]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/time.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | * | |
6 | * This file contains the interface functions for the various | |
7 | * time related system calls: time, stime, gettimeofday, settimeofday, | |
8 | * adjtime | |
9 | */ | |
10 | /* | |
11 | * Modification history kernel/time.c | |
12 | * | |
13 | * 1993-09-02 Philip Gladstone | |
14 | * Created file with time related functions from sched.c and adjtimex() | |
15 | * 1993-10-08 Torsten Duwe | |
16 | * adjtime interface update and CMOS clock write code | |
17 | * 1995-08-13 Torsten Duwe | |
18 | * kernel PLL updated to 1994-12-13 specs (rfc-1589) | |
19 | * 1999-01-16 Ulrich Windl | |
20 | * Introduced error checking for many cases in adjtimex(). | |
21 | * Updated NTP code according to technical memorandum Jan '96 | |
22 | * "A Kernel Model for Precision Timekeeping" by Dave Mills | |
23 | * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | |
24 | * (Even though the technical memorandum forbids it) | |
25 | * 2004-07-14 Christoph Lameter | |
26 | * Added getnstimeofday to allow the posix timer functions to return | |
27 | * with nanosecond accuracy | |
28 | */ | |
29 | ||
30 | #include <linux/module.h> | |
31 | #include <linux/timex.h> | |
c59ede7b | 32 | #include <linux/capability.h> |
1da177e4 LT |
33 | #include <linux/errno.h> |
34 | #include <linux/smp_lock.h> | |
35 | #include <linux/syscalls.h> | |
36 | #include <linux/security.h> | |
37 | #include <linux/fs.h> | |
38 | #include <linux/module.h> | |
39 | ||
40 | #include <asm/uaccess.h> | |
41 | #include <asm/unistd.h> | |
42 | ||
43 | /* | |
44 | * The timezone where the local system is located. Used as a default by some | |
45 | * programs who obtain this value by using gettimeofday. | |
46 | */ | |
47 | struct timezone sys_tz; | |
48 | ||
49 | EXPORT_SYMBOL(sys_tz); | |
50 | ||
51 | #ifdef __ARCH_WANT_SYS_TIME | |
52 | ||
53 | /* | |
54 | * sys_time() can be implemented in user-level using | |
55 | * sys_gettimeofday(). Is this for backwards compatibility? If so, | |
56 | * why not move it into the appropriate arch directory (for those | |
57 | * architectures that need it). | |
58 | */ | |
59 | asmlinkage long sys_time(time_t __user * tloc) | |
60 | { | |
61 | time_t i; | |
62 | struct timeval tv; | |
63 | ||
64 | do_gettimeofday(&tv); | |
65 | i = tv.tv_sec; | |
66 | ||
67 | if (tloc) { | |
68 | if (put_user(i,tloc)) | |
69 | i = -EFAULT; | |
70 | } | |
71 | return i; | |
72 | } | |
73 | ||
74 | /* | |
75 | * sys_stime() can be implemented in user-level using | |
76 | * sys_settimeofday(). Is this for backwards compatibility? If so, | |
77 | * why not move it into the appropriate arch directory (for those | |
78 | * architectures that need it). | |
79 | */ | |
80 | ||
81 | asmlinkage long sys_stime(time_t __user *tptr) | |
82 | { | |
83 | struct timespec tv; | |
84 | int err; | |
85 | ||
86 | if (get_user(tv.tv_sec, tptr)) | |
87 | return -EFAULT; | |
88 | ||
89 | tv.tv_nsec = 0; | |
90 | ||
91 | err = security_settime(&tv, NULL); | |
92 | if (err) | |
93 | return err; | |
94 | ||
95 | do_settimeofday(&tv); | |
96 | return 0; | |
97 | } | |
98 | ||
99 | #endif /* __ARCH_WANT_SYS_TIME */ | |
100 | ||
101 | asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz) | |
102 | { | |
103 | if (likely(tv != NULL)) { | |
104 | struct timeval ktv; | |
105 | do_gettimeofday(&ktv); | |
106 | if (copy_to_user(tv, &ktv, sizeof(ktv))) | |
107 | return -EFAULT; | |
108 | } | |
109 | if (unlikely(tz != NULL)) { | |
110 | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | |
111 | return -EFAULT; | |
112 | } | |
113 | return 0; | |
114 | } | |
115 | ||
116 | /* | |
117 | * Adjust the time obtained from the CMOS to be UTC time instead of | |
118 | * local time. | |
119 | * | |
120 | * This is ugly, but preferable to the alternatives. Otherwise we | |
121 | * would either need to write a program to do it in /etc/rc (and risk | |
122 | * confusion if the program gets run more than once; it would also be | |
123 | * hard to make the program warp the clock precisely n hours) or | |
124 | * compile in the timezone information into the kernel. Bad, bad.... | |
125 | * | |
126 | * - TYT, 1992-01-01 | |
127 | * | |
128 | * The best thing to do is to keep the CMOS clock in universal time (UTC) | |
129 | * as real UNIX machines always do it. This avoids all headaches about | |
130 | * daylight saving times and warping kernel clocks. | |
131 | */ | |
77933d72 | 132 | static inline void warp_clock(void) |
1da177e4 LT |
133 | { |
134 | write_seqlock_irq(&xtime_lock); | |
135 | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | |
136 | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | |
137 | time_interpolator_reset(); | |
138 | write_sequnlock_irq(&xtime_lock); | |
139 | clock_was_set(); | |
140 | } | |
141 | ||
142 | /* | |
143 | * In case for some reason the CMOS clock has not already been running | |
144 | * in UTC, but in some local time: The first time we set the timezone, | |
145 | * we will warp the clock so that it is ticking UTC time instead of | |
146 | * local time. Presumably, if someone is setting the timezone then we | |
147 | * are running in an environment where the programs understand about | |
148 | * timezones. This should be done at boot time in the /etc/rc script, | |
149 | * as soon as possible, so that the clock can be set right. Otherwise, | |
150 | * various programs will get confused when the clock gets warped. | |
151 | */ | |
152 | ||
153 | int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) | |
154 | { | |
155 | static int firsttime = 1; | |
156 | int error = 0; | |
157 | ||
951069e3 | 158 | if (tv && !timespec_valid(tv)) |
718bcceb TG |
159 | return -EINVAL; |
160 | ||
1da177e4 LT |
161 | error = security_settime(tv, tz); |
162 | if (error) | |
163 | return error; | |
164 | ||
165 | if (tz) { | |
166 | /* SMP safe, global irq locking makes it work. */ | |
167 | sys_tz = *tz; | |
168 | if (firsttime) { | |
169 | firsttime = 0; | |
170 | if (!tv) | |
171 | warp_clock(); | |
172 | } | |
173 | } | |
174 | if (tv) | |
175 | { | |
176 | /* SMP safe, again the code in arch/foo/time.c should | |
177 | * globally block out interrupts when it runs. | |
178 | */ | |
179 | return do_settimeofday(tv); | |
180 | } | |
181 | return 0; | |
182 | } | |
183 | ||
184 | asmlinkage long sys_settimeofday(struct timeval __user *tv, | |
185 | struct timezone __user *tz) | |
186 | { | |
187 | struct timeval user_tv; | |
188 | struct timespec new_ts; | |
189 | struct timezone new_tz; | |
190 | ||
191 | if (tv) { | |
192 | if (copy_from_user(&user_tv, tv, sizeof(*tv))) | |
193 | return -EFAULT; | |
194 | new_ts.tv_sec = user_tv.tv_sec; | |
195 | new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | |
196 | } | |
197 | if (tz) { | |
198 | if (copy_from_user(&new_tz, tz, sizeof(*tz))) | |
199 | return -EFAULT; | |
200 | } | |
201 | ||
202 | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | |
203 | } | |
204 | ||
1da177e4 LT |
205 | /* we call this to notify the arch when the clock is being |
206 | * controlled. If no such arch routine, do nothing. | |
207 | */ | |
208 | void __attribute__ ((weak)) notify_arch_cmos_timer(void) | |
209 | { | |
210 | return; | |
211 | } | |
212 | ||
213 | /* adjtimex mainly allows reading (and writing, if superuser) of | |
214 | * kernel time-keeping variables. used by xntpd. | |
215 | */ | |
216 | int do_adjtimex(struct timex *txc) | |
217 | { | |
218 | long ltemp, mtemp, save_adjust; | |
219 | int result; | |
220 | ||
221 | /* In order to modify anything, you gotta be super-user! */ | |
222 | if (txc->modes && !capable(CAP_SYS_TIME)) | |
223 | return -EPERM; | |
224 | ||
225 | /* Now we validate the data before disabling interrupts */ | |
226 | ||
227 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | |
228 | /* singleshot must not be used with any other mode bits */ | |
229 | if (txc->modes != ADJ_OFFSET_SINGLESHOT) | |
230 | return -EINVAL; | |
231 | ||
232 | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) | |
233 | /* adjustment Offset limited to +- .512 seconds */ | |
234 | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) | |
235 | return -EINVAL; | |
236 | ||
237 | /* if the quartz is off by more than 10% something is VERY wrong ! */ | |
238 | if (txc->modes & ADJ_TICK) | |
239 | if (txc->tick < 900000/USER_HZ || | |
240 | txc->tick > 1100000/USER_HZ) | |
241 | return -EINVAL; | |
242 | ||
243 | write_seqlock_irq(&xtime_lock); | |
244 | result = time_state; /* mostly `TIME_OK' */ | |
245 | ||
246 | /* Save for later - semantics of adjtime is to return old value */ | |
247 | save_adjust = time_next_adjust ? time_next_adjust : time_adjust; | |
248 | ||
249 | #if 0 /* STA_CLOCKERR is never set yet */ | |
250 | time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ | |
251 | #endif | |
252 | /* If there are input parameters, then process them */ | |
253 | if (txc->modes) | |
254 | { | |
255 | if (txc->modes & ADJ_STATUS) /* only set allowed bits */ | |
256 | time_status = (txc->status & ~STA_RONLY) | | |
257 | (time_status & STA_RONLY); | |
258 | ||
259 | if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ | |
260 | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { | |
261 | result = -EINVAL; | |
262 | goto leave; | |
263 | } | |
5ddcfa87 | 264 | time_freq = txc->freq; |
1da177e4 LT |
265 | } |
266 | ||
267 | if (txc->modes & ADJ_MAXERROR) { | |
268 | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { | |
269 | result = -EINVAL; | |
270 | goto leave; | |
271 | } | |
272 | time_maxerror = txc->maxerror; | |
273 | } | |
274 | ||
275 | if (txc->modes & ADJ_ESTERROR) { | |
276 | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { | |
277 | result = -EINVAL; | |
278 | goto leave; | |
279 | } | |
280 | time_esterror = txc->esterror; | |
281 | } | |
282 | ||
283 | if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ | |
284 | if (txc->constant < 0) { /* NTP v4 uses values > 6 */ | |
285 | result = -EINVAL; | |
286 | goto leave; | |
287 | } | |
288 | time_constant = txc->constant; | |
289 | } | |
290 | ||
291 | if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ | |
292 | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { | |
293 | /* adjtime() is independent from ntp_adjtime() */ | |
294 | if ((time_next_adjust = txc->offset) == 0) | |
295 | time_adjust = 0; | |
296 | } | |
5ddcfa87 RZ |
297 | else if (time_status & STA_PLL) { |
298 | ltemp = txc->offset; | |
1da177e4 LT |
299 | |
300 | /* | |
301 | * Scale the phase adjustment and | |
302 | * clamp to the operating range. | |
303 | */ | |
304 | if (ltemp > MAXPHASE) | |
305 | time_offset = MAXPHASE << SHIFT_UPDATE; | |
306 | else if (ltemp < -MAXPHASE) | |
307 | time_offset = -(MAXPHASE << SHIFT_UPDATE); | |
308 | else | |
309 | time_offset = ltemp << SHIFT_UPDATE; | |
310 | ||
311 | /* | |
312 | * Select whether the frequency is to be controlled | |
313 | * and in which mode (PLL or FLL). Clamp to the operating | |
314 | * range. Ugly multiply/divide should be replaced someday. | |
315 | */ | |
316 | ||
317 | if (time_status & STA_FREQHOLD || time_reftime == 0) | |
318 | time_reftime = xtime.tv_sec; | |
319 | mtemp = xtime.tv_sec - time_reftime; | |
320 | time_reftime = xtime.tv_sec; | |
321 | if (time_status & STA_FLL) { | |
322 | if (mtemp >= MINSEC) { | |
323 | ltemp = (time_offset / mtemp) << (SHIFT_USEC - | |
324 | SHIFT_UPDATE); | |
1bb34a41 | 325 | time_freq += shift_right(ltemp, SHIFT_KH); |
1da177e4 LT |
326 | } else /* calibration interval too short (p. 12) */ |
327 | result = TIME_ERROR; | |
328 | } else { /* PLL mode */ | |
329 | if (mtemp < MAXSEC) { | |
330 | ltemp *= mtemp; | |
1bb34a41 | 331 | time_freq += shift_right(ltemp,(time_constant + |
1da177e4 | 332 | time_constant + |
1bb34a41 | 333 | SHIFT_KF - SHIFT_USEC)); |
1da177e4 LT |
334 | } else /* calibration interval too long (p. 12) */ |
335 | result = TIME_ERROR; | |
336 | } | |
1bb34a41 JS |
337 | time_freq = min(time_freq, time_tolerance); |
338 | time_freq = max(time_freq, -time_tolerance); | |
5ddcfa87 | 339 | } /* STA_PLL */ |
1da177e4 LT |
340 | } /* txc->modes & ADJ_OFFSET */ |
341 | if (txc->modes & ADJ_TICK) { | |
342 | tick_usec = txc->tick; | |
343 | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); | |
344 | } | |
345 | } /* txc->modes */ | |
5ddcfa87 | 346 | leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) |
1da177e4 LT |
347 | result = TIME_ERROR; |
348 | ||
349 | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | |
350 | txc->offset = save_adjust; | |
351 | else { | |
1bb34a41 | 352 | txc->offset = shift_right(time_offset, SHIFT_UPDATE); |
1da177e4 | 353 | } |
5ddcfa87 | 354 | txc->freq = time_freq; |
1da177e4 LT |
355 | txc->maxerror = time_maxerror; |
356 | txc->esterror = time_esterror; | |
357 | txc->status = time_status; | |
358 | txc->constant = time_constant; | |
359 | txc->precision = time_precision; | |
360 | txc->tolerance = time_tolerance; | |
361 | txc->tick = tick_usec; | |
5ddcfa87 RZ |
362 | |
363 | /* PPS is not implemented, so these are zero */ | |
364 | txc->ppsfreq = 0; | |
365 | txc->jitter = 0; | |
366 | txc->shift = 0; | |
367 | txc->stabil = 0; | |
368 | txc->jitcnt = 0; | |
369 | txc->calcnt = 0; | |
370 | txc->errcnt = 0; | |
371 | txc->stbcnt = 0; | |
1da177e4 LT |
372 | write_sequnlock_irq(&xtime_lock); |
373 | do_gettimeofday(&txc->time); | |
374 | notify_arch_cmos_timer(); | |
375 | return(result); | |
376 | } | |
377 | ||
378 | asmlinkage long sys_adjtimex(struct timex __user *txc_p) | |
379 | { | |
380 | struct timex txc; /* Local copy of parameter */ | |
381 | int ret; | |
382 | ||
383 | /* Copy the user data space into the kernel copy | |
384 | * structure. But bear in mind that the structures | |
385 | * may change | |
386 | */ | |
387 | if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | |
388 | return -EFAULT; | |
389 | ret = do_adjtimex(&txc); | |
390 | return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | |
391 | } | |
392 | ||
393 | inline struct timespec current_kernel_time(void) | |
394 | { | |
395 | struct timespec now; | |
396 | unsigned long seq; | |
397 | ||
398 | do { | |
399 | seq = read_seqbegin(&xtime_lock); | |
400 | ||
401 | now = xtime; | |
402 | } while (read_seqretry(&xtime_lock, seq)); | |
403 | ||
404 | return now; | |
405 | } | |
406 | ||
407 | EXPORT_SYMBOL(current_kernel_time); | |
408 | ||
409 | /** | |
410 | * current_fs_time - Return FS time | |
411 | * @sb: Superblock. | |
412 | * | |
8ba8e95e | 413 | * Return the current time truncated to the time granularity supported by |
1da177e4 LT |
414 | * the fs. |
415 | */ | |
416 | struct timespec current_fs_time(struct super_block *sb) | |
417 | { | |
418 | struct timespec now = current_kernel_time(); | |
419 | return timespec_trunc(now, sb->s_time_gran); | |
420 | } | |
421 | EXPORT_SYMBOL(current_fs_time); | |
422 | ||
423 | /** | |
8ba8e95e | 424 | * timespec_trunc - Truncate timespec to a granularity |
1da177e4 | 425 | * @t: Timespec |
8ba8e95e | 426 | * @gran: Granularity in ns. |
1da177e4 | 427 | * |
8ba8e95e | 428 | * Truncate a timespec to a granularity. gran must be smaller than a second. |
1da177e4 LT |
429 | * Always rounds down. |
430 | * | |
431 | * This function should be only used for timestamps returned by | |
432 | * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | |
433 | * it doesn't handle the better resolution of the later. | |
434 | */ | |
435 | struct timespec timespec_trunc(struct timespec t, unsigned gran) | |
436 | { | |
437 | /* | |
438 | * Division is pretty slow so avoid it for common cases. | |
439 | * Currently current_kernel_time() never returns better than | |
440 | * jiffies resolution. Exploit that. | |
441 | */ | |
442 | if (gran <= jiffies_to_usecs(1) * 1000) { | |
443 | /* nothing */ | |
444 | } else if (gran == 1000000000) { | |
445 | t.tv_nsec = 0; | |
446 | } else { | |
447 | t.tv_nsec -= t.tv_nsec % gran; | |
448 | } | |
449 | return t; | |
450 | } | |
451 | EXPORT_SYMBOL(timespec_trunc); | |
452 | ||
453 | #ifdef CONFIG_TIME_INTERPOLATION | |
454 | void getnstimeofday (struct timespec *tv) | |
455 | { | |
456 | unsigned long seq,sec,nsec; | |
457 | ||
458 | do { | |
459 | seq = read_seqbegin(&xtime_lock); | |
460 | sec = xtime.tv_sec; | |
461 | nsec = xtime.tv_nsec+time_interpolator_get_offset(); | |
462 | } while (unlikely(read_seqretry(&xtime_lock, seq))); | |
463 | ||
464 | while (unlikely(nsec >= NSEC_PER_SEC)) { | |
465 | nsec -= NSEC_PER_SEC; | |
466 | ++sec; | |
467 | } | |
468 | tv->tv_sec = sec; | |
469 | tv->tv_nsec = nsec; | |
470 | } | |
471 | EXPORT_SYMBOL_GPL(getnstimeofday); | |
472 | ||
473 | int do_settimeofday (struct timespec *tv) | |
474 | { | |
475 | time_t wtm_sec, sec = tv->tv_sec; | |
476 | long wtm_nsec, nsec = tv->tv_nsec; | |
477 | ||
478 | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | |
479 | return -EINVAL; | |
480 | ||
481 | write_seqlock_irq(&xtime_lock); | |
482 | { | |
1da177e4 LT |
483 | wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
484 | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | |
485 | ||
486 | set_normalized_timespec(&xtime, sec, nsec); | |
487 | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | |
488 | ||
489 | time_adjust = 0; /* stop active adjtime() */ | |
490 | time_status |= STA_UNSYNC; | |
491 | time_maxerror = NTP_PHASE_LIMIT; | |
492 | time_esterror = NTP_PHASE_LIMIT; | |
493 | time_interpolator_reset(); | |
494 | } | |
495 | write_sequnlock_irq(&xtime_lock); | |
496 | clock_was_set(); | |
497 | return 0; | |
498 | } | |
943eae03 | 499 | EXPORT_SYMBOL(do_settimeofday); |
1da177e4 LT |
500 | |
501 | void do_gettimeofday (struct timeval *tv) | |
502 | { | |
503 | unsigned long seq, nsec, usec, sec, offset; | |
504 | do { | |
505 | seq = read_seqbegin(&xtime_lock); | |
506 | offset = time_interpolator_get_offset(); | |
507 | sec = xtime.tv_sec; | |
508 | nsec = xtime.tv_nsec; | |
509 | } while (unlikely(read_seqretry(&xtime_lock, seq))); | |
510 | ||
511 | usec = (nsec + offset) / 1000; | |
512 | ||
513 | while (unlikely(usec >= USEC_PER_SEC)) { | |
514 | usec -= USEC_PER_SEC; | |
515 | ++sec; | |
516 | } | |
517 | ||
518 | tv->tv_sec = sec; | |
519 | tv->tv_usec = usec; | |
520 | } | |
521 | ||
522 | EXPORT_SYMBOL(do_gettimeofday); | |
523 | ||
524 | ||
525 | #else | |
cf3c769b | 526 | #ifndef CONFIG_GENERIC_TIME |
1da177e4 LT |
527 | /* |
528 | * Simulate gettimeofday using do_gettimeofday which only allows a timeval | |
529 | * and therefore only yields usec accuracy | |
530 | */ | |
531 | void getnstimeofday(struct timespec *tv) | |
532 | { | |
533 | struct timeval x; | |
534 | ||
535 | do_gettimeofday(&x); | |
536 | tv->tv_sec = x.tv_sec; | |
537 | tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; | |
538 | } | |
c6ecf7ed | 539 | EXPORT_SYMBOL_GPL(getnstimeofday); |
1da177e4 | 540 | #endif |
cf3c769b | 541 | #endif |
1da177e4 | 542 | |
753be622 TG |
543 | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. |
544 | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | |
545 | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | |
546 | * | |
547 | * [For the Julian calendar (which was used in Russia before 1917, | |
548 | * Britain & colonies before 1752, anywhere else before 1582, | |
549 | * and is still in use by some communities) leave out the | |
550 | * -year/100+year/400 terms, and add 10.] | |
551 | * | |
552 | * This algorithm was first published by Gauss (I think). | |
553 | * | |
554 | * WARNING: this function will overflow on 2106-02-07 06:28:16 on | |
555 | * machines were long is 32-bit! (However, as time_t is signed, we | |
556 | * will already get problems at other places on 2038-01-19 03:14:08) | |
557 | */ | |
558 | unsigned long | |
f4818900 IM |
559 | mktime(const unsigned int year0, const unsigned int mon0, |
560 | const unsigned int day, const unsigned int hour, | |
561 | const unsigned int min, const unsigned int sec) | |
753be622 | 562 | { |
f4818900 IM |
563 | unsigned int mon = mon0, year = year0; |
564 | ||
565 | /* 1..12 -> 11,12,1..10 */ | |
566 | if (0 >= (int) (mon -= 2)) { | |
567 | mon += 12; /* Puts Feb last since it has leap day */ | |
753be622 TG |
568 | year -= 1; |
569 | } | |
570 | ||
571 | return ((((unsigned long) | |
572 | (year/4 - year/100 + year/400 + 367*mon/12 + day) + | |
573 | year*365 - 719499 | |
574 | )*24 + hour /* now have hours */ | |
575 | )*60 + min /* now have minutes */ | |
576 | )*60 + sec; /* finally seconds */ | |
577 | } | |
578 | ||
199e7056 AM |
579 | EXPORT_SYMBOL(mktime); |
580 | ||
753be622 TG |
581 | /** |
582 | * set_normalized_timespec - set timespec sec and nsec parts and normalize | |
583 | * | |
584 | * @ts: pointer to timespec variable to be set | |
585 | * @sec: seconds to set | |
586 | * @nsec: nanoseconds to set | |
587 | * | |
588 | * Set seconds and nanoseconds field of a timespec variable and | |
589 | * normalize to the timespec storage format | |
590 | * | |
591 | * Note: The tv_nsec part is always in the range of | |
592 | * 0 <= tv_nsec < NSEC_PER_SEC | |
593 | * For negative values only the tv_sec field is negative ! | |
594 | */ | |
f4818900 | 595 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) |
753be622 TG |
596 | { |
597 | while (nsec >= NSEC_PER_SEC) { | |
598 | nsec -= NSEC_PER_SEC; | |
599 | ++sec; | |
600 | } | |
601 | while (nsec < 0) { | |
602 | nsec += NSEC_PER_SEC; | |
603 | --sec; | |
604 | } | |
605 | ts->tv_sec = sec; | |
606 | ts->tv_nsec = nsec; | |
607 | } | |
608 | ||
f8f46da3 TG |
609 | /** |
610 | * ns_to_timespec - Convert nanoseconds to timespec | |
611 | * @nsec: the nanoseconds value to be converted | |
612 | * | |
613 | * Returns the timespec representation of the nsec parameter. | |
614 | */ | |
df869b63 | 615 | struct timespec ns_to_timespec(const s64 nsec) |
f8f46da3 TG |
616 | { |
617 | struct timespec ts; | |
618 | ||
88fc3897 GA |
619 | if (!nsec) |
620 | return (struct timespec) {0, 0}; | |
621 | ||
622 | ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); | |
623 | if (unlikely(nsec < 0)) | |
624 | set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); | |
f8f46da3 TG |
625 | |
626 | return ts; | |
627 | } | |
628 | ||
629 | /** | |
630 | * ns_to_timeval - Convert nanoseconds to timeval | |
631 | * @nsec: the nanoseconds value to be converted | |
632 | * | |
633 | * Returns the timeval representation of the nsec parameter. | |
634 | */ | |
df869b63 | 635 | struct timeval ns_to_timeval(const s64 nsec) |
f8f46da3 TG |
636 | { |
637 | struct timespec ts = ns_to_timespec(nsec); | |
638 | struct timeval tv; | |
639 | ||
640 | tv.tv_sec = ts.tv_sec; | |
641 | tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | |
642 | ||
643 | return tv; | |
644 | } | |
645 | ||
1da177e4 LT |
646 | #if (BITS_PER_LONG < 64) |
647 | u64 get_jiffies_64(void) | |
648 | { | |
649 | unsigned long seq; | |
650 | u64 ret; | |
651 | ||
652 | do { | |
653 | seq = read_seqbegin(&xtime_lock); | |
654 | ret = jiffies_64; | |
655 | } while (read_seqretry(&xtime_lock, seq)); | |
656 | return ret; | |
657 | } | |
658 | ||
659 | EXPORT_SYMBOL(get_jiffies_64); | |
660 | #endif | |
661 | ||
662 | EXPORT_SYMBOL(jiffies); |