]>
Commit | Line | Data |
---|---|---|
d41dee36 AW |
1 | /* |
2 | * sparse memory mappings. | |
3 | */ | |
d41dee36 AW |
4 | #include <linux/mm.h> |
5 | #include <linux/mmzone.h> | |
6 | #include <linux/bootmem.h> | |
0b0acbec | 7 | #include <linux/highmem.h> |
d41dee36 | 8 | #include <linux/module.h> |
28ae55c9 | 9 | #include <linux/spinlock.h> |
0b0acbec | 10 | #include <linux/vmalloc.h> |
0c0a4a51 | 11 | #include "internal.h" |
d41dee36 | 12 | #include <asm/dma.h> |
8f6aac41 CL |
13 | #include <asm/pgalloc.h> |
14 | #include <asm/pgtable.h> | |
d41dee36 AW |
15 | |
16 | /* | |
17 | * Permanent SPARSEMEM data: | |
18 | * | |
19 | * 1) mem_section - memory sections, mem_map's for valid memory | |
20 | */ | |
3e347261 | 21 | #ifdef CONFIG_SPARSEMEM_EXTREME |
802f192e | 22 | struct mem_section *mem_section[NR_SECTION_ROOTS] |
22fc6ecc | 23 | ____cacheline_internodealigned_in_smp; |
3e347261 BP |
24 | #else |
25 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] | |
22fc6ecc | 26 | ____cacheline_internodealigned_in_smp; |
3e347261 BP |
27 | #endif |
28 | EXPORT_SYMBOL(mem_section); | |
29 | ||
89689ae7 CL |
30 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
31 | /* | |
32 | * If we did not store the node number in the page then we have to | |
33 | * do a lookup in the section_to_node_table in order to find which | |
34 | * node the page belongs to. | |
35 | */ | |
36 | #if MAX_NUMNODES <= 256 | |
37 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | |
38 | #else | |
39 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; | |
40 | #endif | |
41 | ||
25ba77c1 | 42 | int page_to_nid(struct page *page) |
89689ae7 CL |
43 | { |
44 | return section_to_node_table[page_to_section(page)]; | |
45 | } | |
46 | EXPORT_SYMBOL(page_to_nid); | |
85770ffe AW |
47 | |
48 | static void set_section_nid(unsigned long section_nr, int nid) | |
49 | { | |
50 | section_to_node_table[section_nr] = nid; | |
51 | } | |
52 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ | |
53 | static inline void set_section_nid(unsigned long section_nr, int nid) | |
54 | { | |
55 | } | |
89689ae7 CL |
56 | #endif |
57 | ||
3e347261 | 58 | #ifdef CONFIG_SPARSEMEM_EXTREME |
577a32f6 | 59 | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) |
28ae55c9 DH |
60 | { |
61 | struct mem_section *section = NULL; | |
62 | unsigned long array_size = SECTIONS_PER_ROOT * | |
63 | sizeof(struct mem_section); | |
64 | ||
f52407ce SL |
65 | if (slab_is_available()) { |
66 | if (node_state(nid, N_HIGH_MEMORY)) | |
67 | section = kmalloc_node(array_size, GFP_KERNEL, nid); | |
68 | else | |
69 | section = kmalloc(array_size, GFP_KERNEL); | |
70 | } else | |
46a66eec | 71 | section = alloc_bootmem_node(NODE_DATA(nid), array_size); |
28ae55c9 DH |
72 | |
73 | if (section) | |
74 | memset(section, 0, array_size); | |
75 | ||
76 | return section; | |
3e347261 | 77 | } |
802f192e | 78 | |
a3142c8e | 79 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
802f192e | 80 | { |
34af946a | 81 | static DEFINE_SPINLOCK(index_init_lock); |
28ae55c9 DH |
82 | unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
83 | struct mem_section *section; | |
84 | int ret = 0; | |
802f192e BP |
85 | |
86 | if (mem_section[root]) | |
28ae55c9 | 87 | return -EEXIST; |
3e347261 | 88 | |
28ae55c9 | 89 | section = sparse_index_alloc(nid); |
af0cd5a7 WC |
90 | if (!section) |
91 | return -ENOMEM; | |
28ae55c9 DH |
92 | /* |
93 | * This lock keeps two different sections from | |
94 | * reallocating for the same index | |
95 | */ | |
96 | spin_lock(&index_init_lock); | |
3e347261 | 97 | |
28ae55c9 DH |
98 | if (mem_section[root]) { |
99 | ret = -EEXIST; | |
100 | goto out; | |
101 | } | |
102 | ||
103 | mem_section[root] = section; | |
104 | out: | |
105 | spin_unlock(&index_init_lock); | |
106 | return ret; | |
107 | } | |
108 | #else /* !SPARSEMEM_EXTREME */ | |
109 | static inline int sparse_index_init(unsigned long section_nr, int nid) | |
110 | { | |
111 | return 0; | |
802f192e | 112 | } |
28ae55c9 DH |
113 | #endif |
114 | ||
4ca644d9 DH |
115 | /* |
116 | * Although written for the SPARSEMEM_EXTREME case, this happens | |
cd881a6b | 117 | * to also work for the flat array case because |
4ca644d9 DH |
118 | * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
119 | */ | |
120 | int __section_nr(struct mem_section* ms) | |
121 | { | |
122 | unsigned long root_nr; | |
123 | struct mem_section* root; | |
124 | ||
12783b00 MK |
125 | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { |
126 | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); | |
4ca644d9 DH |
127 | if (!root) |
128 | continue; | |
129 | ||
130 | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) | |
131 | break; | |
132 | } | |
133 | ||
134 | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); | |
135 | } | |
136 | ||
30c253e6 AW |
137 | /* |
138 | * During early boot, before section_mem_map is used for an actual | |
139 | * mem_map, we use section_mem_map to store the section's NUMA | |
140 | * node. This keeps us from having to use another data structure. The | |
141 | * node information is cleared just before we store the real mem_map. | |
142 | */ | |
143 | static inline unsigned long sparse_encode_early_nid(int nid) | |
144 | { | |
145 | return (nid << SECTION_NID_SHIFT); | |
146 | } | |
147 | ||
148 | static inline int sparse_early_nid(struct mem_section *section) | |
149 | { | |
150 | return (section->section_mem_map >> SECTION_NID_SHIFT); | |
151 | } | |
152 | ||
2dbb51c4 MG |
153 | /* Validate the physical addressing limitations of the model */ |
154 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, | |
155 | unsigned long *end_pfn) | |
d41dee36 | 156 | { |
2dbb51c4 | 157 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
d41dee36 | 158 | |
bead9a3a IM |
159 | /* |
160 | * Sanity checks - do not allow an architecture to pass | |
161 | * in larger pfns than the maximum scope of sparsemem: | |
162 | */ | |
2dbb51c4 MG |
163 | if (*start_pfn > max_sparsemem_pfn) { |
164 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", | |
165 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | |
166 | *start_pfn, *end_pfn, max_sparsemem_pfn); | |
167 | WARN_ON_ONCE(1); | |
168 | *start_pfn = max_sparsemem_pfn; | |
169 | *end_pfn = max_sparsemem_pfn; | |
ef161a98 | 170 | } else if (*end_pfn > max_sparsemem_pfn) { |
2dbb51c4 MG |
171 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
172 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", | |
173 | *start_pfn, *end_pfn, max_sparsemem_pfn); | |
174 | WARN_ON_ONCE(1); | |
175 | *end_pfn = max_sparsemem_pfn; | |
176 | } | |
177 | } | |
178 | ||
179 | /* Record a memory area against a node. */ | |
180 | void __init memory_present(int nid, unsigned long start, unsigned long end) | |
181 | { | |
182 | unsigned long pfn; | |
bead9a3a | 183 | |
d41dee36 | 184 | start &= PAGE_SECTION_MASK; |
2dbb51c4 | 185 | mminit_validate_memmodel_limits(&start, &end); |
d41dee36 AW |
186 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
187 | unsigned long section = pfn_to_section_nr(pfn); | |
802f192e BP |
188 | struct mem_section *ms; |
189 | ||
190 | sparse_index_init(section, nid); | |
85770ffe | 191 | set_section_nid(section, nid); |
802f192e BP |
192 | |
193 | ms = __nr_to_section(section); | |
194 | if (!ms->section_mem_map) | |
30c253e6 AW |
195 | ms->section_mem_map = sparse_encode_early_nid(nid) | |
196 | SECTION_MARKED_PRESENT; | |
d41dee36 AW |
197 | } |
198 | } | |
199 | ||
200 | /* | |
201 | * Only used by the i386 NUMA architecures, but relatively | |
202 | * generic code. | |
203 | */ | |
204 | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, | |
205 | unsigned long end_pfn) | |
206 | { | |
207 | unsigned long pfn; | |
208 | unsigned long nr_pages = 0; | |
209 | ||
2dbb51c4 | 210 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
d41dee36 AW |
211 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
212 | if (nid != early_pfn_to_nid(pfn)) | |
213 | continue; | |
214 | ||
540557b9 | 215 | if (pfn_present(pfn)) |
d41dee36 AW |
216 | nr_pages += PAGES_PER_SECTION; |
217 | } | |
218 | ||
219 | return nr_pages * sizeof(struct page); | |
220 | } | |
221 | ||
29751f69 AW |
222 | /* |
223 | * Subtle, we encode the real pfn into the mem_map such that | |
224 | * the identity pfn - section_mem_map will return the actual | |
225 | * physical page frame number. | |
226 | */ | |
227 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) | |
228 | { | |
229 | return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); | |
230 | } | |
231 | ||
232 | /* | |
ea01ea93 | 233 | * Decode mem_map from the coded memmap |
29751f69 | 234 | */ |
29751f69 AW |
235 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
236 | { | |
ea01ea93 BP |
237 | /* mask off the extra low bits of information */ |
238 | coded_mem_map &= SECTION_MAP_MASK; | |
29751f69 AW |
239 | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
240 | } | |
241 | ||
a3142c8e | 242 | static int __meminit sparse_init_one_section(struct mem_section *ms, |
5c0e3066 MG |
243 | unsigned long pnum, struct page *mem_map, |
244 | unsigned long *pageblock_bitmap) | |
29751f69 | 245 | { |
540557b9 | 246 | if (!present_section(ms)) |
29751f69 AW |
247 | return -EINVAL; |
248 | ||
30c253e6 | 249 | ms->section_mem_map &= ~SECTION_MAP_MASK; |
540557b9 AW |
250 | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | |
251 | SECTION_HAS_MEM_MAP; | |
5c0e3066 | 252 | ms->pageblock_flags = pageblock_bitmap; |
29751f69 AW |
253 | |
254 | return 1; | |
255 | } | |
256 | ||
04753278 | 257 | unsigned long usemap_size(void) |
5c0e3066 MG |
258 | { |
259 | unsigned long size_bytes; | |
260 | size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; | |
261 | size_bytes = roundup(size_bytes, sizeof(unsigned long)); | |
262 | return size_bytes; | |
263 | } | |
264 | ||
265 | #ifdef CONFIG_MEMORY_HOTPLUG | |
266 | static unsigned long *__kmalloc_section_usemap(void) | |
267 | { | |
268 | return kmalloc(usemap_size(), GFP_KERNEL); | |
269 | } | |
270 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
271 | ||
48c90682 YG |
272 | #ifdef CONFIG_MEMORY_HOTREMOVE |
273 | static unsigned long * __init | |
274 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | |
275 | { | |
276 | unsigned long section_nr; | |
277 | ||
278 | /* | |
279 | * A page may contain usemaps for other sections preventing the | |
280 | * page being freed and making a section unremovable while | |
281 | * other sections referencing the usemap retmain active. Similarly, | |
282 | * a pgdat can prevent a section being removed. If section A | |
283 | * contains a pgdat and section B contains the usemap, both | |
284 | * sections become inter-dependent. This allocates usemaps | |
285 | * from the same section as the pgdat where possible to avoid | |
286 | * this problem. | |
287 | */ | |
288 | section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | |
289 | return alloc_bootmem_section(usemap_size(), section_nr); | |
290 | } | |
291 | ||
292 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | |
293 | { | |
294 | unsigned long usemap_snr, pgdat_snr; | |
295 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; | |
296 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; | |
297 | struct pglist_data *pgdat = NODE_DATA(nid); | |
298 | int usemap_nid; | |
299 | ||
300 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); | |
301 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); | |
302 | if (usemap_snr == pgdat_snr) | |
303 | return; | |
304 | ||
305 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) | |
306 | /* skip redundant message */ | |
307 | return; | |
308 | ||
309 | old_usemap_snr = usemap_snr; | |
310 | old_pgdat_snr = pgdat_snr; | |
311 | ||
312 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); | |
313 | if (usemap_nid != nid) { | |
314 | printk(KERN_INFO | |
315 | "node %d must be removed before remove section %ld\n", | |
316 | nid, usemap_snr); | |
317 | return; | |
318 | } | |
319 | /* | |
320 | * There is a circular dependency. | |
321 | * Some platforms allow un-removable section because they will just | |
322 | * gather other removable sections for dynamic partitioning. | |
323 | * Just notify un-removable section's number here. | |
324 | */ | |
325 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, | |
326 | pgdat_snr, nid); | |
327 | printk(KERN_CONT | |
328 | " have a circular dependency on usemap and pgdat allocations\n"); | |
329 | } | |
330 | #else | |
331 | static unsigned long * __init | |
332 | sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat) | |
333 | { | |
334 | return NULL; | |
335 | } | |
336 | ||
337 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) | |
338 | { | |
339 | } | |
340 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | |
341 | ||
a322f8ab | 342 | static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum) |
5c0e3066 | 343 | { |
51674644 | 344 | unsigned long *usemap; |
5c0e3066 MG |
345 | struct mem_section *ms = __nr_to_section(pnum); |
346 | int nid = sparse_early_nid(ms); | |
347 | ||
48c90682 | 348 | usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid)); |
5c0e3066 MG |
349 | if (usemap) |
350 | return usemap; | |
351 | ||
48c90682 YG |
352 | usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size()); |
353 | if (usemap) { | |
354 | check_usemap_section_nr(nid, usemap); | |
355 | return usemap; | |
356 | } | |
357 | ||
5c0e3066 MG |
358 | /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */ |
359 | nid = 0; | |
360 | ||
d40cee24 | 361 | printk(KERN_WARNING "%s: allocation failed\n", __func__); |
5c0e3066 MG |
362 | return NULL; |
363 | } | |
364 | ||
8f6aac41 | 365 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
98f3cfc1 | 366 | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) |
29751f69 AW |
367 | { |
368 | struct page *map; | |
29751f69 AW |
369 | |
370 | map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); | |
371 | if (map) | |
372 | return map; | |
373 | ||
9d99217a YG |
374 | map = alloc_bootmem_pages_node(NODE_DATA(nid), |
375 | PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); | |
8f6aac41 CL |
376 | return map; |
377 | } | |
378 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ | |
379 | ||
9e5c6da7 | 380 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
8f6aac41 CL |
381 | { |
382 | struct page *map; | |
383 | struct mem_section *ms = __nr_to_section(pnum); | |
384 | int nid = sparse_early_nid(ms); | |
385 | ||
98f3cfc1 | 386 | map = sparse_mem_map_populate(pnum, nid); |
29751f69 AW |
387 | if (map) |
388 | return map; | |
389 | ||
8f6aac41 | 390 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
d40cee24 | 391 | "some memory will not be available.\n", __func__); |
802f192e | 392 | ms->section_mem_map = 0; |
29751f69 AW |
393 | return NULL; |
394 | } | |
395 | ||
c2b91e2e YL |
396 | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) |
397 | { | |
398 | } | |
193faea9 SR |
399 | /* |
400 | * Allocate the accumulated non-linear sections, allocate a mem_map | |
401 | * for each and record the physical to section mapping. | |
402 | */ | |
403 | void __init sparse_init(void) | |
404 | { | |
405 | unsigned long pnum; | |
406 | struct page *map; | |
5c0e3066 | 407 | unsigned long *usemap; |
e123dd3f YL |
408 | unsigned long **usemap_map; |
409 | int size; | |
410 | ||
411 | /* | |
412 | * map is using big page (aka 2M in x86 64 bit) | |
413 | * usemap is less one page (aka 24 bytes) | |
414 | * so alloc 2M (with 2M align) and 24 bytes in turn will | |
415 | * make next 2M slip to one more 2M later. | |
416 | * then in big system, the memory will have a lot of holes... | |
417 | * here try to allocate 2M pages continously. | |
418 | * | |
419 | * powerpc need to call sparse_init_one_section right after each | |
420 | * sparse_early_mem_map_alloc, so allocate usemap_map at first. | |
421 | */ | |
422 | size = sizeof(unsigned long *) * NR_MEM_SECTIONS; | |
423 | usemap_map = alloc_bootmem(size); | |
424 | if (!usemap_map) | |
425 | panic("can not allocate usemap_map\n"); | |
193faea9 SR |
426 | |
427 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { | |
540557b9 | 428 | if (!present_section_nr(pnum)) |
193faea9 | 429 | continue; |
e123dd3f YL |
430 | usemap_map[pnum] = sparse_early_usemap_alloc(pnum); |
431 | } | |
193faea9 | 432 | |
e123dd3f YL |
433 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
434 | if (!present_section_nr(pnum)) | |
193faea9 | 435 | continue; |
5c0e3066 | 436 | |
e123dd3f | 437 | usemap = usemap_map[pnum]; |
5c0e3066 MG |
438 | if (!usemap) |
439 | continue; | |
440 | ||
e123dd3f YL |
441 | map = sparse_early_mem_map_alloc(pnum); |
442 | if (!map) | |
443 | continue; | |
444 | ||
5c0e3066 MG |
445 | sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
446 | usemap); | |
193faea9 | 447 | } |
e123dd3f | 448 | |
c2b91e2e YL |
449 | vmemmap_populate_print_last(); |
450 | ||
e123dd3f | 451 | free_bootmem(__pa(usemap_map), size); |
193faea9 SR |
452 | } |
453 | ||
454 | #ifdef CONFIG_MEMORY_HOTPLUG | |
98f3cfc1 YG |
455 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
456 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, | |
457 | unsigned long nr_pages) | |
458 | { | |
459 | /* This will make the necessary allocations eventually. */ | |
460 | return sparse_mem_map_populate(pnum, nid); | |
461 | } | |
462 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) | |
463 | { | |
464 | return; /* XXX: Not implemented yet */ | |
465 | } | |
0c0a4a51 YG |
466 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) |
467 | { | |
468 | } | |
98f3cfc1 | 469 | #else |
0b0acbec DH |
470 | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
471 | { | |
472 | struct page *page, *ret; | |
473 | unsigned long memmap_size = sizeof(struct page) * nr_pages; | |
474 | ||
f2d0aa5b | 475 | page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); |
0b0acbec DH |
476 | if (page) |
477 | goto got_map_page; | |
478 | ||
479 | ret = vmalloc(memmap_size); | |
480 | if (ret) | |
481 | goto got_map_ptr; | |
482 | ||
483 | return NULL; | |
484 | got_map_page: | |
485 | ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); | |
486 | got_map_ptr: | |
487 | memset(ret, 0, memmap_size); | |
488 | ||
489 | return ret; | |
490 | } | |
491 | ||
98f3cfc1 YG |
492 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
493 | unsigned long nr_pages) | |
494 | { | |
495 | return __kmalloc_section_memmap(nr_pages); | |
496 | } | |
497 | ||
0b0acbec DH |
498 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
499 | { | |
9e2779fa | 500 | if (is_vmalloc_addr(memmap)) |
0b0acbec DH |
501 | vfree(memmap); |
502 | else | |
503 | free_pages((unsigned long)memmap, | |
504 | get_order(sizeof(struct page) * nr_pages)); | |
505 | } | |
0c0a4a51 YG |
506 | |
507 | static void free_map_bootmem(struct page *page, unsigned long nr_pages) | |
508 | { | |
509 | unsigned long maps_section_nr, removing_section_nr, i; | |
510 | int magic; | |
511 | ||
512 | for (i = 0; i < nr_pages; i++, page++) { | |
513 | magic = atomic_read(&page->_mapcount); | |
514 | ||
515 | BUG_ON(magic == NODE_INFO); | |
516 | ||
517 | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); | |
518 | removing_section_nr = page->private; | |
519 | ||
520 | /* | |
521 | * When this function is called, the removing section is | |
522 | * logical offlined state. This means all pages are isolated | |
523 | * from page allocator. If removing section's memmap is placed | |
524 | * on the same section, it must not be freed. | |
525 | * If it is freed, page allocator may allocate it which will | |
526 | * be removed physically soon. | |
527 | */ | |
528 | if (maps_section_nr != removing_section_nr) | |
529 | put_page_bootmem(page); | |
530 | } | |
531 | } | |
98f3cfc1 | 532 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
0b0acbec | 533 | |
ea01ea93 BP |
534 | static void free_section_usemap(struct page *memmap, unsigned long *usemap) |
535 | { | |
0c0a4a51 YG |
536 | struct page *usemap_page; |
537 | unsigned long nr_pages; | |
538 | ||
ea01ea93 BP |
539 | if (!usemap) |
540 | return; | |
541 | ||
0c0a4a51 | 542 | usemap_page = virt_to_page(usemap); |
ea01ea93 BP |
543 | /* |
544 | * Check to see if allocation came from hot-plug-add | |
545 | */ | |
0c0a4a51 | 546 | if (PageSlab(usemap_page)) { |
ea01ea93 BP |
547 | kfree(usemap); |
548 | if (memmap) | |
549 | __kfree_section_memmap(memmap, PAGES_PER_SECTION); | |
550 | return; | |
551 | } | |
552 | ||
553 | /* | |
0c0a4a51 YG |
554 | * The usemap came from bootmem. This is packed with other usemaps |
555 | * on the section which has pgdat at boot time. Just keep it as is now. | |
ea01ea93 | 556 | */ |
0c0a4a51 YG |
557 | |
558 | if (memmap) { | |
559 | struct page *memmap_page; | |
560 | memmap_page = virt_to_page(memmap); | |
561 | ||
562 | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) | |
563 | >> PAGE_SHIFT; | |
564 | ||
565 | free_map_bootmem(memmap_page, nr_pages); | |
566 | } | |
ea01ea93 BP |
567 | } |
568 | ||
29751f69 AW |
569 | /* |
570 | * returns the number of sections whose mem_maps were properly | |
571 | * set. If this is <=0, then that means that the passed-in | |
572 | * map was not consumed and must be freed. | |
573 | */ | |
31168481 | 574 | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
0b0acbec | 575 | int nr_pages) |
29751f69 | 576 | { |
0b0acbec DH |
577 | unsigned long section_nr = pfn_to_section_nr(start_pfn); |
578 | struct pglist_data *pgdat = zone->zone_pgdat; | |
579 | struct mem_section *ms; | |
580 | struct page *memmap; | |
5c0e3066 | 581 | unsigned long *usemap; |
0b0acbec DH |
582 | unsigned long flags; |
583 | int ret; | |
29751f69 | 584 | |
0b0acbec DH |
585 | /* |
586 | * no locking for this, because it does its own | |
587 | * plus, it does a kmalloc | |
588 | */ | |
bbd06825 WC |
589 | ret = sparse_index_init(section_nr, pgdat->node_id); |
590 | if (ret < 0 && ret != -EEXIST) | |
591 | return ret; | |
98f3cfc1 | 592 | memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); |
bbd06825 WC |
593 | if (!memmap) |
594 | return -ENOMEM; | |
5c0e3066 | 595 | usemap = __kmalloc_section_usemap(); |
bbd06825 WC |
596 | if (!usemap) { |
597 | __kfree_section_memmap(memmap, nr_pages); | |
598 | return -ENOMEM; | |
599 | } | |
0b0acbec DH |
600 | |
601 | pgdat_resize_lock(pgdat, &flags); | |
29751f69 | 602 | |
0b0acbec DH |
603 | ms = __pfn_to_section(start_pfn); |
604 | if (ms->section_mem_map & SECTION_MARKED_PRESENT) { | |
605 | ret = -EEXIST; | |
606 | goto out; | |
607 | } | |
5c0e3066 | 608 | |
29751f69 AW |
609 | ms->section_mem_map |= SECTION_MARKED_PRESENT; |
610 | ||
5c0e3066 | 611 | ret = sparse_init_one_section(ms, section_nr, memmap, usemap); |
0b0acbec | 612 | |
0b0acbec DH |
613 | out: |
614 | pgdat_resize_unlock(pgdat, &flags); | |
bbd06825 WC |
615 | if (ret <= 0) { |
616 | kfree(usemap); | |
46a66eec | 617 | __kfree_section_memmap(memmap, nr_pages); |
bbd06825 | 618 | } |
0b0acbec | 619 | return ret; |
29751f69 | 620 | } |
ea01ea93 BP |
621 | |
622 | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) | |
623 | { | |
624 | struct page *memmap = NULL; | |
625 | unsigned long *usemap = NULL; | |
626 | ||
627 | if (ms->section_mem_map) { | |
628 | usemap = ms->pageblock_flags; | |
629 | memmap = sparse_decode_mem_map(ms->section_mem_map, | |
630 | __section_nr(ms)); | |
631 | ms->section_mem_map = 0; | |
632 | ms->pageblock_flags = NULL; | |
633 | } | |
634 | ||
635 | free_section_usemap(memmap, usemap); | |
636 | } | |
a3142c8e | 637 | #endif |