]>
Commit | Line | Data |
---|---|---|
991d9fa0 JT |
1 | /* |
2 | * Copyright (C) 2011 Red Hat UK. | |
3 | * | |
4 | * This file is released under the GPL. | |
5 | */ | |
6 | ||
7 | #include "dm-thin-metadata.h" | |
8 | ||
9 | #include <linux/device-mapper.h> | |
10 | #include <linux/dm-io.h> | |
11 | #include <linux/dm-kcopyd.h> | |
12 | #include <linux/list.h> | |
13 | #include <linux/init.h> | |
14 | #include <linux/module.h> | |
15 | #include <linux/slab.h> | |
16 | ||
17 | #define DM_MSG_PREFIX "thin" | |
18 | ||
19 | /* | |
20 | * Tunable constants | |
21 | */ | |
22 | #define ENDIO_HOOK_POOL_SIZE 10240 | |
23 | #define DEFERRED_SET_SIZE 64 | |
24 | #define MAPPING_POOL_SIZE 1024 | |
25 | #define PRISON_CELLS 1024 | |
905e51b3 | 26 | #define COMMIT_PERIOD HZ |
991d9fa0 JT |
27 | |
28 | /* | |
29 | * The block size of the device holding pool data must be | |
30 | * between 64KB and 1GB. | |
31 | */ | |
32 | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) | |
33 | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | |
34 | ||
991d9fa0 JT |
35 | /* |
36 | * Device id is restricted to 24 bits. | |
37 | */ | |
38 | #define MAX_DEV_ID ((1 << 24) - 1) | |
39 | ||
40 | /* | |
41 | * How do we handle breaking sharing of data blocks? | |
42 | * ================================================= | |
43 | * | |
44 | * We use a standard copy-on-write btree to store the mappings for the | |
45 | * devices (note I'm talking about copy-on-write of the metadata here, not | |
46 | * the data). When you take an internal snapshot you clone the root node | |
47 | * of the origin btree. After this there is no concept of an origin or a | |
48 | * snapshot. They are just two device trees that happen to point to the | |
49 | * same data blocks. | |
50 | * | |
51 | * When we get a write in we decide if it's to a shared data block using | |
52 | * some timestamp magic. If it is, we have to break sharing. | |
53 | * | |
54 | * Let's say we write to a shared block in what was the origin. The | |
55 | * steps are: | |
56 | * | |
57 | * i) plug io further to this physical block. (see bio_prison code). | |
58 | * | |
59 | * ii) quiesce any read io to that shared data block. Obviously | |
60 | * including all devices that share this block. (see deferred_set code) | |
61 | * | |
62 | * iii) copy the data block to a newly allocate block. This step can be | |
63 | * missed out if the io covers the block. (schedule_copy). | |
64 | * | |
65 | * iv) insert the new mapping into the origin's btree | |
fe878f34 | 66 | * (process_prepared_mapping). This act of inserting breaks some |
991d9fa0 JT |
67 | * sharing of btree nodes between the two devices. Breaking sharing only |
68 | * effects the btree of that specific device. Btrees for the other | |
69 | * devices that share the block never change. The btree for the origin | |
70 | * device as it was after the last commit is untouched, ie. we're using | |
71 | * persistent data structures in the functional programming sense. | |
72 | * | |
73 | * v) unplug io to this physical block, including the io that triggered | |
74 | * the breaking of sharing. | |
75 | * | |
76 | * Steps (ii) and (iii) occur in parallel. | |
77 | * | |
78 | * The metadata _doesn't_ need to be committed before the io continues. We | |
79 | * get away with this because the io is always written to a _new_ block. | |
80 | * If there's a crash, then: | |
81 | * | |
82 | * - The origin mapping will point to the old origin block (the shared | |
83 | * one). This will contain the data as it was before the io that triggered | |
84 | * the breaking of sharing came in. | |
85 | * | |
86 | * - The snap mapping still points to the old block. As it would after | |
87 | * the commit. | |
88 | * | |
89 | * The downside of this scheme is the timestamp magic isn't perfect, and | |
90 | * will continue to think that data block in the snapshot device is shared | |
91 | * even after the write to the origin has broken sharing. I suspect data | |
92 | * blocks will typically be shared by many different devices, so we're | |
93 | * breaking sharing n + 1 times, rather than n, where n is the number of | |
94 | * devices that reference this data block. At the moment I think the | |
95 | * benefits far, far outweigh the disadvantages. | |
96 | */ | |
97 | ||
98 | /*----------------------------------------------------------------*/ | |
99 | ||
100 | /* | |
101 | * Sometimes we can't deal with a bio straight away. We put them in prison | |
102 | * where they can't cause any mischief. Bios are put in a cell identified | |
103 | * by a key, multiple bios can be in the same cell. When the cell is | |
104 | * subsequently unlocked the bios become available. | |
105 | */ | |
106 | struct bio_prison; | |
107 | ||
108 | struct cell_key { | |
109 | int virtual; | |
110 | dm_thin_id dev; | |
111 | dm_block_t block; | |
112 | }; | |
113 | ||
114 | struct cell { | |
115 | struct hlist_node list; | |
116 | struct bio_prison *prison; | |
117 | struct cell_key key; | |
6f94a4c4 | 118 | struct bio *holder; |
991d9fa0 JT |
119 | struct bio_list bios; |
120 | }; | |
121 | ||
122 | struct bio_prison { | |
123 | spinlock_t lock; | |
124 | mempool_t *cell_pool; | |
125 | ||
126 | unsigned nr_buckets; | |
127 | unsigned hash_mask; | |
128 | struct hlist_head *cells; | |
129 | }; | |
130 | ||
131 | static uint32_t calc_nr_buckets(unsigned nr_cells) | |
132 | { | |
133 | uint32_t n = 128; | |
134 | ||
135 | nr_cells /= 4; | |
136 | nr_cells = min(nr_cells, 8192u); | |
137 | ||
138 | while (n < nr_cells) | |
139 | n <<= 1; | |
140 | ||
141 | return n; | |
142 | } | |
143 | ||
144 | /* | |
145 | * @nr_cells should be the number of cells you want in use _concurrently_. | |
146 | * Don't confuse it with the number of distinct keys. | |
147 | */ | |
148 | static struct bio_prison *prison_create(unsigned nr_cells) | |
149 | { | |
150 | unsigned i; | |
151 | uint32_t nr_buckets = calc_nr_buckets(nr_cells); | |
152 | size_t len = sizeof(struct bio_prison) + | |
153 | (sizeof(struct hlist_head) * nr_buckets); | |
154 | struct bio_prison *prison = kmalloc(len, GFP_KERNEL); | |
155 | ||
156 | if (!prison) | |
157 | return NULL; | |
158 | ||
159 | spin_lock_init(&prison->lock); | |
160 | prison->cell_pool = mempool_create_kmalloc_pool(nr_cells, | |
161 | sizeof(struct cell)); | |
162 | if (!prison->cell_pool) { | |
163 | kfree(prison); | |
164 | return NULL; | |
165 | } | |
166 | ||
167 | prison->nr_buckets = nr_buckets; | |
168 | prison->hash_mask = nr_buckets - 1; | |
169 | prison->cells = (struct hlist_head *) (prison + 1); | |
170 | for (i = 0; i < nr_buckets; i++) | |
171 | INIT_HLIST_HEAD(prison->cells + i); | |
172 | ||
173 | return prison; | |
174 | } | |
175 | ||
176 | static void prison_destroy(struct bio_prison *prison) | |
177 | { | |
178 | mempool_destroy(prison->cell_pool); | |
179 | kfree(prison); | |
180 | } | |
181 | ||
182 | static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key) | |
183 | { | |
184 | const unsigned long BIG_PRIME = 4294967291UL; | |
185 | uint64_t hash = key->block * BIG_PRIME; | |
186 | ||
187 | return (uint32_t) (hash & prison->hash_mask); | |
188 | } | |
189 | ||
190 | static int keys_equal(struct cell_key *lhs, struct cell_key *rhs) | |
191 | { | |
192 | return (lhs->virtual == rhs->virtual) && | |
193 | (lhs->dev == rhs->dev) && | |
194 | (lhs->block == rhs->block); | |
195 | } | |
196 | ||
197 | static struct cell *__search_bucket(struct hlist_head *bucket, | |
198 | struct cell_key *key) | |
199 | { | |
200 | struct cell *cell; | |
201 | struct hlist_node *tmp; | |
202 | ||
203 | hlist_for_each_entry(cell, tmp, bucket, list) | |
204 | if (keys_equal(&cell->key, key)) | |
205 | return cell; | |
206 | ||
207 | return NULL; | |
208 | } | |
209 | ||
210 | /* | |
211 | * This may block if a new cell needs allocating. You must ensure that | |
212 | * cells will be unlocked even if the calling thread is blocked. | |
213 | * | |
6f94a4c4 | 214 | * Returns 1 if the cell was already held, 0 if @inmate is the new holder. |
991d9fa0 JT |
215 | */ |
216 | static int bio_detain(struct bio_prison *prison, struct cell_key *key, | |
217 | struct bio *inmate, struct cell **ref) | |
218 | { | |
6f94a4c4 | 219 | int r = 1; |
991d9fa0 JT |
220 | unsigned long flags; |
221 | uint32_t hash = hash_key(prison, key); | |
6f94a4c4 | 222 | struct cell *cell, *cell2; |
991d9fa0 JT |
223 | |
224 | BUG_ON(hash > prison->nr_buckets); | |
225 | ||
226 | spin_lock_irqsave(&prison->lock, flags); | |
991d9fa0 | 227 | |
6f94a4c4 JT |
228 | cell = __search_bucket(prison->cells + hash, key); |
229 | if (cell) { | |
230 | bio_list_add(&cell->bios, inmate); | |
231 | goto out; | |
991d9fa0 JT |
232 | } |
233 | ||
6f94a4c4 JT |
234 | /* |
235 | * Allocate a new cell | |
236 | */ | |
991d9fa0 | 237 | spin_unlock_irqrestore(&prison->lock, flags); |
6f94a4c4 JT |
238 | cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO); |
239 | spin_lock_irqsave(&prison->lock, flags); | |
991d9fa0 | 240 | |
6f94a4c4 JT |
241 | /* |
242 | * We've been unlocked, so we have to double check that | |
243 | * nobody else has inserted this cell in the meantime. | |
244 | */ | |
245 | cell = __search_bucket(prison->cells + hash, key); | |
246 | if (cell) { | |
991d9fa0 | 247 | mempool_free(cell2, prison->cell_pool); |
6f94a4c4 JT |
248 | bio_list_add(&cell->bios, inmate); |
249 | goto out; | |
250 | } | |
251 | ||
252 | /* | |
253 | * Use new cell. | |
254 | */ | |
255 | cell = cell2; | |
256 | ||
257 | cell->prison = prison; | |
258 | memcpy(&cell->key, key, sizeof(cell->key)); | |
259 | cell->holder = inmate; | |
260 | bio_list_init(&cell->bios); | |
261 | hlist_add_head(&cell->list, prison->cells + hash); | |
262 | ||
263 | r = 0; | |
264 | ||
265 | out: | |
266 | spin_unlock_irqrestore(&prison->lock, flags); | |
991d9fa0 JT |
267 | |
268 | *ref = cell; | |
269 | ||
270 | return r; | |
271 | } | |
272 | ||
273 | /* | |
274 | * @inmates must have been initialised prior to this call | |
275 | */ | |
276 | static void __cell_release(struct cell *cell, struct bio_list *inmates) | |
277 | { | |
278 | struct bio_prison *prison = cell->prison; | |
279 | ||
280 | hlist_del(&cell->list); | |
281 | ||
03aaae7c MS |
282 | if (inmates) { |
283 | bio_list_add(inmates, cell->holder); | |
284 | bio_list_merge(inmates, &cell->bios); | |
285 | } | |
991d9fa0 JT |
286 | |
287 | mempool_free(cell, prison->cell_pool); | |
288 | } | |
289 | ||
290 | static void cell_release(struct cell *cell, struct bio_list *bios) | |
291 | { | |
292 | unsigned long flags; | |
293 | struct bio_prison *prison = cell->prison; | |
294 | ||
295 | spin_lock_irqsave(&prison->lock, flags); | |
296 | __cell_release(cell, bios); | |
297 | spin_unlock_irqrestore(&prison->lock, flags); | |
298 | } | |
299 | ||
300 | /* | |
301 | * There are a couple of places where we put a bio into a cell briefly | |
302 | * before taking it out again. In these situations we know that no other | |
303 | * bio may be in the cell. This function releases the cell, and also does | |
304 | * a sanity check. | |
305 | */ | |
6f94a4c4 JT |
306 | static void __cell_release_singleton(struct cell *cell, struct bio *bio) |
307 | { | |
6f94a4c4 JT |
308 | BUG_ON(cell->holder != bio); |
309 | BUG_ON(!bio_list_empty(&cell->bios)); | |
03aaae7c MS |
310 | |
311 | __cell_release(cell, NULL); | |
6f94a4c4 JT |
312 | } |
313 | ||
991d9fa0 JT |
314 | static void cell_release_singleton(struct cell *cell, struct bio *bio) |
315 | { | |
991d9fa0 | 316 | unsigned long flags; |
6f94a4c4 | 317 | struct bio_prison *prison = cell->prison; |
991d9fa0 JT |
318 | |
319 | spin_lock_irqsave(&prison->lock, flags); | |
6f94a4c4 | 320 | __cell_release_singleton(cell, bio); |
991d9fa0 | 321 | spin_unlock_irqrestore(&prison->lock, flags); |
6f94a4c4 JT |
322 | } |
323 | ||
324 | /* | |
325 | * Sometimes we don't want the holder, just the additional bios. | |
326 | */ | |
327 | static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates) | |
328 | { | |
329 | struct bio_prison *prison = cell->prison; | |
330 | ||
331 | hlist_del(&cell->list); | |
332 | bio_list_merge(inmates, &cell->bios); | |
333 | ||
334 | mempool_free(cell, prison->cell_pool); | |
335 | } | |
336 | ||
337 | static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates) | |
338 | { | |
339 | unsigned long flags; | |
340 | struct bio_prison *prison = cell->prison; | |
991d9fa0 | 341 | |
6f94a4c4 JT |
342 | spin_lock_irqsave(&prison->lock, flags); |
343 | __cell_release_no_holder(cell, inmates); | |
344 | spin_unlock_irqrestore(&prison->lock, flags); | |
991d9fa0 JT |
345 | } |
346 | ||
347 | static void cell_error(struct cell *cell) | |
348 | { | |
349 | struct bio_prison *prison = cell->prison; | |
350 | struct bio_list bios; | |
351 | struct bio *bio; | |
352 | unsigned long flags; | |
353 | ||
354 | bio_list_init(&bios); | |
355 | ||
356 | spin_lock_irqsave(&prison->lock, flags); | |
357 | __cell_release(cell, &bios); | |
358 | spin_unlock_irqrestore(&prison->lock, flags); | |
359 | ||
360 | while ((bio = bio_list_pop(&bios))) | |
361 | bio_io_error(bio); | |
362 | } | |
363 | ||
364 | /*----------------------------------------------------------------*/ | |
365 | ||
366 | /* | |
367 | * We use the deferred set to keep track of pending reads to shared blocks. | |
368 | * We do this to ensure the new mapping caused by a write isn't performed | |
369 | * until these prior reads have completed. Otherwise the insertion of the | |
370 | * new mapping could free the old block that the read bios are mapped to. | |
371 | */ | |
372 | ||
373 | struct deferred_set; | |
374 | struct deferred_entry { | |
375 | struct deferred_set *ds; | |
376 | unsigned count; | |
377 | struct list_head work_items; | |
378 | }; | |
379 | ||
380 | struct deferred_set { | |
381 | spinlock_t lock; | |
382 | unsigned current_entry; | |
383 | unsigned sweeper; | |
384 | struct deferred_entry entries[DEFERRED_SET_SIZE]; | |
385 | }; | |
386 | ||
387 | static void ds_init(struct deferred_set *ds) | |
388 | { | |
389 | int i; | |
390 | ||
391 | spin_lock_init(&ds->lock); | |
392 | ds->current_entry = 0; | |
393 | ds->sweeper = 0; | |
394 | for (i = 0; i < DEFERRED_SET_SIZE; i++) { | |
395 | ds->entries[i].ds = ds; | |
396 | ds->entries[i].count = 0; | |
397 | INIT_LIST_HEAD(&ds->entries[i].work_items); | |
398 | } | |
399 | } | |
400 | ||
401 | static struct deferred_entry *ds_inc(struct deferred_set *ds) | |
402 | { | |
403 | unsigned long flags; | |
404 | struct deferred_entry *entry; | |
405 | ||
406 | spin_lock_irqsave(&ds->lock, flags); | |
407 | entry = ds->entries + ds->current_entry; | |
408 | entry->count++; | |
409 | spin_unlock_irqrestore(&ds->lock, flags); | |
410 | ||
411 | return entry; | |
412 | } | |
413 | ||
414 | static unsigned ds_next(unsigned index) | |
415 | { | |
416 | return (index + 1) % DEFERRED_SET_SIZE; | |
417 | } | |
418 | ||
419 | static void __sweep(struct deferred_set *ds, struct list_head *head) | |
420 | { | |
421 | while ((ds->sweeper != ds->current_entry) && | |
422 | !ds->entries[ds->sweeper].count) { | |
423 | list_splice_init(&ds->entries[ds->sweeper].work_items, head); | |
424 | ds->sweeper = ds_next(ds->sweeper); | |
425 | } | |
426 | ||
427 | if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count) | |
428 | list_splice_init(&ds->entries[ds->sweeper].work_items, head); | |
429 | } | |
430 | ||
431 | static void ds_dec(struct deferred_entry *entry, struct list_head *head) | |
432 | { | |
433 | unsigned long flags; | |
434 | ||
435 | spin_lock_irqsave(&entry->ds->lock, flags); | |
436 | BUG_ON(!entry->count); | |
437 | --entry->count; | |
438 | __sweep(entry->ds, head); | |
439 | spin_unlock_irqrestore(&entry->ds->lock, flags); | |
440 | } | |
441 | ||
442 | /* | |
443 | * Returns 1 if deferred or 0 if no pending items to delay job. | |
444 | */ | |
445 | static int ds_add_work(struct deferred_set *ds, struct list_head *work) | |
446 | { | |
447 | int r = 1; | |
448 | unsigned long flags; | |
449 | unsigned next_entry; | |
450 | ||
451 | spin_lock_irqsave(&ds->lock, flags); | |
452 | if ((ds->sweeper == ds->current_entry) && | |
453 | !ds->entries[ds->current_entry].count) | |
454 | r = 0; | |
455 | else { | |
456 | list_add(work, &ds->entries[ds->current_entry].work_items); | |
457 | next_entry = ds_next(ds->current_entry); | |
458 | if (!ds->entries[next_entry].count) | |
459 | ds->current_entry = next_entry; | |
460 | } | |
461 | spin_unlock_irqrestore(&ds->lock, flags); | |
462 | ||
463 | return r; | |
464 | } | |
465 | ||
466 | /*----------------------------------------------------------------*/ | |
467 | ||
468 | /* | |
469 | * Key building. | |
470 | */ | |
471 | static void build_data_key(struct dm_thin_device *td, | |
472 | dm_block_t b, struct cell_key *key) | |
473 | { | |
474 | key->virtual = 0; | |
475 | key->dev = dm_thin_dev_id(td); | |
476 | key->block = b; | |
477 | } | |
478 | ||
479 | static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, | |
480 | struct cell_key *key) | |
481 | { | |
482 | key->virtual = 1; | |
483 | key->dev = dm_thin_dev_id(td); | |
484 | key->block = b; | |
485 | } | |
486 | ||
487 | /*----------------------------------------------------------------*/ | |
488 | ||
489 | /* | |
490 | * A pool device ties together a metadata device and a data device. It | |
491 | * also provides the interface for creating and destroying internal | |
492 | * devices. | |
493 | */ | |
494 | struct new_mapping; | |
67e2e2b2 JT |
495 | |
496 | struct pool_features { | |
497 | unsigned zero_new_blocks:1; | |
498 | unsigned discard_enabled:1; | |
499 | unsigned discard_passdown:1; | |
500 | }; | |
501 | ||
991d9fa0 JT |
502 | struct pool { |
503 | struct list_head list; | |
504 | struct dm_target *ti; /* Only set if a pool target is bound */ | |
505 | ||
506 | struct mapped_device *pool_md; | |
507 | struct block_device *md_dev; | |
508 | struct dm_pool_metadata *pmd; | |
509 | ||
510 | uint32_t sectors_per_block; | |
511 | unsigned block_shift; | |
512 | dm_block_t offset_mask; | |
513 | dm_block_t low_water_blocks; | |
514 | ||
67e2e2b2 | 515 | struct pool_features pf; |
991d9fa0 JT |
516 | unsigned low_water_triggered:1; /* A dm event has been sent */ |
517 | unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ | |
518 | ||
519 | struct bio_prison *prison; | |
520 | struct dm_kcopyd_client *copier; | |
521 | ||
522 | struct workqueue_struct *wq; | |
523 | struct work_struct worker; | |
905e51b3 | 524 | struct delayed_work waker; |
991d9fa0 JT |
525 | |
526 | unsigned ref_count; | |
905e51b3 | 527 | unsigned long last_commit_jiffies; |
991d9fa0 JT |
528 | |
529 | spinlock_t lock; | |
530 | struct bio_list deferred_bios; | |
531 | struct bio_list deferred_flush_bios; | |
532 | struct list_head prepared_mappings; | |
104655fd | 533 | struct list_head prepared_discards; |
991d9fa0 JT |
534 | |
535 | struct bio_list retry_on_resume_list; | |
536 | ||
eb2aa48d | 537 | struct deferred_set shared_read_ds; |
104655fd | 538 | struct deferred_set all_io_ds; |
991d9fa0 JT |
539 | |
540 | struct new_mapping *next_mapping; | |
541 | mempool_t *mapping_pool; | |
542 | mempool_t *endio_hook_pool; | |
543 | }; | |
544 | ||
545 | /* | |
546 | * Target context for a pool. | |
547 | */ | |
548 | struct pool_c { | |
549 | struct dm_target *ti; | |
550 | struct pool *pool; | |
551 | struct dm_dev *data_dev; | |
552 | struct dm_dev *metadata_dev; | |
553 | struct dm_target_callbacks callbacks; | |
554 | ||
555 | dm_block_t low_water_blocks; | |
67e2e2b2 | 556 | struct pool_features pf; |
991d9fa0 JT |
557 | }; |
558 | ||
559 | /* | |
560 | * Target context for a thin. | |
561 | */ | |
562 | struct thin_c { | |
563 | struct dm_dev *pool_dev; | |
2dd9c257 | 564 | struct dm_dev *origin_dev; |
991d9fa0 JT |
565 | dm_thin_id dev_id; |
566 | ||
567 | struct pool *pool; | |
568 | struct dm_thin_device *td; | |
569 | }; | |
570 | ||
571 | /*----------------------------------------------------------------*/ | |
572 | ||
573 | /* | |
574 | * A global list of pools that uses a struct mapped_device as a key. | |
575 | */ | |
576 | static struct dm_thin_pool_table { | |
577 | struct mutex mutex; | |
578 | struct list_head pools; | |
579 | } dm_thin_pool_table; | |
580 | ||
581 | static void pool_table_init(void) | |
582 | { | |
583 | mutex_init(&dm_thin_pool_table.mutex); | |
584 | INIT_LIST_HEAD(&dm_thin_pool_table.pools); | |
585 | } | |
586 | ||
587 | static void __pool_table_insert(struct pool *pool) | |
588 | { | |
589 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
590 | list_add(&pool->list, &dm_thin_pool_table.pools); | |
591 | } | |
592 | ||
593 | static void __pool_table_remove(struct pool *pool) | |
594 | { | |
595 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
596 | list_del(&pool->list); | |
597 | } | |
598 | ||
599 | static struct pool *__pool_table_lookup(struct mapped_device *md) | |
600 | { | |
601 | struct pool *pool = NULL, *tmp; | |
602 | ||
603 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
604 | ||
605 | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | |
606 | if (tmp->pool_md == md) { | |
607 | pool = tmp; | |
608 | break; | |
609 | } | |
610 | } | |
611 | ||
612 | return pool; | |
613 | } | |
614 | ||
615 | static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) | |
616 | { | |
617 | struct pool *pool = NULL, *tmp; | |
618 | ||
619 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
620 | ||
621 | list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { | |
622 | if (tmp->md_dev == md_dev) { | |
623 | pool = tmp; | |
624 | break; | |
625 | } | |
626 | } | |
627 | ||
628 | return pool; | |
629 | } | |
630 | ||
631 | /*----------------------------------------------------------------*/ | |
632 | ||
eb2aa48d JT |
633 | struct endio_hook { |
634 | struct thin_c *tc; | |
635 | struct deferred_entry *shared_read_entry; | |
104655fd | 636 | struct deferred_entry *all_io_entry; |
eb2aa48d JT |
637 | struct new_mapping *overwrite_mapping; |
638 | }; | |
639 | ||
991d9fa0 JT |
640 | static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) |
641 | { | |
642 | struct bio *bio; | |
643 | struct bio_list bios; | |
644 | ||
645 | bio_list_init(&bios); | |
646 | bio_list_merge(&bios, master); | |
647 | bio_list_init(master); | |
648 | ||
649 | while ((bio = bio_list_pop(&bios))) { | |
eb2aa48d JT |
650 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
651 | if (h->tc == tc) | |
991d9fa0 JT |
652 | bio_endio(bio, DM_ENDIO_REQUEUE); |
653 | else | |
654 | bio_list_add(master, bio); | |
655 | } | |
656 | } | |
657 | ||
658 | static void requeue_io(struct thin_c *tc) | |
659 | { | |
660 | struct pool *pool = tc->pool; | |
661 | unsigned long flags; | |
662 | ||
663 | spin_lock_irqsave(&pool->lock, flags); | |
664 | __requeue_bio_list(tc, &pool->deferred_bios); | |
665 | __requeue_bio_list(tc, &pool->retry_on_resume_list); | |
666 | spin_unlock_irqrestore(&pool->lock, flags); | |
667 | } | |
668 | ||
669 | /* | |
670 | * This section of code contains the logic for processing a thin device's IO. | |
671 | * Much of the code depends on pool object resources (lists, workqueues, etc) | |
672 | * but most is exclusively called from the thin target rather than the thin-pool | |
673 | * target. | |
674 | */ | |
675 | ||
676 | static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) | |
677 | { | |
678 | return bio->bi_sector >> tc->pool->block_shift; | |
679 | } | |
680 | ||
681 | static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) | |
682 | { | |
683 | struct pool *pool = tc->pool; | |
684 | ||
685 | bio->bi_bdev = tc->pool_dev->bdev; | |
686 | bio->bi_sector = (block << pool->block_shift) + | |
687 | (bio->bi_sector & pool->offset_mask); | |
688 | } | |
689 | ||
2dd9c257 JT |
690 | static void remap_to_origin(struct thin_c *tc, struct bio *bio) |
691 | { | |
692 | bio->bi_bdev = tc->origin_dev->bdev; | |
693 | } | |
694 | ||
695 | static void issue(struct thin_c *tc, struct bio *bio) | |
991d9fa0 JT |
696 | { |
697 | struct pool *pool = tc->pool; | |
698 | unsigned long flags; | |
699 | ||
991d9fa0 JT |
700 | /* |
701 | * Batch together any FUA/FLUSH bios we find and then issue | |
702 | * a single commit for them in process_deferred_bios(). | |
703 | */ | |
704 | if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { | |
705 | spin_lock_irqsave(&pool->lock, flags); | |
706 | bio_list_add(&pool->deferred_flush_bios, bio); | |
707 | spin_unlock_irqrestore(&pool->lock, flags); | |
708 | } else | |
709 | generic_make_request(bio); | |
710 | } | |
711 | ||
2dd9c257 JT |
712 | static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) |
713 | { | |
714 | remap_to_origin(tc, bio); | |
715 | issue(tc, bio); | |
716 | } | |
717 | ||
718 | static void remap_and_issue(struct thin_c *tc, struct bio *bio, | |
719 | dm_block_t block) | |
720 | { | |
721 | remap(tc, bio, block); | |
722 | issue(tc, bio); | |
723 | } | |
724 | ||
991d9fa0 JT |
725 | /* |
726 | * wake_worker() is used when new work is queued and when pool_resume is | |
727 | * ready to continue deferred IO processing. | |
728 | */ | |
729 | static void wake_worker(struct pool *pool) | |
730 | { | |
731 | queue_work(pool->wq, &pool->worker); | |
732 | } | |
733 | ||
734 | /*----------------------------------------------------------------*/ | |
735 | ||
736 | /* | |
737 | * Bio endio functions. | |
738 | */ | |
991d9fa0 JT |
739 | struct new_mapping { |
740 | struct list_head list; | |
741 | ||
eb2aa48d JT |
742 | unsigned quiesced:1; |
743 | unsigned prepared:1; | |
104655fd | 744 | unsigned pass_discard:1; |
991d9fa0 JT |
745 | |
746 | struct thin_c *tc; | |
747 | dm_block_t virt_block; | |
748 | dm_block_t data_block; | |
104655fd | 749 | struct cell *cell, *cell2; |
991d9fa0 JT |
750 | int err; |
751 | ||
752 | /* | |
753 | * If the bio covers the whole area of a block then we can avoid | |
754 | * zeroing or copying. Instead this bio is hooked. The bio will | |
755 | * still be in the cell, so care has to be taken to avoid issuing | |
756 | * the bio twice. | |
757 | */ | |
758 | struct bio *bio; | |
759 | bio_end_io_t *saved_bi_end_io; | |
760 | }; | |
761 | ||
762 | static void __maybe_add_mapping(struct new_mapping *m) | |
763 | { | |
764 | struct pool *pool = m->tc->pool; | |
765 | ||
eb2aa48d | 766 | if (m->quiesced && m->prepared) { |
991d9fa0 JT |
767 | list_add(&m->list, &pool->prepared_mappings); |
768 | wake_worker(pool); | |
769 | } | |
770 | } | |
771 | ||
772 | static void copy_complete(int read_err, unsigned long write_err, void *context) | |
773 | { | |
774 | unsigned long flags; | |
775 | struct new_mapping *m = context; | |
776 | struct pool *pool = m->tc->pool; | |
777 | ||
778 | m->err = read_err || write_err ? -EIO : 0; | |
779 | ||
780 | spin_lock_irqsave(&pool->lock, flags); | |
781 | m->prepared = 1; | |
782 | __maybe_add_mapping(m); | |
783 | spin_unlock_irqrestore(&pool->lock, flags); | |
784 | } | |
785 | ||
786 | static void overwrite_endio(struct bio *bio, int err) | |
787 | { | |
788 | unsigned long flags; | |
eb2aa48d JT |
789 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
790 | struct new_mapping *m = h->overwrite_mapping; | |
991d9fa0 JT |
791 | struct pool *pool = m->tc->pool; |
792 | ||
793 | m->err = err; | |
794 | ||
795 | spin_lock_irqsave(&pool->lock, flags); | |
796 | m->prepared = 1; | |
797 | __maybe_add_mapping(m); | |
798 | spin_unlock_irqrestore(&pool->lock, flags); | |
799 | } | |
800 | ||
991d9fa0 JT |
801 | /*----------------------------------------------------------------*/ |
802 | ||
803 | /* | |
804 | * Workqueue. | |
805 | */ | |
806 | ||
807 | /* | |
808 | * Prepared mapping jobs. | |
809 | */ | |
810 | ||
811 | /* | |
812 | * This sends the bios in the cell back to the deferred_bios list. | |
813 | */ | |
814 | static void cell_defer(struct thin_c *tc, struct cell *cell, | |
815 | dm_block_t data_block) | |
816 | { | |
817 | struct pool *pool = tc->pool; | |
818 | unsigned long flags; | |
819 | ||
820 | spin_lock_irqsave(&pool->lock, flags); | |
821 | cell_release(cell, &pool->deferred_bios); | |
822 | spin_unlock_irqrestore(&tc->pool->lock, flags); | |
823 | ||
824 | wake_worker(pool); | |
825 | } | |
826 | ||
827 | /* | |
828 | * Same as cell_defer above, except it omits one particular detainee, | |
829 | * a write bio that covers the block and has already been processed. | |
830 | */ | |
6f94a4c4 | 831 | static void cell_defer_except(struct thin_c *tc, struct cell *cell) |
991d9fa0 JT |
832 | { |
833 | struct bio_list bios; | |
991d9fa0 JT |
834 | struct pool *pool = tc->pool; |
835 | unsigned long flags; | |
836 | ||
837 | bio_list_init(&bios); | |
991d9fa0 JT |
838 | |
839 | spin_lock_irqsave(&pool->lock, flags); | |
6f94a4c4 | 840 | cell_release_no_holder(cell, &pool->deferred_bios); |
991d9fa0 JT |
841 | spin_unlock_irqrestore(&pool->lock, flags); |
842 | ||
843 | wake_worker(pool); | |
844 | } | |
845 | ||
846 | static void process_prepared_mapping(struct new_mapping *m) | |
847 | { | |
848 | struct thin_c *tc = m->tc; | |
849 | struct bio *bio; | |
850 | int r; | |
851 | ||
852 | bio = m->bio; | |
853 | if (bio) | |
854 | bio->bi_end_io = m->saved_bi_end_io; | |
855 | ||
856 | if (m->err) { | |
857 | cell_error(m->cell); | |
858 | return; | |
859 | } | |
860 | ||
861 | /* | |
862 | * Commit the prepared block into the mapping btree. | |
863 | * Any I/O for this block arriving after this point will get | |
864 | * remapped to it directly. | |
865 | */ | |
866 | r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); | |
867 | if (r) { | |
868 | DMERR("dm_thin_insert_block() failed"); | |
869 | cell_error(m->cell); | |
870 | return; | |
871 | } | |
872 | ||
873 | /* | |
874 | * Release any bios held while the block was being provisioned. | |
875 | * If we are processing a write bio that completely covers the block, | |
876 | * we already processed it so can ignore it now when processing | |
877 | * the bios in the cell. | |
878 | */ | |
879 | if (bio) { | |
6f94a4c4 | 880 | cell_defer_except(tc, m->cell); |
991d9fa0 JT |
881 | bio_endio(bio, 0); |
882 | } else | |
883 | cell_defer(tc, m->cell, m->data_block); | |
884 | ||
885 | list_del(&m->list); | |
886 | mempool_free(m, tc->pool->mapping_pool); | |
887 | } | |
888 | ||
104655fd JT |
889 | static void process_prepared_discard(struct new_mapping *m) |
890 | { | |
891 | int r; | |
892 | struct thin_c *tc = m->tc; | |
893 | ||
894 | r = dm_thin_remove_block(tc->td, m->virt_block); | |
895 | if (r) | |
896 | DMERR("dm_thin_remove_block() failed"); | |
897 | ||
898 | /* | |
899 | * Pass the discard down to the underlying device? | |
900 | */ | |
901 | if (m->pass_discard) | |
902 | remap_and_issue(tc, m->bio, m->data_block); | |
903 | else | |
904 | bio_endio(m->bio, 0); | |
905 | ||
906 | cell_defer_except(tc, m->cell); | |
907 | cell_defer_except(tc, m->cell2); | |
908 | mempool_free(m, tc->pool->mapping_pool); | |
909 | } | |
910 | ||
911 | static void process_prepared(struct pool *pool, struct list_head *head, | |
912 | void (*fn)(struct new_mapping *)) | |
991d9fa0 JT |
913 | { |
914 | unsigned long flags; | |
915 | struct list_head maps; | |
916 | struct new_mapping *m, *tmp; | |
917 | ||
918 | INIT_LIST_HEAD(&maps); | |
919 | spin_lock_irqsave(&pool->lock, flags); | |
104655fd | 920 | list_splice_init(head, &maps); |
991d9fa0 JT |
921 | spin_unlock_irqrestore(&pool->lock, flags); |
922 | ||
923 | list_for_each_entry_safe(m, tmp, &maps, list) | |
104655fd | 924 | fn(m); |
991d9fa0 JT |
925 | } |
926 | ||
927 | /* | |
928 | * Deferred bio jobs. | |
929 | */ | |
104655fd | 930 | static int io_overlaps_block(struct pool *pool, struct bio *bio) |
991d9fa0 | 931 | { |
104655fd | 932 | return !(bio->bi_sector & pool->offset_mask) && |
991d9fa0 | 933 | (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT)); |
104655fd JT |
934 | |
935 | } | |
936 | ||
937 | static int io_overwrites_block(struct pool *pool, struct bio *bio) | |
938 | { | |
939 | return (bio_data_dir(bio) == WRITE) && | |
940 | io_overlaps_block(pool, bio); | |
991d9fa0 JT |
941 | } |
942 | ||
943 | static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, | |
944 | bio_end_io_t *fn) | |
945 | { | |
946 | *save = bio->bi_end_io; | |
947 | bio->bi_end_io = fn; | |
948 | } | |
949 | ||
950 | static int ensure_next_mapping(struct pool *pool) | |
951 | { | |
952 | if (pool->next_mapping) | |
953 | return 0; | |
954 | ||
955 | pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); | |
956 | ||
957 | return pool->next_mapping ? 0 : -ENOMEM; | |
958 | } | |
959 | ||
960 | static struct new_mapping *get_next_mapping(struct pool *pool) | |
961 | { | |
962 | struct new_mapping *r = pool->next_mapping; | |
963 | ||
964 | BUG_ON(!pool->next_mapping); | |
965 | ||
966 | pool->next_mapping = NULL; | |
967 | ||
968 | return r; | |
969 | } | |
970 | ||
971 | static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, | |
2dd9c257 JT |
972 | struct dm_dev *origin, dm_block_t data_origin, |
973 | dm_block_t data_dest, | |
991d9fa0 JT |
974 | struct cell *cell, struct bio *bio) |
975 | { | |
976 | int r; | |
977 | struct pool *pool = tc->pool; | |
978 | struct new_mapping *m = get_next_mapping(pool); | |
979 | ||
980 | INIT_LIST_HEAD(&m->list); | |
eb2aa48d | 981 | m->quiesced = 0; |
991d9fa0 JT |
982 | m->prepared = 0; |
983 | m->tc = tc; | |
984 | m->virt_block = virt_block; | |
985 | m->data_block = data_dest; | |
986 | m->cell = cell; | |
987 | m->err = 0; | |
988 | m->bio = NULL; | |
989 | ||
eb2aa48d JT |
990 | if (!ds_add_work(&pool->shared_read_ds, &m->list)) |
991 | m->quiesced = 1; | |
991d9fa0 JT |
992 | |
993 | /* | |
994 | * IO to pool_dev remaps to the pool target's data_dev. | |
995 | * | |
996 | * If the whole block of data is being overwritten, we can issue the | |
997 | * bio immediately. Otherwise we use kcopyd to clone the data first. | |
998 | */ | |
999 | if (io_overwrites_block(pool, bio)) { | |
eb2aa48d JT |
1000 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
1001 | h->overwrite_mapping = m; | |
991d9fa0 JT |
1002 | m->bio = bio; |
1003 | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | |
991d9fa0 JT |
1004 | remap_and_issue(tc, bio, data_dest); |
1005 | } else { | |
1006 | struct dm_io_region from, to; | |
1007 | ||
2dd9c257 | 1008 | from.bdev = origin->bdev; |
991d9fa0 JT |
1009 | from.sector = data_origin * pool->sectors_per_block; |
1010 | from.count = pool->sectors_per_block; | |
1011 | ||
1012 | to.bdev = tc->pool_dev->bdev; | |
1013 | to.sector = data_dest * pool->sectors_per_block; | |
1014 | to.count = pool->sectors_per_block; | |
1015 | ||
1016 | r = dm_kcopyd_copy(pool->copier, &from, 1, &to, | |
1017 | 0, copy_complete, m); | |
1018 | if (r < 0) { | |
1019 | mempool_free(m, pool->mapping_pool); | |
1020 | DMERR("dm_kcopyd_copy() failed"); | |
1021 | cell_error(cell); | |
1022 | } | |
1023 | } | |
1024 | } | |
1025 | ||
2dd9c257 JT |
1026 | static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, |
1027 | dm_block_t data_origin, dm_block_t data_dest, | |
1028 | struct cell *cell, struct bio *bio) | |
1029 | { | |
1030 | schedule_copy(tc, virt_block, tc->pool_dev, | |
1031 | data_origin, data_dest, cell, bio); | |
1032 | } | |
1033 | ||
1034 | static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, | |
1035 | dm_block_t data_dest, | |
1036 | struct cell *cell, struct bio *bio) | |
1037 | { | |
1038 | schedule_copy(tc, virt_block, tc->origin_dev, | |
1039 | virt_block, data_dest, cell, bio); | |
1040 | } | |
1041 | ||
991d9fa0 JT |
1042 | static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, |
1043 | dm_block_t data_block, struct cell *cell, | |
1044 | struct bio *bio) | |
1045 | { | |
1046 | struct pool *pool = tc->pool; | |
1047 | struct new_mapping *m = get_next_mapping(pool); | |
1048 | ||
1049 | INIT_LIST_HEAD(&m->list); | |
eb2aa48d | 1050 | m->quiesced = 1; |
991d9fa0 JT |
1051 | m->prepared = 0; |
1052 | m->tc = tc; | |
1053 | m->virt_block = virt_block; | |
1054 | m->data_block = data_block; | |
1055 | m->cell = cell; | |
1056 | m->err = 0; | |
1057 | m->bio = NULL; | |
1058 | ||
1059 | /* | |
1060 | * If the whole block of data is being overwritten or we are not | |
1061 | * zeroing pre-existing data, we can issue the bio immediately. | |
1062 | * Otherwise we use kcopyd to zero the data first. | |
1063 | */ | |
67e2e2b2 | 1064 | if (!pool->pf.zero_new_blocks) |
991d9fa0 JT |
1065 | process_prepared_mapping(m); |
1066 | ||
1067 | else if (io_overwrites_block(pool, bio)) { | |
eb2aa48d JT |
1068 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
1069 | h->overwrite_mapping = m; | |
991d9fa0 JT |
1070 | m->bio = bio; |
1071 | save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); | |
991d9fa0 JT |
1072 | remap_and_issue(tc, bio, data_block); |
1073 | ||
1074 | } else { | |
1075 | int r; | |
1076 | struct dm_io_region to; | |
1077 | ||
1078 | to.bdev = tc->pool_dev->bdev; | |
1079 | to.sector = data_block * pool->sectors_per_block; | |
1080 | to.count = pool->sectors_per_block; | |
1081 | ||
1082 | r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); | |
1083 | if (r < 0) { | |
1084 | mempool_free(m, pool->mapping_pool); | |
1085 | DMERR("dm_kcopyd_zero() failed"); | |
1086 | cell_error(cell); | |
1087 | } | |
1088 | } | |
1089 | } | |
1090 | ||
1091 | static int alloc_data_block(struct thin_c *tc, dm_block_t *result) | |
1092 | { | |
1093 | int r; | |
1094 | dm_block_t free_blocks; | |
1095 | unsigned long flags; | |
1096 | struct pool *pool = tc->pool; | |
1097 | ||
1098 | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | |
1099 | if (r) | |
1100 | return r; | |
1101 | ||
1102 | if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { | |
1103 | DMWARN("%s: reached low water mark, sending event.", | |
1104 | dm_device_name(pool->pool_md)); | |
1105 | spin_lock_irqsave(&pool->lock, flags); | |
1106 | pool->low_water_triggered = 1; | |
1107 | spin_unlock_irqrestore(&pool->lock, flags); | |
1108 | dm_table_event(pool->ti->table); | |
1109 | } | |
1110 | ||
1111 | if (!free_blocks) { | |
1112 | if (pool->no_free_space) | |
1113 | return -ENOSPC; | |
1114 | else { | |
1115 | /* | |
1116 | * Try to commit to see if that will free up some | |
1117 | * more space. | |
1118 | */ | |
1119 | r = dm_pool_commit_metadata(pool->pmd); | |
1120 | if (r) { | |
1121 | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | |
1122 | __func__, r); | |
1123 | return r; | |
1124 | } | |
1125 | ||
1126 | r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); | |
1127 | if (r) | |
1128 | return r; | |
1129 | ||
1130 | /* | |
1131 | * If we still have no space we set a flag to avoid | |
1132 | * doing all this checking and return -ENOSPC. | |
1133 | */ | |
1134 | if (!free_blocks) { | |
1135 | DMWARN("%s: no free space available.", | |
1136 | dm_device_name(pool->pool_md)); | |
1137 | spin_lock_irqsave(&pool->lock, flags); | |
1138 | pool->no_free_space = 1; | |
1139 | spin_unlock_irqrestore(&pool->lock, flags); | |
1140 | return -ENOSPC; | |
1141 | } | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | r = dm_pool_alloc_data_block(pool->pmd, result); | |
1146 | if (r) | |
1147 | return r; | |
1148 | ||
1149 | return 0; | |
1150 | } | |
1151 | ||
1152 | /* | |
1153 | * If we have run out of space, queue bios until the device is | |
1154 | * resumed, presumably after having been reloaded with more space. | |
1155 | */ | |
1156 | static void retry_on_resume(struct bio *bio) | |
1157 | { | |
eb2aa48d JT |
1158 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
1159 | struct thin_c *tc = h->tc; | |
991d9fa0 JT |
1160 | struct pool *pool = tc->pool; |
1161 | unsigned long flags; | |
1162 | ||
1163 | spin_lock_irqsave(&pool->lock, flags); | |
1164 | bio_list_add(&pool->retry_on_resume_list, bio); | |
1165 | spin_unlock_irqrestore(&pool->lock, flags); | |
1166 | } | |
1167 | ||
1168 | static void no_space(struct cell *cell) | |
1169 | { | |
1170 | struct bio *bio; | |
1171 | struct bio_list bios; | |
1172 | ||
1173 | bio_list_init(&bios); | |
1174 | cell_release(cell, &bios); | |
1175 | ||
1176 | while ((bio = bio_list_pop(&bios))) | |
1177 | retry_on_resume(bio); | |
1178 | } | |
1179 | ||
104655fd JT |
1180 | static void process_discard(struct thin_c *tc, struct bio *bio) |
1181 | { | |
1182 | int r; | |
c3a0ce2e | 1183 | unsigned long flags; |
104655fd JT |
1184 | struct pool *pool = tc->pool; |
1185 | struct cell *cell, *cell2; | |
1186 | struct cell_key key, key2; | |
1187 | dm_block_t block = get_bio_block(tc, bio); | |
1188 | struct dm_thin_lookup_result lookup_result; | |
1189 | struct new_mapping *m; | |
1190 | ||
1191 | build_virtual_key(tc->td, block, &key); | |
1192 | if (bio_detain(tc->pool->prison, &key, bio, &cell)) | |
1193 | return; | |
1194 | ||
1195 | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | |
1196 | switch (r) { | |
1197 | case 0: | |
1198 | /* | |
1199 | * Check nobody is fiddling with this pool block. This can | |
1200 | * happen if someone's in the process of breaking sharing | |
1201 | * on this block. | |
1202 | */ | |
1203 | build_data_key(tc->td, lookup_result.block, &key2); | |
1204 | if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) { | |
1205 | cell_release_singleton(cell, bio); | |
1206 | break; | |
1207 | } | |
1208 | ||
1209 | if (io_overlaps_block(pool, bio)) { | |
1210 | /* | |
1211 | * IO may still be going to the destination block. We must | |
1212 | * quiesce before we can do the removal. | |
1213 | */ | |
1214 | m = get_next_mapping(pool); | |
1215 | m->tc = tc; | |
67e2e2b2 | 1216 | m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown; |
104655fd JT |
1217 | m->virt_block = block; |
1218 | m->data_block = lookup_result.block; | |
1219 | m->cell = cell; | |
1220 | m->cell2 = cell2; | |
1221 | m->err = 0; | |
1222 | m->bio = bio; | |
1223 | ||
1224 | if (!ds_add_work(&pool->all_io_ds, &m->list)) { | |
c3a0ce2e | 1225 | spin_lock_irqsave(&pool->lock, flags); |
104655fd | 1226 | list_add(&m->list, &pool->prepared_discards); |
c3a0ce2e | 1227 | spin_unlock_irqrestore(&pool->lock, flags); |
104655fd JT |
1228 | wake_worker(pool); |
1229 | } | |
1230 | } else { | |
1231 | /* | |
1232 | * This path is hit if people are ignoring | |
1233 | * limits->discard_granularity. It ignores any | |
1234 | * part of the discard that is in a subsequent | |
1235 | * block. | |
1236 | */ | |
1237 | sector_t offset = bio->bi_sector - (block << pool->block_shift); | |
1238 | unsigned remaining = (pool->sectors_per_block - offset) << 9; | |
1239 | bio->bi_size = min(bio->bi_size, remaining); | |
1240 | ||
1241 | cell_release_singleton(cell, bio); | |
1242 | cell_release_singleton(cell2, bio); | |
1243 | remap_and_issue(tc, bio, lookup_result.block); | |
1244 | } | |
1245 | break; | |
1246 | ||
1247 | case -ENODATA: | |
1248 | /* | |
1249 | * It isn't provisioned, just forget it. | |
1250 | */ | |
1251 | cell_release_singleton(cell, bio); | |
1252 | bio_endio(bio, 0); | |
1253 | break; | |
1254 | ||
1255 | default: | |
1256 | DMERR("discard: find block unexpectedly returned %d", r); | |
1257 | cell_release_singleton(cell, bio); | |
1258 | bio_io_error(bio); | |
1259 | break; | |
1260 | } | |
1261 | } | |
1262 | ||
991d9fa0 JT |
1263 | static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, |
1264 | struct cell_key *key, | |
1265 | struct dm_thin_lookup_result *lookup_result, | |
1266 | struct cell *cell) | |
1267 | { | |
1268 | int r; | |
1269 | dm_block_t data_block; | |
1270 | ||
1271 | r = alloc_data_block(tc, &data_block); | |
1272 | switch (r) { | |
1273 | case 0: | |
2dd9c257 JT |
1274 | schedule_internal_copy(tc, block, lookup_result->block, |
1275 | data_block, cell, bio); | |
991d9fa0 JT |
1276 | break; |
1277 | ||
1278 | case -ENOSPC: | |
1279 | no_space(cell); | |
1280 | break; | |
1281 | ||
1282 | default: | |
1283 | DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | |
1284 | cell_error(cell); | |
1285 | break; | |
1286 | } | |
1287 | } | |
1288 | ||
1289 | static void process_shared_bio(struct thin_c *tc, struct bio *bio, | |
1290 | dm_block_t block, | |
1291 | struct dm_thin_lookup_result *lookup_result) | |
1292 | { | |
1293 | struct cell *cell; | |
1294 | struct pool *pool = tc->pool; | |
1295 | struct cell_key key; | |
1296 | ||
1297 | /* | |
1298 | * If cell is already occupied, then sharing is already in the process | |
1299 | * of being broken so we have nothing further to do here. | |
1300 | */ | |
1301 | build_data_key(tc->td, lookup_result->block, &key); | |
1302 | if (bio_detain(pool->prison, &key, bio, &cell)) | |
1303 | return; | |
1304 | ||
1305 | if (bio_data_dir(bio) == WRITE) | |
1306 | break_sharing(tc, bio, block, &key, lookup_result, cell); | |
1307 | else { | |
eb2aa48d | 1308 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
991d9fa0 | 1309 | |
eb2aa48d | 1310 | h->shared_read_entry = ds_inc(&pool->shared_read_ds); |
991d9fa0 JT |
1311 | |
1312 | cell_release_singleton(cell, bio); | |
1313 | remap_and_issue(tc, bio, lookup_result->block); | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, | |
1318 | struct cell *cell) | |
1319 | { | |
1320 | int r; | |
1321 | dm_block_t data_block; | |
1322 | ||
1323 | /* | |
1324 | * Remap empty bios (flushes) immediately, without provisioning. | |
1325 | */ | |
1326 | if (!bio->bi_size) { | |
1327 | cell_release_singleton(cell, bio); | |
1328 | remap_and_issue(tc, bio, 0); | |
1329 | return; | |
1330 | } | |
1331 | ||
1332 | /* | |
1333 | * Fill read bios with zeroes and complete them immediately. | |
1334 | */ | |
1335 | if (bio_data_dir(bio) == READ) { | |
1336 | zero_fill_bio(bio); | |
1337 | cell_release_singleton(cell, bio); | |
1338 | bio_endio(bio, 0); | |
1339 | return; | |
1340 | } | |
1341 | ||
1342 | r = alloc_data_block(tc, &data_block); | |
1343 | switch (r) { | |
1344 | case 0: | |
2dd9c257 JT |
1345 | if (tc->origin_dev) |
1346 | schedule_external_copy(tc, block, data_block, cell, bio); | |
1347 | else | |
1348 | schedule_zero(tc, block, data_block, cell, bio); | |
991d9fa0 JT |
1349 | break; |
1350 | ||
1351 | case -ENOSPC: | |
1352 | no_space(cell); | |
1353 | break; | |
1354 | ||
1355 | default: | |
1356 | DMERR("%s: alloc_data_block() failed, error = %d", __func__, r); | |
1357 | cell_error(cell); | |
1358 | break; | |
1359 | } | |
1360 | } | |
1361 | ||
1362 | static void process_bio(struct thin_c *tc, struct bio *bio) | |
1363 | { | |
1364 | int r; | |
1365 | dm_block_t block = get_bio_block(tc, bio); | |
1366 | struct cell *cell; | |
1367 | struct cell_key key; | |
1368 | struct dm_thin_lookup_result lookup_result; | |
1369 | ||
1370 | /* | |
1371 | * If cell is already occupied, then the block is already | |
1372 | * being provisioned so we have nothing further to do here. | |
1373 | */ | |
1374 | build_virtual_key(tc->td, block, &key); | |
1375 | if (bio_detain(tc->pool->prison, &key, bio, &cell)) | |
1376 | return; | |
1377 | ||
1378 | r = dm_thin_find_block(tc->td, block, 1, &lookup_result); | |
1379 | switch (r) { | |
1380 | case 0: | |
1381 | /* | |
1382 | * We can release this cell now. This thread is the only | |
1383 | * one that puts bios into a cell, and we know there were | |
1384 | * no preceding bios. | |
1385 | */ | |
1386 | /* | |
1387 | * TODO: this will probably have to change when discard goes | |
1388 | * back in. | |
1389 | */ | |
1390 | cell_release_singleton(cell, bio); | |
1391 | ||
1392 | if (lookup_result.shared) | |
1393 | process_shared_bio(tc, bio, block, &lookup_result); | |
1394 | else | |
1395 | remap_and_issue(tc, bio, lookup_result.block); | |
1396 | break; | |
1397 | ||
1398 | case -ENODATA: | |
2dd9c257 JT |
1399 | if (bio_data_dir(bio) == READ && tc->origin_dev) { |
1400 | cell_release_singleton(cell, bio); | |
1401 | remap_to_origin_and_issue(tc, bio); | |
1402 | } else | |
1403 | provision_block(tc, bio, block, cell); | |
991d9fa0 JT |
1404 | break; |
1405 | ||
1406 | default: | |
1407 | DMERR("dm_thin_find_block() failed, error = %d", r); | |
104655fd | 1408 | cell_release_singleton(cell, bio); |
991d9fa0 JT |
1409 | bio_io_error(bio); |
1410 | break; | |
1411 | } | |
1412 | } | |
1413 | ||
905e51b3 JT |
1414 | static int need_commit_due_to_time(struct pool *pool) |
1415 | { | |
1416 | return jiffies < pool->last_commit_jiffies || | |
1417 | jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; | |
1418 | } | |
1419 | ||
991d9fa0 JT |
1420 | static void process_deferred_bios(struct pool *pool) |
1421 | { | |
1422 | unsigned long flags; | |
1423 | struct bio *bio; | |
1424 | struct bio_list bios; | |
1425 | int r; | |
1426 | ||
1427 | bio_list_init(&bios); | |
1428 | ||
1429 | spin_lock_irqsave(&pool->lock, flags); | |
1430 | bio_list_merge(&bios, &pool->deferred_bios); | |
1431 | bio_list_init(&pool->deferred_bios); | |
1432 | spin_unlock_irqrestore(&pool->lock, flags); | |
1433 | ||
1434 | while ((bio = bio_list_pop(&bios))) { | |
eb2aa48d JT |
1435 | struct endio_hook *h = dm_get_mapinfo(bio)->ptr; |
1436 | struct thin_c *tc = h->tc; | |
1437 | ||
991d9fa0 JT |
1438 | /* |
1439 | * If we've got no free new_mapping structs, and processing | |
1440 | * this bio might require one, we pause until there are some | |
1441 | * prepared mappings to process. | |
1442 | */ | |
1443 | if (ensure_next_mapping(pool)) { | |
1444 | spin_lock_irqsave(&pool->lock, flags); | |
1445 | bio_list_merge(&pool->deferred_bios, &bios); | |
1446 | spin_unlock_irqrestore(&pool->lock, flags); | |
1447 | ||
1448 | break; | |
1449 | } | |
104655fd JT |
1450 | |
1451 | if (bio->bi_rw & REQ_DISCARD) | |
1452 | process_discard(tc, bio); | |
1453 | else | |
1454 | process_bio(tc, bio); | |
991d9fa0 JT |
1455 | } |
1456 | ||
1457 | /* | |
1458 | * If there are any deferred flush bios, we must commit | |
1459 | * the metadata before issuing them. | |
1460 | */ | |
1461 | bio_list_init(&bios); | |
1462 | spin_lock_irqsave(&pool->lock, flags); | |
1463 | bio_list_merge(&bios, &pool->deferred_flush_bios); | |
1464 | bio_list_init(&pool->deferred_flush_bios); | |
1465 | spin_unlock_irqrestore(&pool->lock, flags); | |
1466 | ||
905e51b3 | 1467 | if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) |
991d9fa0 JT |
1468 | return; |
1469 | ||
1470 | r = dm_pool_commit_metadata(pool->pmd); | |
1471 | if (r) { | |
1472 | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | |
1473 | __func__, r); | |
1474 | while ((bio = bio_list_pop(&bios))) | |
1475 | bio_io_error(bio); | |
1476 | return; | |
1477 | } | |
905e51b3 | 1478 | pool->last_commit_jiffies = jiffies; |
991d9fa0 JT |
1479 | |
1480 | while ((bio = bio_list_pop(&bios))) | |
1481 | generic_make_request(bio); | |
1482 | } | |
1483 | ||
1484 | static void do_worker(struct work_struct *ws) | |
1485 | { | |
1486 | struct pool *pool = container_of(ws, struct pool, worker); | |
1487 | ||
104655fd JT |
1488 | process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping); |
1489 | process_prepared(pool, &pool->prepared_discards, process_prepared_discard); | |
991d9fa0 JT |
1490 | process_deferred_bios(pool); |
1491 | } | |
1492 | ||
905e51b3 JT |
1493 | /* |
1494 | * We want to commit periodically so that not too much | |
1495 | * unwritten data builds up. | |
1496 | */ | |
1497 | static void do_waker(struct work_struct *ws) | |
1498 | { | |
1499 | struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); | |
1500 | wake_worker(pool); | |
1501 | queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); | |
1502 | } | |
1503 | ||
991d9fa0 JT |
1504 | /*----------------------------------------------------------------*/ |
1505 | ||
1506 | /* | |
1507 | * Mapping functions. | |
1508 | */ | |
1509 | ||
1510 | /* | |
1511 | * Called only while mapping a thin bio to hand it over to the workqueue. | |
1512 | */ | |
1513 | static void thin_defer_bio(struct thin_c *tc, struct bio *bio) | |
1514 | { | |
1515 | unsigned long flags; | |
1516 | struct pool *pool = tc->pool; | |
1517 | ||
1518 | spin_lock_irqsave(&pool->lock, flags); | |
1519 | bio_list_add(&pool->deferred_bios, bio); | |
1520 | spin_unlock_irqrestore(&pool->lock, flags); | |
1521 | ||
1522 | wake_worker(pool); | |
1523 | } | |
1524 | ||
eb2aa48d JT |
1525 | static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio) |
1526 | { | |
1527 | struct pool *pool = tc->pool; | |
1528 | struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO); | |
1529 | ||
1530 | h->tc = tc; | |
1531 | h->shared_read_entry = NULL; | |
104655fd | 1532 | h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds); |
eb2aa48d JT |
1533 | h->overwrite_mapping = NULL; |
1534 | ||
1535 | return h; | |
1536 | } | |
1537 | ||
991d9fa0 JT |
1538 | /* |
1539 | * Non-blocking function called from the thin target's map function. | |
1540 | */ | |
1541 | static int thin_bio_map(struct dm_target *ti, struct bio *bio, | |
1542 | union map_info *map_context) | |
1543 | { | |
1544 | int r; | |
1545 | struct thin_c *tc = ti->private; | |
1546 | dm_block_t block = get_bio_block(tc, bio); | |
1547 | struct dm_thin_device *td = tc->td; | |
1548 | struct dm_thin_lookup_result result; | |
1549 | ||
eb2aa48d | 1550 | map_context->ptr = thin_hook_bio(tc, bio); |
104655fd | 1551 | if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { |
991d9fa0 JT |
1552 | thin_defer_bio(tc, bio); |
1553 | return DM_MAPIO_SUBMITTED; | |
1554 | } | |
1555 | ||
1556 | r = dm_thin_find_block(td, block, 0, &result); | |
1557 | ||
1558 | /* | |
1559 | * Note that we defer readahead too. | |
1560 | */ | |
1561 | switch (r) { | |
1562 | case 0: | |
1563 | if (unlikely(result.shared)) { | |
1564 | /* | |
1565 | * We have a race condition here between the | |
1566 | * result.shared value returned by the lookup and | |
1567 | * snapshot creation, which may cause new | |
1568 | * sharing. | |
1569 | * | |
1570 | * To avoid this always quiesce the origin before | |
1571 | * taking the snap. You want to do this anyway to | |
1572 | * ensure a consistent application view | |
1573 | * (i.e. lockfs). | |
1574 | * | |
1575 | * More distant ancestors are irrelevant. The | |
1576 | * shared flag will be set in their case. | |
1577 | */ | |
1578 | thin_defer_bio(tc, bio); | |
1579 | r = DM_MAPIO_SUBMITTED; | |
1580 | } else { | |
1581 | remap(tc, bio, result.block); | |
1582 | r = DM_MAPIO_REMAPPED; | |
1583 | } | |
1584 | break; | |
1585 | ||
1586 | case -ENODATA: | |
1587 | /* | |
1588 | * In future, the failed dm_thin_find_block above could | |
1589 | * provide the hint to load the metadata into cache. | |
1590 | */ | |
1591 | case -EWOULDBLOCK: | |
1592 | thin_defer_bio(tc, bio); | |
1593 | r = DM_MAPIO_SUBMITTED; | |
1594 | break; | |
1595 | } | |
1596 | ||
1597 | return r; | |
1598 | } | |
1599 | ||
1600 | static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) | |
1601 | { | |
1602 | int r; | |
1603 | unsigned long flags; | |
1604 | struct pool_c *pt = container_of(cb, struct pool_c, callbacks); | |
1605 | ||
1606 | spin_lock_irqsave(&pt->pool->lock, flags); | |
1607 | r = !bio_list_empty(&pt->pool->retry_on_resume_list); | |
1608 | spin_unlock_irqrestore(&pt->pool->lock, flags); | |
1609 | ||
1610 | if (!r) { | |
1611 | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | |
1612 | r = bdi_congested(&q->backing_dev_info, bdi_bits); | |
1613 | } | |
1614 | ||
1615 | return r; | |
1616 | } | |
1617 | ||
1618 | static void __requeue_bios(struct pool *pool) | |
1619 | { | |
1620 | bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); | |
1621 | bio_list_init(&pool->retry_on_resume_list); | |
1622 | } | |
1623 | ||
1624 | /*---------------------------------------------------------------- | |
1625 | * Binding of control targets to a pool object | |
1626 | *--------------------------------------------------------------*/ | |
1627 | static int bind_control_target(struct pool *pool, struct dm_target *ti) | |
1628 | { | |
1629 | struct pool_c *pt = ti->private; | |
1630 | ||
1631 | pool->ti = ti; | |
1632 | pool->low_water_blocks = pt->low_water_blocks; | |
67e2e2b2 | 1633 | pool->pf = pt->pf; |
991d9fa0 JT |
1634 | |
1635 | return 0; | |
1636 | } | |
1637 | ||
1638 | static void unbind_control_target(struct pool *pool, struct dm_target *ti) | |
1639 | { | |
1640 | if (pool->ti == ti) | |
1641 | pool->ti = NULL; | |
1642 | } | |
1643 | ||
1644 | /*---------------------------------------------------------------- | |
1645 | * Pool creation | |
1646 | *--------------------------------------------------------------*/ | |
67e2e2b2 JT |
1647 | /* Initialize pool features. */ |
1648 | static void pool_features_init(struct pool_features *pf) | |
1649 | { | |
1650 | pf->zero_new_blocks = 1; | |
1651 | pf->discard_enabled = 1; | |
1652 | pf->discard_passdown = 1; | |
1653 | } | |
1654 | ||
991d9fa0 JT |
1655 | static void __pool_destroy(struct pool *pool) |
1656 | { | |
1657 | __pool_table_remove(pool); | |
1658 | ||
1659 | if (dm_pool_metadata_close(pool->pmd) < 0) | |
1660 | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | |
1661 | ||
1662 | prison_destroy(pool->prison); | |
1663 | dm_kcopyd_client_destroy(pool->copier); | |
1664 | ||
1665 | if (pool->wq) | |
1666 | destroy_workqueue(pool->wq); | |
1667 | ||
1668 | if (pool->next_mapping) | |
1669 | mempool_free(pool->next_mapping, pool->mapping_pool); | |
1670 | mempool_destroy(pool->mapping_pool); | |
1671 | mempool_destroy(pool->endio_hook_pool); | |
1672 | kfree(pool); | |
1673 | } | |
1674 | ||
1675 | static struct pool *pool_create(struct mapped_device *pool_md, | |
1676 | struct block_device *metadata_dev, | |
1677 | unsigned long block_size, char **error) | |
1678 | { | |
1679 | int r; | |
1680 | void *err_p; | |
1681 | struct pool *pool; | |
1682 | struct dm_pool_metadata *pmd; | |
1683 | ||
1684 | pmd = dm_pool_metadata_open(metadata_dev, block_size); | |
1685 | if (IS_ERR(pmd)) { | |
1686 | *error = "Error creating metadata object"; | |
1687 | return (struct pool *)pmd; | |
1688 | } | |
1689 | ||
1690 | pool = kmalloc(sizeof(*pool), GFP_KERNEL); | |
1691 | if (!pool) { | |
1692 | *error = "Error allocating memory for pool"; | |
1693 | err_p = ERR_PTR(-ENOMEM); | |
1694 | goto bad_pool; | |
1695 | } | |
1696 | ||
1697 | pool->pmd = pmd; | |
1698 | pool->sectors_per_block = block_size; | |
1699 | pool->block_shift = ffs(block_size) - 1; | |
1700 | pool->offset_mask = block_size - 1; | |
1701 | pool->low_water_blocks = 0; | |
67e2e2b2 | 1702 | pool_features_init(&pool->pf); |
991d9fa0 JT |
1703 | pool->prison = prison_create(PRISON_CELLS); |
1704 | if (!pool->prison) { | |
1705 | *error = "Error creating pool's bio prison"; | |
1706 | err_p = ERR_PTR(-ENOMEM); | |
1707 | goto bad_prison; | |
1708 | } | |
1709 | ||
1710 | pool->copier = dm_kcopyd_client_create(); | |
1711 | if (IS_ERR(pool->copier)) { | |
1712 | r = PTR_ERR(pool->copier); | |
1713 | *error = "Error creating pool's kcopyd client"; | |
1714 | err_p = ERR_PTR(r); | |
1715 | goto bad_kcopyd_client; | |
1716 | } | |
1717 | ||
1718 | /* | |
1719 | * Create singlethreaded workqueue that will service all devices | |
1720 | * that use this metadata. | |
1721 | */ | |
1722 | pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); | |
1723 | if (!pool->wq) { | |
1724 | *error = "Error creating pool's workqueue"; | |
1725 | err_p = ERR_PTR(-ENOMEM); | |
1726 | goto bad_wq; | |
1727 | } | |
1728 | ||
1729 | INIT_WORK(&pool->worker, do_worker); | |
905e51b3 | 1730 | INIT_DELAYED_WORK(&pool->waker, do_waker); |
991d9fa0 JT |
1731 | spin_lock_init(&pool->lock); |
1732 | bio_list_init(&pool->deferred_bios); | |
1733 | bio_list_init(&pool->deferred_flush_bios); | |
1734 | INIT_LIST_HEAD(&pool->prepared_mappings); | |
104655fd | 1735 | INIT_LIST_HEAD(&pool->prepared_discards); |
991d9fa0 JT |
1736 | pool->low_water_triggered = 0; |
1737 | pool->no_free_space = 0; | |
1738 | bio_list_init(&pool->retry_on_resume_list); | |
eb2aa48d | 1739 | ds_init(&pool->shared_read_ds); |
104655fd | 1740 | ds_init(&pool->all_io_ds); |
991d9fa0 JT |
1741 | |
1742 | pool->next_mapping = NULL; | |
1743 | pool->mapping_pool = | |
1744 | mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping)); | |
1745 | if (!pool->mapping_pool) { | |
1746 | *error = "Error creating pool's mapping mempool"; | |
1747 | err_p = ERR_PTR(-ENOMEM); | |
1748 | goto bad_mapping_pool; | |
1749 | } | |
1750 | ||
1751 | pool->endio_hook_pool = | |
1752 | mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook)); | |
1753 | if (!pool->endio_hook_pool) { | |
1754 | *error = "Error creating pool's endio_hook mempool"; | |
1755 | err_p = ERR_PTR(-ENOMEM); | |
1756 | goto bad_endio_hook_pool; | |
1757 | } | |
1758 | pool->ref_count = 1; | |
905e51b3 | 1759 | pool->last_commit_jiffies = jiffies; |
991d9fa0 JT |
1760 | pool->pool_md = pool_md; |
1761 | pool->md_dev = metadata_dev; | |
1762 | __pool_table_insert(pool); | |
1763 | ||
1764 | return pool; | |
1765 | ||
1766 | bad_endio_hook_pool: | |
1767 | mempool_destroy(pool->mapping_pool); | |
1768 | bad_mapping_pool: | |
1769 | destroy_workqueue(pool->wq); | |
1770 | bad_wq: | |
1771 | dm_kcopyd_client_destroy(pool->copier); | |
1772 | bad_kcopyd_client: | |
1773 | prison_destroy(pool->prison); | |
1774 | bad_prison: | |
1775 | kfree(pool); | |
1776 | bad_pool: | |
1777 | if (dm_pool_metadata_close(pmd)) | |
1778 | DMWARN("%s: dm_pool_metadata_close() failed.", __func__); | |
1779 | ||
1780 | return err_p; | |
1781 | } | |
1782 | ||
1783 | static void __pool_inc(struct pool *pool) | |
1784 | { | |
1785 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
1786 | pool->ref_count++; | |
1787 | } | |
1788 | ||
1789 | static void __pool_dec(struct pool *pool) | |
1790 | { | |
1791 | BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); | |
1792 | BUG_ON(!pool->ref_count); | |
1793 | if (!--pool->ref_count) | |
1794 | __pool_destroy(pool); | |
1795 | } | |
1796 | ||
1797 | static struct pool *__pool_find(struct mapped_device *pool_md, | |
1798 | struct block_device *metadata_dev, | |
67e2e2b2 JT |
1799 | unsigned long block_size, char **error, |
1800 | int *created) | |
991d9fa0 JT |
1801 | { |
1802 | struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); | |
1803 | ||
1804 | if (pool) { | |
1805 | if (pool->pool_md != pool_md) | |
1806 | return ERR_PTR(-EBUSY); | |
1807 | __pool_inc(pool); | |
1808 | ||
1809 | } else { | |
1810 | pool = __pool_table_lookup(pool_md); | |
1811 | if (pool) { | |
1812 | if (pool->md_dev != metadata_dev) | |
1813 | return ERR_PTR(-EINVAL); | |
1814 | __pool_inc(pool); | |
1815 | ||
67e2e2b2 | 1816 | } else { |
991d9fa0 | 1817 | pool = pool_create(pool_md, metadata_dev, block_size, error); |
67e2e2b2 JT |
1818 | *created = 1; |
1819 | } | |
991d9fa0 JT |
1820 | } |
1821 | ||
1822 | return pool; | |
1823 | } | |
1824 | ||
1825 | /*---------------------------------------------------------------- | |
1826 | * Pool target methods | |
1827 | *--------------------------------------------------------------*/ | |
1828 | static void pool_dtr(struct dm_target *ti) | |
1829 | { | |
1830 | struct pool_c *pt = ti->private; | |
1831 | ||
1832 | mutex_lock(&dm_thin_pool_table.mutex); | |
1833 | ||
1834 | unbind_control_target(pt->pool, ti); | |
1835 | __pool_dec(pt->pool); | |
1836 | dm_put_device(ti, pt->metadata_dev); | |
1837 | dm_put_device(ti, pt->data_dev); | |
1838 | kfree(pt); | |
1839 | ||
1840 | mutex_unlock(&dm_thin_pool_table.mutex); | |
1841 | } | |
1842 | ||
991d9fa0 JT |
1843 | static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, |
1844 | struct dm_target *ti) | |
1845 | { | |
1846 | int r; | |
1847 | unsigned argc; | |
1848 | const char *arg_name; | |
1849 | ||
1850 | static struct dm_arg _args[] = { | |
67e2e2b2 | 1851 | {0, 3, "Invalid number of pool feature arguments"}, |
991d9fa0 JT |
1852 | }; |
1853 | ||
1854 | /* | |
1855 | * No feature arguments supplied. | |
1856 | */ | |
1857 | if (!as->argc) | |
1858 | return 0; | |
1859 | ||
1860 | r = dm_read_arg_group(_args, as, &argc, &ti->error); | |
1861 | if (r) | |
1862 | return -EINVAL; | |
1863 | ||
1864 | while (argc && !r) { | |
1865 | arg_name = dm_shift_arg(as); | |
1866 | argc--; | |
1867 | ||
1868 | if (!strcasecmp(arg_name, "skip_block_zeroing")) { | |
1869 | pf->zero_new_blocks = 0; | |
1870 | continue; | |
67e2e2b2 JT |
1871 | } else if (!strcasecmp(arg_name, "ignore_discard")) { |
1872 | pf->discard_enabled = 0; | |
1873 | continue; | |
1874 | } else if (!strcasecmp(arg_name, "no_discard_passdown")) { | |
1875 | pf->discard_passdown = 0; | |
1876 | continue; | |
991d9fa0 JT |
1877 | } |
1878 | ||
1879 | ti->error = "Unrecognised pool feature requested"; | |
1880 | r = -EINVAL; | |
1881 | } | |
1882 | ||
1883 | return r; | |
1884 | } | |
1885 | ||
1886 | /* | |
1887 | * thin-pool <metadata dev> <data dev> | |
1888 | * <data block size (sectors)> | |
1889 | * <low water mark (blocks)> | |
1890 | * [<#feature args> [<arg>]*] | |
1891 | * | |
1892 | * Optional feature arguments are: | |
1893 | * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. | |
67e2e2b2 JT |
1894 | * ignore_discard: disable discard |
1895 | * no_discard_passdown: don't pass discards down to the data device | |
991d9fa0 JT |
1896 | */ |
1897 | static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) | |
1898 | { | |
67e2e2b2 | 1899 | int r, pool_created = 0; |
991d9fa0 JT |
1900 | struct pool_c *pt; |
1901 | struct pool *pool; | |
1902 | struct pool_features pf; | |
1903 | struct dm_arg_set as; | |
1904 | struct dm_dev *data_dev; | |
1905 | unsigned long block_size; | |
1906 | dm_block_t low_water_blocks; | |
1907 | struct dm_dev *metadata_dev; | |
1908 | sector_t metadata_dev_size; | |
c4a69ecd | 1909 | char b[BDEVNAME_SIZE]; |
991d9fa0 JT |
1910 | |
1911 | /* | |
1912 | * FIXME Remove validation from scope of lock. | |
1913 | */ | |
1914 | mutex_lock(&dm_thin_pool_table.mutex); | |
1915 | ||
1916 | if (argc < 4) { | |
1917 | ti->error = "Invalid argument count"; | |
1918 | r = -EINVAL; | |
1919 | goto out_unlock; | |
1920 | } | |
1921 | as.argc = argc; | |
1922 | as.argv = argv; | |
1923 | ||
1924 | r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); | |
1925 | if (r) { | |
1926 | ti->error = "Error opening metadata block device"; | |
1927 | goto out_unlock; | |
1928 | } | |
1929 | ||
1930 | metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; | |
c4a69ecd MS |
1931 | if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) |
1932 | DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", | |
1933 | bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); | |
991d9fa0 JT |
1934 | |
1935 | r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); | |
1936 | if (r) { | |
1937 | ti->error = "Error getting data device"; | |
1938 | goto out_metadata; | |
1939 | } | |
1940 | ||
1941 | if (kstrtoul(argv[2], 10, &block_size) || !block_size || | |
1942 | block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | |
1943 | block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | |
1944 | !is_power_of_2(block_size)) { | |
1945 | ti->error = "Invalid block size"; | |
1946 | r = -EINVAL; | |
1947 | goto out; | |
1948 | } | |
1949 | ||
1950 | if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { | |
1951 | ti->error = "Invalid low water mark"; | |
1952 | r = -EINVAL; | |
1953 | goto out; | |
1954 | } | |
1955 | ||
1956 | /* | |
1957 | * Set default pool features. | |
1958 | */ | |
67e2e2b2 | 1959 | pool_features_init(&pf); |
991d9fa0 JT |
1960 | |
1961 | dm_consume_args(&as, 4); | |
1962 | r = parse_pool_features(&as, &pf, ti); | |
1963 | if (r) | |
1964 | goto out; | |
1965 | ||
1966 | pt = kzalloc(sizeof(*pt), GFP_KERNEL); | |
1967 | if (!pt) { | |
1968 | r = -ENOMEM; | |
1969 | goto out; | |
1970 | } | |
1971 | ||
1972 | pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, | |
67e2e2b2 | 1973 | block_size, &ti->error, &pool_created); |
991d9fa0 JT |
1974 | if (IS_ERR(pool)) { |
1975 | r = PTR_ERR(pool); | |
1976 | goto out_free_pt; | |
1977 | } | |
1978 | ||
67e2e2b2 JT |
1979 | /* |
1980 | * 'pool_created' reflects whether this is the first table load. | |
1981 | * Top level discard support is not allowed to be changed after | |
1982 | * initial load. This would require a pool reload to trigger thin | |
1983 | * device changes. | |
1984 | */ | |
1985 | if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { | |
1986 | ti->error = "Discard support cannot be disabled once enabled"; | |
1987 | r = -EINVAL; | |
1988 | goto out_flags_changed; | |
1989 | } | |
1990 | ||
1991 | /* | |
1992 | * If discard_passdown was enabled verify that the data device | |
1993 | * supports discards. Disable discard_passdown if not; otherwise | |
1994 | * -EOPNOTSUPP will be returned. | |
1995 | */ | |
1996 | if (pf.discard_passdown) { | |
1997 | struct request_queue *q = bdev_get_queue(data_dev->bdev); | |
1998 | if (!q || !blk_queue_discard(q)) { | |
1999 | DMWARN("Discard unsupported by data device: Disabling discard passdown."); | |
2000 | pf.discard_passdown = 0; | |
2001 | } | |
2002 | } | |
2003 | ||
991d9fa0 JT |
2004 | pt->pool = pool; |
2005 | pt->ti = ti; | |
2006 | pt->metadata_dev = metadata_dev; | |
2007 | pt->data_dev = data_dev; | |
2008 | pt->low_water_blocks = low_water_blocks; | |
67e2e2b2 | 2009 | pt->pf = pf; |
991d9fa0 | 2010 | ti->num_flush_requests = 1; |
67e2e2b2 JT |
2011 | /* |
2012 | * Only need to enable discards if the pool should pass | |
2013 | * them down to the data device. The thin device's discard | |
2014 | * processing will cause mappings to be removed from the btree. | |
2015 | */ | |
2016 | if (pf.discard_enabled && pf.discard_passdown) { | |
2017 | ti->num_discard_requests = 1; | |
2018 | /* | |
2019 | * Setting 'discards_supported' circumvents the normal | |
2020 | * stacking of discard limits (this keeps the pool and | |
2021 | * thin devices' discard limits consistent). | |
2022 | */ | |
2023 | ti->discards_supported = 1; | |
2024 | } | |
991d9fa0 JT |
2025 | ti->private = pt; |
2026 | ||
2027 | pt->callbacks.congested_fn = pool_is_congested; | |
2028 | dm_table_add_target_callbacks(ti->table, &pt->callbacks); | |
2029 | ||
2030 | mutex_unlock(&dm_thin_pool_table.mutex); | |
2031 | ||
2032 | return 0; | |
2033 | ||
67e2e2b2 JT |
2034 | out_flags_changed: |
2035 | __pool_dec(pool); | |
991d9fa0 JT |
2036 | out_free_pt: |
2037 | kfree(pt); | |
2038 | out: | |
2039 | dm_put_device(ti, data_dev); | |
2040 | out_metadata: | |
2041 | dm_put_device(ti, metadata_dev); | |
2042 | out_unlock: | |
2043 | mutex_unlock(&dm_thin_pool_table.mutex); | |
2044 | ||
2045 | return r; | |
2046 | } | |
2047 | ||
2048 | static int pool_map(struct dm_target *ti, struct bio *bio, | |
2049 | union map_info *map_context) | |
2050 | { | |
2051 | int r; | |
2052 | struct pool_c *pt = ti->private; | |
2053 | struct pool *pool = pt->pool; | |
2054 | unsigned long flags; | |
2055 | ||
2056 | /* | |
2057 | * As this is a singleton target, ti->begin is always zero. | |
2058 | */ | |
2059 | spin_lock_irqsave(&pool->lock, flags); | |
2060 | bio->bi_bdev = pt->data_dev->bdev; | |
2061 | r = DM_MAPIO_REMAPPED; | |
2062 | spin_unlock_irqrestore(&pool->lock, flags); | |
2063 | ||
2064 | return r; | |
2065 | } | |
2066 | ||
2067 | /* | |
2068 | * Retrieves the number of blocks of the data device from | |
2069 | * the superblock and compares it to the actual device size, | |
2070 | * thus resizing the data device in case it has grown. | |
2071 | * | |
2072 | * This both copes with opening preallocated data devices in the ctr | |
2073 | * being followed by a resume | |
2074 | * -and- | |
2075 | * calling the resume method individually after userspace has | |
2076 | * grown the data device in reaction to a table event. | |
2077 | */ | |
2078 | static int pool_preresume(struct dm_target *ti) | |
2079 | { | |
2080 | int r; | |
2081 | struct pool_c *pt = ti->private; | |
2082 | struct pool *pool = pt->pool; | |
2083 | dm_block_t data_size, sb_data_size; | |
2084 | ||
2085 | /* | |
2086 | * Take control of the pool object. | |
2087 | */ | |
2088 | r = bind_control_target(pool, ti); | |
2089 | if (r) | |
2090 | return r; | |
2091 | ||
2092 | data_size = ti->len >> pool->block_shift; | |
2093 | r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); | |
2094 | if (r) { | |
2095 | DMERR("failed to retrieve data device size"); | |
2096 | return r; | |
2097 | } | |
2098 | ||
2099 | if (data_size < sb_data_size) { | |
2100 | DMERR("pool target too small, is %llu blocks (expected %llu)", | |
2101 | data_size, sb_data_size); | |
2102 | return -EINVAL; | |
2103 | ||
2104 | } else if (data_size > sb_data_size) { | |
2105 | r = dm_pool_resize_data_dev(pool->pmd, data_size); | |
2106 | if (r) { | |
2107 | DMERR("failed to resize data device"); | |
2108 | return r; | |
2109 | } | |
2110 | ||
2111 | r = dm_pool_commit_metadata(pool->pmd); | |
2112 | if (r) { | |
2113 | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | |
2114 | __func__, r); | |
2115 | return r; | |
2116 | } | |
2117 | } | |
2118 | ||
2119 | return 0; | |
2120 | } | |
2121 | ||
2122 | static void pool_resume(struct dm_target *ti) | |
2123 | { | |
2124 | struct pool_c *pt = ti->private; | |
2125 | struct pool *pool = pt->pool; | |
2126 | unsigned long flags; | |
2127 | ||
2128 | spin_lock_irqsave(&pool->lock, flags); | |
2129 | pool->low_water_triggered = 0; | |
2130 | pool->no_free_space = 0; | |
2131 | __requeue_bios(pool); | |
2132 | spin_unlock_irqrestore(&pool->lock, flags); | |
2133 | ||
905e51b3 | 2134 | do_waker(&pool->waker.work); |
991d9fa0 JT |
2135 | } |
2136 | ||
2137 | static void pool_postsuspend(struct dm_target *ti) | |
2138 | { | |
2139 | int r; | |
2140 | struct pool_c *pt = ti->private; | |
2141 | struct pool *pool = pt->pool; | |
2142 | ||
905e51b3 | 2143 | cancel_delayed_work(&pool->waker); |
991d9fa0 JT |
2144 | flush_workqueue(pool->wq); |
2145 | ||
2146 | r = dm_pool_commit_metadata(pool->pmd); | |
2147 | if (r < 0) { | |
2148 | DMERR("%s: dm_pool_commit_metadata() failed, error = %d", | |
2149 | __func__, r); | |
2150 | /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/ | |
2151 | } | |
2152 | } | |
2153 | ||
2154 | static int check_arg_count(unsigned argc, unsigned args_required) | |
2155 | { | |
2156 | if (argc != args_required) { | |
2157 | DMWARN("Message received with %u arguments instead of %u.", | |
2158 | argc, args_required); | |
2159 | return -EINVAL; | |
2160 | } | |
2161 | ||
2162 | return 0; | |
2163 | } | |
2164 | ||
2165 | static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) | |
2166 | { | |
2167 | if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && | |
2168 | *dev_id <= MAX_DEV_ID) | |
2169 | return 0; | |
2170 | ||
2171 | if (warning) | |
2172 | DMWARN("Message received with invalid device id: %s", arg); | |
2173 | ||
2174 | return -EINVAL; | |
2175 | } | |
2176 | ||
2177 | static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) | |
2178 | { | |
2179 | dm_thin_id dev_id; | |
2180 | int r; | |
2181 | ||
2182 | r = check_arg_count(argc, 2); | |
2183 | if (r) | |
2184 | return r; | |
2185 | ||
2186 | r = read_dev_id(argv[1], &dev_id, 1); | |
2187 | if (r) | |
2188 | return r; | |
2189 | ||
2190 | r = dm_pool_create_thin(pool->pmd, dev_id); | |
2191 | if (r) { | |
2192 | DMWARN("Creation of new thinly-provisioned device with id %s failed.", | |
2193 | argv[1]); | |
2194 | return r; | |
2195 | } | |
2196 | ||
2197 | return 0; | |
2198 | } | |
2199 | ||
2200 | static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) | |
2201 | { | |
2202 | dm_thin_id dev_id; | |
2203 | dm_thin_id origin_dev_id; | |
2204 | int r; | |
2205 | ||
2206 | r = check_arg_count(argc, 3); | |
2207 | if (r) | |
2208 | return r; | |
2209 | ||
2210 | r = read_dev_id(argv[1], &dev_id, 1); | |
2211 | if (r) | |
2212 | return r; | |
2213 | ||
2214 | r = read_dev_id(argv[2], &origin_dev_id, 1); | |
2215 | if (r) | |
2216 | return r; | |
2217 | ||
2218 | r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); | |
2219 | if (r) { | |
2220 | DMWARN("Creation of new snapshot %s of device %s failed.", | |
2221 | argv[1], argv[2]); | |
2222 | return r; | |
2223 | } | |
2224 | ||
2225 | return 0; | |
2226 | } | |
2227 | ||
2228 | static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) | |
2229 | { | |
2230 | dm_thin_id dev_id; | |
2231 | int r; | |
2232 | ||
2233 | r = check_arg_count(argc, 2); | |
2234 | if (r) | |
2235 | return r; | |
2236 | ||
2237 | r = read_dev_id(argv[1], &dev_id, 1); | |
2238 | if (r) | |
2239 | return r; | |
2240 | ||
2241 | r = dm_pool_delete_thin_device(pool->pmd, dev_id); | |
2242 | if (r) | |
2243 | DMWARN("Deletion of thin device %s failed.", argv[1]); | |
2244 | ||
2245 | return r; | |
2246 | } | |
2247 | ||
2248 | static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) | |
2249 | { | |
2250 | dm_thin_id old_id, new_id; | |
2251 | int r; | |
2252 | ||
2253 | r = check_arg_count(argc, 3); | |
2254 | if (r) | |
2255 | return r; | |
2256 | ||
2257 | if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { | |
2258 | DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); | |
2259 | return -EINVAL; | |
2260 | } | |
2261 | ||
2262 | if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { | |
2263 | DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); | |
2264 | return -EINVAL; | |
2265 | } | |
2266 | ||
2267 | r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); | |
2268 | if (r) { | |
2269 | DMWARN("Failed to change transaction id from %s to %s.", | |
2270 | argv[1], argv[2]); | |
2271 | return r; | |
2272 | } | |
2273 | ||
2274 | return 0; | |
2275 | } | |
2276 | ||
2277 | /* | |
2278 | * Messages supported: | |
2279 | * create_thin <dev_id> | |
2280 | * create_snap <dev_id> <origin_id> | |
2281 | * delete <dev_id> | |
2282 | * trim <dev_id> <new_size_in_sectors> | |
2283 | * set_transaction_id <current_trans_id> <new_trans_id> | |
2284 | */ | |
2285 | static int pool_message(struct dm_target *ti, unsigned argc, char **argv) | |
2286 | { | |
2287 | int r = -EINVAL; | |
2288 | struct pool_c *pt = ti->private; | |
2289 | struct pool *pool = pt->pool; | |
2290 | ||
2291 | if (!strcasecmp(argv[0], "create_thin")) | |
2292 | r = process_create_thin_mesg(argc, argv, pool); | |
2293 | ||
2294 | else if (!strcasecmp(argv[0], "create_snap")) | |
2295 | r = process_create_snap_mesg(argc, argv, pool); | |
2296 | ||
2297 | else if (!strcasecmp(argv[0], "delete")) | |
2298 | r = process_delete_mesg(argc, argv, pool); | |
2299 | ||
2300 | else if (!strcasecmp(argv[0], "set_transaction_id")) | |
2301 | r = process_set_transaction_id_mesg(argc, argv, pool); | |
2302 | ||
2303 | else | |
2304 | DMWARN("Unrecognised thin pool target message received: %s", argv[0]); | |
2305 | ||
2306 | if (!r) { | |
2307 | r = dm_pool_commit_metadata(pool->pmd); | |
2308 | if (r) | |
2309 | DMERR("%s message: dm_pool_commit_metadata() failed, error = %d", | |
2310 | argv[0], r); | |
2311 | } | |
2312 | ||
2313 | return r; | |
2314 | } | |
2315 | ||
2316 | /* | |
2317 | * Status line is: | |
2318 | * <transaction id> <used metadata sectors>/<total metadata sectors> | |
2319 | * <used data sectors>/<total data sectors> <held metadata root> | |
2320 | */ | |
2321 | static int pool_status(struct dm_target *ti, status_type_t type, | |
2322 | char *result, unsigned maxlen) | |
2323 | { | |
67e2e2b2 | 2324 | int r, count; |
991d9fa0 JT |
2325 | unsigned sz = 0; |
2326 | uint64_t transaction_id; | |
2327 | dm_block_t nr_free_blocks_data; | |
2328 | dm_block_t nr_free_blocks_metadata; | |
2329 | dm_block_t nr_blocks_data; | |
2330 | dm_block_t nr_blocks_metadata; | |
2331 | dm_block_t held_root; | |
2332 | char buf[BDEVNAME_SIZE]; | |
2333 | char buf2[BDEVNAME_SIZE]; | |
2334 | struct pool_c *pt = ti->private; | |
2335 | struct pool *pool = pt->pool; | |
2336 | ||
2337 | switch (type) { | |
2338 | case STATUSTYPE_INFO: | |
2339 | r = dm_pool_get_metadata_transaction_id(pool->pmd, | |
2340 | &transaction_id); | |
2341 | if (r) | |
2342 | return r; | |
2343 | ||
2344 | r = dm_pool_get_free_metadata_block_count(pool->pmd, | |
2345 | &nr_free_blocks_metadata); | |
2346 | if (r) | |
2347 | return r; | |
2348 | ||
2349 | r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); | |
2350 | if (r) | |
2351 | return r; | |
2352 | ||
2353 | r = dm_pool_get_free_block_count(pool->pmd, | |
2354 | &nr_free_blocks_data); | |
2355 | if (r) | |
2356 | return r; | |
2357 | ||
2358 | r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); | |
2359 | if (r) | |
2360 | return r; | |
2361 | ||
2362 | r = dm_pool_get_held_metadata_root(pool->pmd, &held_root); | |
2363 | if (r) | |
2364 | return r; | |
2365 | ||
2366 | DMEMIT("%llu %llu/%llu %llu/%llu ", | |
2367 | (unsigned long long)transaction_id, | |
2368 | (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | |
2369 | (unsigned long long)nr_blocks_metadata, | |
2370 | (unsigned long long)(nr_blocks_data - nr_free_blocks_data), | |
2371 | (unsigned long long)nr_blocks_data); | |
2372 | ||
2373 | if (held_root) | |
2374 | DMEMIT("%llu", held_root); | |
2375 | else | |
2376 | DMEMIT("-"); | |
2377 | ||
2378 | break; | |
2379 | ||
2380 | case STATUSTYPE_TABLE: | |
2381 | DMEMIT("%s %s %lu %llu ", | |
2382 | format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), | |
2383 | format_dev_t(buf2, pt->data_dev->bdev->bd_dev), | |
2384 | (unsigned long)pool->sectors_per_block, | |
2385 | (unsigned long long)pt->low_water_blocks); | |
2386 | ||
67e2e2b2 JT |
2387 | count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled + |
2388 | !pool->pf.discard_passdown; | |
2389 | DMEMIT("%u ", count); | |
991d9fa0 | 2390 | |
67e2e2b2 | 2391 | if (!pool->pf.zero_new_blocks) |
991d9fa0 | 2392 | DMEMIT("skip_block_zeroing "); |
67e2e2b2 JT |
2393 | |
2394 | if (!pool->pf.discard_enabled) | |
2395 | DMEMIT("ignore_discard "); | |
2396 | ||
2397 | if (!pool->pf.discard_passdown) | |
2398 | DMEMIT("no_discard_passdown "); | |
2399 | ||
991d9fa0 JT |
2400 | break; |
2401 | } | |
2402 | ||
2403 | return 0; | |
2404 | } | |
2405 | ||
2406 | static int pool_iterate_devices(struct dm_target *ti, | |
2407 | iterate_devices_callout_fn fn, void *data) | |
2408 | { | |
2409 | struct pool_c *pt = ti->private; | |
2410 | ||
2411 | return fn(ti, pt->data_dev, 0, ti->len, data); | |
2412 | } | |
2413 | ||
2414 | static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | |
2415 | struct bio_vec *biovec, int max_size) | |
2416 | { | |
2417 | struct pool_c *pt = ti->private; | |
2418 | struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); | |
2419 | ||
2420 | if (!q->merge_bvec_fn) | |
2421 | return max_size; | |
2422 | ||
2423 | bvm->bi_bdev = pt->data_dev->bdev; | |
2424 | ||
2425 | return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | |
2426 | } | |
2427 | ||
104655fd JT |
2428 | static void set_discard_limits(struct pool *pool, struct queue_limits *limits) |
2429 | { | |
67e2e2b2 JT |
2430 | /* |
2431 | * FIXME: these limits may be incompatible with the pool's data device | |
2432 | */ | |
104655fd JT |
2433 | limits->max_discard_sectors = pool->sectors_per_block; |
2434 | ||
2435 | /* | |
2436 | * This is just a hint, and not enforced. We have to cope with | |
2437 | * bios that overlap 2 blocks. | |
2438 | */ | |
2439 | limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; | |
67e2e2b2 | 2440 | limits->discard_zeroes_data = pool->pf.zero_new_blocks; |
104655fd JT |
2441 | } |
2442 | ||
991d9fa0 JT |
2443 | static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) |
2444 | { | |
2445 | struct pool_c *pt = ti->private; | |
2446 | struct pool *pool = pt->pool; | |
2447 | ||
2448 | blk_limits_io_min(limits, 0); | |
2449 | blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); | |
67e2e2b2 JT |
2450 | if (pool->pf.discard_enabled) |
2451 | set_discard_limits(pool, limits); | |
991d9fa0 JT |
2452 | } |
2453 | ||
2454 | static struct target_type pool_target = { | |
2455 | .name = "thin-pool", | |
2456 | .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | | |
2457 | DM_TARGET_IMMUTABLE, | |
67e2e2b2 | 2458 | .version = {1, 1, 0}, |
991d9fa0 JT |
2459 | .module = THIS_MODULE, |
2460 | .ctr = pool_ctr, | |
2461 | .dtr = pool_dtr, | |
2462 | .map = pool_map, | |
2463 | .postsuspend = pool_postsuspend, | |
2464 | .preresume = pool_preresume, | |
2465 | .resume = pool_resume, | |
2466 | .message = pool_message, | |
2467 | .status = pool_status, | |
2468 | .merge = pool_merge, | |
2469 | .iterate_devices = pool_iterate_devices, | |
2470 | .io_hints = pool_io_hints, | |
2471 | }; | |
2472 | ||
2473 | /*---------------------------------------------------------------- | |
2474 | * Thin target methods | |
2475 | *--------------------------------------------------------------*/ | |
2476 | static void thin_dtr(struct dm_target *ti) | |
2477 | { | |
2478 | struct thin_c *tc = ti->private; | |
2479 | ||
2480 | mutex_lock(&dm_thin_pool_table.mutex); | |
2481 | ||
2482 | __pool_dec(tc->pool); | |
2483 | dm_pool_close_thin_device(tc->td); | |
2484 | dm_put_device(ti, tc->pool_dev); | |
2dd9c257 JT |
2485 | if (tc->origin_dev) |
2486 | dm_put_device(ti, tc->origin_dev); | |
991d9fa0 JT |
2487 | kfree(tc); |
2488 | ||
2489 | mutex_unlock(&dm_thin_pool_table.mutex); | |
2490 | } | |
2491 | ||
2492 | /* | |
2493 | * Thin target parameters: | |
2494 | * | |
2dd9c257 | 2495 | * <pool_dev> <dev_id> [origin_dev] |
991d9fa0 JT |
2496 | * |
2497 | * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) | |
2498 | * dev_id: the internal device identifier | |
2dd9c257 | 2499 | * origin_dev: a device external to the pool that should act as the origin |
67e2e2b2 JT |
2500 | * |
2501 | * If the pool device has discards disabled, they get disabled for the thin | |
2502 | * device as well. | |
991d9fa0 JT |
2503 | */ |
2504 | static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) | |
2505 | { | |
2506 | int r; | |
2507 | struct thin_c *tc; | |
2dd9c257 | 2508 | struct dm_dev *pool_dev, *origin_dev; |
991d9fa0 JT |
2509 | struct mapped_device *pool_md; |
2510 | ||
2511 | mutex_lock(&dm_thin_pool_table.mutex); | |
2512 | ||
2dd9c257 | 2513 | if (argc != 2 && argc != 3) { |
991d9fa0 JT |
2514 | ti->error = "Invalid argument count"; |
2515 | r = -EINVAL; | |
2516 | goto out_unlock; | |
2517 | } | |
2518 | ||
2519 | tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); | |
2520 | if (!tc) { | |
2521 | ti->error = "Out of memory"; | |
2522 | r = -ENOMEM; | |
2523 | goto out_unlock; | |
2524 | } | |
2525 | ||
2dd9c257 JT |
2526 | if (argc == 3) { |
2527 | r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); | |
2528 | if (r) { | |
2529 | ti->error = "Error opening origin device"; | |
2530 | goto bad_origin_dev; | |
2531 | } | |
2532 | tc->origin_dev = origin_dev; | |
2533 | } | |
2534 | ||
991d9fa0 JT |
2535 | r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); |
2536 | if (r) { | |
2537 | ti->error = "Error opening pool device"; | |
2538 | goto bad_pool_dev; | |
2539 | } | |
2540 | tc->pool_dev = pool_dev; | |
2541 | ||
2542 | if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { | |
2543 | ti->error = "Invalid device id"; | |
2544 | r = -EINVAL; | |
2545 | goto bad_common; | |
2546 | } | |
2547 | ||
2548 | pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); | |
2549 | if (!pool_md) { | |
2550 | ti->error = "Couldn't get pool mapped device"; | |
2551 | r = -EINVAL; | |
2552 | goto bad_common; | |
2553 | } | |
2554 | ||
2555 | tc->pool = __pool_table_lookup(pool_md); | |
2556 | if (!tc->pool) { | |
2557 | ti->error = "Couldn't find pool object"; | |
2558 | r = -EINVAL; | |
2559 | goto bad_pool_lookup; | |
2560 | } | |
2561 | __pool_inc(tc->pool); | |
2562 | ||
2563 | r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); | |
2564 | if (r) { | |
2565 | ti->error = "Couldn't open thin internal device"; | |
2566 | goto bad_thin_open; | |
2567 | } | |
2568 | ||
2569 | ti->split_io = tc->pool->sectors_per_block; | |
2570 | ti->num_flush_requests = 1; | |
67e2e2b2 JT |
2571 | |
2572 | /* In case the pool supports discards, pass them on. */ | |
2573 | if (tc->pool->pf.discard_enabled) { | |
2574 | ti->discards_supported = 1; | |
2575 | ti->num_discard_requests = 1; | |
2576 | } | |
991d9fa0 JT |
2577 | |
2578 | dm_put(pool_md); | |
2579 | ||
2580 | mutex_unlock(&dm_thin_pool_table.mutex); | |
2581 | ||
2582 | return 0; | |
2583 | ||
2584 | bad_thin_open: | |
2585 | __pool_dec(tc->pool); | |
2586 | bad_pool_lookup: | |
2587 | dm_put(pool_md); | |
2588 | bad_common: | |
2589 | dm_put_device(ti, tc->pool_dev); | |
2590 | bad_pool_dev: | |
2dd9c257 JT |
2591 | if (tc->origin_dev) |
2592 | dm_put_device(ti, tc->origin_dev); | |
2593 | bad_origin_dev: | |
991d9fa0 JT |
2594 | kfree(tc); |
2595 | out_unlock: | |
2596 | mutex_unlock(&dm_thin_pool_table.mutex); | |
2597 | ||
2598 | return r; | |
2599 | } | |
2600 | ||
2601 | static int thin_map(struct dm_target *ti, struct bio *bio, | |
2602 | union map_info *map_context) | |
2603 | { | |
6efd6e83 | 2604 | bio->bi_sector = dm_target_offset(ti, bio->bi_sector); |
991d9fa0 JT |
2605 | |
2606 | return thin_bio_map(ti, bio, map_context); | |
2607 | } | |
2608 | ||
eb2aa48d JT |
2609 | static int thin_endio(struct dm_target *ti, |
2610 | struct bio *bio, int err, | |
2611 | union map_info *map_context) | |
2612 | { | |
2613 | unsigned long flags; | |
2614 | struct endio_hook *h = map_context->ptr; | |
2615 | struct list_head work; | |
2616 | struct new_mapping *m, *tmp; | |
2617 | struct pool *pool = h->tc->pool; | |
2618 | ||
2619 | if (h->shared_read_entry) { | |
2620 | INIT_LIST_HEAD(&work); | |
2621 | ds_dec(h->shared_read_entry, &work); | |
2622 | ||
2623 | spin_lock_irqsave(&pool->lock, flags); | |
2624 | list_for_each_entry_safe(m, tmp, &work, list) { | |
2625 | list_del(&m->list); | |
2626 | m->quiesced = 1; | |
2627 | __maybe_add_mapping(m); | |
2628 | } | |
2629 | spin_unlock_irqrestore(&pool->lock, flags); | |
2630 | } | |
2631 | ||
104655fd JT |
2632 | if (h->all_io_entry) { |
2633 | INIT_LIST_HEAD(&work); | |
2634 | ds_dec(h->all_io_entry, &work); | |
c3a0ce2e | 2635 | spin_lock_irqsave(&pool->lock, flags); |
104655fd JT |
2636 | list_for_each_entry_safe(m, tmp, &work, list) |
2637 | list_add(&m->list, &pool->prepared_discards); | |
c3a0ce2e | 2638 | spin_unlock_irqrestore(&pool->lock, flags); |
104655fd JT |
2639 | } |
2640 | ||
eb2aa48d JT |
2641 | mempool_free(h, pool->endio_hook_pool); |
2642 | ||
2643 | return 0; | |
2644 | } | |
2645 | ||
991d9fa0 JT |
2646 | static void thin_postsuspend(struct dm_target *ti) |
2647 | { | |
2648 | if (dm_noflush_suspending(ti)) | |
2649 | requeue_io((struct thin_c *)ti->private); | |
2650 | } | |
2651 | ||
2652 | /* | |
2653 | * <nr mapped sectors> <highest mapped sector> | |
2654 | */ | |
2655 | static int thin_status(struct dm_target *ti, status_type_t type, | |
2656 | char *result, unsigned maxlen) | |
2657 | { | |
2658 | int r; | |
2659 | ssize_t sz = 0; | |
2660 | dm_block_t mapped, highest; | |
2661 | char buf[BDEVNAME_SIZE]; | |
2662 | struct thin_c *tc = ti->private; | |
2663 | ||
2664 | if (!tc->td) | |
2665 | DMEMIT("-"); | |
2666 | else { | |
2667 | switch (type) { | |
2668 | case STATUSTYPE_INFO: | |
2669 | r = dm_thin_get_mapped_count(tc->td, &mapped); | |
2670 | if (r) | |
2671 | return r; | |
2672 | ||
2673 | r = dm_thin_get_highest_mapped_block(tc->td, &highest); | |
2674 | if (r < 0) | |
2675 | return r; | |
2676 | ||
2677 | DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); | |
2678 | if (r) | |
2679 | DMEMIT("%llu", ((highest + 1) * | |
2680 | tc->pool->sectors_per_block) - 1); | |
2681 | else | |
2682 | DMEMIT("-"); | |
2683 | break; | |
2684 | ||
2685 | case STATUSTYPE_TABLE: | |
2686 | DMEMIT("%s %lu", | |
2687 | format_dev_t(buf, tc->pool_dev->bdev->bd_dev), | |
2688 | (unsigned long) tc->dev_id); | |
2dd9c257 JT |
2689 | if (tc->origin_dev) |
2690 | DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); | |
991d9fa0 JT |
2691 | break; |
2692 | } | |
2693 | } | |
2694 | ||
2695 | return 0; | |
2696 | } | |
2697 | ||
2698 | static int thin_iterate_devices(struct dm_target *ti, | |
2699 | iterate_devices_callout_fn fn, void *data) | |
2700 | { | |
2701 | dm_block_t blocks; | |
2702 | struct thin_c *tc = ti->private; | |
2703 | ||
2704 | /* | |
2705 | * We can't call dm_pool_get_data_dev_size() since that blocks. So | |
2706 | * we follow a more convoluted path through to the pool's target. | |
2707 | */ | |
2708 | if (!tc->pool->ti) | |
2709 | return 0; /* nothing is bound */ | |
2710 | ||
2711 | blocks = tc->pool->ti->len >> tc->pool->block_shift; | |
2712 | if (blocks) | |
2713 | return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data); | |
2714 | ||
2715 | return 0; | |
2716 | } | |
2717 | ||
2718 | static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) | |
2719 | { | |
2720 | struct thin_c *tc = ti->private; | |
104655fd | 2721 | struct pool *pool = tc->pool; |
991d9fa0 JT |
2722 | |
2723 | blk_limits_io_min(limits, 0); | |
104655fd JT |
2724 | blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); |
2725 | set_discard_limits(pool, limits); | |
991d9fa0 JT |
2726 | } |
2727 | ||
2728 | static struct target_type thin_target = { | |
2729 | .name = "thin", | |
2dd9c257 | 2730 | .version = {1, 1, 0}, |
991d9fa0 JT |
2731 | .module = THIS_MODULE, |
2732 | .ctr = thin_ctr, | |
2733 | .dtr = thin_dtr, | |
2734 | .map = thin_map, | |
eb2aa48d | 2735 | .end_io = thin_endio, |
991d9fa0 JT |
2736 | .postsuspend = thin_postsuspend, |
2737 | .status = thin_status, | |
2738 | .iterate_devices = thin_iterate_devices, | |
2739 | .io_hints = thin_io_hints, | |
2740 | }; | |
2741 | ||
2742 | /*----------------------------------------------------------------*/ | |
2743 | ||
2744 | static int __init dm_thin_init(void) | |
2745 | { | |
2746 | int r; | |
2747 | ||
2748 | pool_table_init(); | |
2749 | ||
2750 | r = dm_register_target(&thin_target); | |
2751 | if (r) | |
2752 | return r; | |
2753 | ||
2754 | r = dm_register_target(&pool_target); | |
2755 | if (r) | |
2756 | dm_unregister_target(&thin_target); | |
2757 | ||
2758 | return r; | |
2759 | } | |
2760 | ||
2761 | static void dm_thin_exit(void) | |
2762 | { | |
2763 | dm_unregister_target(&thin_target); | |
2764 | dm_unregister_target(&pool_target); | |
2765 | } | |
2766 | ||
2767 | module_init(dm_thin_init); | |
2768 | module_exit(dm_thin_exit); | |
2769 | ||
7cab8bf1 | 2770 | MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); |
991d9fa0 JT |
2771 | MODULE_AUTHOR("Joe Thornber <[email protected]>"); |
2772 | MODULE_LICENSE("GPL"); |