | 1722 | |
3da0dd43 | 1723 | if (pte_write(*ptep)) { |
1e3f42f0 | 1724 | drop_spte(kvm, sptep); |
0d536790 | 1725 | goto restart; |
3da0dd43 | 1726 | } else { |
1e3f42f0 | 1727 | new_spte = *sptep & ~PT64_BASE_ADDR_MASK; |
3da0dd43 IE |
1728 | new_spte |= (u64)new_pfn << PAGE_SHIFT; |
1729 | ||
1730 | new_spte &= ~PT_WRITABLE_MASK; | |
1731 | new_spte &= ~SPTE_HOST_WRITEABLE; | |
f160c7b7 JS |
1732 | |
1733 | new_spte = mark_spte_for_access_track(new_spte); | |
1e3f42f0 TY |
1734 | |
1735 | mmu_spte_clear_track_bits(sptep); | |
1736 | mmu_spte_set(sptep, new_spte); | |
3da0dd43 IE |
1737 | } |
1738 | } | |
1e3f42f0 | 1739 | |
3da0dd43 IE |
1740 | if (need_flush) |
1741 | kvm_flush_remote_tlbs(kvm); | |
1742 | ||
1743 | return 0; | |
1744 | } | |
1745 | ||
6ce1f4e2 XG |
1746 | struct slot_rmap_walk_iterator { |
1747 | /* input fields. */ | |
1748 | struct kvm_memory_slot *slot; | |
1749 | gfn_t start_gfn; | |
1750 | gfn_t end_gfn; | |
1751 | int start_level; | |
1752 | int end_level; | |
1753 | ||
1754 | /* output fields. */ | |
1755 | gfn_t gfn; | |
018aabb5 | 1756 | struct kvm_rmap_head *rmap; |
6ce1f4e2 XG |
1757 | int level; |
1758 | ||
1759 | /* private field. */ | |
018aabb5 | 1760 | struct kvm_rmap_head *end_rmap; |
6ce1f4e2 XG |
1761 | }; |
1762 | ||
1763 | static void | |
1764 | rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) | |
1765 | { | |
1766 | iterator->level = level; | |
1767 | iterator->gfn = iterator->start_gfn; | |
1768 | iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); | |
1769 | iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, | |
1770 | iterator->slot); | |
1771 | } | |
1772 | ||
1773 | static void | |
1774 | slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, | |
1775 | struct kvm_memory_slot *slot, int start_level, | |
1776 | int end_level, gfn_t start_gfn, gfn_t end_gfn) | |
1777 | { | |
1778 | iterator->slot = slot; | |
1779 | iterator->start_level = start_level; | |
1780 | iterator->end_level = end_level; | |
1781 | iterator->start_gfn = start_gfn; | |
1782 | iterator->end_gfn = end_gfn; | |
1783 | ||
1784 | rmap_walk_init_level(iterator, iterator->start_level); | |
1785 | } | |
1786 | ||
1787 | static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) | |
1788 | { | |
1789 | return !!iterator->rmap; | |
1790 | } | |
1791 | ||
1792 | static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) | |
1793 | { | |
1794 | if (++iterator->rmap <= iterator->end_rmap) { | |
1795 | iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); | |
1796 | return; | |
1797 | } | |
1798 | ||
1799 | if (++iterator->level > iterator->end_level) { | |
1800 | iterator->rmap = NULL; | |
1801 | return; | |
1802 | } | |
1803 | ||
1804 | rmap_walk_init_level(iterator, iterator->level); | |
1805 | } | |
1806 | ||
1807 | #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ | |
1808 | _start_gfn, _end_gfn, _iter_) \ | |
1809 | for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ | |
1810 | _end_level_, _start_gfn, _end_gfn); \ | |
1811 | slot_rmap_walk_okay(_iter_); \ | |
1812 | slot_rmap_walk_next(_iter_)) | |
1813 | ||
84504ef3 TY |
1814 | static int kvm_handle_hva_range(struct kvm *kvm, |
1815 | unsigned long start, | |
1816 | unsigned long end, | |
1817 | unsigned long data, | |
1818 | int (*handler)(struct kvm *kvm, | |
018aabb5 | 1819 | struct kvm_rmap_head *rmap_head, |
048212d0 | 1820 | struct kvm_memory_slot *slot, |
8a9522d2 ALC |
1821 | gfn_t gfn, |
1822 | int level, | |
84504ef3 | 1823 | unsigned long data)) |
e930bffe | 1824 | { |
bc6678a3 | 1825 | struct kvm_memslots *slots; |
be6ba0f0 | 1826 | struct kvm_memory_slot *memslot; |
6ce1f4e2 XG |
1827 | struct slot_rmap_walk_iterator iterator; |
1828 | int ret = 0; | |
9da0e4d5 | 1829 | int i; |
bc6678a3 | 1830 | |
9da0e4d5 PB |
1831 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
1832 | slots = __kvm_memslots(kvm, i); | |
1833 | kvm_for_each_memslot(memslot, slots) { | |
1834 | unsigned long hva_start, hva_end; | |
1835 | gfn_t gfn_start, gfn_end; | |
e930bffe | 1836 | |
9da0e4d5 PB |
1837 | hva_start = max(start, memslot->userspace_addr); |
1838 | hva_end = min(end, memslot->userspace_addr + | |
1839 | (memslot->npages << PAGE_SHIFT)); | |
1840 | if (hva_start >= hva_end) | |
1841 | continue; | |
1842 | /* | |
1843 | * {gfn(page) | page intersects with [hva_start, hva_end)} = | |
1844 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. | |
1845 | */ | |
1846 | gfn_start = hva_to_gfn_memslot(hva_start, memslot); | |
1847 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); | |
1848 | ||
1849 | for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, | |
1850 | PT_MAX_HUGEPAGE_LEVEL, | |
1851 | gfn_start, gfn_end - 1, | |
1852 | &iterator) | |
1853 | ret |= handler(kvm, iterator.rmap, memslot, | |
1854 | iterator.gfn, iterator.level, data); | |
1855 | } | |
e930bffe AA |
1856 | } |
1857 | ||
f395302e | 1858 | return ret; |
e930bffe AA |
1859 | } |
1860 | ||
84504ef3 TY |
1861 | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, |
1862 | unsigned long data, | |
018aabb5 TY |
1863 | int (*handler)(struct kvm *kvm, |
1864 | struct kvm_rmap_head *rmap_head, | |
048212d0 | 1865 | struct kvm_memory_slot *slot, |
8a9522d2 | 1866 | gfn_t gfn, int level, |
84504ef3 TY |
1867 | unsigned long data)) |
1868 | { | |
1869 | return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); | |
e930bffe AA |
1870 | } |
1871 | ||
b3ae2096 TY |
1872 | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
1873 | { | |
1874 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); | |
1875 | } | |
1876 | ||
3da0dd43 IE |
1877 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
1878 | { | |
8a8365c5 | 1879 | kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); |
e930bffe AA |
1880 | } |
1881 | ||
018aabb5 | 1882 | static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1883 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
1884 | unsigned long data) | |
e930bffe | 1885 | { |
1e3f42f0 | 1886 | u64 *sptep; |
79f702a6 | 1887 | struct rmap_iterator uninitialized_var(iter); |
e930bffe AA |
1888 | int young = 0; |
1889 | ||
f160c7b7 JS |
1890 | for_each_rmap_spte(rmap_head, &iter, sptep) |
1891 | young |= mmu_spte_age(sptep); | |
0d536790 | 1892 | |
8a9522d2 | 1893 | trace_kvm_age_page(gfn, level, slot, young); |
e930bffe AA |
1894 | return young; |
1895 | } | |
1896 | ||
018aabb5 | 1897 | static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
8a9522d2 ALC |
1898 | struct kvm_memory_slot *slot, gfn_t gfn, |
1899 | int level, unsigned long data) | |
8ee53820 | 1900 | { |
1e3f42f0 TY |
1901 | u64 *sptep; |
1902 | struct rmap_iterator iter; | |
8ee53820 | 1903 | |
83ef6c81 JS |
1904 | for_each_rmap_spte(rmap_head, &iter, sptep) |
1905 | if (is_accessed_spte(*sptep)) | |
1906 | return 1; | |
83ef6c81 | 1907 | return 0; |
8ee53820 AA |
1908 | } |
1909 | ||
53a27b39 MT |
1910 | #define RMAP_RECYCLE_THRESHOLD 1000 |
1911 | ||
852e3c19 | 1912 | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
53a27b39 | 1913 | { |
018aabb5 | 1914 | struct kvm_rmap_head *rmap_head; |
852e3c19 JR |
1915 | struct kvm_mmu_page *sp; |
1916 | ||
1917 | sp = page_header(__pa(spte)); | |
53a27b39 | 1918 | |
018aabb5 | 1919 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
53a27b39 | 1920 | |
018aabb5 | 1921 | kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); |
53a27b39 MT |
1922 | kvm_flush_remote_tlbs(vcpu->kvm); |
1923 | } | |
1924 | ||
57128468 | 1925 | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
e930bffe | 1926 | { |
57128468 | 1927 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); |
e930bffe AA |
1928 | } |
1929 | ||
8ee53820 AA |
1930 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
1931 | { | |
1932 | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); | |
1933 | } | |
1934 | ||
d6c69ee9 | 1935 | #ifdef MMU_DEBUG |
47ad8e68 | 1936 | static int is_empty_shadow_page(u64 *spt) |
6aa8b732 | 1937 | { |
139bdb2d AK |
1938 | u64 *pos; |
1939 | u64 *end; | |
1940 | ||
47ad8e68 | 1941 | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) |
3c915510 | 1942 | if (is_shadow_present_pte(*pos)) { |
b8688d51 | 1943 | printk(KERN_ERR "%s: %p %llx\n", __func__, |
139bdb2d | 1944 | pos, *pos); |
6aa8b732 | 1945 | return 0; |
139bdb2d | 1946 | } |
6aa8b732 AK |
1947 | return 1; |
1948 | } | |
d6c69ee9 | 1949 | #endif |
6aa8b732 | 1950 | |
45221ab6 DH |
1951 | /* |
1952 | * This value is the sum of all of the kvm instances's | |
1953 | * kvm->arch.n_used_mmu_pages values. We need a global, | |
1954 | * aggregate version in order to make the slab shrinker | |
1955 | * faster | |
1956 | */ | |
1957 | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr) | |
1958 | { | |
1959 | kvm->arch.n_used_mmu_pages += nr; | |
1960 | percpu_counter_add(&kvm_total_used_mmu_pages, nr); | |
1961 | } | |
1962 | ||
834be0d8 | 1963 | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) |
260746c0 | 1964 | { |
fa4a2c08 | 1965 | MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); |
7775834a | 1966 | hlist_del(&sp->hash_link); |
bd4c86ea XG |
1967 | list_del(&sp->link); |
1968 | free_page((unsigned long)sp->spt); | |
834be0d8 GN |
1969 | if (!sp->role.direct) |
1970 | free_page((unsigned long)sp->gfns); | |
e8ad9a70 | 1971 | kmem_cache_free(mmu_page_header_cache, sp); |
260746c0 AK |
1972 | } |
1973 | ||
cea0f0e7 AK |
1974 | static unsigned kvm_page_table_hashfn(gfn_t gfn) |
1975 | { | |
114df303 | 1976 | return hash_64(gfn, KVM_MMU_HASH_SHIFT); |
cea0f0e7 AK |
1977 | } |
1978 | ||
714b93da | 1979 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
4db35314 | 1980 | struct kvm_mmu_page *sp, u64 *parent_pte) |
cea0f0e7 | 1981 | { |
cea0f0e7 AK |
1982 | if (!parent_pte) |
1983 | return; | |
cea0f0e7 | 1984 | |
67052b35 | 1985 | pte_list_add(vcpu, parent_pte, &sp->parent_ptes); |
cea0f0e7 AK |
1986 | } |
1987 | ||
4db35314 | 1988 | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, |
cea0f0e7 AK |
1989 | u64 *parent_pte) |
1990 | { | |
67052b35 | 1991 | pte_list_remove(parent_pte, &sp->parent_ptes); |
cea0f0e7 AK |
1992 | } |
1993 | ||
bcdd9a93 XG |
1994 | static void drop_parent_pte(struct kvm_mmu_page *sp, |
1995 | u64 *parent_pte) | |
1996 | { | |
1997 | mmu_page_remove_parent_pte(sp, parent_pte); | |
1df9f2dc | 1998 | mmu_spte_clear_no_track(parent_pte); |
bcdd9a93 XG |
1999 | } |
2000 | ||
47005792 | 2001 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) |
ad8cfbe3 | 2002 | { |
67052b35 | 2003 | struct kvm_mmu_page *sp; |
7ddca7e4 | 2004 | |
80feb89a TY |
2005 | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); |
2006 | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); | |
67052b35 | 2007 | if (!direct) |
80feb89a | 2008 | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); |
67052b35 | 2009 | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
5304b8d3 XG |
2010 | |
2011 | /* | |
2012 | * The active_mmu_pages list is the FIFO list, do not move the | |
2013 | * page until it is zapped. kvm_zap_obsolete_pages depends on | |
2014 | * this feature. See the comments in kvm_zap_obsolete_pages(). | |
2015 | */ | |
67052b35 | 2016 | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); |
67052b35 XG |
2017 | kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
2018 | return sp; | |
ad8cfbe3 MT |
2019 | } |
2020 | ||
67052b35 | 2021 | static void mark_unsync(u64 *spte); |
1047df1f | 2022 | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
0074ff63 | 2023 | { |
74c4e63a TY |
2024 | u64 *sptep; |
2025 | struct rmap_iterator iter; | |
2026 | ||
2027 | for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { | |
2028 | mark_unsync(sptep); | |
2029 | } | |
0074ff63 MT |
2030 | } |
2031 | ||
67052b35 | 2032 | static void mark_unsync(u64 *spte) |
0074ff63 | 2033 | { |
67052b35 | 2034 | struct kvm_mmu_page *sp; |
1047df1f | 2035 | unsigned int index; |
0074ff63 | 2036 | |
67052b35 | 2037 | sp = page_header(__pa(spte)); |
1047df1f XG |
2038 | index = spte - sp->spt; |
2039 | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) | |
0074ff63 | 2040 | return; |
1047df1f | 2041 | if (sp->unsync_children++) |
0074ff63 | 2042 | return; |
1047df1f | 2043 | kvm_mmu_mark_parents_unsync(sp); |
0074ff63 MT |
2044 | } |
2045 | ||
e8bc217a | 2046 | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, |
a4a8e6f7 | 2047 | struct kvm_mmu_page *sp) |
e8bc217a | 2048 | { |
1f50f1b3 | 2049 | return 0; |
e8bc217a MT |
2050 | } |
2051 | ||
7eb77e9f | 2052 | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root) |
a7052897 MT |
2053 | { |
2054 | } | |
2055 | ||
0f53b5b1 XG |
2056 | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, |
2057 | struct kvm_mmu_page *sp, u64 *spte, | |
7c562522 | 2058 | const void *pte) |
0f53b5b1 XG |
2059 | { |
2060 | WARN_ON(1); | |
2061 | } | |
2062 | ||
60c8aec6 MT |
2063 | #define KVM_PAGE_ARRAY_NR 16 |
2064 | ||
2065 | struct kvm_mmu_pages { | |
2066 | struct mmu_page_and_offset { | |
2067 | struct kvm_mmu_page *sp; | |
2068 | unsigned int idx; | |
2069 | } page[KVM_PAGE_ARRAY_NR]; | |
2070 | unsigned int nr; | |
2071 | }; | |
2072 | ||
cded19f3 HE |
2073 | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
2074 | int idx) | |
4731d4c7 | 2075 | { |
60c8aec6 | 2076 | int i; |
4731d4c7 | 2077 | |
60c8aec6 MT |
2078 | if (sp->unsync) |
2079 | for (i=0; i < pvec->nr; i++) | |
2080 | if (pvec->page[i].sp == sp) | |
2081 | return 0; | |
2082 | ||
2083 | pvec->page[pvec->nr].sp = sp; | |
2084 | pvec->page[pvec->nr].idx = idx; | |
2085 | pvec->nr++; | |
2086 | return (pvec->nr == KVM_PAGE_ARRAY_NR); | |
2087 | } | |
2088 | ||
fd951457 TY |
2089 | static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) |
2090 | { | |
2091 | --sp->unsync_children; | |
2092 | WARN_ON((int)sp->unsync_children < 0); | |
2093 | __clear_bit(idx, sp->unsync_child_bitmap); | |
2094 | } | |
2095 | ||
60c8aec6 MT |
2096 | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
2097 | struct kvm_mmu_pages *pvec) | |
2098 | { | |
2099 | int i, ret, nr_unsync_leaf = 0; | |
4731d4c7 | 2100 | |
37178b8b | 2101 | for_each_set_bit(i, sp->unsync_child_bitmap, 512) { |
7a8f1a74 | 2102 | struct kvm_mmu_page *child; |
4731d4c7 MT |
2103 | u64 ent = sp->spt[i]; |
2104 | ||
fd951457 TY |
2105 | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { |
2106 | clear_unsync_child_bit(sp, i); | |
2107 | continue; | |
2108 | } | |
7a8f1a74 XG |
2109 | |
2110 | child = page_header(ent & PT64_BASE_ADDR_MASK); | |
2111 | ||
2112 | if (child->unsync_children) { | |
2113 | if (mmu_pages_add(pvec, child, i)) | |
2114 | return -ENOSPC; | |
2115 | ||
2116 | ret = __mmu_unsync_walk(child, pvec); | |
fd951457 TY |
2117 | if (!ret) { |
2118 | clear_unsync_child_bit(sp, i); | |
2119 | continue; | |
2120 | } else if (ret > 0) { | |
7a8f1a74 | 2121 | nr_unsync_leaf += ret; |
fd951457 | 2122 | } else |
7a8f1a74 XG |
2123 | return ret; |
2124 | } else if (child->unsync) { | |
2125 | nr_unsync_leaf++; | |
2126 | if (mmu_pages_add(pvec, child, i)) | |
2127 | return -ENOSPC; | |
2128 | } else | |
fd951457 | 2129 | clear_unsync_child_bit(sp, i); |
4731d4c7 MT |
2130 | } |
2131 | ||
60c8aec6 MT |
2132 | return nr_unsync_leaf; |
2133 | } | |
2134 | ||
e23d3fef XG |
2135 | #define INVALID_INDEX (-1) |
2136 | ||
60c8aec6 MT |
2137 | static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
2138 | struct kvm_mmu_pages *pvec) | |
2139 | { | |
0a47cd85 | 2140 | pvec->nr = 0; |
60c8aec6 MT |
2141 | if (!sp->unsync_children) |
2142 | return 0; | |
2143 | ||
e23d3fef | 2144 | mmu_pages_add(pvec, sp, INVALID_INDEX); |
60c8aec6 | 2145 | return __mmu_unsync_walk(sp, pvec); |
4731d4c7 MT |
2146 | } |
2147 | ||
4731d4c7 MT |
2148 | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
2149 | { | |
2150 | WARN_ON(!sp->unsync); | |
5e1b3ddb | 2151 | trace_kvm_mmu_sync_page(sp); |
4731d4c7 MT |
2152 | sp->unsync = 0; |
2153 | --kvm->stat.mmu_unsync; | |
2154 | } | |
2155 | ||
7775834a XG |
2156 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
2157 | struct list_head *invalid_list); | |
2158 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, | |
2159 | struct list_head *invalid_list); | |
4731d4c7 | 2160 | |
f34d251d XG |
2161 | /* |
2162 | * NOTE: we should pay more attention on the zapped-obsolete page | |
2163 | * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk | |
2164 | * since it has been deleted from active_mmu_pages but still can be found | |
2165 | * at hast list. | |
2166 | * | |
f3414bc7 | 2167 | * for_each_valid_sp() has skipped that kind of pages. |
f34d251d | 2168 | */ |
f3414bc7 | 2169 | #define for_each_valid_sp(_kvm, _sp, _gfn) \ |
1044b030 TY |
2170 | hlist_for_each_entry(_sp, \ |
2171 | &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ | |
f3414bc7 DM |
2172 | if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \ |
2173 | } else | |
1044b030 TY |
2174 | |
2175 | #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ | |
f3414bc7 DM |
2176 | for_each_valid_sp(_kvm, _sp, _gfn) \ |
2177 | if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else | |
7ae680eb | 2178 | |
f918b443 | 2179 | /* @sp->gfn should be write-protected at the call site */ |
1f50f1b3 PB |
2180 | static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
2181 | struct list_head *invalid_list) | |
4731d4c7 | 2182 | { |
450917b6 | 2183 | if (sp->role.cr4_pae != !!is_pae(vcpu) |
44dd3ffa | 2184 | || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { |
d98ba053 | 2185 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
1f50f1b3 | 2186 | return false; |
4731d4c7 MT |
2187 | } |
2188 | ||
1f50f1b3 | 2189 | return true; |
4731d4c7 MT |
2190 | } |
2191 | ||
35a70510 PB |
2192 | static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, |
2193 | struct list_head *invalid_list, | |
2194 | bool remote_flush, bool local_flush) | |
1d9dc7e0 | 2195 | { |
35a70510 PB |
2196 | if (!list_empty(invalid_list)) { |
2197 | kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list); | |
2198 | return; | |
2199 | } | |
d98ba053 | 2200 | |
35a70510 PB |
2201 | if (remote_flush) |
2202 | kvm_flush_remote_tlbs(vcpu->kvm); | |
2203 | else if (local_flush) | |
2204 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | |
1d9dc7e0 XG |
2205 | } |
2206 | ||
e37fa785 XG |
2207 | #ifdef CONFIG_KVM_MMU_AUDIT |
2208 | #include "mmu_audit.c" | |
2209 | #else | |
2210 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } | |
2211 | static void mmu_audit_disable(void) { } | |
2212 | #endif | |
2213 | ||
46971a2f XG |
2214 | static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) |
2215 | { | |
2216 | return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); | |
2217 | } | |
2218 | ||
1f50f1b3 | 2219 | static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
d98ba053 | 2220 | struct list_head *invalid_list) |
1d9dc7e0 | 2221 | { |
9a43c5d9 PB |
2222 | kvm_unlink_unsync_page(vcpu->kvm, sp); |
2223 | return __kvm_sync_page(vcpu, sp, invalid_list); | |
1d9dc7e0 XG |
2224 | } |
2225 | ||
9f1a122f | 2226 | /* @gfn should be write-protected at the call site */ |
2a74003a PB |
2227 | static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, |
2228 | struct list_head *invalid_list) | |
9f1a122f | 2229 | { |
9f1a122f | 2230 | struct kvm_mmu_page *s; |
2a74003a | 2231 | bool ret = false; |
9f1a122f | 2232 | |
b67bfe0d | 2233 | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { |
7ae680eb | 2234 | if (!s->unsync) |
9f1a122f XG |
2235 | continue; |
2236 | ||
2237 | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); | |
2a74003a | 2238 | ret |= kvm_sync_page(vcpu, s, invalid_list); |
9f1a122f XG |
2239 | } |
2240 | ||
2a74003a | 2241 | return ret; |
9f1a122f XG |
2242 | } |
2243 | ||
60c8aec6 | 2244 | struct mmu_page_path { |
2a7266a8 YZ |
2245 | struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; |
2246 | unsigned int idx[PT64_ROOT_MAX_LEVEL]; | |
4731d4c7 MT |
2247 | }; |
2248 | ||
60c8aec6 | 2249 | #define for_each_sp(pvec, sp, parents, i) \ |
0a47cd85 | 2250 | for (i = mmu_pages_first(&pvec, &parents); \ |
60c8aec6 MT |
2251 | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
2252 | i = mmu_pages_next(&pvec, &parents, i)) | |
2253 | ||
cded19f3 HE |
2254 | static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
2255 | struct mmu_page_path *parents, | |
2256 | int i) | |
60c8aec6 MT |
2257 | { |
2258 | int n; | |
2259 | ||
2260 | for (n = i+1; n < pvec->nr; n++) { | |
2261 | struct kvm_mmu_page *sp = pvec->page[n].sp; | |
0a47cd85 PB |
2262 | unsigned idx = pvec->page[n].idx; |
2263 | int level = sp->role.level; | |
60c8aec6 | 2264 | |
0a47cd85 PB |
2265 | parents->idx[level-1] = idx; |
2266 | if (level == PT_PAGE_TABLE_LEVEL) | |
2267 | break; | |
60c8aec6 | 2268 | |
0a47cd85 | 2269 | parents->parent[level-2] = sp; |
60c8aec6 MT |
2270 | } |
2271 | ||
2272 | return n; | |
2273 | } | |
2274 | ||
0a47cd85 PB |
2275 | static int mmu_pages_first(struct kvm_mmu_pages *pvec, |
2276 | struct mmu_page_path *parents) | |
2277 | { | |
2278 | struct kvm_mmu_page *sp; | |
2279 | int level; | |
2280 | ||
2281 | if (pvec->nr == 0) | |
2282 | return 0; | |
2283 | ||
e23d3fef XG |
2284 | WARN_ON(pvec->page[0].idx != INVALID_INDEX); |
2285 | ||
0a47cd85 PB |
2286 | sp = pvec->page[0].sp; |
2287 | level = sp->role.level; | |
2288 | WARN_ON(level == PT_PAGE_TABLE_LEVEL); | |
2289 | ||
2290 | parents->parent[level-2] = sp; | |
2291 | ||
2292 | /* Also set up a sentinel. Further entries in pvec are all | |
2293 | * children of sp, so this element is never overwritten. | |
2294 | */ | |
2295 | parents->parent[level-1] = NULL; | |
2296 | return mmu_pages_next(pvec, parents, 0); | |
2297 | } | |
2298 | ||
cded19f3 | 2299 | static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
4731d4c7 | 2300 | { |
60c8aec6 MT |
2301 | struct kvm_mmu_page *sp; |
2302 | unsigned int level = 0; | |
2303 | ||
2304 | do { | |
2305 | unsigned int idx = parents->idx[level]; | |
60c8aec6 MT |
2306 | sp = parents->parent[level]; |
2307 | if (!sp) | |
2308 | return; | |
2309 | ||
e23d3fef | 2310 | WARN_ON(idx == INVALID_INDEX); |
fd951457 | 2311 | clear_unsync_child_bit(sp, idx); |
60c8aec6 | 2312 | level++; |
0a47cd85 | 2313 | } while (!sp->unsync_children); |
60c8aec6 | 2314 | } |
4731d4c7 | 2315 | |
60c8aec6 MT |
2316 | static void mmu_sync_children(struct kvm_vcpu *vcpu, |
2317 | struct kvm_mmu_page *parent) | |
2318 | { | |
2319 | int i; | |
2320 | struct kvm_mmu_page *sp; | |
2321 | struct mmu_page_path parents; | |
2322 | struct kvm_mmu_pages pages; | |
d98ba053 | 2323 | LIST_HEAD(invalid_list); |
50c9e6f3 | 2324 | bool flush = false; |
60c8aec6 | 2325 | |
60c8aec6 | 2326 | while (mmu_unsync_walk(parent, &pages)) { |
2f84569f | 2327 | bool protected = false; |
b1a36821 MT |
2328 | |
2329 | for_each_sp(pages, sp, parents, i) | |
54bf36aa | 2330 | protected |= rmap_write_protect(vcpu, sp->gfn); |
b1a36821 | 2331 | |
50c9e6f3 | 2332 | if (protected) { |
b1a36821 | 2333 | kvm_flush_remote_tlbs(vcpu->kvm); |
50c9e6f3 PB |
2334 | flush = false; |
2335 | } | |
b1a36821 | 2336 | |
60c8aec6 | 2337 | for_each_sp(pages, sp, parents, i) { |
1f50f1b3 | 2338 | flush |= kvm_sync_page(vcpu, sp, &invalid_list); |
60c8aec6 MT |
2339 | mmu_pages_clear_parents(&parents); |
2340 | } | |
50c9e6f3 PB |
2341 | if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { |
2342 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
2343 | cond_resched_lock(&vcpu->kvm->mmu_lock); | |
2344 | flush = false; | |
2345 | } | |
60c8aec6 | 2346 | } |
50c9e6f3 PB |
2347 | |
2348 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
4731d4c7 MT |
2349 | } |
2350 | ||
a30f47cb XG |
2351 | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) |
2352 | { | |
e5691a81 | 2353 | atomic_set(&sp->write_flooding_count, 0); |
a30f47cb XG |
2354 | } |
2355 | ||
2356 | static void clear_sp_write_flooding_count(u64 *spte) | |
2357 | { | |
2358 | struct kvm_mmu_page *sp = page_header(__pa(spte)); | |
2359 | ||
2360 | __clear_sp_write_flooding_count(sp); | |
2361 | } | |
2362 | ||
cea0f0e7 AK |
2363 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
2364 | gfn_t gfn, | |
2365 | gva_t gaddr, | |
2366 | unsigned level, | |
f6e2c02b | 2367 | int direct, |
bb11c6c9 | 2368 | unsigned access) |
cea0f0e7 AK |
2369 | { |
2370 | union kvm_mmu_page_role role; | |
cea0f0e7 | 2371 | unsigned quadrant; |
9f1a122f | 2372 | struct kvm_mmu_page *sp; |
9f1a122f | 2373 | bool need_sync = false; |
2a74003a | 2374 | bool flush = false; |
f3414bc7 | 2375 | int collisions = 0; |
2a74003a | 2376 | LIST_HEAD(invalid_list); |
cea0f0e7 | 2377 | |
36d9594d | 2378 | role = vcpu->arch.mmu->mmu_role.base; |
cea0f0e7 | 2379 | role.level = level; |
f6e2c02b | 2380 | role.direct = direct; |
84b0c8c6 | 2381 | if (role.direct) |
5b7e0102 | 2382 | role.cr4_pae = 0; |
41074d07 | 2383 | role.access = access; |
44dd3ffa VK |
2384 | if (!vcpu->arch.mmu->direct_map |
2385 | && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { | |
cea0f0e7 AK |
2386 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
2387 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | |
2388 | role.quadrant = quadrant; | |
2389 | } | |
f3414bc7 DM |
2390 | for_each_valid_sp(vcpu->kvm, sp, gfn) { |
2391 | if (sp->gfn != gfn) { | |
2392 | collisions++; | |
2393 | continue; | |
2394 | } | |
2395 | ||
7ae680eb XG |
2396 | if (!need_sync && sp->unsync) |
2397 | need_sync = true; | |
4731d4c7 | 2398 | |
7ae680eb XG |
2399 | if (sp->role.word != role.word) |
2400 | continue; | |
4731d4c7 | 2401 | |
2a74003a PB |
2402 | if (sp->unsync) { |
2403 | /* The page is good, but __kvm_sync_page might still end | |
2404 | * up zapping it. If so, break in order to rebuild it. | |
2405 | */ | |
2406 | if (!__kvm_sync_page(vcpu, sp, &invalid_list)) | |
2407 | break; | |
2408 | ||
2409 | WARN_ON(!list_empty(&invalid_list)); | |
2410 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | |
2411 | } | |
e02aa901 | 2412 | |
98bba238 | 2413 | if (sp->unsync_children) |
a8eeb04a | 2414 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
e02aa901 | 2415 | |
a30f47cb | 2416 | __clear_sp_write_flooding_count(sp); |
7ae680eb | 2417 | trace_kvm_mmu_get_page(sp, false); |
f3414bc7 | 2418 | goto out; |
7ae680eb | 2419 | } |
47005792 | 2420 | |
dfc5aa00 | 2421 | ++vcpu->kvm->stat.mmu_cache_miss; |
47005792 TY |
2422 | |
2423 | sp = kvm_mmu_alloc_page(vcpu, direct); | |
2424 | ||
4db35314 AK |
2425 | sp->gfn = gfn; |
2426 | sp->role = role; | |
7ae680eb XG |
2427 | hlist_add_head(&sp->hash_link, |
2428 | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); | |
f6e2c02b | 2429 | if (!direct) { |
56ca57f9 XG |
2430 | /* |
2431 | * we should do write protection before syncing pages | |
2432 | * otherwise the content of the synced shadow page may | |
2433 | * be inconsistent with guest page table. | |
2434 | */ | |
2435 | account_shadowed(vcpu->kvm, sp); | |
2436 | if (level == PT_PAGE_TABLE_LEVEL && | |
2437 | rmap_write_protect(vcpu, gfn)) | |
b1a36821 | 2438 | kvm_flush_remote_tlbs(vcpu->kvm); |
9f1a122f | 2439 | |
9f1a122f | 2440 | if (level > PT_PAGE_TABLE_LEVEL && need_sync) |
2a74003a | 2441 | flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); |
4731d4c7 | 2442 | } |
5304b8d3 | 2443 | sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; |
77492664 | 2444 | clear_page(sp->spt); |
f691fe1d | 2445 | trace_kvm_mmu_get_page(sp, true); |
2a74003a PB |
2446 | |
2447 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); | |
f3414bc7 DM |
2448 | out: |
2449 | if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) | |
2450 | vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; | |
4db35314 | 2451 | return sp; |
cea0f0e7 AK |
2452 | } |
2453 | ||
7eb77e9f JS |
2454 | static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, |
2455 | struct kvm_vcpu *vcpu, hpa_t root, | |
2456 | u64 addr) | |
2d11123a AK |
2457 | { |
2458 | iterator->addr = addr; | |
7eb77e9f | 2459 | iterator->shadow_addr = root; |
44dd3ffa | 2460 | iterator->level = vcpu->arch.mmu->shadow_root_level; |
81407ca5 | 2461 | |
2a7266a8 | 2462 | if (iterator->level == PT64_ROOT_4LEVEL && |
44dd3ffa VK |
2463 | vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && |
2464 | !vcpu->arch.mmu->direct_map) | |
81407ca5 JR |
2465 | --iterator->level; |
2466 | ||
2d11123a | 2467 | if (iterator->level == PT32E_ROOT_LEVEL) { |
7eb77e9f JS |
2468 | /* |
2469 | * prev_root is currently only used for 64-bit hosts. So only | |
2470 | * the active root_hpa is valid here. | |
2471 | */ | |
44dd3ffa | 2472 | BUG_ON(root != vcpu->arch.mmu->root_hpa); |
7eb77e9f | 2473 | |
2d11123a | 2474 | iterator->shadow_addr |
44dd3ffa | 2475 | = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; |
2d11123a AK |
2476 | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; |
2477 | --iterator->level; | |
2478 | if (!iterator->shadow_addr) | |
2479 | iterator->level = 0; | |
2480 | } | |
2481 | } | |
2482 | ||
7eb77e9f JS |
2483 | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
2484 | struct kvm_vcpu *vcpu, u64 addr) | |
2485 | { | |
44dd3ffa | 2486 | shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, |
7eb77e9f JS |
2487 | addr); |
2488 | } | |
2489 | ||
2d11123a AK |
2490 | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) |
2491 | { | |
2492 | if (iterator->level < PT_PAGE_TABLE_LEVEL) | |
2493 | return false; | |
4d88954d | 2494 | |
2d11123a AK |
2495 | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); |
2496 | iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; | |
2497 | return true; | |
2498 | } | |
2499 | ||
c2a2ac2b XG |
2500 | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, |
2501 | u64 spte) | |
2d11123a | 2502 | { |
c2a2ac2b | 2503 | if (is_last_spte(spte, iterator->level)) { |
052331be XG |
2504 | iterator->level = 0; |
2505 | return; | |
2506 | } | |
2507 | ||
c2a2ac2b | 2508 | iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; |
2d11123a AK |
2509 | --iterator->level; |
2510 | } | |
2511 | ||
c2a2ac2b XG |
2512 | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
2513 | { | |
bb606a9b | 2514 | __shadow_walk_next(iterator, *iterator->sptep); |
c2a2ac2b XG |
2515 | } |
2516 | ||
98bba238 TY |
2517 | static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, |
2518 | struct kvm_mmu_page *sp) | |
32ef26a3 AK |
2519 | { |
2520 | u64 spte; | |
2521 | ||
ffb128c8 | 2522 | BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); |
7a1638ce | 2523 | |
ffb128c8 | 2524 | spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | |
d0ec49d4 | 2525 | shadow_user_mask | shadow_x_mask | shadow_me_mask; |
ac8d57e5 PF |
2526 | |
2527 | if (sp_ad_disabled(sp)) | |
2528 | spte |= shadow_acc_track_value; | |
2529 | else | |
2530 | spte |= shadow_accessed_mask; | |
24db2734 | 2531 | |
1df9f2dc | 2532 | mmu_spte_set(sptep, spte); |
98bba238 TY |
2533 | |
2534 | mmu_page_add_parent_pte(vcpu, sp, sptep); | |
2535 | ||
2536 | if (sp->unsync_children || sp->unsync) | |
2537 | mark_unsync(sptep); | |
32ef26a3 AK |
2538 | } |
2539 | ||
a357bd22 AK |
2540 | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
2541 | unsigned direct_access) | |
2542 | { | |
2543 | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { | |
2544 | struct kvm_mmu_page *child; | |
2545 | ||
2546 | /* | |
2547 | * For the direct sp, if the guest pte's dirty bit | |
2548 | * changed form clean to dirty, it will corrupt the | |
2549 | * sp's access: allow writable in the read-only sp, | |
2550 | * so we should update the spte at this point to get | |
2551 | * a new sp with the correct access. | |
2552 | */ | |
2553 | child = page_header(*sptep & PT64_BASE_ADDR_MASK); | |
2554 | if (child->role.access == direct_access) | |
2555 | return; | |
2556 | ||
bcdd9a93 | 2557 | drop_parent_pte(child, sptep); |
a357bd22 AK |
2558 | kvm_flush_remote_tlbs(vcpu->kvm); |
2559 | } | |
2560 | } | |
2561 | ||
505aef8f | 2562 | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
38e3b2b2 XG |
2563 | u64 *spte) |
2564 | { | |
2565 | u64 pte; | |
2566 | struct kvm_mmu_page *child; | |
2567 | ||
2568 | pte = *spte; | |
2569 | if (is_shadow_present_pte(pte)) { | |
505aef8f | 2570 | if (is_last_spte(pte, sp->role.level)) { |
c3707958 | 2571 | drop_spte(kvm, spte); |
505aef8f XG |
2572 | if (is_large_pte(pte)) |
2573 | --kvm->stat.lpages; | |
2574 | } else { | |
38e3b2b2 | 2575 | child = page_header(pte & PT64_BASE_ADDR_MASK); |
bcdd9a93 | 2576 | drop_parent_pte(child, spte); |
38e3b2b2 | 2577 | } |
505aef8f XG |
2578 | return true; |
2579 | } | |
2580 | ||
2581 | if (is_mmio_spte(pte)) | |
ce88decf | 2582 | mmu_spte_clear_no_track(spte); |
c3707958 | 2583 | |
505aef8f | 2584 | return false; |
38e3b2b2 XG |
2585 | } |
2586 | ||
90cb0529 | 2587 | static void kvm_mmu_page_unlink_children(struct kvm *kvm, |
4db35314 | 2588 | struct kvm_mmu_page *sp) |
a436036b | 2589 | { |
697fe2e2 | 2590 | unsigned i; |
697fe2e2 | 2591 | |
38e3b2b2 XG |
2592 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
2593 | mmu_page_zap_pte(kvm, sp, sp->spt + i); | |
a436036b AK |
2594 | } |
2595 | ||
31aa2b44 | 2596 | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
a436036b | 2597 | { |
1e3f42f0 TY |
2598 | u64 *sptep; |
2599 | struct rmap_iterator iter; | |
a436036b | 2600 | |
018aabb5 | 2601 | while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) |
1e3f42f0 | 2602 | drop_parent_pte(sp, sptep); |
31aa2b44 AK |
2603 | } |
2604 | ||
60c8aec6 | 2605 | static int mmu_zap_unsync_children(struct kvm *kvm, |
7775834a XG |
2606 | struct kvm_mmu_page *parent, |
2607 | struct list_head *invalid_list) | |
4731d4c7 | 2608 | { |
60c8aec6 MT |
2609 | int i, zapped = 0; |
2610 | struct mmu_page_path parents; | |
2611 | struct kvm_mmu_pages pages; | |
4731d4c7 | 2612 | |
60c8aec6 | 2613 | if (parent->role.level == PT_PAGE_TABLE_LEVEL) |
4731d4c7 | 2614 | return 0; |
60c8aec6 | 2615 | |
60c8aec6 MT |
2616 | while (mmu_unsync_walk(parent, &pages)) { |
2617 | struct kvm_mmu_page *sp; | |
2618 | ||
2619 | for_each_sp(pages, sp, parents, i) { | |
7775834a | 2620 | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
60c8aec6 | 2621 | mmu_pages_clear_parents(&parents); |
77662e00 | 2622 | zapped++; |
60c8aec6 | 2623 | } |
60c8aec6 MT |
2624 | } |
2625 | ||
2626 | return zapped; | |
4731d4c7 MT |
2627 | } |
2628 | ||
7775834a XG |
2629 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
2630 | struct list_head *invalid_list) | |
31aa2b44 | 2631 | { |
4731d4c7 | 2632 | int ret; |
f691fe1d | 2633 | |
7775834a | 2634 | trace_kvm_mmu_prepare_zap_page(sp); |
31aa2b44 | 2635 | ++kvm->stat.mmu_shadow_zapped; |
7775834a | 2636 | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); |
4db35314 | 2637 | kvm_mmu_page_unlink_children(kvm, sp); |
31aa2b44 | 2638 | kvm_mmu_unlink_parents(kvm, sp); |
5304b8d3 | 2639 | |
f6e2c02b | 2640 | if (!sp->role.invalid && !sp->role.direct) |
3ed1a478 | 2641 | unaccount_shadowed(kvm, sp); |
5304b8d3 | 2642 | |
4731d4c7 MT |
2643 | if (sp->unsync) |
2644 | kvm_unlink_unsync_page(kvm, sp); | |
4db35314 | 2645 | if (!sp->root_count) { |
54a4f023 GJ |
2646 | /* Count self */ |
2647 | ret++; | |
7775834a | 2648 | list_move(&sp->link, invalid_list); |
aa6bd187 | 2649 | kvm_mod_used_mmu_pages(kvm, -1); |
2e53d63a | 2650 | } else { |
5b5c6a5a | 2651 | list_move(&sp->link, &kvm->arch.active_mmu_pages); |
05988d72 GN |
2652 | |
2653 | /* | |
2654 | * The obsolete pages can not be used on any vcpus. | |
2655 | * See the comments in kvm_mmu_invalidate_zap_all_pages(). | |
2656 | */ | |
2657 | if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) | |
2658 | kvm_reload_remote_mmus(kvm); | |
2e53d63a | 2659 | } |
7775834a XG |
2660 | |
2661 | sp->role.invalid = 1; | |
4731d4c7 | 2662 | return ret; |
a436036b AK |
2663 | } |
2664 | ||
7775834a XG |
2665 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
2666 | struct list_head *invalid_list) | |
2667 | { | |
945315b9 | 2668 | struct kvm_mmu_page *sp, *nsp; |
7775834a XG |
2669 | |
2670 | if (list_empty(invalid_list)) | |
2671 | return; | |
2672 | ||
c142786c | 2673 | /* |
9753f529 LT |
2674 | * We need to make sure everyone sees our modifications to |
2675 | * the page tables and see changes to vcpu->mode here. The barrier | |
2676 | * in the kvm_flush_remote_tlbs() achieves this. This pairs | |
2677 | * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. | |
2678 | * | |
2679 | * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit | |
2680 | * guest mode and/or lockless shadow page table walks. | |
c142786c AK |
2681 | */ |
2682 | kvm_flush_remote_tlbs(kvm); | |
c2a2ac2b | 2683 | |
945315b9 | 2684 | list_for_each_entry_safe(sp, nsp, invalid_list, link) { |
7775834a | 2685 | WARN_ON(!sp->role.invalid || sp->root_count); |
aa6bd187 | 2686 | kvm_mmu_free_page(sp); |
945315b9 | 2687 | } |
7775834a XG |
2688 | } |
2689 | ||
5da59607 TY |
2690 | static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, |
2691 | struct list_head *invalid_list) | |
2692 | { | |
2693 | struct kvm_mmu_page *sp; | |
2694 | ||
2695 | if (list_empty(&kvm->arch.active_mmu_pages)) | |
2696 | return false; | |
2697 | ||
d74c0e6b GT |
2698 | sp = list_last_entry(&kvm->arch.active_mmu_pages, |
2699 | struct kvm_mmu_page, link); | |
42bcbebf | 2700 | return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
5da59607 TY |
2701 | } |
2702 | ||
82ce2c96 IE |
2703 | /* |
2704 | * Changing the number of mmu pages allocated to the vm | |
49d5ca26 | 2705 | * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
82ce2c96 | 2706 | */ |
49d5ca26 | 2707 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages) |
82ce2c96 | 2708 | { |
d98ba053 | 2709 | LIST_HEAD(invalid_list); |
82ce2c96 | 2710 | |
b34cb590 TY |
2711 | spin_lock(&kvm->mmu_lock); |
2712 | ||
49d5ca26 | 2713 | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
5da59607 TY |
2714 | /* Need to free some mmu pages to achieve the goal. */ |
2715 | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) | |
2716 | if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) | |
2717 | break; | |
82ce2c96 | 2718 | |
aa6bd187 | 2719 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
49d5ca26 | 2720 | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
82ce2c96 | 2721 | } |
82ce2c96 | 2722 | |
49d5ca26 | 2723 | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
b34cb590 TY |
2724 | |
2725 | spin_unlock(&kvm->mmu_lock); | |
82ce2c96 IE |
2726 | } |
2727 | ||
1cb3f3ae | 2728 | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
a436036b | 2729 | { |
4db35314 | 2730 | struct kvm_mmu_page *sp; |
d98ba053 | 2731 | LIST_HEAD(invalid_list); |
a436036b AK |
2732 | int r; |
2733 | ||
9ad17b10 | 2734 | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
a436036b | 2735 | r = 0; |
1cb3f3ae | 2736 | spin_lock(&kvm->mmu_lock); |
b67bfe0d | 2737 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { |
9ad17b10 | 2738 | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
7ae680eb XG |
2739 | sp->role.word); |
2740 | r = 1; | |
f41d335a | 2741 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
7ae680eb | 2742 | } |
d98ba053 | 2743 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
1cb3f3ae XG |
2744 | spin_unlock(&kvm->mmu_lock); |
2745 | ||
a436036b | 2746 | return r; |
cea0f0e7 | 2747 | } |
1cb3f3ae | 2748 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); |
cea0f0e7 | 2749 | |
5c520e90 | 2750 | static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
9cf5cf5a XG |
2751 | { |
2752 | trace_kvm_mmu_unsync_page(sp); | |
2753 | ++vcpu->kvm->stat.mmu_unsync; | |
2754 | sp->unsync = 1; | |
2755 | ||
2756 | kvm_mmu_mark_parents_unsync(sp); | |
9cf5cf5a XG |
2757 | } |
2758 | ||
3d0c27ad XG |
2759 | static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, |
2760 | bool can_unsync) | |
4731d4c7 | 2761 | { |
5c520e90 | 2762 | struct kvm_mmu_page *sp; |
4731d4c7 | 2763 | |
3d0c27ad XG |
2764 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) |
2765 | return true; | |
9cf5cf5a | 2766 | |
5c520e90 | 2767 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
36a2e677 | 2768 | if (!can_unsync) |
3d0c27ad | 2769 | return true; |
36a2e677 | 2770 | |
5c520e90 XG |
2771 | if (sp->unsync) |
2772 | continue; | |
9cf5cf5a | 2773 | |
5c520e90 XG |
2774 | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); |
2775 | kvm_unsync_page(vcpu, sp); | |
4731d4c7 | 2776 | } |
3d0c27ad | 2777 | |
578e1c4d JS |
2778 | /* |
2779 | * We need to ensure that the marking of unsync pages is visible | |
2780 | * before the SPTE is updated to allow writes because | |
2781 | * kvm_mmu_sync_roots() checks the unsync flags without holding | |
2782 | * the MMU lock and so can race with this. If the SPTE was updated | |
2783 | * before the page had been marked as unsync-ed, something like the | |
2784 | * following could happen: | |
2785 | * | |
2786 | * CPU 1 CPU 2 | |
2787 | * --------------------------------------------------------------------- | |
2788 | * 1.2 Host updates SPTE | |
2789 | * to be writable | |
2790 | * 2.1 Guest writes a GPTE for GVA X. | |
2791 | * (GPTE being in the guest page table shadowed | |
2792 | * by the SP from CPU 1.) | |
2793 | * This reads SPTE during the page table walk. | |
2794 | * Since SPTE.W is read as 1, there is no | |
2795 | * fault. | |
2796 | * | |
2797 | * 2.2 Guest issues TLB flush. | |
2798 | * That causes a VM Exit. | |
2799 | * | |
2800 | * 2.3 kvm_mmu_sync_pages() reads sp->unsync. | |
2801 | * Since it is false, so it just returns. | |
2802 | * | |
2803 | * 2.4 Guest accesses GVA X. | |
2804 | * Since the mapping in the SP was not updated, | |
2805 | * so the old mapping for GVA X incorrectly | |
2806 | * gets used. | |
2807 | * 1.1 Host marks SP | |
2808 | * as unsync | |
2809 | * (sp->unsync = true) | |
2810 | * | |
2811 | * The write barrier below ensures that 1.1 happens before 1.2 and thus | |
2812 | * the situation in 2.4 does not arise. The implicit barrier in 2.2 | |
2813 | * pairs with this write barrier. | |
2814 | */ | |
2815 | smp_wmb(); | |
2816 | ||
3d0c27ad | 2817 | return false; |
4731d4c7 MT |
2818 | } |
2819 | ||
ba049e93 | 2820 | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
d1fe9219 PB |
2821 | { |
2822 | if (pfn_valid(pfn)) | |
aa2e063a HZ |
2823 | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && |
2824 | /* | |
2825 | * Some reserved pages, such as those from NVDIMM | |
2826 | * DAX devices, are not for MMIO, and can be mapped | |
2827 | * with cached memory type for better performance. | |
2828 | * However, the above check misconceives those pages | |
2829 | * as MMIO, and results in KVM mapping them with UC | |
2830 | * memory type, which would hurt the performance. | |
2831 | * Therefore, we check the host memory type in addition | |
2832 | * and only treat UC/UC-/WC pages as MMIO. | |
2833 | */ | |
2834 | (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); | |
d1fe9219 PB |
2835 | |
2836 | return true; | |
2837 | } | |
2838 | ||
5ce4786f JS |
2839 | /* Bits which may be returned by set_spte() */ |
2840 | #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) | |
2841 | #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) | |
2842 | ||
d555c333 | 2843 | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
c2288505 | 2844 | unsigned pte_access, int level, |
ba049e93 | 2845 | gfn_t gfn, kvm_pfn_t pfn, bool speculative, |
9bdbba13 | 2846 | bool can_unsync, bool host_writable) |
1c4f1fd6 | 2847 | { |
ffb128c8 | 2848 | u64 spte = 0; |
1e73f9dd | 2849 | int ret = 0; |
ac8d57e5 | 2850 | struct kvm_mmu_page *sp; |
64d4d521 | 2851 | |
54bf36aa | 2852 | if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) |
ce88decf XG |
2853 | return 0; |
2854 | ||
ac8d57e5 PF |
2855 | sp = page_header(__pa(sptep)); |
2856 | if (sp_ad_disabled(sp)) | |
2857 | spte |= shadow_acc_track_value; | |
2858 | ||
d95c5568 BD |
2859 | /* |
2860 | * For the EPT case, shadow_present_mask is 0 if hardware | |
2861 | * supports exec-only page table entries. In that case, | |
2862 | * ACC_USER_MASK and shadow_user_mask are used to represent | |
2863 | * read access. See FNAME(gpte_access) in paging_tmpl.h. | |
2864 | */ | |
ffb128c8 | 2865 | spte |= shadow_present_mask; |
947da538 | 2866 | if (!speculative) |
ac8d57e5 | 2867 | spte |= spte_shadow_accessed_mask(spte); |
640d9b0d | 2868 | |
7b52345e SY |
2869 | if (pte_access & ACC_EXEC_MASK) |
2870 | spte |= shadow_x_mask; | |
2871 | else | |
2872 | spte |= shadow_nx_mask; | |
49fde340 | 2873 | |
1c4f1fd6 | 2874 | if (pte_access & ACC_USER_MASK) |
7b52345e | 2875 | spte |= shadow_user_mask; |
49fde340 | 2876 | |
852e3c19 | 2877 | if (level > PT_PAGE_TABLE_LEVEL) |
05da4558 | 2878 | spte |= PT_PAGE_SIZE_MASK; |
b0bc3ee2 | 2879 | if (tdp_enabled) |
4b12f0de | 2880 | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, |
d1fe9219 | 2881 | kvm_is_mmio_pfn(pfn)); |
1c4f1fd6 | 2882 | |
9bdbba13 | 2883 | if (host_writable) |
1403283a | 2884 | spte |= SPTE_HOST_WRITEABLE; |
f8e453b0 XG |
2885 | else |
2886 | pte_access &= ~ACC_WRITE_MASK; | |
1403283a | 2887 | |
daaf216c TL |
2888 | if (!kvm_is_mmio_pfn(pfn)) |
2889 | spte |= shadow_me_mask; | |
2890 | ||
35149e21 | 2891 | spte |= (u64)pfn << PAGE_SHIFT; |
1c4f1fd6 | 2892 | |
c2288505 | 2893 | if (pte_access & ACC_WRITE_MASK) { |
1c4f1fd6 | 2894 | |
c2193463 | 2895 | /* |
7751babd XG |
2896 | * Other vcpu creates new sp in the window between |
2897 | * mapping_level() and acquiring mmu-lock. We can | |
2898 | * allow guest to retry the access, the mapping can | |
2899 | * be fixed if guest refault. | |
c2193463 | 2900 | */ |
852e3c19 | 2901 | if (level > PT_PAGE_TABLE_LEVEL && |
92f94f1e | 2902 | mmu_gfn_lpage_is_disallowed(vcpu, gfn, level)) |
be38d276 | 2903 | goto done; |
38187c83 | 2904 | |
49fde340 | 2905 | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; |
1c4f1fd6 | 2906 | |
ecc5589f MT |
2907 | /* |
2908 | * Optimization: for pte sync, if spte was writable the hash | |
2909 | * lookup is unnecessary (and expensive). Write protection | |
2910 | * is responsibility of mmu_get_page / kvm_sync_page. | |
2911 | * Same reasoning can be applied to dirty page accounting. | |
2912 | */ | |
8dae4445 | 2913 | if (!can_unsync && is_writable_pte(*sptep)) |
ecc5589f MT |
2914 | goto set_pte; |
2915 | ||
4731d4c7 | 2916 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
9ad17b10 | 2917 | pgprintk("%s: found shadow page for %llx, marking ro\n", |
b8688d51 | 2918 | __func__, gfn); |
5ce4786f | 2919 | ret |= SET_SPTE_WRITE_PROTECTED_PT; |
1c4f1fd6 | 2920 | pte_access &= ~ACC_WRITE_MASK; |
49fde340 | 2921 | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); |
1c4f1fd6 AK |
2922 | } |
2923 | } | |
2924 | ||
9b51a630 | 2925 | if (pte_access & ACC_WRITE_MASK) { |
54bf36aa | 2926 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
ac8d57e5 | 2927 | spte |= spte_shadow_dirty_mask(spte); |
9b51a630 | 2928 | } |
1c4f1fd6 | 2929 | |
f160c7b7 JS |
2930 | if (speculative) |
2931 | spte = mark_spte_for_access_track(spte); | |
2932 | ||
38187c83 | 2933 | set_pte: |
6e7d0354 | 2934 | if (mmu_spte_update(sptep, spte)) |
5ce4786f | 2935 | ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; |
be38d276 | 2936 | done: |
1e73f9dd MT |
2937 | return ret; |
2938 | } | |
2939 | ||
9b8ebbdb PB |
2940 | static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, |
2941 | int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn, | |
2942 | bool speculative, bool host_writable) | |
1e73f9dd MT |
2943 | { |
2944 | int was_rmapped = 0; | |
53a27b39 | 2945 | int rmap_count; |
5ce4786f | 2946 | int set_spte_ret; |
9b8ebbdb | 2947 | int ret = RET_PF_RETRY; |
c2a4eadf | 2948 | bool flush = false; |
1e73f9dd | 2949 | |
f7616203 XG |
2950 | pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, |
2951 | *sptep, write_fault, gfn); | |
1e73f9dd | 2952 | |
afd28fe1 | 2953 | if (is_shadow_present_pte(*sptep)) { |
1e73f9dd MT |
2954 | /* |
2955 | * If we overwrite a PTE page pointer with a 2MB PMD, unlink | |
2956 | * the parent of the now unreachable PTE. | |
2957 | */ | |
852e3c19 JR |
2958 | if (level > PT_PAGE_TABLE_LEVEL && |
2959 | !is_large_pte(*sptep)) { | |
1e73f9dd | 2960 | struct kvm_mmu_page *child; |
d555c333 | 2961 | u64 pte = *sptep; |
1e73f9dd MT |
2962 | |
2963 | child = page_header(pte & PT64_BASE_ADDR_MASK); | |
bcdd9a93 | 2964 | drop_parent_pte(child, sptep); |
c2a4eadf | 2965 | flush = true; |
d555c333 | 2966 | } else if (pfn != spte_to_pfn(*sptep)) { |
9ad17b10 | 2967 | pgprintk("hfn old %llx new %llx\n", |
d555c333 | 2968 | spte_to_pfn(*sptep), pfn); |
c3707958 | 2969 | drop_spte(vcpu->kvm, sptep); |
c2a4eadf | 2970 | flush = true; |
6bed6b9e JR |
2971 | } else |
2972 | was_rmapped = 1; | |
1e73f9dd | 2973 | } |
852e3c19 | 2974 | |
5ce4786f JS |
2975 | set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, |
2976 | speculative, true, host_writable); | |
2977 | if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { | |
1e73f9dd | 2978 | if (write_fault) |
9b8ebbdb | 2979 | ret = RET_PF_EMULATE; |
77c3913b | 2980 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
a378b4e6 | 2981 | } |
c2a4eadf | 2982 | if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) |
5ce4786f | 2983 | kvm_flush_remote_tlbs(vcpu->kvm); |
1e73f9dd | 2984 | |
029499b4 | 2985 | if (unlikely(is_mmio_spte(*sptep))) |
9b8ebbdb | 2986 | ret = RET_PF_EMULATE; |
ce88decf | 2987 | |
d555c333 | 2988 | pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
9ad17b10 | 2989 | pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n", |
d555c333 | 2990 | is_large_pte(*sptep)? "2MB" : "4kB", |
f160c7b7 | 2991 | *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn, |
a205bc19 | 2992 | *sptep, sptep); |
d555c333 | 2993 | if (!was_rmapped && is_large_pte(*sptep)) |
05da4558 MT |
2994 | ++vcpu->kvm->stat.lpages; |
2995 | ||
ffb61bb3 | 2996 | if (is_shadow_present_pte(*sptep)) { |
ffb61bb3 XG |
2997 | if (!was_rmapped) { |
2998 | rmap_count = rmap_add(vcpu, sptep, gfn); | |
2999 | if (rmap_count > RMAP_RECYCLE_THRESHOLD) | |
3000 | rmap_recycle(vcpu, sptep, gfn); | |
3001 | } | |
1c4f1fd6 | 3002 | } |
cb9aaa30 | 3003 | |
f3ac1a4b | 3004 | kvm_release_pfn_clean(pfn); |
029499b4 | 3005 | |
9b8ebbdb | 3006 | return ret; |
1c4f1fd6 AK |
3007 | } |
3008 | ||
ba049e93 | 3009 | static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
957ed9ef XG |
3010 | bool no_dirty_log) |
3011 | { | |
3012 | struct kvm_memory_slot *slot; | |
957ed9ef | 3013 | |
5d163b1c | 3014 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); |
903816fa | 3015 | if (!slot) |
6c8ee57b | 3016 | return KVM_PFN_ERR_FAULT; |
957ed9ef | 3017 | |
037d92dc | 3018 | return gfn_to_pfn_memslot_atomic(slot, gfn); |
957ed9ef XG |
3019 | } |
3020 | ||
3021 | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, | |
3022 | struct kvm_mmu_page *sp, | |
3023 | u64 *start, u64 *end) | |
3024 | { | |
3025 | struct page *pages[PTE_PREFETCH_NUM]; | |
d9ef13c2 | 3026 | struct kvm_memory_slot *slot; |
957ed9ef XG |
3027 | unsigned access = sp->role.access; |
3028 | int i, ret; | |
3029 | gfn_t gfn; | |
3030 | ||
3031 | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); | |
d9ef13c2 PB |
3032 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); |
3033 | if (!slot) | |
957ed9ef XG |
3034 | return -1; |
3035 | ||
d9ef13c2 | 3036 | ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); |
957ed9ef XG |
3037 | if (ret <= 0) |
3038 | return -1; | |
3039 | ||
3040 | for (i = 0; i < ret; i++, gfn++, start++) | |
029499b4 TY |
3041 | mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, |
3042 | page_to_pfn(pages[i]), true, true); | |
957ed9ef XG |
3043 | |
3044 | return 0; | |
3045 | } | |
3046 | ||
3047 | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, | |
3048 | struct kvm_mmu_page *sp, u64 *sptep) | |
3049 | { | |
3050 | u64 *spte, *start = NULL; | |
3051 | int i; | |
3052 | ||
3053 | WARN_ON(!sp->role.direct); | |
3054 | ||
3055 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); | |
3056 | spte = sp->spt + i; | |
3057 | ||
3058 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { | |
c3707958 | 3059 | if (is_shadow_present_pte(*spte) || spte == sptep) { |
957ed9ef XG |
3060 | if (!start) |
3061 | continue; | |
3062 | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) | |
3063 | break; | |
3064 | start = NULL; | |
3065 | } else if (!start) | |
3066 | start = spte; | |
3067 | } | |
3068 | } | |
3069 | ||
3070 | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) | |
3071 | { | |
3072 | struct kvm_mmu_page *sp; | |
3073 | ||
ac8d57e5 PF |
3074 | sp = page_header(__pa(sptep)); |
3075 | ||
957ed9ef | 3076 | /* |
ac8d57e5 PF |
3077 | * Without accessed bits, there's no way to distinguish between |
3078 | * actually accessed translations and prefetched, so disable pte | |
3079 | * prefetch if accessed bits aren't available. | |
957ed9ef | 3080 | */ |
ac8d57e5 | 3081 | if (sp_ad_disabled(sp)) |
957ed9ef XG |
3082 | return; |
3083 | ||
957ed9ef XG |
3084 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
3085 | return; | |
3086 | ||
3087 | __direct_pte_prefetch(vcpu, sp, sptep); | |
3088 | } | |
3089 | ||
7ee0e5b2 | 3090 | static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable, |
ba049e93 | 3091 | int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault) |
140754bc | 3092 | { |
9f652d21 | 3093 | struct kvm_shadow_walk_iterator iterator; |
140754bc | 3094 | struct kvm_mmu_page *sp; |
b90a0e6c | 3095 | int emulate = 0; |
140754bc | 3096 | gfn_t pseudo_gfn; |
6aa8b732 | 3097 | |
44dd3ffa | 3098 | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
989c6b34 MT |
3099 | return 0; |
3100 | ||
9f652d21 | 3101 | for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) { |
852e3c19 | 3102 | if (iterator.level == level) { |
029499b4 TY |
3103 | emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, |
3104 | write, level, gfn, pfn, prefault, | |
3105 | map_writable); | |
957ed9ef | 3106 | direct_pte_prefetch(vcpu, iterator.sptep); |
9f652d21 AK |
3107 | ++vcpu->stat.pf_fixed; |
3108 | break; | |
6aa8b732 AK |
3109 | } |
3110 | ||
404381c5 | 3111 | drop_large_spte(vcpu, iterator.sptep); |
c3707958 | 3112 | if (!is_shadow_present_pte(*iterator.sptep)) { |
c9fa0b3b LJ |
3113 | u64 base_addr = iterator.addr; |
3114 | ||
3115 | base_addr &= PT64_LVL_ADDR_MASK(iterator.level); | |
3116 | pseudo_gfn = base_addr >> PAGE_SHIFT; | |
9f652d21 | 3117 | sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr, |
bb11c6c9 | 3118 | iterator.level - 1, 1, ACC_ALL); |
140754bc | 3119 | |
98bba238 | 3120 | link_shadow_page(vcpu, iterator.sptep, sp); |
9f652d21 AK |
3121 | } |
3122 | } | |
b90a0e6c | 3123 | return emulate; |
6aa8b732 AK |
3124 | } |
3125 | ||
77db5cbd | 3126 | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) |
bf998156 | 3127 | { |
77db5cbd YH |
3128 | siginfo_t info; |
3129 | ||
3eb0f519 | 3130 | clear_siginfo(&info); |
77db5cbd YH |
3131 | info.si_signo = SIGBUS; |
3132 | info.si_errno = 0; | |
3133 | info.si_code = BUS_MCEERR_AR; | |
3134 | info.si_addr = (void __user *)address; | |
3135 | info.si_addr_lsb = PAGE_SHIFT; | |
bf998156 | 3136 | |
77db5cbd | 3137 | send_sig_info(SIGBUS, &info, tsk); |
bf998156 YH |
3138 | } |
3139 | ||
ba049e93 | 3140 | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) |
bf998156 | 3141 | { |
4d8b81ab XG |
3142 | /* |
3143 | * Do not cache the mmio info caused by writing the readonly gfn | |
3144 | * into the spte otherwise read access on readonly gfn also can | |
3145 | * caused mmio page fault and treat it as mmio access. | |
4d8b81ab XG |
3146 | */ |
3147 | if (pfn == KVM_PFN_ERR_RO_FAULT) | |
9b8ebbdb | 3148 | return RET_PF_EMULATE; |
4d8b81ab | 3149 | |
e6c1502b | 3150 | if (pfn == KVM_PFN_ERR_HWPOISON) { |
54bf36aa | 3151 | kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); |
9b8ebbdb | 3152 | return RET_PF_RETRY; |
d7c55201 | 3153 | } |
edba23e5 | 3154 | |
2c151b25 | 3155 | return -EFAULT; |
bf998156 YH |
3156 | } |
3157 | ||
936a5fe6 | 3158 | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, |
ba049e93 DW |
3159 | gfn_t *gfnp, kvm_pfn_t *pfnp, |
3160 | int *levelp) | |
936a5fe6 | 3161 | { |
ba049e93 | 3162 | kvm_pfn_t pfn = *pfnp; |
936a5fe6 AA |
3163 | gfn_t gfn = *gfnp; |
3164 | int level = *levelp; | |
3165 | ||
3166 | /* | |
3167 | * Check if it's a transparent hugepage. If this would be an | |
3168 | * hugetlbfs page, level wouldn't be set to | |
3169 | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done | |
3170 | * here. | |
3171 | */ | |
bf4bea8e | 3172 | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && |
936a5fe6 | 3173 | level == PT_PAGE_TABLE_LEVEL && |
127393fb | 3174 | PageTransCompoundMap(pfn_to_page(pfn)) && |
92f94f1e | 3175 | !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) { |
936a5fe6 AA |
3176 | unsigned long mask; |
3177 | /* | |
3178 | * mmu_notifier_retry was successful and we hold the | |
3179 | * mmu_lock here, so the pmd can't become splitting | |
3180 | * from under us, and in turn | |
3181 | * __split_huge_page_refcount() can't run from under | |
3182 | * us and we can safely transfer the refcount from | |
3183 | * PG_tail to PG_head as we switch the pfn to tail to | |
3184 | * head. | |
3185 | */ | |
3186 | *levelp = level = PT_DIRECTORY_LEVEL; | |
3187 | mask = KVM_PAGES_PER_HPAGE(level) - 1; | |
3188 | VM_BUG_ON((gfn & mask) != (pfn & mask)); | |
3189 | if (pfn & mask) { | |
3190 | gfn &= ~mask; | |
3191 | *gfnp = gfn; | |
3192 | kvm_release_pfn_clean(pfn); | |
3193 | pfn &= ~mask; | |
c3586667 | 3194 | kvm_get_pfn(pfn); |
936a5fe6 AA |
3195 | *pfnp = pfn; |
3196 | } | |
3197 | } | |
3198 | } | |
3199 | ||
d7c55201 | 3200 | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, |
ba049e93 | 3201 | kvm_pfn_t pfn, unsigned access, int *ret_val) |
d7c55201 | 3202 | { |
d7c55201 | 3203 | /* The pfn is invalid, report the error! */ |
81c52c56 | 3204 | if (unlikely(is_error_pfn(pfn))) { |
d7c55201 | 3205 | *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); |
798e88b3 | 3206 | return true; |
d7c55201 XG |
3207 | } |
3208 | ||
ce88decf | 3209 | if (unlikely(is_noslot_pfn(pfn))) |
d7c55201 | 3210 | vcpu_cache_mmio_info(vcpu, gva, gfn, access); |
d7c55201 | 3211 | |
798e88b3 | 3212 | return false; |
d7c55201 XG |
3213 | } |
3214 | ||
e5552fd2 | 3215 | static bool page_fault_can_be_fast(u32 error_code) |
c7ba5b48 | 3216 | { |
1c118b82 XG |
3217 | /* |
3218 | * Do not fix the mmio spte with invalid generation number which | |
3219 | * need to be updated by slow page fault path. | |
3220 | */ | |
3221 | if (unlikely(error_code & PFERR_RSVD_MASK)) | |
3222 | return false; | |
3223 | ||
f160c7b7 JS |
3224 | /* See if the page fault is due to an NX violation */ |
3225 | if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) | |
3226 | == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) | |
3227 | return false; | |
3228 | ||
c7ba5b48 | 3229 | /* |
f160c7b7 JS |
3230 | * #PF can be fast if: |
3231 | * 1. The shadow page table entry is not present, which could mean that | |
3232 | * the fault is potentially caused by access tracking (if enabled). | |
3233 | * 2. The shadow page table entry is present and the fault | |
3234 | * is caused by write-protect, that means we just need change the W | |
3235 | * bit of the spte which can be done out of mmu-lock. | |
3236 | * | |
3237 | * However, if access tracking is disabled we know that a non-present | |
3238 | * page must be a genuine page fault where we have to create a new SPTE. | |
3239 | * So, if access tracking is disabled, we return true only for write | |
3240 | * accesses to a present page. | |
c7ba5b48 | 3241 | */ |
c7ba5b48 | 3242 | |
f160c7b7 JS |
3243 | return shadow_acc_track_mask != 0 || |
3244 | ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) | |
3245 | == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); | |
c7ba5b48 XG |
3246 | } |
3247 | ||
97dceba2 JS |
3248 | /* |
3249 | * Returns true if the SPTE was fixed successfully. Otherwise, | |
3250 | * someone else modified the SPTE from its original value. | |
3251 | */ | |
c7ba5b48 | 3252 | static bool |
92a476cb | 3253 | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
d3e328f2 | 3254 | u64 *sptep, u64 old_spte, u64 new_spte) |
c7ba5b48 | 3255 | { |
c7ba5b48 XG |
3256 | gfn_t gfn; |
3257 | ||
3258 | WARN_ON(!sp->role.direct); | |
3259 | ||
9b51a630 KH |
3260 | /* |
3261 | * Theoretically we could also set dirty bit (and flush TLB) here in | |
3262 | * order to eliminate unnecessary PML logging. See comments in | |
3263 | * set_spte. But fast_page_fault is very unlikely to happen with PML | |
3264 | * enabled, so we do not do this. This might result in the same GPA | |
3265 | * to be logged in PML buffer again when the write really happens, and | |
3266 | * eventually to be called by mark_page_dirty twice. But it's also no | |
3267 | * harm. This also avoids the TLB flush needed after setting dirty bit | |
3268 | * so non-PML cases won't be impacted. | |
3269 | * | |
3270 | * Compare with set_spte where instead shadow_dirty_mask is set. | |
3271 | */ | |
f160c7b7 | 3272 | if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) |
97dceba2 JS |
3273 | return false; |
3274 | ||
d3e328f2 | 3275 | if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { |
f160c7b7 JS |
3276 | /* |
3277 | * The gfn of direct spte is stable since it is | |
3278 | * calculated by sp->gfn. | |
3279 | */ | |
3280 | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); | |
3281 | kvm_vcpu_mark_page_dirty(vcpu, gfn); | |
3282 | } | |
c7ba5b48 XG |
3283 | |
3284 | return true; | |
3285 | } | |
3286 | ||
d3e328f2 JS |
3287 | static bool is_access_allowed(u32 fault_err_code, u64 spte) |
3288 | { | |
3289 | if (fault_err_code & PFERR_FETCH_MASK) | |
3290 | return is_executable_pte(spte); | |
3291 | ||
3292 | if (fault_err_code & PFERR_WRITE_MASK) | |
3293 | return is_writable_pte(spte); | |
3294 | ||
3295 | /* Fault was on Read access */ | |
3296 | return spte & PT_PRESENT_MASK; | |
3297 | } | |
3298 | ||
c7ba5b48 XG |
3299 | /* |
3300 | * Return value: | |
3301 | * - true: let the vcpu to access on the same address again. | |
3302 | * - false: let the real page fault path to fix it. | |
3303 | */ | |
3304 | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, | |
3305 | u32 error_code) | |
3306 | { | |
3307 | struct kvm_shadow_walk_iterator iterator; | |
92a476cb | 3308 | struct kvm_mmu_page *sp; |
97dceba2 | 3309 | bool fault_handled = false; |
c7ba5b48 | 3310 | u64 spte = 0ull; |
97dceba2 | 3311 | uint retry_count = 0; |
c7ba5b48 | 3312 | |
44dd3ffa | 3313 | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
37f6a4e2 MT |
3314 | return false; |
3315 | ||
e5552fd2 | 3316 | if (!page_fault_can_be_fast(error_code)) |
c7ba5b48 XG |
3317 | return false; |
3318 | ||
3319 | walk_shadow_page_lockless_begin(vcpu); | |
c7ba5b48 | 3320 | |
97dceba2 | 3321 | do { |
d3e328f2 | 3322 | u64 new_spte; |
c7ba5b48 | 3323 | |
d162f30a JS |
3324 | for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) |
3325 | if (!is_shadow_present_pte(spte) || | |
3326 | iterator.level < level) | |
3327 | break; | |
3328 | ||
97dceba2 JS |
3329 | sp = page_header(__pa(iterator.sptep)); |
3330 | if (!is_last_spte(spte, sp->role.level)) | |
3331 | break; | |
c7ba5b48 | 3332 | |
97dceba2 | 3333 | /* |
f160c7b7 JS |
3334 | * Check whether the memory access that caused the fault would |
3335 | * still cause it if it were to be performed right now. If not, | |
3336 | * then this is a spurious fault caused by TLB lazily flushed, | |
3337 | * or some other CPU has already fixed the PTE after the | |
3338 | * current CPU took the fault. | |
97dceba2 JS |
3339 | * |
3340 | * Need not check the access of upper level table entries since | |
3341 | * they are always ACC_ALL. | |
3342 | */ | |
d3e328f2 JS |
3343 | if (is_access_allowed(error_code, spte)) { |
3344 | fault_handled = true; | |
3345 | break; | |
3346 | } | |
f160c7b7 | 3347 | |
d3e328f2 JS |
3348 | new_spte = spte; |
3349 | ||
3350 | if (is_access_track_spte(spte)) | |
3351 | new_spte = restore_acc_track_spte(new_spte); | |
3352 | ||
3353 | /* | |
3354 | * Currently, to simplify the code, write-protection can | |
3355 | * be removed in the fast path only if the SPTE was | |
3356 | * write-protected for dirty-logging or access tracking. | |
3357 | */ | |
3358 | if ((error_code & PFERR_WRITE_MASK) && | |
3359 | spte_can_locklessly_be_made_writable(spte)) | |
3360 | { | |
3361 | new_spte |= PT_WRITABLE_MASK; | |
f160c7b7 JS |
3362 | |
3363 | /* | |
d3e328f2 JS |
3364 | * Do not fix write-permission on the large spte. Since |
3365 | * we only dirty the first page into the dirty-bitmap in | |
3366 | * fast_pf_fix_direct_spte(), other pages are missed | |
3367 | * if its slot has dirty logging enabled. | |
3368 | * | |
3369 | * Instead, we let the slow page fault path create a | |
3370 | * normal spte to fix the access. | |
3371 | * | |
3372 | * See the comments in kvm_arch_commit_memory_region(). | |
f160c7b7 | 3373 | */ |
d3e328f2 | 3374 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
f160c7b7 | 3375 | break; |
97dceba2 | 3376 | } |
c7ba5b48 | 3377 | |
f160c7b7 | 3378 | /* Verify that the fault can be handled in the fast path */ |
d3e328f2 JS |
3379 | if (new_spte == spte || |
3380 | !is_access_allowed(error_code, new_spte)) | |
97dceba2 JS |
3381 | break; |
3382 | ||
3383 | /* | |
3384 | * Currently, fast page fault only works for direct mapping | |
3385 | * since the gfn is not stable for indirect shadow page. See | |
3386 | * Documentation/virtual/kvm/locking.txt to get more detail. | |
3387 | */ | |
3388 | fault_handled = fast_pf_fix_direct_spte(vcpu, sp, | |
f160c7b7 | 3389 | iterator.sptep, spte, |
d3e328f2 | 3390 | new_spte); |
97dceba2 JS |
3391 | if (fault_handled) |
3392 | break; | |
3393 | ||
3394 | if (++retry_count > 4) { | |
3395 | printk_once(KERN_WARNING | |
3396 | "kvm: Fast #PF retrying more than 4 times.\n"); | |
3397 | break; | |
3398 | } | |
3399 | ||
97dceba2 | 3400 | } while (true); |
c126d94f | 3401 | |
a72faf25 | 3402 | trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, |
97dceba2 | 3403 | spte, fault_handled); |
c7ba5b48 XG |
3404 | walk_shadow_page_lockless_end(vcpu); |
3405 | ||
97dceba2 | 3406 | return fault_handled; |
c7ba5b48 XG |
3407 | } |
3408 | ||
78b2c54a | 3409 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
ba049e93 | 3410 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable); |
26eeb53c | 3411 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu); |
060c2abe | 3412 | |
c7ba5b48 XG |
3413 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, |
3414 | gfn_t gfn, bool prefault) | |
10589a46 MT |
3415 | { |
3416 | int r; | |
852e3c19 | 3417 | int level; |
fd136902 | 3418 | bool force_pt_level = false; |
ba049e93 | 3419 | kvm_pfn_t pfn; |
e930bffe | 3420 | unsigned long mmu_seq; |
c7ba5b48 | 3421 | bool map_writable, write = error_code & PFERR_WRITE_MASK; |
aaee2c94 | 3422 | |
fd136902 | 3423 | level = mapping_level(vcpu, gfn, &force_pt_level); |
936a5fe6 | 3424 | if (likely(!force_pt_level)) { |
936a5fe6 AA |
3425 | /* |
3426 | * This path builds a PAE pagetable - so we can map | |
3427 | * 2mb pages at maximum. Therefore check if the level | |
3428 | * is larger than that. | |
3429 | */ | |
3430 | if (level > PT_DIRECTORY_LEVEL) | |
3431 | level = PT_DIRECTORY_LEVEL; | |
852e3c19 | 3432 | |
936a5fe6 | 3433 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
fd136902 | 3434 | } |
05da4558 | 3435 | |
c7ba5b48 | 3436 | if (fast_page_fault(vcpu, v, level, error_code)) |
9b8ebbdb | 3437 | return RET_PF_RETRY; |
c7ba5b48 | 3438 | |
e930bffe | 3439 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
4c2155ce | 3440 | smp_rmb(); |
060c2abe | 3441 | |
78b2c54a | 3442 | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) |
9b8ebbdb | 3443 | return RET_PF_RETRY; |
aaee2c94 | 3444 | |
d7c55201 XG |
3445 | if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) |
3446 | return r; | |
d196e343 | 3447 | |
aaee2c94 | 3448 | spin_lock(&vcpu->kvm->mmu_lock); |
8ca40a70 | 3449 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
e930bffe | 3450 | goto out_unlock; |
26eeb53c WL |
3451 | if (make_mmu_pages_available(vcpu) < 0) |
3452 | goto out_unlock; | |
936a5fe6 AA |
3453 | if (likely(!force_pt_level)) |
3454 | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | |
7ee0e5b2 | 3455 | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); |
aaee2c94 MT |
3456 | spin_unlock(&vcpu->kvm->mmu_lock); |
3457 | ||
10589a46 | 3458 | return r; |
e930bffe AA |
3459 | |
3460 | out_unlock: | |
3461 | spin_unlock(&vcpu->kvm->mmu_lock); | |
3462 | kvm_release_pfn_clean(pfn); | |
9b8ebbdb | 3463 | return RET_PF_RETRY; |
10589a46 MT |
3464 | } |
3465 | ||
74b566e6 JS |
3466 | static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, |
3467 | struct list_head *invalid_list) | |
17ac10ad | 3468 | { |
4db35314 | 3469 | struct kvm_mmu_page *sp; |
17ac10ad | 3470 | |
74b566e6 | 3471 | if (!VALID_PAGE(*root_hpa)) |
7b53aa56 | 3472 | return; |
35af577a | 3473 | |
74b566e6 JS |
3474 | sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK); |
3475 | --sp->root_count; | |
3476 | if (!sp->root_count && sp->role.invalid) | |
3477 | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); | |
17ac10ad | 3478 | |
74b566e6 JS |
3479 | *root_hpa = INVALID_PAGE; |
3480 | } | |
3481 | ||
08fb59d8 | 3482 | /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ |
6a82cd1c VK |
3483 | void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
3484 | ulong roots_to_free) | |
74b566e6 JS |
3485 | { |
3486 | int i; | |
3487 | LIST_HEAD(invalid_list); | |
08fb59d8 | 3488 | bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; |
74b566e6 | 3489 | |
b94742c9 | 3490 | BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); |
74b566e6 | 3491 | |
08fb59d8 | 3492 | /* Before acquiring the MMU lock, see if we need to do any real work. */ |
b94742c9 JS |
3493 | if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { |
3494 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | |
3495 | if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && | |
3496 | VALID_PAGE(mmu->prev_roots[i].hpa)) | |
3497 | break; | |
3498 | ||
3499 | if (i == KVM_MMU_NUM_PREV_ROOTS) | |
3500 | return; | |
3501 | } | |
35af577a GN |
3502 | |
3503 | spin_lock(&vcpu->kvm->mmu_lock); | |
17ac10ad | 3504 | |
b94742c9 JS |
3505 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
3506 | if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) | |
3507 | mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, | |
3508 | &invalid_list); | |
7c390d35 | 3509 | |
08fb59d8 JS |
3510 | if (free_active_root) { |
3511 | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && | |
3512 | (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { | |
3513 | mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, | |
3514 | &invalid_list); | |
3515 | } else { | |
3516 | for (i = 0; i < 4; ++i) | |
3517 | if (mmu->pae_root[i] != 0) | |
3518 | mmu_free_root_page(vcpu->kvm, | |
3519 | &mmu->pae_root[i], | |
3520 | &invalid_list); | |
3521 | mmu->root_hpa = INVALID_PAGE; | |
3522 | } | |
17ac10ad | 3523 | } |
74b566e6 | 3524 | |
d98ba053 | 3525 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
aaee2c94 | 3526 | spin_unlock(&vcpu->kvm->mmu_lock); |
17ac10ad | 3527 | } |
74b566e6 | 3528 | EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); |
17ac10ad | 3529 | |
8986ecc0 MT |
3530 | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) |
3531 | { | |
3532 | int ret = 0; | |
3533 | ||
3534 | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { | |
a8eeb04a | 3535 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
8986ecc0 MT |
3536 | ret = 1; |
3537 | } | |
3538 | ||
3539 | return ret; | |
3540 | } | |
3541 | ||
651dd37a JR |
3542 | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
3543 | { | |
3544 | struct kvm_mmu_page *sp; | |
7ebaf15e | 3545 | unsigned i; |
651dd37a | 3546 | |
44dd3ffa | 3547 | if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) { |
651dd37a | 3548 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3549 | if(make_mmu_pages_available(vcpu) < 0) { |
3550 | spin_unlock(&vcpu->kvm->mmu_lock); | |
ed52870f | 3551 | return -ENOSPC; |
26eeb53c | 3552 | } |
855feb67 | 3553 | sp = kvm_mmu_get_page(vcpu, 0, 0, |
44dd3ffa | 3554 | vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL); |
651dd37a JR |
3555 | ++sp->root_count; |
3556 | spin_unlock(&vcpu->kvm->mmu_lock); | |
44dd3ffa VK |
3557 | vcpu->arch.mmu->root_hpa = __pa(sp->spt); |
3558 | } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) { | |
651dd37a | 3559 | for (i = 0; i < 4; ++i) { |
44dd3ffa | 3560 | hpa_t root = vcpu->arch.mmu->pae_root[i]; |
651dd37a | 3561 | |
fa4a2c08 | 3562 | MMU_WARN_ON(VALID_PAGE(root)); |
651dd37a | 3563 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3564 | if (make_mmu_pages_available(vcpu) < 0) { |
3565 | spin_unlock(&vcpu->kvm->mmu_lock); | |
ed52870f | 3566 | return -ENOSPC; |
26eeb53c | 3567 | } |
649497d1 | 3568 | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), |
bb11c6c9 | 3569 | i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); |
651dd37a JR |
3570 | root = __pa(sp->spt); |
3571 | ++sp->root_count; | |
3572 | spin_unlock(&vcpu->kvm->mmu_lock); | |
44dd3ffa | 3573 | vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK; |
651dd37a | 3574 | } |
44dd3ffa | 3575 | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); |
651dd37a JR |
3576 | } else |
3577 | BUG(); | |
3578 | ||
3579 | return 0; | |
3580 | } | |
3581 | ||
3582 | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) | |
17ac10ad | 3583 | { |
4db35314 | 3584 | struct kvm_mmu_page *sp; |
81407ca5 JR |
3585 | u64 pdptr, pm_mask; |
3586 | gfn_t root_gfn; | |
3587 | int i; | |
3bb65a22 | 3588 | |
44dd3ffa | 3589 | root_gfn = vcpu->arch.mmu->get_cr3(vcpu) >> PAGE_SHIFT; |
17ac10ad | 3590 | |
651dd37a JR |
3591 | if (mmu_check_root(vcpu, root_gfn)) |
3592 | return 1; | |
3593 | ||
3594 | /* | |
3595 | * Do we shadow a long mode page table? If so we need to | |
3596 | * write-protect the guests page table root. | |
3597 | */ | |
44dd3ffa VK |
3598 | if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { |
3599 | hpa_t root = vcpu->arch.mmu->root_hpa; | |
17ac10ad | 3600 | |
fa4a2c08 | 3601 | MMU_WARN_ON(VALID_PAGE(root)); |
651dd37a | 3602 | |
8facbbff | 3603 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3604 | if (make_mmu_pages_available(vcpu) < 0) { |
3605 | spin_unlock(&vcpu->kvm->mmu_lock); | |
ed52870f | 3606 | return -ENOSPC; |
26eeb53c | 3607 | } |
855feb67 | 3608 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, |
44dd3ffa | 3609 | vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL); |
4db35314 AK |
3610 | root = __pa(sp->spt); |
3611 | ++sp->root_count; | |
8facbbff | 3612 | spin_unlock(&vcpu->kvm->mmu_lock); |
44dd3ffa | 3613 | vcpu->arch.mmu->root_hpa = root; |
8986ecc0 | 3614 | return 0; |
17ac10ad | 3615 | } |
f87f9288 | 3616 | |
651dd37a JR |
3617 | /* |
3618 | * We shadow a 32 bit page table. This may be a legacy 2-level | |
81407ca5 JR |
3619 | * or a PAE 3-level page table. In either case we need to be aware that |
3620 | * the shadow page table may be a PAE or a long mode page table. | |
651dd37a | 3621 | */ |
81407ca5 | 3622 | pm_mask = PT_PRESENT_MASK; |
44dd3ffa | 3623 | if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) |
81407ca5 JR |
3624 | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; |
3625 | ||
17ac10ad | 3626 | for (i = 0; i < 4; ++i) { |
44dd3ffa | 3627 | hpa_t root = vcpu->arch.mmu->pae_root[i]; |
17ac10ad | 3628 | |
fa4a2c08 | 3629 | MMU_WARN_ON(VALID_PAGE(root)); |
44dd3ffa VK |
3630 | if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) { |
3631 | pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i); | |
812f30b2 | 3632 | if (!(pdptr & PT_PRESENT_MASK)) { |
44dd3ffa | 3633 | vcpu->arch.mmu->pae_root[i] = 0; |
417726a3 AK |
3634 | continue; |
3635 | } | |
6de4f3ad | 3636 | root_gfn = pdptr >> PAGE_SHIFT; |
f87f9288 JR |
3637 | if (mmu_check_root(vcpu, root_gfn)) |
3638 | return 1; | |
5a7388c2 | 3639 | } |
8facbbff | 3640 | spin_lock(&vcpu->kvm->mmu_lock); |
26eeb53c WL |
3641 | if (make_mmu_pages_available(vcpu) < 0) { |
3642 | spin_unlock(&vcpu->kvm->mmu_lock); | |
ed52870f | 3643 | return -ENOSPC; |
26eeb53c | 3644 | } |
bb11c6c9 TY |
3645 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, |
3646 | 0, ACC_ALL); | |
4db35314 AK |
3647 | root = __pa(sp->spt); |
3648 | ++sp->root_count; | |
8facbbff AK |
3649 | spin_unlock(&vcpu->kvm->mmu_lock); |
3650 | ||
44dd3ffa | 3651 | vcpu->arch.mmu->pae_root[i] = root | pm_mask; |
17ac10ad | 3652 | } |
44dd3ffa | 3653 | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root); |
81407ca5 JR |
3654 | |
3655 | /* | |
3656 | * If we shadow a 32 bit page table with a long mode page | |
3657 | * table we enter this path. | |
3658 | */ | |
44dd3ffa VK |
3659 | if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) { |
3660 | if (vcpu->arch.mmu->lm_root == NULL) { | |
81407ca5 JR |
3661 | /* |
3662 | * The additional page necessary for this is only | |
3663 | * allocated on demand. | |
3664 | */ | |
3665 | ||
3666 | u64 *lm_root; | |
3667 | ||
3668 | lm_root = (void*)get_zeroed_page(GFP_KERNEL); | |
3669 | if (lm_root == NULL) | |
3670 | return 1; | |
3671 | ||
44dd3ffa | 3672 | lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask; |
81407ca5 | 3673 | |
44dd3ffa | 3674 | vcpu->arch.mmu->lm_root = lm_root; |
81407ca5 JR |
3675 | } |
3676 | ||
44dd3ffa | 3677 | vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root); |
81407ca5 JR |
3678 | } |
3679 | ||
8986ecc0 | 3680 | return 0; |
17ac10ad AK |
3681 | } |
3682 | ||
651dd37a JR |
3683 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) |
3684 | { | |
44dd3ffa | 3685 | if (vcpu->arch.mmu->direct_map) |
651dd37a JR |
3686 | return mmu_alloc_direct_roots(vcpu); |
3687 | else | |
3688 | return mmu_alloc_shadow_roots(vcpu); | |
3689 | } | |
3690 | ||
578e1c4d | 3691 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) |
0ba73cda MT |
3692 | { |
3693 | int i; | |
3694 | struct kvm_mmu_page *sp; | |
3695 | ||
44dd3ffa | 3696 | if (vcpu->arch.mmu->direct_map) |
81407ca5 JR |
3697 | return; |
3698 | ||
44dd3ffa | 3699 | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
0ba73cda | 3700 | return; |
6903074c | 3701 | |
56f17dd3 | 3702 | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
578e1c4d | 3703 | |
44dd3ffa VK |
3704 | if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { |
3705 | hpa_t root = vcpu->arch.mmu->root_hpa; | |
0ba73cda | 3706 | sp = page_header(root); |
578e1c4d JS |
3707 | |
3708 | /* | |
3709 | * Even if another CPU was marking the SP as unsync-ed | |
3710 | * simultaneously, any guest page table changes are not | |
3711 | * guaranteed to be visible anyway until this VCPU issues a TLB | |
3712 | * flush strictly after those changes are made. We only need to | |
3713 | * ensure that the other CPU sets these flags before any actual | |
3714 | * changes to the page tables are made. The comments in | |
3715 | * mmu_need_write_protect() describe what could go wrong if this | |
3716 | * requirement isn't satisfied. | |
3717 | */ | |
3718 | if (!smp_load_acquire(&sp->unsync) && | |
3719 | !smp_load_acquire(&sp->unsync_children)) | |
3720 | return; | |
3721 | ||
3722 | spin_lock(&vcpu->kvm->mmu_lock); | |
3723 | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | |
3724 | ||
0ba73cda | 3725 | mmu_sync_children(vcpu, sp); |
578e1c4d | 3726 | |
0375f7fa | 3727 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
578e1c4d | 3728 | spin_unlock(&vcpu->kvm->mmu_lock); |
0ba73cda MT |
3729 | return; |
3730 | } | |
578e1c4d JS |
3731 | |
3732 | spin_lock(&vcpu->kvm->mmu_lock); | |
3733 | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); | |
3734 | ||
0ba73cda | 3735 | for (i = 0; i < 4; ++i) { |
44dd3ffa | 3736 | hpa_t root = vcpu->arch.mmu->pae_root[i]; |
0ba73cda | 3737 | |
8986ecc0 | 3738 | if (root && VALID_PAGE(root)) { |
0ba73cda MT |
3739 | root &= PT64_BASE_ADDR_MASK; |
3740 | sp = page_header(root); | |
3741 | mmu_sync_children(vcpu, sp); | |
3742 | } | |
3743 | } | |
0ba73cda | 3744 | |
578e1c4d | 3745 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
6cffe8ca | 3746 | spin_unlock(&vcpu->kvm->mmu_lock); |
0ba73cda | 3747 | } |
bfd0a56b | 3748 | EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); |
0ba73cda | 3749 | |
1871c602 | 3750 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, |
ab9ae313 | 3751 | u32 access, struct x86_exception *exception) |
6aa8b732 | 3752 | { |
ab9ae313 AK |
3753 | if (exception) |
3754 | exception->error_code = 0; | |
6aa8b732 AK |
3755 | return vaddr; |
3756 | } | |
3757 | ||
6539e738 | 3758 | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, |
ab9ae313 AK |
3759 | u32 access, |
3760 | struct x86_exception *exception) | |
6539e738 | 3761 | { |
ab9ae313 AK |
3762 | if (exception) |
3763 | exception->error_code = 0; | |
54987b7a | 3764 | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); |
6539e738 JR |
3765 | } |
3766 | ||
d625b155 XG |
3767 | static bool |
3768 | __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) | |
3769 | { | |
3770 | int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f; | |
3771 | ||
3772 | return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) | | |
3773 | ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0); | |
3774 | } | |
3775 | ||
3776 | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) | |
3777 | { | |
3778 | return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level); | |
3779 | } | |
3780 | ||
3781 | static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level) | |
3782 | { | |
3783 | return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level); | |
3784 | } | |
3785 | ||
ded58749 | 3786 | static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
ce88decf | 3787 | { |
9034e6e8 PB |
3788 | /* |
3789 | * A nested guest cannot use the MMIO cache if it is using nested | |
3790 | * page tables, because cr2 is a nGPA while the cache stores GPAs. | |
3791 | */ | |
3792 | if (mmu_is_nested(vcpu)) | |
3793 | return false; | |
3794 | ||
ce88decf XG |
3795 | if (direct) |
3796 | return vcpu_match_mmio_gpa(vcpu, addr); | |
3797 | ||
3798 | return vcpu_match_mmio_gva(vcpu, addr); | |
3799 | } | |
3800 | ||
47ab8751 XG |
3801 | /* return true if reserved bit is detected on spte. */ |
3802 | static bool | |
3803 | walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) | |
ce88decf XG |
3804 | { |
3805 | struct kvm_shadow_walk_iterator iterator; | |
2a7266a8 | 3806 | u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; |
47ab8751 XG |
3807 | int root, leaf; |
3808 | bool reserved = false; | |
ce88decf | 3809 | |
44dd3ffa | 3810 | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
47ab8751 | 3811 | goto exit; |
37f6a4e2 | 3812 | |
ce88decf | 3813 | walk_shadow_page_lockless_begin(vcpu); |
47ab8751 | 3814 | |
29ecd660 PB |
3815 | for (shadow_walk_init(&iterator, vcpu, addr), |
3816 | leaf = root = iterator.level; | |
47ab8751 XG |
3817 | shadow_walk_okay(&iterator); |
3818 | __shadow_walk_next(&iterator, spte)) { | |
47ab8751 XG |
3819 | spte = mmu_spte_get_lockless(iterator.sptep); |
3820 | ||
3821 | sptes[leaf - 1] = spte; | |
29ecd660 | 3822 | leaf--; |
47ab8751 | 3823 | |
ce88decf XG |
3824 | if (!is_shadow_present_pte(spte)) |
3825 | break; | |
47ab8751 | 3826 | |
44dd3ffa | 3827 | reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte, |
58c95070 | 3828 | iterator.level); |
47ab8751 XG |
3829 | } |
3830 | ||
ce88decf XG |
3831 | walk_shadow_page_lockless_end(vcpu); |
3832 | ||
47ab8751 XG |
3833 | if (reserved) { |
3834 | pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", | |
3835 | __func__, addr); | |
29ecd660 | 3836 | while (root > leaf) { |
47ab8751 XG |
3837 | pr_err("------ spte 0x%llx level %d.\n", |
3838 | sptes[root - 1], root); | |
3839 | root--; | |
3840 | } | |
3841 | } | |
3842 | exit: | |
3843 | *sptep = spte; | |
3844 | return reserved; | |
ce88decf XG |
3845 | } |
3846 | ||
e08d26f0 | 3847 | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
ce88decf XG |
3848 | { |
3849 | u64 spte; | |
47ab8751 | 3850 | bool reserved; |
ce88decf | 3851 | |
ded58749 | 3852 | if (mmio_info_in_cache(vcpu, addr, direct)) |
9b8ebbdb | 3853 | return RET_PF_EMULATE; |
ce88decf | 3854 | |
47ab8751 | 3855 | reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); |
450869d6 | 3856 | if (WARN_ON(reserved)) |
9b8ebbdb | 3857 | return -EINVAL; |
ce88decf XG |
3858 | |
3859 | if (is_mmio_spte(spte)) { | |
3860 | gfn_t gfn = get_mmio_spte_gfn(spte); | |
3861 | unsigned access = get_mmio_spte_access(spte); | |
3862 | ||
54bf36aa | 3863 | if (!check_mmio_spte(vcpu, spte)) |
9b8ebbdb | 3864 | return RET_PF_INVALID; |
f8f55942 | 3865 | |
ce88decf XG |
3866 | if (direct) |
3867 | addr = 0; | |
4f022648 XG |
3868 | |
3869 | trace_handle_mmio_page_fault(addr, gfn, access); | |
ce88decf | 3870 | vcpu_cache_mmio_info(vcpu, addr, gfn, access); |
9b8ebbdb | 3871 | return RET_PF_EMULATE; |
ce88decf XG |
3872 | } |
3873 | ||
ce88decf XG |
3874 | /* |
3875 | * If the page table is zapped by other cpus, let CPU fault again on | |
3876 | * the address. | |
3877 | */ | |
9b8ebbdb | 3878 | return RET_PF_RETRY; |
ce88decf | 3879 | } |
ce88decf | 3880 | |
3d0c27ad XG |
3881 | static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, |
3882 | u32 error_code, gfn_t gfn) | |
3883 | { | |
3884 | if (unlikely(error_code & PFERR_RSVD_MASK)) | |
3885 | return false; | |
3886 | ||
3887 | if (!(error_code & PFERR_PRESENT_MASK) || | |
3888 | !(error_code & PFERR_WRITE_MASK)) | |
3889 | return false; | |
3890 | ||
3891 | /* | |
3892 | * guest is writing the page which is write tracked which can | |
3893 | * not be fixed by page fault handler. | |
3894 | */ | |
3895 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) | |
3896 | return true; | |
3897 | ||
3898 | return false; | |
3899 | } | |
3900 | ||
e5691a81 XG |
3901 | static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) |
3902 | { | |
3903 | struct kvm_shadow_walk_iterator iterator; | |
3904 | u64 spte; | |
3905 | ||
44dd3ffa | 3906 | if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
e5691a81 XG |
3907 | return; |
3908 | ||
3909 | walk_shadow_page_lockless_begin(vcpu); | |
3910 | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { | |
3911 | clear_sp_write_flooding_count(iterator.sptep); | |
3912 | if (!is_shadow_present_pte(spte)) | |
3913 | break; | |
3914 | } | |
3915 | walk_shadow_page_lockless_end(vcpu); | |
3916 | } | |
3917 | ||
6aa8b732 | 3918 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
78b2c54a | 3919 | u32 error_code, bool prefault) |
6aa8b732 | 3920 | { |
3d0c27ad | 3921 | gfn_t gfn = gva >> PAGE_SHIFT; |
e2dec939 | 3922 | int r; |
6aa8b732 | 3923 | |
b8688d51 | 3924 | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); |
ce88decf | 3925 | |
3d0c27ad | 3926 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
9b8ebbdb | 3927 | return RET_PF_EMULATE; |
ce88decf | 3928 | |
e2dec939 AK |
3929 | r = mmu_topup_memory_caches(vcpu); |
3930 | if (r) | |
3931 | return r; | |
714b93da | 3932 | |
44dd3ffa | 3933 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); |
6aa8b732 | 3934 | |
6aa8b732 | 3935 | |
e833240f | 3936 | return nonpaging_map(vcpu, gva & PAGE_MASK, |
c7ba5b48 | 3937 | error_code, gfn, prefault); |
6aa8b732 AK |
3938 | } |
3939 | ||
7e1fbeac | 3940 | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) |
af585b92 GN |
3941 | { |
3942 | struct kvm_arch_async_pf arch; | |
fb67e14f | 3943 | |
7c90705b | 3944 | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; |
af585b92 | 3945 | arch.gfn = gfn; |
44dd3ffa VK |
3946 | arch.direct_map = vcpu->arch.mmu->direct_map; |
3947 | arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu); | |
af585b92 | 3948 | |
54bf36aa | 3949 | return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); |
af585b92 GN |
3950 | } |
3951 | ||
9bc1f09f | 3952 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) |
af585b92 | 3953 | { |
35754c98 | 3954 | if (unlikely(!lapic_in_kernel(vcpu) || |
2a266f23 HZ |
3955 | kvm_event_needs_reinjection(vcpu) || |
3956 | vcpu->arch.exception.pending)) | |
af585b92 GN |
3957 | return false; |
3958 | ||
52a5c155 | 3959 | if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) |
9bc1f09f WL |
3960 | return false; |
3961 | ||
af585b92 GN |
3962 | return kvm_x86_ops->interrupt_allowed(vcpu); |
3963 | } | |
3964 | ||
78b2c54a | 3965 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
ba049e93 | 3966 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable) |
af585b92 | 3967 | { |
3520469d | 3968 | struct kvm_memory_slot *slot; |
af585b92 GN |
3969 | bool async; |
3970 | ||
3a2936de JM |
3971 | /* |
3972 | * Don't expose private memslots to L2. | |
3973 | */ | |
3974 | if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) { | |
3975 | *pfn = KVM_PFN_NOSLOT; | |
3976 | return false; | |
3977 | } | |
3978 | ||
54bf36aa | 3979 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
3520469d PB |
3980 | async = false; |
3981 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); | |
af585b92 GN |
3982 | if (!async) |
3983 | return false; /* *pfn has correct page already */ | |
3984 | ||
9bc1f09f | 3985 | if (!prefault && kvm_can_do_async_pf(vcpu)) { |
c9b263d2 | 3986 | trace_kvm_try_async_get_page(gva, gfn); |
af585b92 GN |
3987 | if (kvm_find_async_pf_gfn(vcpu, gfn)) { |
3988 | trace_kvm_async_pf_doublefault(gva, gfn); | |
3989 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | |
3990 | return true; | |
3991 | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) | |
3992 | return true; | |
3993 | } | |
3994 | ||
3520469d | 3995 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); |
af585b92 GN |
3996 | return false; |
3997 | } | |
3998 | ||
1261bfa3 | 3999 | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
d0006530 | 4000 | u64 fault_address, char *insn, int insn_len) |
1261bfa3 WL |
4001 | { |
4002 | int r = 1; | |
4003 | ||
c595ceee | 4004 | vcpu->arch.l1tf_flush_l1d = true; |
1261bfa3 WL |
4005 | switch (vcpu->arch.apf.host_apf_reason) { |
4006 | default: | |
4007 | trace_kvm_page_fault(fault_address, error_code); | |
4008 | ||
d0006530 | 4009 | if (kvm_event_needs_reinjection(vcpu)) |
1261bfa3 WL |
4010 | kvm_mmu_unprotect_page_virt(vcpu, fault_address); |
4011 | r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, | |
4012 | insn_len); | |
4013 | break; | |
4014 | case KVM_PV_REASON_PAGE_NOT_PRESENT: | |
4015 | vcpu->arch.apf.host_apf_reason = 0; | |
4016 | local_irq_disable(); | |
a2b7861b | 4017 | kvm_async_pf_task_wait(fault_address, 0); |
1261bfa3 WL |
4018 | local_irq_enable(); |
4019 | break; | |
4020 | case KVM_PV_REASON_PAGE_READY: | |
4021 | vcpu->arch.apf.host_apf_reason = 0; | |
4022 | local_irq_disable(); | |
4023 | kvm_async_pf_task_wake(fault_address); | |
4024 | local_irq_enable(); | |
4025 | break; | |
4026 | } | |
4027 | return r; | |
4028 | } | |
4029 | EXPORT_SYMBOL_GPL(kvm_handle_page_fault); | |
4030 | ||
6a39bbc5 XG |
4031 | static bool |
4032 | check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level) | |
4033 | { | |
4034 | int page_num = KVM_PAGES_PER_HPAGE(level); | |
4035 | ||
4036 | gfn &= ~(page_num - 1); | |
4037 | ||
4038 | return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num); | |
4039 | } | |
4040 | ||
56028d08 | 4041 | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, |
78b2c54a | 4042 | bool prefault) |
fb72d167 | 4043 | { |
ba049e93 | 4044 | kvm_pfn_t pfn; |
fb72d167 | 4045 | int r; |
852e3c19 | 4046 | int level; |
cd1872f0 | 4047 | bool force_pt_level; |
05da4558 | 4048 | gfn_t gfn = gpa >> PAGE_SHIFT; |
e930bffe | 4049 | unsigned long mmu_seq; |
612819c3 MT |
4050 | int write = error_code & PFERR_WRITE_MASK; |
4051 | bool map_writable; | |
fb72d167 | 4052 | |
44dd3ffa | 4053 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)); |
fb72d167 | 4054 | |
3d0c27ad | 4055 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
9b8ebbdb | 4056 | return RET_PF_EMULATE; |
ce88decf | 4057 | |
fb72d167 JR |
4058 | r = mmu_topup_memory_caches(vcpu); |
4059 | if (r) | |
4060 | return r; | |
4061 | ||
fd136902 TY |
4062 | force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn, |
4063 | PT_DIRECTORY_LEVEL); | |
4064 | level = mapping_level(vcpu, gfn, &force_pt_level); | |
936a5fe6 | 4065 | if (likely(!force_pt_level)) { |
6a39bbc5 XG |
4066 | if (level > PT_DIRECTORY_LEVEL && |
4067 | !check_hugepage_cache_consistency(vcpu, gfn, level)) | |
4068 | level = PT_DIRECTORY_LEVEL; | |
936a5fe6 | 4069 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
fd136902 | 4070 | } |
852e3c19 | 4071 | |
c7ba5b48 | 4072 | if (fast_page_fault(vcpu, gpa, level, error_code)) |
9b8ebbdb | 4073 | return RET_PF_RETRY; |
c7ba5b48 | 4074 | |
e930bffe | 4075 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
4c2155ce | 4076 | smp_rmb(); |
af585b92 | 4077 | |
78b2c54a | 4078 | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) |
9b8ebbdb | 4079 | return RET_PF_RETRY; |
af585b92 | 4080 | |
d7c55201 XG |
4081 | if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) |
4082 | return r; | |
4083 | ||
fb72d167 | 4084 | spin_lock(&vcpu->kvm->mmu_lock); |
8ca40a70 | 4085 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
e930bffe | 4086 | goto out_unlock; |
26eeb53c WL |
4087 | if (make_mmu_pages_available(vcpu) < 0) |
4088 | goto out_unlock; | |
936a5fe6 AA |
4089 | if (likely(!force_pt_level)) |
4090 | transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level); | |
7ee0e5b2 | 4091 | r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault); |
fb72d167 | 4092 | spin_unlock(&vcpu->kvm->mmu_lock); |
fb72d167 JR |
4093 | |
4094 | return r; | |
e930bffe AA |
4095 | |
4096 | out_unlock: | |
4097 | spin_unlock(&vcpu->kvm->mmu_lock); | |
4098 | kvm_release_pfn_clean(pfn); | |
9b8ebbdb | 4099 | return RET_PF_RETRY; |
fb72d167 JR |
4100 | } |
4101 | ||
8a3c1a33 PB |
4102 | static void nonpaging_init_context(struct kvm_vcpu *vcpu, |
4103 | struct kvm_mmu *context) | |
6aa8b732 | 4104 | { |
6aa8b732 | 4105 | context->page_fault = nonpaging_page_fault; |
6aa8b732 | 4106 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
e8bc217a | 4107 | context->sync_page = nonpaging_sync_page; |
a7052897 | 4108 | context->invlpg = nonpaging_invlpg; |
0f53b5b1 | 4109 | context->update_pte = nonpaging_update_pte; |
cea0f0e7 | 4110 | context->root_level = 0; |
6aa8b732 | 4111 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
c5a78f2b | 4112 | context->direct_map = true; |
2d48a985 | 4113 | context->nx = false; |
6aa8b732 AK |
4114 | } |
4115 | ||
b94742c9 JS |
4116 | /* |
4117 | * Find out if a previously cached root matching the new CR3/role is available. | |
4118 | * The current root is also inserted into the cache. | |
4119 | * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is | |
4120 | * returned. | |
4121 | * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and | |
4122 | * false is returned. This root should now be freed by the caller. | |
4123 | */ | |
4124 | static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3, | |
4125 | union kvm_mmu_page_role new_role) | |
4126 | { | |
4127 | uint i; | |
4128 | struct kvm_mmu_root_info root; | |
44dd3ffa | 4129 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
b94742c9 JS |
4130 | |
4131 | root.cr3 = mmu->get_cr3(vcpu); | |
4132 | root.hpa = mmu->root_hpa; | |
4133 | ||
4134 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { | |
4135 | swap(root, mmu->prev_roots[i]); | |
4136 | ||
4137 | if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) && | |
4138 | page_header(root.hpa) != NULL && | |
4139 | new_role.word == page_header(root.hpa)->role.word) | |
4140 | break; | |
4141 | } | |
4142 | ||
4143 | mmu->root_hpa = root.hpa; | |
4144 | ||
4145 | return i < KVM_MMU_NUM_PREV_ROOTS; | |
4146 | } | |
4147 | ||
0aab33e4 | 4148 | static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3, |
ade61e28 JS |
4149 | union kvm_mmu_page_role new_role, |
4150 | bool skip_tlb_flush) | |
6aa8b732 | 4151 | { |
44dd3ffa | 4152 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
7c390d35 JS |
4153 | |
4154 | /* | |
4155 | * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid | |
4156 | * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs | |
4157 | * later if necessary. | |
4158 | */ | |
4159 | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && | |
4160 | mmu->root_level >= PT64_ROOT_4LEVEL) { | |
7c390d35 JS |
4161 | if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT)) |
4162 | return false; | |
4163 | ||
b94742c9 | 4164 | if (cached_root_available(vcpu, new_cr3, new_role)) { |
7c390d35 JS |
4165 | /* |
4166 | * It is possible that the cached previous root page is | |
4167 | * obsolete because of a change in the MMU | |
4168 | * generation number. However, that is accompanied by | |
4169 | * KVM_REQ_MMU_RELOAD, which will free the root that we | |
4170 | * have set here and allocate a new one. | |
4171 | */ | |
4172 | ||
0aab33e4 | 4173 | kvm_make_request(KVM_REQ_LOAD_CR3, vcpu); |
956bf353 JS |
4174 | if (!skip_tlb_flush) { |
4175 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); | |
ade61e28 | 4176 | kvm_x86_ops->tlb_flush(vcpu, true); |
956bf353 JS |
4177 | } |
4178 | ||
4179 | /* | |
4180 | * The last MMIO access's GVA and GPA are cached in the | |
4181 | * VCPU. When switching to a new CR3, that GVA->GPA | |
4182 | * mapping may no longer be valid. So clear any cached | |
4183 | * MMIO info even when we don't need to sync the shadow | |
4184 | * page tables. | |
4185 | */ | |
4186 | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); | |
ade61e28 | 4187 | |
7c390d35 JS |
4188 | __clear_sp_write_flooding_count( |
4189 | page_header(mmu->root_hpa)); | |
4190 | ||
7c390d35 JS |
4191 | return true; |
4192 | } | |
4193 | } | |
4194 | ||
4195 | return false; | |
6aa8b732 AK |
4196 | } |
4197 | ||
0aab33e4 | 4198 | static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, |
ade61e28 JS |
4199 | union kvm_mmu_page_role new_role, |
4200 | bool skip_tlb_flush) | |
6aa8b732 | 4201 | { |
ade61e28 | 4202 | if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush)) |
6a82cd1c VK |
4203 | kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, |
4204 | KVM_MMU_ROOT_CURRENT); | |
6aa8b732 AK |
4205 | } |
4206 | ||
ade61e28 | 4207 | void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush) |
0aab33e4 | 4208 | { |
ade61e28 JS |
4209 | __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu), |
4210 | skip_tlb_flush); | |
0aab33e4 | 4211 | } |
50c28f21 | 4212 | EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3); |
0aab33e4 | 4213 | |
5777ed34 JR |
4214 | static unsigned long get_cr3(struct kvm_vcpu *vcpu) |
4215 | { | |
9f8fe504 | 4216 | return kvm_read_cr3(vcpu); |
5777ed34 JR |
4217 | } |
4218 | ||
6389ee94 AK |
4219 | static void inject_page_fault(struct kvm_vcpu *vcpu, |
4220 | struct x86_exception *fault) | |
6aa8b732 | 4221 | { |
44dd3ffa | 4222 | vcpu->arch.mmu->inject_page_fault(vcpu, fault); |
6aa8b732 AK |
4223 | } |
4224 | ||
54bf36aa | 4225 | static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
f2fd125d | 4226 | unsigned access, int *nr_present) |
ce88decf XG |
4227 | { |
4228 | if (unlikely(is_mmio_spte(*sptep))) { | |
4229 | if (gfn != get_mmio_spte_gfn(*sptep)) { | |
4230 | mmu_spte_clear_no_track(sptep); | |
4231 | return true; | |
4232 | } | |
4233 | ||
4234 | (*nr_present)++; | |
54bf36aa | 4235 | mark_mmio_spte(vcpu, sptep, gfn, access); |
ce88decf XG |
4236 | return true; |
4237 | } | |
4238 | ||
4239 | return false; | |
4240 | } | |
4241 | ||
6bb69c9b PB |
4242 | static inline bool is_last_gpte(struct kvm_mmu *mmu, |
4243 | unsigned level, unsigned gpte) | |
6fd01b71 | 4244 | { |
6bb69c9b PB |
4245 | /* |
4246 | * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. | |
4247 | * If it is clear, there are no large pages at this level, so clear | |
4248 | * PT_PAGE_SIZE_MASK in gpte if that is the case. | |
4249 | */ | |
4250 | gpte &= level - mmu->last_nonleaf_level; | |
4251 | ||
829ee279 LP |
4252 | /* |
4253 | * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set | |
4254 | * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means | |
4255 | * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. | |
4256 | */ | |
4257 | gpte |= level - PT_PAGE_TABLE_LEVEL - 1; | |
4258 | ||
6bb69c9b | 4259 | return gpte & PT_PAGE_SIZE_MASK; |
6fd01b71 AK |
4260 | } |
4261 | ||
37406aaa NHE |
4262 | #define PTTYPE_EPT 18 /* arbitrary */ |
4263 | #define PTTYPE PTTYPE_EPT | |
4264 | #include "paging_tmpl.h" | |
4265 | #undef PTTYPE | |
4266 | ||
6aa8b732 AK |
4267 | #define PTTYPE 64 |
4268 | #include "paging_tmpl.h" | |
4269 | #undef PTTYPE | |
4270 | ||
4271 | #define PTTYPE 32 | |
4272 | #include "paging_tmpl.h" | |
4273 | #undef PTTYPE | |
4274 | ||
6dc98b86 XG |
4275 | static void |
4276 | __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, | |
4277 | struct rsvd_bits_validate *rsvd_check, | |
4278 | int maxphyaddr, int level, bool nx, bool gbpages, | |
6fec2144 | 4279 | bool pse, bool amd) |
82725b20 | 4280 | { |
82725b20 | 4281 | u64 exb_bit_rsvd = 0; |
5f7dde7b | 4282 | u64 gbpages_bit_rsvd = 0; |
a0c0feb5 | 4283 | u64 nonleaf_bit8_rsvd = 0; |
82725b20 | 4284 | |
a0a64f50 | 4285 | rsvd_check->bad_mt_xwr = 0; |
25d92081 | 4286 | |
6dc98b86 | 4287 | if (!nx) |
82725b20 | 4288 | exb_bit_rsvd = rsvd_bits(63, 63); |
6dc98b86 | 4289 | if (!gbpages) |
5f7dde7b | 4290 | gbpages_bit_rsvd = rsvd_bits(7, 7); |
a0c0feb5 PB |
4291 | |
4292 | /* | |
4293 | * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for | |
4294 | * leaf entries) on AMD CPUs only. | |
4295 | */ | |
6fec2144 | 4296 | if (amd) |
a0c0feb5 PB |
4297 | nonleaf_bit8_rsvd = rsvd_bits(8, 8); |
4298 | ||
6dc98b86 | 4299 | switch (level) { |
82725b20 DE |
4300 | case PT32_ROOT_LEVEL: |
4301 | /* no rsvd bits for 2 level 4K page table entries */ | |
a0a64f50 XG |
4302 | rsvd_check->rsvd_bits_mask[0][1] = 0; |
4303 | rsvd_check->rsvd_bits_mask[0][0] = 0; | |
4304 | rsvd_check->rsvd_bits_mask[1][0] = | |
4305 | rsvd_check->rsvd_bits_mask[0][0]; | |
f815bce8 | 4306 | |
6dc98b86 | 4307 | if (!pse) { |
a0a64f50 | 4308 | rsvd_check->rsvd_bits_mask[1][1] = 0; |
f815bce8 XG |
4309 | break; |
4310 | } | |
4311 | ||
82725b20 DE |
4312 | if (is_cpuid_PSE36()) |
4313 | /* 36bits PSE 4MB page */ | |
a0a64f50 | 4314 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); |
82725b20 DE |
4315 | else |
4316 | /* 32 bits PSE 4MB page */ | |
a0a64f50 | 4317 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); |
82725b20 DE |
4318 | break; |
4319 | case PT32E_ROOT_LEVEL: | |
a0a64f50 | 4320 | rsvd_check->rsvd_bits_mask[0][2] = |
20c466b5 | 4321 | rsvd_bits(maxphyaddr, 63) | |
cd9ae5fe | 4322 | rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ |
a0a64f50 | 4323 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
4c26b4cd | 4324 | rsvd_bits(maxphyaddr, 62); /* PDE */ |
a0a64f50 | 4325 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
82725b20 | 4326 | rsvd_bits(maxphyaddr, 62); /* PTE */ |
a0a64f50 | 4327 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
82725b20 DE |
4328 | rsvd_bits(maxphyaddr, 62) | |
4329 | rsvd_bits(13, 20); /* large page */ | |
a0a64f50 XG |
4330 | rsvd_check->rsvd_bits_mask[1][0] = |
4331 | rsvd_check->rsvd_bits_mask[0][0]; | |
82725b20 | 4332 | break; |
855feb67 YZ |
4333 | case PT64_ROOT_5LEVEL: |
4334 | rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | | |
4335 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | |
4336 | rsvd_bits(maxphyaddr, 51); | |
4337 | rsvd_check->rsvd_bits_mask[1][4] = | |
4338 | rsvd_check->rsvd_bits_mask[0][4]; | |
2a7266a8 | 4339 | case PT64_ROOT_4LEVEL: |
a0a64f50 XG |
4340 | rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | |
4341 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | | |
4c26b4cd | 4342 | rsvd_bits(maxphyaddr, 51); |
a0a64f50 XG |
4343 | rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | |
4344 | nonleaf_bit8_rsvd | gbpages_bit_rsvd | | |
82725b20 | 4345 | rsvd_bits(maxphyaddr, 51); |
a0a64f50 XG |
4346 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
4347 | rsvd_bits(maxphyaddr, 51); | |
4348 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | | |
4349 | rsvd_bits(maxphyaddr, 51); | |
4350 | rsvd_check->rsvd_bits_mask[1][3] = | |
4351 | rsvd_check->rsvd_bits_mask[0][3]; | |
4352 | rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | | |
5f7dde7b | 4353 | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | |
e04da980 | 4354 | rsvd_bits(13, 29); |
a0a64f50 | 4355 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
4c26b4cd SY |
4356 | rsvd_bits(maxphyaddr, 51) | |
4357 | rsvd_bits(13, 20); /* large page */ | |
a0a64f50 XG |
4358 | rsvd_check->rsvd_bits_mask[1][0] = |
4359 | rsvd_check->rsvd_bits_mask[0][0]; | |
82725b20 DE |
4360 | break; |
4361 | } | |
4362 | } | |
4363 | ||
6dc98b86 XG |
4364 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
4365 | struct kvm_mmu *context) | |
4366 | { | |
4367 | __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, | |
4368 | cpuid_maxphyaddr(vcpu), context->root_level, | |
d6321d49 RK |
4369 | context->nx, |
4370 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), | |
6fec2144 | 4371 | is_pse(vcpu), guest_cpuid_is_amd(vcpu)); |
6dc98b86 XG |
4372 | } |
4373 | ||
81b8eebb XG |
4374 | static void |
4375 | __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, | |
4376 | int maxphyaddr, bool execonly) | |
25d92081 | 4377 | { |
951f9fd7 | 4378 | u64 bad_mt_xwr; |
25d92081 | 4379 | |
855feb67 YZ |
4380 | rsvd_check->rsvd_bits_mask[0][4] = |
4381 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); | |
a0a64f50 | 4382 | rsvd_check->rsvd_bits_mask[0][3] = |
25d92081 | 4383 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); |
a0a64f50 | 4384 | rsvd_check->rsvd_bits_mask[0][2] = |
25d92081 | 4385 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
a0a64f50 | 4386 | rsvd_check->rsvd_bits_mask[0][1] = |
25d92081 | 4387 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
a0a64f50 | 4388 | rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); |
25d92081 YZ |
4389 | |
4390 | /* large page */ | |
855feb67 | 4391 | rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; |
a0a64f50 XG |
4392 | rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; |
4393 | rsvd_check->rsvd_bits_mask[1][2] = | |
25d92081 | 4394 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); |
a0a64f50 | 4395 | rsvd_check->rsvd_bits_mask[1][1] = |
25d92081 | 4396 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); |
a0a64f50 | 4397 | rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; |
25d92081 | 4398 | |
951f9fd7 PB |
4399 | bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ |
4400 | bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ | |
4401 | bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ | |
4402 | bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ | |
4403 | bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ | |
4404 | if (!execonly) { | |
4405 | /* bits 0..2 must not be 100 unless VMX capabilities allow it */ | |
4406 | bad_mt_xwr |= REPEAT_BYTE(1ull << 4); | |
25d92081 | 4407 | } |
951f9fd7 | 4408 | rsvd_check->bad_mt_xwr = bad_mt_xwr; |
25d92081 YZ |
4409 | } |
4410 | ||
81b8eebb XG |
4411 | static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, |
4412 | struct kvm_mmu *context, bool execonly) | |
4413 | { | |
4414 | __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, | |
4415 | cpuid_maxphyaddr(vcpu), execonly); | |
4416 | } | |
4417 | ||
c258b62b XG |
4418 | /* |
4419 | * the page table on host is the shadow page table for the page | |
4420 | * table in guest or amd nested guest, its mmu features completely | |
4421 | * follow the features in guest. | |
4422 | */ | |
4423 | void | |
4424 | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) | |
4425 | { | |
36d9594d VK |
4426 | bool uses_nx = context->nx || |
4427 | context->mmu_role.base.smep_andnot_wp; | |
ea2800dd BS |
4428 | struct rsvd_bits_validate *shadow_zero_check; |
4429 | int i; | |
5f0b8199 | 4430 | |
6fec2144 PB |
4431 | /* |
4432 | * Passing "true" to the last argument is okay; it adds a check | |
4433 | * on bit 8 of the SPTEs which KVM doesn't use anyway. | |
4434 | */ | |
ea2800dd BS |
4435 | shadow_zero_check = &context->shadow_zero_check; |
4436 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, | |
c258b62b | 4437 | boot_cpu_data.x86_phys_bits, |
5f0b8199 | 4438 | context->shadow_root_level, uses_nx, |
d6321d49 RK |
4439 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), |
4440 | is_pse(vcpu), true); | |
ea2800dd BS |
4441 | |
4442 | if (!shadow_me_mask) | |
4443 | return; | |
4444 | ||
4445 | for (i = context->shadow_root_level; --i >= 0;) { | |
4446 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | |
4447 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | |
4448 | } | |
4449 | ||
c258b62b XG |
4450 | } |
4451 | EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); | |
4452 | ||
6fec2144 PB |
4453 | static inline bool boot_cpu_is_amd(void) |
4454 | { | |
4455 | WARN_ON_ONCE(!tdp_enabled); | |
4456 | return shadow_x_mask == 0; | |
4457 | } | |
4458 | ||
c258b62b XG |
4459 | /* |
4460 | * the direct page table on host, use as much mmu features as | |
4461 | * possible, however, kvm currently does not do execution-protection. | |
4462 | */ | |
4463 | static void | |
4464 | reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | |
4465 | struct kvm_mmu *context) | |
4466 | { | |
ea2800dd BS |
4467 | struct rsvd_bits_validate *shadow_zero_check; |
4468 | int i; | |
4469 | ||
4470 | shadow_zero_check = &context->shadow_zero_check; | |
4471 | ||
6fec2144 | 4472 | if (boot_cpu_is_amd()) |
ea2800dd | 4473 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, |
c258b62b XG |
4474 | boot_cpu_data.x86_phys_bits, |
4475 | context->shadow_root_level, false, | |
b8291adc BP |
4476 | boot_cpu_has(X86_FEATURE_GBPAGES), |
4477 | true, true); | |
c258b62b | 4478 | else |
ea2800dd | 4479 | __reset_rsvds_bits_mask_ept(shadow_zero_check, |
c258b62b XG |
4480 | boot_cpu_data.x86_phys_bits, |
4481 | false); | |
4482 | ||
ea2800dd BS |
4483 | if (!shadow_me_mask) |
4484 | return; | |
4485 | ||
4486 | for (i = context->shadow_root_level; --i >= 0;) { | |
4487 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; | |
4488 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; | |
4489 | } | |
c258b62b XG |
4490 | } |
4491 | ||
4492 | /* | |
4493 | * as the comments in reset_shadow_zero_bits_mask() except it | |
4494 | * is the shadow page table for intel nested guest. | |
4495 | */ | |
4496 | static void | |
4497 | reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, | |
4498 | struct kvm_mmu *context, bool execonly) | |
4499 | { | |
4500 | __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, | |
4501 | boot_cpu_data.x86_phys_bits, execonly); | |
4502 | } | |
4503 | ||
09f037aa PB |
4504 | #define BYTE_MASK(access) \ |
4505 | ((1 & (access) ? 2 : 0) | \ | |
4506 | (2 & (access) ? 4 : 0) | \ | |
4507 | (3 & (access) ? 8 : 0) | \ | |
4508 | (4 & (access) ? 16 : 0) | \ | |
4509 | (5 & (access) ? 32 : 0) | \ | |
4510 | (6 & (access) ? 64 : 0) | \ | |
4511 | (7 & (access) ? 128 : 0)) | |
4512 | ||
4513 | ||
edc90b7d XG |
4514 | static void update_permission_bitmask(struct kvm_vcpu *vcpu, |
4515 | struct kvm_mmu *mmu, bool ept) | |
97d64b78 | 4516 | { |
09f037aa PB |
4517 | unsigned byte; |
4518 | ||
4519 | const u8 x = BYTE_MASK(ACC_EXEC_MASK); | |
4520 | const u8 w = BYTE_MASK(ACC_WRITE_MASK); | |
4521 | const u8 u = BYTE_MASK(ACC_USER_MASK); | |
4522 | ||
4523 | bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; | |
4524 | bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; | |
4525 | bool cr0_wp = is_write_protection(vcpu); | |
97d64b78 | 4526 | |
97d64b78 | 4527 | for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { |
09f037aa PB |
4528 | unsigned pfec = byte << 1; |
4529 | ||
97ec8c06 | 4530 | /* |
09f037aa PB |
4531 | * Each "*f" variable has a 1 bit for each UWX value |
4532 | * that causes a fault with the given PFEC. | |
97ec8c06 | 4533 | */ |
97d64b78 | 4534 | |
09f037aa PB |
4535 | /* Faults from writes to non-writable pages */ |
4536 | u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0; | |
4537 | /* Faults from user mode accesses to supervisor pages */ | |
4538 | u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0; | |
4539 | /* Faults from fetches of non-executable pages*/ | |
4540 | u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0; | |
4541 | /* Faults from kernel mode fetches of user pages */ | |
4542 | u8 smepf = 0; | |
4543 | /* Faults from kernel mode accesses of user pages */ | |
4544 | u8 smapf = 0; | |
4545 | ||
4546 | if (!ept) { | |
4547 | /* Faults from kernel mode accesses to user pages */ | |
4548 | u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; | |
4549 | ||
4550 | /* Not really needed: !nx will cause pte.nx to fault */ | |
4551 | if (!mmu->nx) | |
4552 | ff = 0; | |
4553 | ||
4554 | /* Allow supervisor writes if !cr0.wp */ | |
4555 | if (!cr0_wp) | |
4556 | wf = (pfec & PFERR_USER_MASK) ? wf : 0; | |
4557 | ||
4558 | /* Disallow supervisor fetches of user code if cr4.smep */ | |
4559 | if (cr4_smep) | |
4560 | smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; | |
4561 | ||
4562 | /* | |
4563 | * SMAP:kernel-mode data accesses from user-mode | |
4564 | * mappings should fault. A fault is considered | |
4565 | * as a SMAP violation if all of the following | |
4566 | * conditions are ture: | |
4567 | * - X86_CR4_SMAP is set in CR4 | |
4568 | * - A user page is accessed | |
4569 | * - The access is not a fetch | |
4570 | * - Page fault in kernel mode | |
4571 | * - if CPL = 3 or X86_EFLAGS_AC is clear | |
4572 | * | |
4573 | * Here, we cover the first three conditions. | |
4574 | * The fourth is computed dynamically in permission_fault(); | |
4575 | * PFERR_RSVD_MASK bit will be set in PFEC if the access is | |
4576 | * *not* subject to SMAP restrictions. | |
4577 | */ | |
4578 | if (cr4_smap) | |
4579 | smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; | |
97d64b78 | 4580 | } |
09f037aa PB |
4581 | |
4582 | mmu->permissions[byte] = ff | uf | wf | smepf | smapf; | |
97d64b78 AK |
4583 | } |
4584 | } | |
4585 | ||
2d344105 HH |
4586 | /* |
4587 | * PKU is an additional mechanism by which the paging controls access to | |
4588 | * user-mode addresses based on the value in the PKRU register. Protection | |
4589 | * key violations are reported through a bit in the page fault error code. | |
4590 | * Unlike other bits of the error code, the PK bit is not known at the | |
4591 | * call site of e.g. gva_to_gpa; it must be computed directly in | |
4592 | * permission_fault based on two bits of PKRU, on some machine state (CR4, | |
4593 | * CR0, EFER, CPL), and on other bits of the error code and the page tables. | |
4594 | * | |
4595 | * In particular the following conditions come from the error code, the | |
4596 | * page tables and the machine state: | |
4597 | * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 | |
4598 | * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) | |
4599 | * - PK is always zero if U=0 in the page tables | |
4600 | * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. | |
4601 | * | |
4602 | * The PKRU bitmask caches the result of these four conditions. The error | |
4603 | * code (minus the P bit) and the page table's U bit form an index into the | |
4604 | * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed | |
4605 | * with the two bits of the PKRU register corresponding to the protection key. | |
4606 | * For the first three conditions above the bits will be 00, thus masking | |
4607 | * away both AD and WD. For all reads or if the last condition holds, WD | |
4608 | * only will be masked away. | |
4609 | */ | |
4610 | static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | |
4611 | bool ept) | |
4612 | { | |
4613 | unsigned bit; | |
4614 | bool wp; | |
4615 | ||
4616 | if (ept) { | |
4617 | mmu->pkru_mask = 0; | |
4618 | return; | |
4619 | } | |
4620 | ||
4621 | /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ | |
4622 | if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { | |
4623 | mmu->pkru_mask = 0; | |
4624 | return; | |
4625 | } | |
4626 | ||
4627 | wp = is_write_protection(vcpu); | |
4628 | ||
4629 | for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { | |
4630 | unsigned pfec, pkey_bits; | |
4631 | bool check_pkey, check_write, ff, uf, wf, pte_user; | |
4632 | ||
4633 | pfec = bit << 1; | |
4634 | ff = pfec & PFERR_FETCH_MASK; | |
4635 | uf = pfec & PFERR_USER_MASK; | |
4636 | wf = pfec & PFERR_WRITE_MASK; | |
4637 | ||
4638 | /* PFEC.RSVD is replaced by ACC_USER_MASK. */ | |
4639 | pte_user = pfec & PFERR_RSVD_MASK; | |
4640 | ||
4641 | /* | |
4642 | * Only need to check the access which is not an | |
4643 | * instruction fetch and is to a user page. | |
4644 | */ | |
4645 | check_pkey = (!ff && pte_user); | |
4646 | /* | |
4647 | * write access is controlled by PKRU if it is a | |
4648 | * user access or CR0.WP = 1. | |
4649 | */ | |
4650 | check_write = check_pkey && wf && (uf || wp); | |
4651 | ||
4652 | /* PKRU.AD stops both read and write access. */ | |
4653 | pkey_bits = !!check_pkey; | |
4654 | /* PKRU.WD stops write access. */ | |
4655 | pkey_bits |= (!!check_write) << 1; | |
4656 | ||
4657 | mmu->pkru_mask |= (pkey_bits & 3) << pfec; | |
4658 | } | |
4659 | } | |
4660 | ||
6bb69c9b | 4661 | static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) |
6fd01b71 | 4662 | { |
6bb69c9b PB |
4663 | unsigned root_level = mmu->root_level; |
4664 | ||
4665 | mmu->last_nonleaf_level = root_level; | |
4666 | if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) | |
4667 | mmu->last_nonleaf_level++; | |
6fd01b71 AK |
4668 | } |
4669 | ||
8a3c1a33 PB |
4670 | static void paging64_init_context_common(struct kvm_vcpu *vcpu, |
4671 | struct kvm_mmu *context, | |
4672 | int level) | |
6aa8b732 | 4673 | { |
2d48a985 | 4674 | context->nx = is_nx(vcpu); |
4d6931c3 | 4675 | context->root_level = level; |
2d48a985 | 4676 | |
4d6931c3 | 4677 | reset_rsvds_bits_mask(vcpu, context); |
25d92081 | 4678 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4679 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4680 | update_last_nonleaf_level(vcpu, context); |
6aa8b732 | 4681 | |
fa4a2c08 | 4682 | MMU_WARN_ON(!is_pae(vcpu)); |
6aa8b732 | 4683 | context->page_fault = paging64_page_fault; |
6aa8b732 | 4684 | context->gva_to_gpa = paging64_gva_to_gpa; |
e8bc217a | 4685 | context->sync_page = paging64_sync_page; |
a7052897 | 4686 | context->invlpg = paging64_invlpg; |
0f53b5b1 | 4687 | context->update_pte = paging64_update_pte; |
17ac10ad | 4688 | context->shadow_root_level = level; |
c5a78f2b | 4689 | context->direct_map = false; |
6aa8b732 AK |
4690 | } |
4691 | ||
8a3c1a33 PB |
4692 | static void paging64_init_context(struct kvm_vcpu *vcpu, |
4693 | struct kvm_mmu *context) | |
17ac10ad | 4694 | { |
855feb67 YZ |
4695 | int root_level = is_la57_mode(vcpu) ? |
4696 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4697 | ||
4698 | paging64_init_context_common(vcpu, context, root_level); | |
17ac10ad AK |
4699 | } |
4700 | ||
8a3c1a33 PB |
4701 | static void paging32_init_context(struct kvm_vcpu *vcpu, |
4702 | struct kvm_mmu *context) | |
6aa8b732 | 4703 | { |
2d48a985 | 4704 | context->nx = false; |
4d6931c3 | 4705 | context->root_level = PT32_ROOT_LEVEL; |
2d48a985 | 4706 | |
4d6931c3 | 4707 | reset_rsvds_bits_mask(vcpu, context); |
25d92081 | 4708 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4709 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4710 | update_last_nonleaf_level(vcpu, context); |
6aa8b732 | 4711 | |
6aa8b732 | 4712 | context->page_fault = paging32_page_fault; |
6aa8b732 | 4713 | context->gva_to_gpa = paging32_gva_to_gpa; |
e8bc217a | 4714 | context->sync_page = paging32_sync_page; |
a7052897 | 4715 | context->invlpg = paging32_invlpg; |
0f53b5b1 | 4716 | context->update_pte = paging32_update_pte; |
6aa8b732 | 4717 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
c5a78f2b | 4718 | context->direct_map = false; |
6aa8b732 AK |
4719 | } |
4720 | ||
8a3c1a33 PB |
4721 | static void paging32E_init_context(struct kvm_vcpu *vcpu, |
4722 | struct kvm_mmu *context) | |
6aa8b732 | 4723 | { |
8a3c1a33 | 4724 | paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); |
6aa8b732 AK |
4725 | } |
4726 | ||
9fa72119 JS |
4727 | static union kvm_mmu_page_role |
4728 | kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu) | |
4729 | { | |
4730 | union kvm_mmu_page_role role = {0}; | |
4731 | ||
4732 | role.guest_mode = is_guest_mode(vcpu); | |
4733 | role.smm = is_smm(vcpu); | |
4734 | role.ad_disabled = (shadow_accessed_mask == 0); | |
4735 | role.level = kvm_x86_ops->get_tdp_level(vcpu); | |
4736 | role.direct = true; | |
4737 | role.access = ACC_ALL; | |
4738 | ||
4739 | return role; | |
4740 | } | |
4741 | ||
8a3c1a33 | 4742 | static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) |
fb72d167 | 4743 | { |
44dd3ffa | 4744 | struct kvm_mmu *context = vcpu->arch.mmu; |
fb72d167 | 4745 | |
36d9594d | 4746 | context->mmu_role.base.word = mmu_base_role_mask.word & |
9fa72119 | 4747 | kvm_calc_tdp_mmu_root_page_role(vcpu).word; |
fb72d167 | 4748 | context->page_fault = tdp_page_fault; |
e8bc217a | 4749 | context->sync_page = nonpaging_sync_page; |
a7052897 | 4750 | context->invlpg = nonpaging_invlpg; |
0f53b5b1 | 4751 | context->update_pte = nonpaging_update_pte; |
855feb67 | 4752 | context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); |
c5a78f2b | 4753 | context->direct_map = true; |
1c97f0a0 | 4754 | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; |
5777ed34 | 4755 | context->get_cr3 = get_cr3; |
e4e517b4 | 4756 | context->get_pdptr = kvm_pdptr_read; |
cb659db8 | 4757 | context->inject_page_fault = kvm_inject_page_fault; |
fb72d167 JR |
4758 | |
4759 | if (!is_paging(vcpu)) { | |
2d48a985 | 4760 | context->nx = false; |
fb72d167 JR |
4761 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
4762 | context->root_level = 0; | |
4763 | } else if (is_long_mode(vcpu)) { | |
2d48a985 | 4764 | context->nx = is_nx(vcpu); |
855feb67 YZ |
4765 | context->root_level = is_la57_mode(vcpu) ? |
4766 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4d6931c3 DB |
4767 | reset_rsvds_bits_mask(vcpu, context); |
4768 | context->gva_to_gpa = paging64_gva_to_gpa; | |
fb72d167 | 4769 | } else if (is_pae(vcpu)) { |
2d48a985 | 4770 | context->nx = is_nx(vcpu); |
fb72d167 | 4771 | context->root_level = PT32E_ROOT_LEVEL; |
4d6931c3 DB |
4772 | reset_rsvds_bits_mask(vcpu, context); |
4773 | context->gva_to_gpa = paging64_gva_to_gpa; | |
fb72d167 | 4774 | } else { |
2d48a985 | 4775 | context->nx = false; |
fb72d167 | 4776 | context->root_level = PT32_ROOT_LEVEL; |
4d6931c3 DB |
4777 | reset_rsvds_bits_mask(vcpu, context); |
4778 | context->gva_to_gpa = paging32_gva_to_gpa; | |
fb72d167 JR |
4779 | } |
4780 | ||
25d92081 | 4781 | update_permission_bitmask(vcpu, context, false); |
2d344105 | 4782 | update_pkru_bitmask(vcpu, context, false); |
6bb69c9b | 4783 | update_last_nonleaf_level(vcpu, context); |
c258b62b | 4784 | reset_tdp_shadow_zero_bits_mask(vcpu, context); |
fb72d167 JR |
4785 | } |
4786 | ||
9fa72119 JS |
4787 | static union kvm_mmu_page_role |
4788 | kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu) | |
6aa8b732 | 4789 | { |
9fa72119 | 4790 | union kvm_mmu_page_role role = {0}; |
411c588d | 4791 | bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); |
edc90b7d | 4792 | bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); |
ad896af0 | 4793 | |
9fa72119 JS |
4794 | role.nxe = is_nx(vcpu); |
4795 | role.cr4_pae = !!is_pae(vcpu); | |
4796 | role.cr0_wp = is_write_protection(vcpu); | |
4797 | role.smep_andnot_wp = smep && !is_write_protection(vcpu); | |
4798 | role.smap_andnot_wp = smap && !is_write_protection(vcpu); | |
4799 | role.guest_mode = is_guest_mode(vcpu); | |
4800 | role.smm = is_smm(vcpu); | |
4801 | role.direct = !is_paging(vcpu); | |
4802 | role.access = ACC_ALL; | |
4803 | ||
4804 | if (!is_long_mode(vcpu)) | |
4805 | role.level = PT32E_ROOT_LEVEL; | |
4806 | else if (is_la57_mode(vcpu)) | |
4807 | role.level = PT64_ROOT_5LEVEL; | |
4808 | else | |
4809 | role.level = PT64_ROOT_4LEVEL; | |
4810 | ||
4811 | return role; | |
4812 | } | |
4813 | ||
4814 | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) | |
4815 | { | |
44dd3ffa | 4816 | struct kvm_mmu *context = vcpu->arch.mmu; |
6aa8b732 AK |
4817 | |
4818 | if (!is_paging(vcpu)) | |
8a3c1a33 | 4819 | nonpaging_init_context(vcpu, context); |
a9058ecd | 4820 | else if (is_long_mode(vcpu)) |
8a3c1a33 | 4821 | paging64_init_context(vcpu, context); |
6aa8b732 | 4822 | else if (is_pae(vcpu)) |
8a3c1a33 | 4823 | paging32E_init_context(vcpu, context); |
6aa8b732 | 4824 | else |
8a3c1a33 | 4825 | paging32_init_context(vcpu, context); |
a770f6f2 | 4826 | |
36d9594d | 4827 | context->mmu_role.base.word = mmu_base_role_mask.word & |
9fa72119 | 4828 | kvm_calc_shadow_mmu_root_page_role(vcpu).word; |
c258b62b | 4829 | reset_shadow_zero_bits_mask(vcpu, context); |
52fde8df JR |
4830 | } |
4831 | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); | |
4832 | ||
9fa72119 JS |
4833 | static union kvm_mmu_page_role |
4834 | kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty) | |
4835 | { | |
14c07ad8 VK |
4836 | union kvm_mmu_page_role role; |
4837 | ||
4838 | /* Role is inherited from root_mmu */ | |
4839 | role.word = vcpu->arch.root_mmu.base_role.word; | |
9fa72119 JS |
4840 | |
4841 | role.level = PT64_ROOT_4LEVEL; | |
4842 | role.direct = false; | |
4843 | role.ad_disabled = !accessed_dirty; | |
4844 | role.guest_mode = true; | |
4845 | role.access = ACC_ALL; | |
4846 | ||
4847 | return role; | |
4848 | } | |
4849 | ||
ae1e2d10 | 4850 | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
50c28f21 | 4851 | bool accessed_dirty, gpa_t new_eptp) |
155a97a3 | 4852 | { |
44dd3ffa | 4853 | struct kvm_mmu *context = vcpu->arch.mmu; |
9fa72119 JS |
4854 | union kvm_mmu_page_role root_page_role = |
4855 | kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty); | |
ad896af0 | 4856 | |
ade61e28 | 4857 | __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false); |
855feb67 | 4858 | context->shadow_root_level = PT64_ROOT_4LEVEL; |
155a97a3 NHE |
4859 | |
4860 | context->nx = true; | |
ae1e2d10 | 4861 | context->ept_ad = accessed_dirty; |
155a97a3 NHE |
4862 | context->page_fault = ept_page_fault; |
4863 | context->gva_to_gpa = ept_gva_to_gpa; | |
4864 | context->sync_page = ept_sync_page; | |
4865 | context->invlpg = ept_invlpg; | |
4866 | context->update_pte = ept_update_pte; | |
855feb67 | 4867 | context->root_level = PT64_ROOT_4LEVEL; |
155a97a3 | 4868 | context->direct_map = false; |
36d9594d VK |
4869 | context->mmu_role.base.word = |
4870 | root_page_role.word & mmu_base_role_mask.word; | |
3dc773e7 | 4871 | |
155a97a3 | 4872 | update_permission_bitmask(vcpu, context, true); |
2d344105 | 4873 | update_pkru_bitmask(vcpu, context, true); |
fd19d3b4 | 4874 | update_last_nonleaf_level(vcpu, context); |
155a97a3 | 4875 | reset_rsvds_bits_mask_ept(vcpu, context, execonly); |
c258b62b | 4876 | reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); |
155a97a3 NHE |
4877 | } |
4878 | EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); | |
4879 | ||
8a3c1a33 | 4880 | static void init_kvm_softmmu(struct kvm_vcpu *vcpu) |
52fde8df | 4881 | { |
44dd3ffa | 4882 | struct kvm_mmu *context = vcpu->arch.mmu; |
ad896af0 PB |
4883 | |
4884 | kvm_init_shadow_mmu(vcpu); | |
4885 | context->set_cr3 = kvm_x86_ops->set_cr3; | |
4886 | context->get_cr3 = get_cr3; | |
4887 | context->get_pdptr = kvm_pdptr_read; | |
4888 | context->inject_page_fault = kvm_inject_page_fault; | |
6aa8b732 AK |
4889 | } |
4890 | ||
8a3c1a33 | 4891 | static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) |
02f59dc9 JR |
4892 | { |
4893 | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; | |
4894 | ||
4895 | g_context->get_cr3 = get_cr3; | |
e4e517b4 | 4896 | g_context->get_pdptr = kvm_pdptr_read; |
02f59dc9 JR |
4897 | g_context->inject_page_fault = kvm_inject_page_fault; |
4898 | ||
4899 | /* | |
44dd3ffa | 4900 | * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using |
0af2593b DM |
4901 | * L1's nested page tables (e.g. EPT12). The nested translation |
4902 | * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using | |
4903 | * L2's page tables as the first level of translation and L1's | |
4904 | * nested page tables as the second level of translation. Basically | |
4905 | * the gva_to_gpa functions between mmu and nested_mmu are swapped. | |
02f59dc9 JR |
4906 | */ |
4907 | if (!is_paging(vcpu)) { | |
2d48a985 | 4908 | g_context->nx = false; |
02f59dc9 JR |
4909 | g_context->root_level = 0; |
4910 | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; | |
4911 | } else if (is_long_mode(vcpu)) { | |
2d48a985 | 4912 | g_context->nx = is_nx(vcpu); |
855feb67 YZ |
4913 | g_context->root_level = is_la57_mode(vcpu) ? |
4914 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; | |
4d6931c3 | 4915 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4916 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
4917 | } else if (is_pae(vcpu)) { | |
2d48a985 | 4918 | g_context->nx = is_nx(vcpu); |
02f59dc9 | 4919 | g_context->root_level = PT32E_ROOT_LEVEL; |
4d6931c3 | 4920 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4921 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
4922 | } else { | |
2d48a985 | 4923 | g_context->nx = false; |
02f59dc9 | 4924 | g_context->root_level = PT32_ROOT_LEVEL; |
4d6931c3 | 4925 | reset_rsvds_bits_mask(vcpu, g_context); |
02f59dc9 JR |
4926 | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; |
4927 | } | |
4928 | ||
25d92081 | 4929 | update_permission_bitmask(vcpu, g_context, false); |
2d344105 | 4930 | update_pkru_bitmask(vcpu, g_context, false); |
6bb69c9b | 4931 | update_last_nonleaf_level(vcpu, g_context); |
02f59dc9 JR |
4932 | } |
4933 | ||
1c53da3f | 4934 | void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) |
fb72d167 | 4935 | { |
1c53da3f | 4936 | if (reset_roots) { |
b94742c9 JS |
4937 | uint i; |
4938 | ||
44dd3ffa | 4939 | vcpu->arch.mmu->root_hpa = INVALID_PAGE; |
b94742c9 JS |
4940 | |
4941 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | |
44dd3ffa | 4942 | vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; |
1c53da3f JS |
4943 | } |
4944 | ||
02f59dc9 | 4945 | if (mmu_is_nested(vcpu)) |
e0c6db3e | 4946 | init_kvm_nested_mmu(vcpu); |
02f59dc9 | 4947 | else if (tdp_enabled) |
e0c6db3e | 4948 | init_kvm_tdp_mmu(vcpu); |
fb72d167 | 4949 | else |
e0c6db3e | 4950 | init_kvm_softmmu(vcpu); |
fb72d167 | 4951 | } |
1c53da3f | 4952 | EXPORT_SYMBOL_GPL(kvm_init_mmu); |
fb72d167 | 4953 | |
9fa72119 JS |
4954 | static union kvm_mmu_page_role |
4955 | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) | |
4956 | { | |
4957 | if (tdp_enabled) | |
4958 | return kvm_calc_tdp_mmu_root_page_role(vcpu); | |
4959 | else | |
4960 | return kvm_calc_shadow_mmu_root_page_role(vcpu); | |
4961 | } | |
fb72d167 | 4962 | |
8a3c1a33 | 4963 | void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
6aa8b732 | 4964 | { |
95f93af4 | 4965 | kvm_mmu_unload(vcpu); |
1c53da3f | 4966 | kvm_init_mmu(vcpu, true); |
17c3ba9d | 4967 | } |
8668a3c4 | 4968 | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); |
17c3ba9d AK |
4969 | |
4970 | int kvm_mmu_load(struct kvm_vcpu *vcpu) | |
6aa8b732 | 4971 | { |
714b93da AK |
4972 | int r; |
4973 | ||
e2dec939 | 4974 | r = mmu_topup_memory_caches(vcpu); |
17c3ba9d AK |
4975 | if (r) |
4976 | goto out; | |
8986ecc0 | 4977 | r = mmu_alloc_roots(vcpu); |
e2858b4a | 4978 | kvm_mmu_sync_roots(vcpu); |
8986ecc0 MT |
4979 | if (r) |
4980 | goto out; | |
6e42782f | 4981 | kvm_mmu_load_cr3(vcpu); |
afe828d1 | 4982 | kvm_x86_ops->tlb_flush(vcpu, true); |
714b93da AK |
4983 | out: |
4984 | return r; | |
6aa8b732 | 4985 | } |
17c3ba9d AK |
4986 | EXPORT_SYMBOL_GPL(kvm_mmu_load); |
4987 | ||
4988 | void kvm_mmu_unload(struct kvm_vcpu *vcpu) | |
4989 | { | |
14c07ad8 VK |
4990 | kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); |
4991 | WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); | |
4992 | kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); | |
4993 | WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); | |
17c3ba9d | 4994 | } |
4b16184c | 4995 | EXPORT_SYMBOL_GPL(kvm_mmu_unload); |
6aa8b732 | 4996 | |
0028425f | 4997 | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, |
7c562522 XG |
4998 | struct kvm_mmu_page *sp, u64 *spte, |
4999 | const void *new) | |
0028425f | 5000 | { |
30945387 | 5001 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { |
7e4e4056 JR |
5002 | ++vcpu->kvm->stat.mmu_pde_zapped; |
5003 | return; | |
30945387 | 5004 | } |
0028425f | 5005 | |
4cee5764 | 5006 | ++vcpu->kvm->stat.mmu_pte_updated; |
44dd3ffa | 5007 | vcpu->arch.mmu->update_pte(vcpu, sp, spte, new); |
0028425f AK |
5008 | } |
5009 | ||
79539cec AK |
5010 | static bool need_remote_flush(u64 old, u64 new) |
5011 | { | |
5012 | if (!is_shadow_present_pte(old)) | |
5013 | return false; | |
5014 | if (!is_shadow_present_pte(new)) | |
5015 | return true; | |
5016 | if ((old ^ new) & PT64_BASE_ADDR_MASK) | |
5017 | return true; | |
53166229 GN |
5018 | old ^= shadow_nx_mask; |
5019 | new ^= shadow_nx_mask; | |
79539cec AK |
5020 | return (old & ~new & PT64_PERM_MASK) != 0; |
5021 | } | |
5022 | ||
889e5cbc XG |
5023 | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, |
5024 | const u8 *new, int *bytes) | |
da4a00f0 | 5025 | { |
889e5cbc XG |
5026 | u64 gentry; |
5027 | int r; | |
72016f3a | 5028 | |
72016f3a AK |
5029 | /* |
5030 | * Assume that the pte write on a page table of the same type | |
49b26e26 XG |
5031 | * as the current vcpu paging mode since we update the sptes only |
5032 | * when they have the same mode. | |
72016f3a | 5033 | */ |
889e5cbc | 5034 | if (is_pae(vcpu) && *bytes == 4) { |
72016f3a | 5035 | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ |
889e5cbc XG |
5036 | *gpa &= ~(gpa_t)7; |
5037 | *bytes = 8; | |
54bf36aa | 5038 | r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8); |
72016f3a AK |
5039 | if (r) |
5040 | gentry = 0; | |
08e850c6 AK |
5041 | new = (const u8 *)&gentry; |
5042 | } | |
5043 | ||
889e5cbc | 5044 | switch (*bytes) { |
08e850c6 AK |
5045 | case 4: |
5046 | gentry = *(const u32 *)new; | |
5047 | break; | |
5048 | case 8: | |
5049 | gentry = *(const u64 *)new; | |
5050 | break; | |
5051 | default: | |
5052 | gentry = 0; | |
5053 | break; | |
72016f3a AK |
5054 | } |
5055 | ||
889e5cbc XG |
5056 | return gentry; |
5057 | } | |
5058 | ||
5059 | /* | |
5060 | * If we're seeing too many writes to a page, it may no longer be a page table, | |
5061 | * or we may be forking, in which case it is better to unmap the page. | |
5062 | */ | |
a138fe75 | 5063 | static bool detect_write_flooding(struct kvm_mmu_page *sp) |
889e5cbc | 5064 | { |
a30f47cb XG |
5065 | /* |
5066 | * Skip write-flooding detected for the sp whose level is 1, because | |
5067 | * it can become unsync, then the guest page is not write-protected. | |
5068 | */ | |
f71fa31f | 5069 | if (sp->role.level == PT_PAGE_TABLE_LEVEL) |
a30f47cb | 5070 | return false; |
3246af0e | 5071 | |
e5691a81 XG |
5072 | atomic_inc(&sp->write_flooding_count); |
5073 | return atomic_read(&sp->write_flooding_count) >= 3; | |
889e5cbc XG |
5074 | } |
5075 | ||
5076 | /* | |
5077 | * Misaligned accesses are too much trouble to fix up; also, they usually | |
5078 | * indicate a page is not used as a page table. | |
5079 | */ | |
5080 | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, | |
5081 | int bytes) | |
5082 | { | |
5083 | unsigned offset, pte_size, misaligned; | |
5084 | ||
5085 | pgprintk("misaligned: gpa %llx bytes %d role %x\n", | |
5086 | gpa, bytes, sp->role.word); | |
5087 | ||
5088 | offset = offset_in_page(gpa); | |
5089 | pte_size = sp->role.cr4_pae ? 8 : 4; | |
5d9ca30e XG |
5090 | |
5091 | /* | |
5092 | * Sometimes, the OS only writes the last one bytes to update status | |
5093 | * bits, for example, in linux, andb instruction is used in clear_bit(). | |
5094 | */ | |
5095 | if (!(offset & (pte_size - 1)) && bytes == 1) | |
5096 | return false; | |
5097 | ||
889e5cbc XG |
5098 | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
5099 | misaligned |= bytes < 4; | |
5100 | ||
5101 | return misaligned; | |
5102 | } | |
5103 | ||
5104 | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) | |
5105 | { | |
5106 | unsigned page_offset, quadrant; | |
5107 | u64 *spte; | |
5108 | int level; | |
5109 | ||
5110 | page_offset = offset_in_page(gpa); | |
5111 | level = sp->role.level; | |
5112 | *nspte = 1; | |
5113 | if (!sp->role.cr4_pae) { | |
5114 | page_offset <<= 1; /* 32->64 */ | |
5115 | /* | |
5116 | * A 32-bit pde maps 4MB while the shadow pdes map | |
5117 | * only 2MB. So we need to double the offset again | |
5118 | * and zap two pdes instead of one. | |
5119 | */ | |
5120 | if (level == PT32_ROOT_LEVEL) { | |
5121 | page_offset &= ~7; /* kill rounding error */ | |
5122 | page_offset <<= 1; | |
5123 | *nspte = 2; | |
5124 | } | |
5125 | quadrant = page_offset >> PAGE_SHIFT; | |
5126 | page_offset &= ~PAGE_MASK; | |
5127 | if (quadrant != sp->role.quadrant) | |
5128 | return NULL; | |
5129 | } | |
5130 | ||
5131 | spte = &sp->spt[page_offset / sizeof(*spte)]; | |
5132 | return spte; | |
5133 | } | |
5134 | ||
13d268ca | 5135 | static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, |
d126363d JS |
5136 | const u8 *new, int bytes, |
5137 | struct kvm_page_track_notifier_node *node) | |
889e5cbc XG |
5138 | { |
5139 | gfn_t gfn = gpa >> PAGE_SHIFT; | |
889e5cbc | 5140 | struct kvm_mmu_page *sp; |
889e5cbc XG |
5141 | LIST_HEAD(invalid_list); |
5142 | u64 entry, gentry, *spte; | |
5143 | int npte; | |
b8c67b7a | 5144 | bool remote_flush, local_flush; |
889e5cbc XG |
5145 | |
5146 | /* | |
5147 | * If we don't have indirect shadow pages, it means no page is | |
5148 | * write-protected, so we can exit simply. | |
5149 | */ | |
6aa7de05 | 5150 | if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) |
889e5cbc XG |
5151 | return; |
5152 | ||
b8c67b7a | 5153 | remote_flush = local_flush = false; |
889e5cbc XG |
5154 | |
5155 | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); | |
5156 | ||
5157 | gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes); | |
5158 | ||
5159 | /* | |
5160 | * No need to care whether allocation memory is successful | |
5161 | * or not since pte prefetch is skiped if it does not have | |
5162 | * enough objects in the cache. | |
5163 | */ | |
5164 | mmu_topup_memory_caches(vcpu); | |
5165 | ||
5166 | spin_lock(&vcpu->kvm->mmu_lock); | |
5167 | ++vcpu->kvm->stat.mmu_pte_write; | |
0375f7fa | 5168 | kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); |
889e5cbc | 5169 | |
b67bfe0d | 5170 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
a30f47cb | 5171 | if (detect_write_misaligned(sp, gpa, bytes) || |
a138fe75 | 5172 | detect_write_flooding(sp)) { |
b8c67b7a | 5173 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
4cee5764 | 5174 | ++vcpu->kvm->stat.mmu_flooded; |
0e7bc4b9 AK |
5175 | continue; |
5176 | } | |
889e5cbc XG |
5177 | |
5178 | spte = get_written_sptes(sp, gpa, &npte); | |
5179 | if (!spte) | |
5180 | continue; | |
5181 | ||
0671a8e7 | 5182 | local_flush = true; |
ac1b714e | 5183 | while (npte--) { |
36d9594d VK |
5184 | u32 base_role = vcpu->arch.mmu->mmu_role.base.word; |
5185 | ||
79539cec | 5186 | entry = *spte; |
38e3b2b2 | 5187 | mmu_page_zap_pte(vcpu->kvm, sp, spte); |
fa1de2bf | 5188 | if (gentry && |
36d9594d | 5189 | !((sp->role.word ^ base_role) |
9fa72119 | 5190 | & mmu_base_role_mask.word) && rmap_can_add(vcpu)) |
7c562522 | 5191 | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); |
9bb4f6b1 | 5192 | if (need_remote_flush(entry, *spte)) |
0671a8e7 | 5193 | remote_flush = true; |
ac1b714e | 5194 | ++spte; |
9b7a0325 | 5195 | } |
9b7a0325 | 5196 | } |
b8c67b7a | 5197 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); |
0375f7fa | 5198 | kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); |
aaee2c94 | 5199 | spin_unlock(&vcpu->kvm->mmu_lock); |
da4a00f0 AK |
5200 | } |
5201 | ||
a436036b AK |
5202 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
5203 | { | |
10589a46 MT |
5204 | gpa_t gpa; |
5205 | int r; | |
a436036b | 5206 | |
44dd3ffa | 5207 | if (vcpu->arch.mmu->direct_map) |
60f24784 AK |
5208 | return 0; |
5209 | ||
1871c602 | 5210 | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
10589a46 | 5211 | |
10589a46 | 5212 | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
1cb3f3ae | 5213 | |
10589a46 | 5214 | return r; |
a436036b | 5215 | } |
577bdc49 | 5216 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); |
a436036b | 5217 | |
26eeb53c | 5218 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu) |
ebeace86 | 5219 | { |
d98ba053 | 5220 | LIST_HEAD(invalid_list); |
103ad25a | 5221 | |
81f4f76b | 5222 | if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) |
26eeb53c | 5223 | return 0; |
81f4f76b | 5224 | |
5da59607 TY |
5225 | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { |
5226 | if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) | |
5227 | break; | |
ebeace86 | 5228 | |
4cee5764 | 5229 | ++vcpu->kvm->stat.mmu_recycled; |
ebeace86 | 5230 | } |
aa6bd187 | 5231 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
26eeb53c WL |
5232 | |
5233 | if (!kvm_mmu_available_pages(vcpu->kvm)) | |
5234 | return -ENOSPC; | |
5235 | return 0; | |
ebeace86 | 5236 | } |
ebeace86 | 5237 | |
14727754 | 5238 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code, |
dc25e89e | 5239 | void *insn, int insn_len) |
3067714c | 5240 | { |
472faffa | 5241 | int r, emulation_type = 0; |
3067714c | 5242 | enum emulation_result er; |
44dd3ffa | 5243 | bool direct = vcpu->arch.mmu->direct_map; |
3067714c | 5244 | |
618232e2 | 5245 | /* With shadow page tables, fault_address contains a GVA or nGPA. */ |
44dd3ffa | 5246 | if (vcpu->arch.mmu->direct_map) { |
618232e2 BS |
5247 | vcpu->arch.gpa_available = true; |
5248 | vcpu->arch.gpa_val = cr2; | |
5249 | } | |
3067714c | 5250 | |
9b8ebbdb | 5251 | r = RET_PF_INVALID; |
e9ee956e TY |
5252 | if (unlikely(error_code & PFERR_RSVD_MASK)) { |
5253 | r = handle_mmio_page_fault(vcpu, cr2, direct); | |
472faffa | 5254 | if (r == RET_PF_EMULATE) |
e9ee956e | 5255 | goto emulate; |
e9ee956e | 5256 | } |
3067714c | 5257 | |
9b8ebbdb | 5258 | if (r == RET_PF_INVALID) { |
44dd3ffa VK |
5259 | r = vcpu->arch.mmu->page_fault(vcpu, cr2, |
5260 | lower_32_bits(error_code), | |
5261 | false); | |
9b8ebbdb PB |
5262 | WARN_ON(r == RET_PF_INVALID); |
5263 | } | |
5264 | ||
5265 | if (r == RET_PF_RETRY) | |
5266 | return 1; | |
3067714c | 5267 | if (r < 0) |
e9ee956e | 5268 | return r; |
3067714c | 5269 | |
14727754 TL |
5270 | /* |
5271 | * Before emulating the instruction, check if the error code | |
5272 | * was due to a RO violation while translating the guest page. | |
5273 | * This can occur when using nested virtualization with nested | |
5274 | * paging in both guests. If true, we simply unprotect the page | |
5275 | * and resume the guest. | |
14727754 | 5276 | */ |
44dd3ffa | 5277 | if (vcpu->arch.mmu->direct_map && |
eebed243 | 5278 | (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { |
14727754 TL |
5279 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2)); |
5280 | return 1; | |
5281 | } | |
5282 | ||
472faffa SC |
5283 | /* |
5284 | * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still | |
5285 | * optimistically try to just unprotect the page and let the processor | |
5286 | * re-execute the instruction that caused the page fault. Do not allow | |
5287 | * retrying MMIO emulation, as it's not only pointless but could also | |
5288 | * cause us to enter an infinite loop because the processor will keep | |
6c3dfeb6 SC |
5289 | * faulting on the non-existent MMIO address. Retrying an instruction |
5290 | * from a nested guest is also pointless and dangerous as we are only | |
5291 | * explicitly shadowing L1's page tables, i.e. unprotecting something | |
5292 | * for L1 isn't going to magically fix whatever issue cause L2 to fail. | |
472faffa | 5293 | */ |
6c3dfeb6 | 5294 | if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu)) |
472faffa | 5295 | emulation_type = EMULTYPE_ALLOW_RETRY; |
e9ee956e | 5296 | emulate: |
00b10fe1 BS |
5297 | /* |
5298 | * On AMD platforms, under certain conditions insn_len may be zero on #NPF. | |
5299 | * This can happen if a guest gets a page-fault on data access but the HW | |
5300 | * table walker is not able to read the instruction page (e.g instruction | |
5301 | * page is not present in memory). In those cases we simply restart the | |
5302 | * guest. | |
5303 | */ | |
5304 | if (unlikely(insn && !insn_len)) | |
5305 | return 1; | |
5306 | ||
1cb3f3ae | 5307 | er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); |
3067714c AK |
5308 | |
5309 | switch (er) { | |
5310 | case EMULATE_DONE: | |
5311 | return 1; | |
ac0a48c3 | 5312 | case EMULATE_USER_EXIT: |
3067714c | 5313 | ++vcpu->stat.mmio_exits; |
6d77dbfc | 5314 | /* fall through */ |
3067714c | 5315 | case EMULATE_FAIL: |
3f5d18a9 | 5316 | return 0; |
3067714c AK |
5317 | default: |
5318 | BUG(); | |
5319 | } | |
3067714c AK |
5320 | } |
5321 | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); | |
5322 | ||
a7052897 MT |
5323 | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
5324 | { | |
44dd3ffa | 5325 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
b94742c9 | 5326 | int i; |
7eb77e9f | 5327 | |
faff8758 JS |
5328 | /* INVLPG on a * non-canonical address is a NOP according to the SDM. */ |
5329 | if (is_noncanonical_address(gva, vcpu)) | |
5330 | return; | |
5331 | ||
7eb77e9f | 5332 | mmu->invlpg(vcpu, gva, mmu->root_hpa); |
956bf353 JS |
5333 | |
5334 | /* | |
5335 | * INVLPG is required to invalidate any global mappings for the VA, | |
5336 | * irrespective of PCID. Since it would take us roughly similar amount | |
b94742c9 JS |
5337 | * of work to determine whether any of the prev_root mappings of the VA |
5338 | * is marked global, or to just sync it blindly, so we might as well | |
5339 | * just always sync it. | |
956bf353 | 5340 | * |
b94742c9 JS |
5341 | * Mappings not reachable via the current cr3 or the prev_roots will be |
5342 | * synced when switching to that cr3, so nothing needs to be done here | |
5343 | * for them. | |
956bf353 | 5344 | */ |
b94742c9 JS |
5345 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
5346 | if (VALID_PAGE(mmu->prev_roots[i].hpa)) | |
5347 | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); | |
956bf353 | 5348 | |
faff8758 | 5349 | kvm_x86_ops->tlb_flush_gva(vcpu, gva); |
a7052897 MT |
5350 | ++vcpu->stat.invlpg; |
5351 | } | |
5352 | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); | |
5353 | ||
eb4b248e JS |
5354 | void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) |
5355 | { | |
44dd3ffa | 5356 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
faff8758 | 5357 | bool tlb_flush = false; |
b94742c9 | 5358 | uint i; |
eb4b248e JS |
5359 | |
5360 | if (pcid == kvm_get_active_pcid(vcpu)) { | |
7eb77e9f | 5361 | mmu->invlpg(vcpu, gva, mmu->root_hpa); |
faff8758 | 5362 | tlb_flush = true; |
eb4b248e JS |
5363 | } |
5364 | ||
b94742c9 JS |
5365 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
5366 | if (VALID_PAGE(mmu->prev_roots[i].hpa) && | |
5367 | pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) { | |
5368 | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); | |
5369 | tlb_flush = true; | |
5370 | } | |
956bf353 | 5371 | } |
ade61e28 | 5372 | |
faff8758 JS |
5373 | if (tlb_flush) |
5374 | kvm_x86_ops->tlb_flush_gva(vcpu, gva); | |
5375 | ||
eb4b248e JS |
5376 | ++vcpu->stat.invlpg; |
5377 | ||
5378 | /* | |
b94742c9 JS |
5379 | * Mappings not reachable via the current cr3 or the prev_roots will be |
5380 | * synced when switching to that cr3, so nothing needs to be done here | |
5381 | * for them. | |
eb4b248e JS |
5382 | */ |
5383 | } | |
5384 | EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); | |
5385 | ||
18552672 JR |
5386 | void kvm_enable_tdp(void) |
5387 | { | |
5388 | tdp_enabled = true; | |
5389 | } | |
5390 | EXPORT_SYMBOL_GPL(kvm_enable_tdp); | |
5391 | ||
5f4cb662 JR |
5392 | void kvm_disable_tdp(void) |
5393 | { | |
5394 | tdp_enabled = false; | |
5395 | } | |
5396 | EXPORT_SYMBOL_GPL(kvm_disable_tdp); | |
5397 | ||
6aa8b732 AK |
5398 | static void free_mmu_pages(struct kvm_vcpu *vcpu) |
5399 | { | |
44dd3ffa VK |
5400 | free_page((unsigned long)vcpu->arch.mmu->pae_root); |
5401 | free_page((unsigned long)vcpu->arch.mmu->lm_root); | |
6aa8b732 AK |
5402 | } |
5403 | ||
5404 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | |
5405 | { | |
17ac10ad | 5406 | struct page *page; |
6aa8b732 AK |
5407 | int i; |
5408 | ||
ee6268ba LC |
5409 | if (tdp_enabled) |
5410 | return 0; | |
5411 | ||
17ac10ad AK |
5412 | /* |
5413 | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | |
5414 | * Therefore we need to allocate shadow page tables in the first | |
5415 | * 4GB of memory, which happens to fit the DMA32 zone. | |
5416 | */ | |
5417 | page = alloc_page(GFP_KERNEL | __GFP_DMA32); | |
5418 | if (!page) | |
d7fa6ab2 WY |
5419 | return -ENOMEM; |
5420 | ||
44dd3ffa | 5421 | vcpu->arch.mmu->pae_root = page_address(page); |
17ac10ad | 5422 | for (i = 0; i < 4; ++i) |
44dd3ffa | 5423 | vcpu->arch.mmu->pae_root[i] = INVALID_PAGE; |
17ac10ad | 5424 | |
6aa8b732 | 5425 | return 0; |
6aa8b732 AK |
5426 | } |
5427 | ||
8018c27b | 5428 | int kvm_mmu_create(struct kvm_vcpu *vcpu) |
6aa8b732 | 5429 | { |
b94742c9 JS |
5430 | uint i; |
5431 | ||
44dd3ffa VK |
5432 | vcpu->arch.mmu = &vcpu->arch.root_mmu; |
5433 | vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; | |
14c07ad8 | 5434 | |
44dd3ffa VK |
5435 | vcpu->arch.root_mmu.root_hpa = INVALID_PAGE; |
5436 | vcpu->arch.root_mmu.translate_gpa = translate_gpa; | |
b94742c9 | 5437 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
44dd3ffa | 5438 | vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; |
b94742c9 | 5439 | |
14c07ad8 VK |
5440 | vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE; |
5441 | vcpu->arch.guest_mmu.translate_gpa = translate_gpa; | |
5442 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) | |
5443 | vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; | |
5444 | ||
5445 | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; | |
8018c27b IM |
5446 | return alloc_mmu_pages(vcpu); |
5447 | } | |
6aa8b732 | 5448 | |
b5f5fdca | 5449 | static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, |
d126363d JS |
5450 | struct kvm_memory_slot *slot, |
5451 | struct kvm_page_track_notifier_node *node) | |
b5f5fdca XC |
5452 | { |
5453 | kvm_mmu_invalidate_zap_all_pages(kvm); | |
5454 | } | |
5455 | ||
13d268ca XG |
5456 | void kvm_mmu_init_vm(struct kvm *kvm) |
5457 | { | |
5458 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | |
5459 | ||
5460 | node->track_write = kvm_mmu_pte_write; | |
b5f5fdca | 5461 | node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; |
13d268ca XG |
5462 | kvm_page_track_register_notifier(kvm, node); |
5463 | } | |
5464 | ||
5465 | void kvm_mmu_uninit_vm(struct kvm *kvm) | |
5466 | { | |
5467 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; | |
5468 | ||
5469 | kvm_page_track_unregister_notifier(kvm, node); | |
5470 | } | |
5471 | ||
1bad2b2a | 5472 | /* The return value indicates if tlb flush on all vcpus is needed. */ |
018aabb5 | 5473 | typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); |
1bad2b2a XG |
5474 | |
5475 | /* The caller should hold mmu-lock before calling this function. */ | |
928a4c39 | 5476 | static __always_inline bool |
1bad2b2a XG |
5477 | slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, |
5478 | slot_level_handler fn, int start_level, int end_level, | |
5479 | gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) | |
5480 | { | |
5481 | struct slot_rmap_walk_iterator iterator; | |
5482 | bool flush = false; | |
5483 | ||
5484 | for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, | |
5485 | end_gfn, &iterator) { | |
5486 | if (iterator.rmap) | |
5487 | flush |= fn(kvm, iterator.rmap); | |
5488 | ||
5489 | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { | |
5490 | if (flush && lock_flush_tlb) { | |
5491 | kvm_flush_remote_tlbs(kvm); | |
5492 | flush = false; | |
5493 | } | |
5494 | cond_resched_lock(&kvm->mmu_lock); | |
5495 | } | |
5496 | } | |
5497 | ||
5498 | if (flush && lock_flush_tlb) { | |
5499 | kvm_flush_remote_tlbs(kvm); | |
5500 | flush = false; | |
5501 | } | |
5502 | ||
5503 | return flush; | |
5504 | } | |
5505 | ||
928a4c39 | 5506 | static __always_inline bool |
1bad2b2a XG |
5507 | slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
5508 | slot_level_handler fn, int start_level, int end_level, | |
5509 | bool lock_flush_tlb) | |
5510 | { | |
5511 | return slot_handle_level_range(kvm, memslot, fn, start_level, | |
5512 | end_level, memslot->base_gfn, | |
5513 | memslot->base_gfn + memslot->npages - 1, | |
5514 | lock_flush_tlb); | |
5515 | } | |
5516 | ||
928a4c39 | 5517 | static __always_inline bool |
1bad2b2a XG |
5518 | slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
5519 | slot_level_handler fn, bool lock_flush_tlb) | |
5520 | { | |
5521 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | |
5522 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | |
5523 | } | |
5524 | ||
928a4c39 | 5525 | static __always_inline bool |
1bad2b2a XG |
5526 | slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
5527 | slot_level_handler fn, bool lock_flush_tlb) | |
5528 | { | |
5529 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, | |
5530 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); | |
5531 | } | |
5532 | ||
928a4c39 | 5533 | static __always_inline bool |
1bad2b2a XG |
5534 | slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, |
5535 | slot_level_handler fn, bool lock_flush_tlb) | |
5536 | { | |
5537 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, | |
5538 | PT_PAGE_TABLE_LEVEL, lock_flush_tlb); | |
5539 | } | |
5540 | ||
efdfe536 XG |
5541 | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) |
5542 | { | |
5543 | struct kvm_memslots *slots; | |
5544 | struct kvm_memory_slot *memslot; | |
9da0e4d5 | 5545 | int i; |
efdfe536 XG |
5546 | |
5547 | spin_lock(&kvm->mmu_lock); | |
9da0e4d5 PB |
5548 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
5549 | slots = __kvm_memslots(kvm, i); | |
5550 | kvm_for_each_memslot(memslot, slots) { | |
5551 | gfn_t start, end; | |
5552 | ||
5553 | start = max(gfn_start, memslot->base_gfn); | |
5554 | end = min(gfn_end, memslot->base_gfn + memslot->npages); | |
5555 | if (start >= end) | |
5556 | continue; | |
efdfe536 | 5557 | |
9da0e4d5 PB |
5558 | slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, |
5559 | PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, | |
5560 | start, end - 1, true); | |
5561 | } | |
efdfe536 XG |
5562 | } |
5563 | ||
5564 | spin_unlock(&kvm->mmu_lock); | |
5565 | } | |
5566 | ||
018aabb5 TY |
5567 | static bool slot_rmap_write_protect(struct kvm *kvm, |
5568 | struct kvm_rmap_head *rmap_head) | |
d77aa73c | 5569 | { |
018aabb5 | 5570 | return __rmap_write_protect(kvm, rmap_head, false); |
d77aa73c XG |
5571 | } |
5572 | ||
1c91cad4 KH |
5573 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, |
5574 | struct kvm_memory_slot *memslot) | |
6aa8b732 | 5575 | { |
d77aa73c | 5576 | bool flush; |
6aa8b732 | 5577 | |
9d1beefb | 5578 | spin_lock(&kvm->mmu_lock); |
d77aa73c XG |
5579 | flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, |
5580 | false); | |
9d1beefb | 5581 | spin_unlock(&kvm->mmu_lock); |
198c74f4 XG |
5582 | |
5583 | /* | |
5584 | * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() | |
5585 | * which do tlb flush out of mmu-lock should be serialized by | |
5586 | * kvm->slots_lock otherwise tlb flush would be missed. | |
5587 | */ | |
5588 | lockdep_assert_held(&kvm->slots_lock); | |
5589 | ||
5590 | /* | |
5591 | * We can flush all the TLBs out of the mmu lock without TLB | |
5592 | * corruption since we just change the spte from writable to | |
5593 | * readonly so that we only need to care the case of changing | |
5594 | * spte from present to present (changing the spte from present | |
5595 | * to nonpresent will flush all the TLBs immediately), in other | |
5596 | * words, the only case we care is mmu_spte_update() where we | |
5597 | * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE | |
5598 | * instead of PT_WRITABLE_MASK, that means it does not depend | |
5599 | * on PT_WRITABLE_MASK anymore. | |
5600 | */ | |
d91ffee9 KH |
5601 | if (flush) |
5602 | kvm_flush_remote_tlbs(kvm); | |
6aa8b732 | 5603 | } |
37a7d8b0 | 5604 | |
3ea3b7fa | 5605 | static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, |
018aabb5 | 5606 | struct kvm_rmap_head *rmap_head) |
3ea3b7fa WL |
5607 | { |
5608 | u64 *sptep; | |
5609 | struct rmap_iterator iter; | |
5610 | int need_tlb_flush = 0; | |
ba049e93 | 5611 | kvm_pfn_t pfn; |
3ea3b7fa WL |
5612 | struct kvm_mmu_page *sp; |
5613 | ||
0d536790 | 5614 | restart: |
018aabb5 | 5615 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
3ea3b7fa WL |
5616 | sp = page_header(__pa(sptep)); |
5617 | pfn = spte_to_pfn(*sptep); | |
5618 | ||
5619 | /* | |
decf6333 XG |
5620 | * We cannot do huge page mapping for indirect shadow pages, |
5621 | * which are found on the last rmap (level = 1) when not using | |
5622 | * tdp; such shadow pages are synced with the page table in | |
5623 | * the guest, and the guest page table is using 4K page size | |
5624 | * mapping if the indirect sp has level = 1. | |
3ea3b7fa WL |
5625 | */ |
5626 | if (sp->role.direct && | |
5627 | !kvm_is_reserved_pfn(pfn) && | |
127393fb | 5628 | PageTransCompoundMap(pfn_to_page(pfn))) { |
3ea3b7fa | 5629 | drop_spte(kvm, sptep); |
3ea3b7fa | 5630 | need_tlb_flush = 1; |
0d536790 XG |
5631 | goto restart; |
5632 | } | |
3ea3b7fa WL |
5633 | } |
5634 | ||
5635 | return need_tlb_flush; | |
5636 | } | |
5637 | ||
5638 | void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, | |
f36f3f28 | 5639 | const struct kvm_memory_slot *memslot) |
3ea3b7fa | 5640 | { |
f36f3f28 | 5641 | /* FIXME: const-ify all uses of struct kvm_memory_slot. */ |
3ea3b7fa | 5642 | spin_lock(&kvm->mmu_lock); |
f36f3f28 PB |
5643 | slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, |
5644 | kvm_mmu_zap_collapsible_spte, true); | |
3ea3b7fa WL |
5645 | spin_unlock(&kvm->mmu_lock); |
5646 | } | |
5647 | ||
f4b4b180 KH |
5648 | void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, |
5649 | struct kvm_memory_slot *memslot) | |
5650 | { | |
d77aa73c | 5651 | bool flush; |
f4b4b180 KH |
5652 | |
5653 | spin_lock(&kvm->mmu_lock); | |
d77aa73c | 5654 | flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); |
f4b4b180 KH |
5655 | spin_unlock(&kvm->mmu_lock); |
5656 | ||
5657 | lockdep_assert_held(&kvm->slots_lock); | |
5658 | ||
5659 | /* | |
5660 | * It's also safe to flush TLBs out of mmu lock here as currently this | |
5661 | * function is only used for dirty logging, in which case flushing TLB | |
5662 | * out of mmu lock also guarantees no dirty pages will be lost in | |
5663 | * dirty_bitmap. | |
5664 | */ | |
5665 | if (flush) | |
5666 | kvm_flush_remote_tlbs(kvm); | |
5667 | } | |
5668 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); | |
5669 | ||
5670 | void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, | |
5671 | struct kvm_memory_slot *memslot) | |
5672 | { | |
d77aa73c | 5673 | bool flush; |
f4b4b180 KH |
5674 | |
5675 | spin_lock(&kvm->mmu_lock); | |
d77aa73c XG |
5676 | flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, |
5677 | false); | |
f4b4b180 KH |
5678 | spin_unlock(&kvm->mmu_lock); |
5679 | ||
5680 | /* see kvm_mmu_slot_remove_write_access */ | |
5681 | lockdep_assert_held(&kvm->slots_lock); | |
5682 | ||
5683 | if (flush) | |
5684 | kvm_flush_remote_tlbs(kvm); | |
5685 | } | |
5686 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); | |
5687 | ||
5688 | void kvm_mmu_slot_set_dirty(struct kvm *kvm, | |
5689 | struct kvm_memory_slot *memslot) | |
5690 | { | |
d77aa73c | 5691 | bool flush; |
f4b4b180 KH |
5692 | |
5693 | spin_lock(&kvm->mmu_lock); | |
d77aa73c | 5694 | flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); |
f4b4b180 KH |
5695 | spin_unlock(&kvm->mmu_lock); |
5696 | ||
5697 | lockdep_assert_held(&kvm->slots_lock); | |
5698 | ||
5699 | /* see kvm_mmu_slot_leaf_clear_dirty */ | |
5700 | if (flush) | |
5701 | kvm_flush_remote_tlbs(kvm); | |
5702 | } | |
5703 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); | |
5704 | ||
e7d11c7a | 5705 | #define BATCH_ZAP_PAGES 10 |
5304b8d3 XG |
5706 | static void kvm_zap_obsolete_pages(struct kvm *kvm) |
5707 | { | |
5708 | struct kvm_mmu_page *sp, *node; | |
e7d11c7a | 5709 | int batch = 0; |
5304b8d3 XG |
5710 | |
5711 | restart: | |
5712 | list_for_each_entry_safe_reverse(sp, node, | |
5713 | &kvm->arch.active_mmu_pages, link) { | |
e7d11c7a XG |
5714 | int ret; |
5715 | ||
5304b8d3 XG |
5716 | /* |
5717 | * No obsolete page exists before new created page since | |
5718 | * active_mmu_pages is the FIFO list. | |
5719 | */ | |
5720 | if (!is_obsolete_sp(kvm, sp)) | |
5721 | break; | |
5722 | ||
5723 | /* | |
5304b8d3 XG |
5724 | * Since we are reversely walking the list and the invalid |
5725 | * list will be moved to the head, skip the invalid page | |
5726 | * can help us to avoid the infinity list walking. | |
5727 | */ | |
5728 | if (sp->role.invalid) | |
5729 | continue; | |
5730 | ||
f34d251d XG |
5731 | /* |
5732 | * Need not flush tlb since we only zap the sp with invalid | |
5733 | * generation number. | |
5734 | */ | |
e7d11c7a | 5735 | if (batch >= BATCH_ZAP_PAGES && |
f34d251d | 5736 | cond_resched_lock(&kvm->mmu_lock)) { |
e7d11c7a | 5737 | batch = 0; |
5304b8d3 XG |
5738 | goto restart; |
5739 | } | |
5740 | ||
365c8868 XG |
5741 | ret = kvm_mmu_prepare_zap_page(kvm, sp, |
5742 | &kvm->arch.zapped_obsolete_pages); | |
e7d11c7a XG |
5743 | batch += ret; |
5744 | ||
5745 | if (ret) | |
5304b8d3 XG |
5746 | goto restart; |
5747 | } | |
5748 | ||
f34d251d XG |
5749 | /* |
5750 | * Should flush tlb before free page tables since lockless-walking | |
5751 | * may use the pages. | |
5752 | */ | |
365c8868 | 5753 | kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); |
5304b8d3 XG |
5754 | } |
5755 | ||
5756 | /* | |
5757 | * Fast invalidate all shadow pages and use lock-break technique | |
5758 | * to zap obsolete pages. | |
5759 | * | |
5760 | * It's required when memslot is being deleted or VM is being | |
5761 | * destroyed, in these cases, we should ensure that KVM MMU does | |
5762 | * not use any resource of the being-deleted slot or all slots | |
5763 | * after calling the function. | |
5764 | */ | |
5765 | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) | |
5766 | { | |
5767 | spin_lock(&kvm->mmu_lock); | |
35006126 | 5768 | trace_kvm_mmu_invalidate_zap_all_pages(kvm); |
5304b8d3 XG |
5769 | kvm->arch.mmu_valid_gen++; |
5770 | ||
f34d251d XG |
5771 | /* |
5772 | * Notify all vcpus to reload its shadow page table | |
5773 | * and flush TLB. Then all vcpus will switch to new | |
5774 | * shadow page table with the new mmu_valid_gen. | |
5775 | * | |
5776 | * Note: we should do this under the protection of | |
5777 | * mmu-lock, otherwise, vcpu would purge shadow page | |
5778 | * but miss tlb flush. | |
5779 | */ | |
5780 | kvm_reload_remote_mmus(kvm); | |
5781 | ||
5304b8d3 XG |
5782 | kvm_zap_obsolete_pages(kvm); |
5783 | spin_unlock(&kvm->mmu_lock); | |
5784 | } | |
5785 | ||
365c8868 XG |
5786 | static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) |
5787 | { | |
5788 | return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); | |
5789 | } | |
5790 | ||
54bf36aa | 5791 | void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots) |
f8f55942 XG |
5792 | { |
5793 | /* | |
5794 | * The very rare case: if the generation-number is round, | |
5795 | * zap all shadow pages. | |
f8f55942 | 5796 | */ |
54bf36aa | 5797 | if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) { |
ae0f5499 | 5798 | kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); |
a8eca9dc | 5799 | kvm_mmu_invalidate_zap_all_pages(kvm); |
7a2e8aaf | 5800 | } |
f8f55942 XG |
5801 | } |
5802 | ||
70534a73 DC |
5803 | static unsigned long |
5804 | mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | |
3ee16c81 IE |
5805 | { |
5806 | struct kvm *kvm; | |
1495f230 | 5807 | int nr_to_scan = sc->nr_to_scan; |
70534a73 | 5808 | unsigned long freed = 0; |
3ee16c81 | 5809 | |
2f303b74 | 5810 | spin_lock(&kvm_lock); |
3ee16c81 IE |
5811 | |
5812 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
3d56cbdf | 5813 | int idx; |
d98ba053 | 5814 | LIST_HEAD(invalid_list); |
3ee16c81 | 5815 | |
35f2d16b TY |
5816 | /* |
5817 | * Never scan more than sc->nr_to_scan VM instances. | |
5818 | * Will not hit this condition practically since we do not try | |
5819 | * to shrink more than one VM and it is very unlikely to see | |
5820 | * !n_used_mmu_pages so many times. | |
5821 | */ | |
5822 | if (!nr_to_scan--) | |
5823 | break; | |
19526396 GN |
5824 | /* |
5825 | * n_used_mmu_pages is accessed without holding kvm->mmu_lock | |
5826 | * here. We may skip a VM instance errorneosly, but we do not | |
5827 | * want to shrink a VM that only started to populate its MMU | |
5828 | * anyway. | |
5829 | */ | |
365c8868 XG |
5830 | if (!kvm->arch.n_used_mmu_pages && |
5831 | !kvm_has_zapped_obsolete_pages(kvm)) | |
19526396 | 5832 | continue; |
19526396 | 5833 | |
f656ce01 | 5834 | idx = srcu_read_lock(&kvm->srcu); |
3ee16c81 | 5835 | spin_lock(&kvm->mmu_lock); |
3ee16c81 | 5836 | |
365c8868 XG |
5837 | if (kvm_has_zapped_obsolete_pages(kvm)) { |
5838 | kvm_mmu_commit_zap_page(kvm, | |
5839 | &kvm->arch.zapped_obsolete_pages); | |
5840 | goto unlock; | |
5841 | } | |
5842 | ||
70534a73 DC |
5843 | if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) |
5844 | freed++; | |
d98ba053 | 5845 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
19526396 | 5846 | |
365c8868 | 5847 | unlock: |
3ee16c81 | 5848 | spin_unlock(&kvm->mmu_lock); |
f656ce01 | 5849 | srcu_read_unlock(&kvm->srcu, idx); |
19526396 | 5850 | |
70534a73 DC |
5851 | /* |
5852 | * unfair on small ones | |
5853 | * per-vm shrinkers cry out | |
5854 | * sadness comes quickly | |
5855 | */ | |
19526396 GN |
5856 | list_move_tail(&kvm->vm_list, &vm_list); |
5857 | break; | |
3ee16c81 | 5858 | } |
3ee16c81 | 5859 | |
2f303b74 | 5860 | spin_unlock(&kvm_lock); |
70534a73 | 5861 | return freed; |
70534a73 DC |
5862 | } |
5863 | ||
5864 | static unsigned long | |
5865 | mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | |
5866 | { | |
45221ab6 | 5867 | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); |
3ee16c81 IE |
5868 | } |
5869 | ||
5870 | static struct shrinker mmu_shrinker = { | |
70534a73 DC |
5871 | .count_objects = mmu_shrink_count, |
5872 | .scan_objects = mmu_shrink_scan, | |
3ee16c81 IE |
5873 | .seeks = DEFAULT_SEEKS * 10, |
5874 | }; | |
5875 | ||
2ddfd20e | 5876 | static void mmu_destroy_caches(void) |
b5a33a75 | 5877 | { |
c1bd743e TH |
5878 | kmem_cache_destroy(pte_list_desc_cache); |
5879 | kmem_cache_destroy(mmu_page_header_cache); | |
b5a33a75 AK |
5880 | } |
5881 | ||
5882 | int kvm_mmu_module_init(void) | |
5883 | { | |
ab271bd4 AB |
5884 | int ret = -ENOMEM; |
5885 | ||
36d9594d VK |
5886 | /* |
5887 | * MMU roles use union aliasing which is, generally speaking, an | |
5888 | * undefined behavior. However, we supposedly know how compilers behave | |
5889 | * and the current status quo is unlikely to change. Guardians below are | |
5890 | * supposed to let us know if the assumption becomes false. | |
5891 | */ | |
5892 | BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32)); | |
5893 | BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32)); | |
5894 | BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64)); | |
5895 | ||
28a1f3ac | 5896 | kvm_mmu_reset_all_pte_masks(); |
f160c7b7 | 5897 | |
53c07b18 XG |
5898 | pte_list_desc_cache = kmem_cache_create("pte_list_desc", |
5899 | sizeof(struct pte_list_desc), | |
46bea48a | 5900 | 0, SLAB_ACCOUNT, NULL); |
53c07b18 | 5901 | if (!pte_list_desc_cache) |
ab271bd4 | 5902 | goto out; |
b5a33a75 | 5903 | |
d3d25b04 AK |
5904 | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", |
5905 | sizeof(struct kvm_mmu_page), | |
46bea48a | 5906 | 0, SLAB_ACCOUNT, NULL); |
d3d25b04 | 5907 | if (!mmu_page_header_cache) |
ab271bd4 | 5908 | goto out; |
d3d25b04 | 5909 | |
908c7f19 | 5910 | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) |
ab271bd4 | 5911 | goto out; |
45bf21a8 | 5912 | |
ab271bd4 AB |
5913 | ret = register_shrinker(&mmu_shrinker); |
5914 | if (ret) | |
5915 | goto out; | |
3ee16c81 | 5916 | |
b5a33a75 AK |
5917 | return 0; |
5918 | ||
ab271bd4 | 5919 | out: |
3ee16c81 | 5920 | mmu_destroy_caches(); |
ab271bd4 | 5921 | return ret; |
b5a33a75 AK |
5922 | } |
5923 | ||
3ad82a7e ZX |
5924 | /* |
5925 | * Caculate mmu pages needed for kvm. | |
5926 | */ | |
5927 | unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm) | |
5928 | { | |
3ad82a7e ZX |
5929 | unsigned int nr_mmu_pages; |
5930 | unsigned int nr_pages = 0; | |
bc6678a3 | 5931 | struct kvm_memslots *slots; |
be6ba0f0 | 5932 | struct kvm_memory_slot *memslot; |
9da0e4d5 | 5933 | int i; |
3ad82a7e | 5934 | |
9da0e4d5 PB |
5935 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
5936 | slots = __kvm_memslots(kvm, i); | |
90d83dc3 | 5937 | |
9da0e4d5 PB |
5938 | kvm_for_each_memslot(memslot, slots) |
5939 | nr_pages += memslot->npages; | |
5940 | } | |
3ad82a7e ZX |
5941 | |
5942 | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; | |
5943 | nr_mmu_pages = max(nr_mmu_pages, | |
9da0e4d5 | 5944 | (unsigned int) KVM_MIN_ALLOC_MMU_PAGES); |
3ad82a7e ZX |
5945 | |
5946 | return nr_mmu_pages; | |
5947 | } | |
5948 | ||
c42fffe3 XG |
5949 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
5950 | { | |
95f93af4 | 5951 | kvm_mmu_unload(vcpu); |
c42fffe3 XG |
5952 | free_mmu_pages(vcpu); |
5953 | mmu_free_memory_caches(vcpu); | |
b034cf01 XG |
5954 | } |
5955 | ||
b034cf01 XG |
5956 | void kvm_mmu_module_exit(void) |
5957 | { | |
5958 | mmu_destroy_caches(); | |
5959 | percpu_counter_destroy(&kvm_total_used_mmu_pages); | |
5960 | unregister_shrinker(&mmu_shrinker); | |
c42fffe3 XG |
5961 | mmu_audit_disable(); |
5962 | } |