]>
Commit | Line | Data |
---|---|---|
f1939f7c | 1 | /* |
bb296481 EB |
2 | * VMAC: Message Authentication Code using Universal Hashing |
3 | * | |
4 | * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01 | |
5 | * | |
f1939f7c | 6 | * Copyright (c) 2009, Intel Corporation. |
bb296481 | 7 | * Copyright (c) 2018, Google Inc. |
f1939f7c SW |
8 | * |
9 | * This program is free software; you can redistribute it and/or modify it | |
10 | * under the terms and conditions of the GNU General Public License, | |
11 | * version 2, as published by the Free Software Foundation. | |
12 | * | |
13 | * This program is distributed in the hope it will be useful, but WITHOUT | |
14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
16 | * more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License along with | |
19 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |
20 | * Place - Suite 330, Boston, MA 02111-1307 USA. | |
21 | */ | |
22 | ||
bb296481 EB |
23 | /* |
24 | * Derived from: | |
25 | * VMAC and VHASH Implementation by Ted Krovetz ([email protected]) and Wei Dai. | |
26 | * This implementation is herby placed in the public domain. | |
27 | * The authors offers no warranty. Use at your own risk. | |
28 | * Last modified: 17 APR 08, 1700 PDT | |
29 | */ | |
f1939f7c | 30 | |
bb296481 | 31 | #include <asm/unaligned.h> |
f1939f7c SW |
32 | #include <linux/init.h> |
33 | #include <linux/types.h> | |
34 | #include <linux/crypto.h> | |
4bb33cc8 | 35 | #include <linux/module.h> |
f1939f7c SW |
36 | #include <linux/scatterlist.h> |
37 | #include <asm/byteorder.h> | |
38 | #include <crypto/scatterwalk.h> | |
f1939f7c SW |
39 | #include <crypto/internal/hash.h> |
40 | ||
bb296481 EB |
41 | /* |
42 | * User definable settings. | |
43 | */ | |
44 | #define VMAC_TAG_LEN 64 | |
45 | #define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */ | |
46 | #define VMAC_KEY_LEN (VMAC_KEY_SIZE/8) | |
47 | #define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/ | |
ed331ada | 48 | #define VMAC_NONCEBYTES 16 |
bb296481 EB |
49 | |
50 | /* per-transform (per-key) context */ | |
51 | struct vmac_tfm_ctx { | |
52 | struct crypto_cipher *cipher; | |
53 | u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)]; | |
54 | u64 polykey[2*VMAC_TAG_LEN/64]; | |
55 | u64 l3key[2*VMAC_TAG_LEN/64]; | |
56 | }; | |
57 | ||
58 | /* per-request context */ | |
59 | struct vmac_desc_ctx { | |
60 | union { | |
61 | u8 partial[VMAC_NHBYTES]; /* partial block */ | |
62 | __le64 partial_words[VMAC_NHBYTES / 8]; | |
63 | }; | |
64 | unsigned int partial_size; /* size of the partial block */ | |
65 | bool first_block_processed; | |
66 | u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */ | |
ed331ada EB |
67 | union { |
68 | u8 bytes[VMAC_NONCEBYTES]; | |
69 | __be64 pads[VMAC_NONCEBYTES / 8]; | |
70 | } nonce; | |
71 | unsigned int nonce_size; /* nonce bytes filled so far */ | |
bb296481 EB |
72 | }; |
73 | ||
f1939f7c SW |
74 | /* |
75 | * Constants and masks | |
76 | */ | |
77 | #define UINT64_C(x) x##ULL | |
66ce0b0f JK |
78 | static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
79 | static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ | |
80 | static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ | |
81 | static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ | |
82 | static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ | |
f1939f7c | 83 | |
304a204e SW |
84 | #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
85 | ||
f1939f7c SW |
86 | #ifdef __LITTLE_ENDIAN |
87 | #define INDEX_HIGH 1 | |
88 | #define INDEX_LOW 0 | |
89 | #else | |
90 | #define INDEX_HIGH 0 | |
91 | #define INDEX_LOW 1 | |
92 | #endif | |
93 | ||
94 | /* | |
95 | * The following routines are used in this implementation. They are | |
96 | * written via macros to simulate zero-overhead call-by-reference. | |
97 | * | |
98 | * MUL64: 64x64->128-bit multiplication | |
99 | * PMUL64: assumes top bits cleared on inputs | |
100 | * ADD128: 128x128->128-bit addition | |
101 | */ | |
102 | ||
103 | #define ADD128(rh, rl, ih, il) \ | |
104 | do { \ | |
105 | u64 _il = (il); \ | |
106 | (rl) += (_il); \ | |
107 | if ((rl) < (_il)) \ | |
108 | (rh)++; \ | |
109 | (rh) += (ih); \ | |
110 | } while (0) | |
111 | ||
112 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) | |
113 | ||
114 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ | |
115 | do { \ | |
116 | u64 _i1 = (i1), _i2 = (i2); \ | |
117 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ | |
118 | rh = MUL32(_i1>>32, _i2>>32); \ | |
119 | rl = MUL32(_i1, _i2); \ | |
120 | ADD128(rh, rl, (m >> 32), (m << 32)); \ | |
121 | } while (0) | |
122 | ||
123 | #define MUL64(rh, rl, i1, i2) \ | |
124 | do { \ | |
125 | u64 _i1 = (i1), _i2 = (i2); \ | |
126 | u64 m1 = MUL32(_i1, _i2>>32); \ | |
127 | u64 m2 = MUL32(_i1>>32, _i2); \ | |
128 | rh = MUL32(_i1>>32, _i2>>32); \ | |
129 | rl = MUL32(_i1, _i2); \ | |
130 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ | |
131 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ | |
132 | } while (0) | |
133 | ||
134 | /* | |
135 | * For highest performance the L1 NH and L2 polynomial hashes should be | |
25985edc | 136 | * carefully implemented to take advantage of one's target architecture. |
f1939f7c SW |
137 | * Here these two hash functions are defined multiple time; once for |
138 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once | |
139 | * for the rest (32-bit) architectures. | |
140 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | |
141 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of | |
142 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | |
143 | * NH computations at once). | |
144 | */ | |
145 | ||
146 | #ifdef CONFIG_64BIT | |
147 | ||
148 | #define nh_16(mp, kp, nw, rh, rl) \ | |
149 | do { \ | |
150 | int i; u64 th, tl; \ | |
151 | rh = rl = 0; \ | |
152 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
153 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
154 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c SW |
155 | ADD128(rh, rl, th, tl); \ |
156 | } \ | |
157 | } while (0) | |
158 | ||
159 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
160 | do { \ | |
161 | int i; u64 th, tl; \ | |
162 | rh1 = rl1 = rh = rl = 0; \ | |
163 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
164 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
165 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 166 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
167 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
168 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c SW |
169 | ADD128(rh1, rl1, th, tl); \ |
170 | } \ | |
171 | } while (0) | |
172 | ||
173 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | |
174 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
175 | do { \ | |
176 | int i; u64 th, tl; \ | |
177 | rh = rl = 0; \ | |
178 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
179 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
180 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 181 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
182 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
183 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 184 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
185 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
186 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 187 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
188 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
189 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c SW |
190 | ADD128(rh, rl, th, tl); \ |
191 | } \ | |
192 | } while (0) | |
193 | ||
194 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
195 | do { \ | |
196 | int i; u64 th, tl; \ | |
197 | rh1 = rl1 = rh = rl = 0; \ | |
198 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
199 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
200 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 201 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
202 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
203 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c | 204 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
205 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
206 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 207 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
208 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
209 | pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ | |
f1939f7c | 210 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
211 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
212 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 213 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
214 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
215 | pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ | |
f1939f7c | 216 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
217 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
218 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c | 219 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
220 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
221 | pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ | |
f1939f7c SW |
222 | ADD128(rh1, rl1, th, tl); \ |
223 | } \ | |
224 | } while (0) | |
225 | #endif | |
226 | ||
227 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
228 | do { \ | |
229 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ | |
230 | /* compute ab*cd, put bd into result registers */ \ | |
231 | PMUL64(t3h, t3l, al, kh); \ | |
232 | PMUL64(t2h, t2l, ah, kl); \ | |
233 | PMUL64(t1h, t1l, ah, 2*kh); \ | |
234 | PMUL64(ah, al, al, kl); \ | |
235 | /* add 2 * ac to result */ \ | |
236 | ADD128(ah, al, t1h, t1l); \ | |
237 | /* add together ad + bc */ \ | |
238 | ADD128(t2h, t2l, t3h, t3l); \ | |
239 | /* now (ah,al), (t2l,2*t2h) need summing */ \ | |
240 | /* first add the high registers, carrying into t2h */ \ | |
241 | ADD128(t2h, ah, z, t2l); \ | |
242 | /* double t2h and add top bit of ah */ \ | |
243 | t2h = 2 * t2h + (ah >> 63); \ | |
244 | ah &= m63; \ | |
245 | /* now add the low registers */ \ | |
246 | ADD128(ah, al, mh, ml); \ | |
247 | ADD128(ah, al, z, t2h); \ | |
248 | } while (0) | |
249 | ||
250 | #else /* ! CONFIG_64BIT */ | |
251 | ||
252 | #ifndef nh_16 | |
253 | #define nh_16(mp, kp, nw, rh, rl) \ | |
254 | do { \ | |
255 | u64 t1, t2, m1, m2, t; \ | |
256 | int i; \ | |
257 | rh = rl = t = 0; \ | |
258 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
259 | t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
260 | t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ | |
f1939f7c SW |
261 | m2 = MUL32(t1 >> 32, t2); \ |
262 | m1 = MUL32(t1, t2 >> 32); \ | |
263 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ | |
264 | MUL32(t1, t2)); \ | |
265 | rh += (u64)(u32)(m1 >> 32) \ | |
266 | + (u32)(m2 >> 32); \ | |
267 | t += (u64)(u32)m1 + (u32)m2; \ | |
268 | } \ | |
269 | ADD128(rh, rl, (t >> 32), (t << 32)); \ | |
270 | } while (0) | |
271 | #endif | |
272 | ||
273 | static void poly_step_func(u64 *ahi, u64 *alo, | |
274 | const u64 *kh, const u64 *kl, | |
275 | const u64 *mh, const u64 *ml) | |
276 | { | |
277 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | |
278 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | |
279 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | |
280 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | |
281 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | |
282 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | |
283 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | |
284 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | |
285 | ||
286 | u64 p, q, t; | |
287 | u32 t2; | |
288 | ||
289 | p = MUL32(a3, k3); | |
290 | p += p; | |
291 | p += *(u64 *)mh; | |
292 | p += MUL32(a0, k2); | |
293 | p += MUL32(a1, k1); | |
294 | p += MUL32(a2, k0); | |
295 | t = (u32)(p); | |
296 | p >>= 32; | |
297 | p += MUL32(a0, k3); | |
298 | p += MUL32(a1, k2); | |
299 | p += MUL32(a2, k1); | |
300 | p += MUL32(a3, k0); | |
301 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; | |
302 | p >>= 31; | |
303 | p += (u64)(((u32 *)ml)[INDEX_LOW]); | |
304 | p += MUL32(a0, k0); | |
305 | q = MUL32(a1, k3); | |
306 | q += MUL32(a2, k2); | |
307 | q += MUL32(a3, k1); | |
308 | q += q; | |
309 | p += q; | |
310 | t2 = (u32)(p); | |
311 | p >>= 32; | |
312 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); | |
313 | p += MUL32(a0, k1); | |
314 | p += MUL32(a1, k0); | |
315 | q = MUL32(a2, k3); | |
316 | q += MUL32(a3, k2); | |
317 | q += q; | |
318 | p += q; | |
319 | *(u64 *)(alo) = (p << 32) | t2; | |
320 | p >>= 32; | |
321 | *(u64 *)(ahi) = p + t; | |
322 | ||
323 | #undef a0 | |
324 | #undef a1 | |
325 | #undef a2 | |
326 | #undef a3 | |
327 | #undef k0 | |
328 | #undef k1 | |
329 | #undef k2 | |
330 | #undef k3 | |
331 | } | |
332 | ||
333 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
334 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | |
335 | ||
336 | #endif /* end of specialized NH and poly definitions */ | |
337 | ||
338 | /* At least nh_16 is defined. Defined others as needed here */ | |
339 | #ifndef nh_16_2 | |
340 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
341 | do { \ | |
342 | nh_16(mp, kp, nw, rh, rl); \ | |
343 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ | |
344 | } while (0) | |
345 | #endif | |
346 | #ifndef nh_vmac_nhbytes | |
347 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
348 | nh_16(mp, kp, nw, rh, rl) | |
349 | #endif | |
350 | #ifndef nh_vmac_nhbytes_2 | |
351 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
352 | do { \ | |
353 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ | |
354 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ | |
355 | } while (0) | |
356 | #endif | |
357 | ||
304a204e | 358 | static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
f1939f7c SW |
359 | { |
360 | u64 rh, rl, t, z = 0; | |
361 | ||
362 | /* fully reduce (p1,p2)+(len,0) mod p127 */ | |
363 | t = p1 >> 63; | |
364 | p1 &= m63; | |
365 | ADD128(p1, p2, len, t); | |
366 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ | |
367 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | |
368 | ADD128(p1, p2, z, t); | |
369 | p1 &= m63; | |
370 | ||
371 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | |
372 | t = p1 + (p2 >> 32); | |
373 | t += (t >> 32); | |
374 | t += (u32)t > 0xfffffffeu; | |
375 | p1 += (t >> 32); | |
376 | p2 += (p1 << 32); | |
377 | ||
378 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ | |
379 | p1 += k1; | |
380 | p1 += (0 - (p1 < k1)) & 257; | |
381 | p2 += k2; | |
382 | p2 += (0 - (p2 < k2)) & 257; | |
383 | ||
384 | /* compute (p1+k1)*(p2+k2)%p64 */ | |
385 | MUL64(rh, rl, p1, p2); | |
386 | t = rh >> 56; | |
387 | ADD128(t, rl, z, rh); | |
388 | rh <<= 8; | |
389 | ADD128(t, rl, z, rh); | |
390 | t += t << 8; | |
391 | rl += t; | |
392 | rl += (0 - (rl < t)) & 257; | |
393 | rl += (0 - (rl > p64-1)) & 257; | |
394 | return rl; | |
395 | } | |
396 | ||
bb296481 EB |
397 | /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */ |
398 | static void vhash_blocks(const struct vmac_tfm_ctx *tctx, | |
399 | struct vmac_desc_ctx *dctx, | |
400 | const __le64 *mptr, unsigned int blocks) | |
f1939f7c | 401 | { |
bb296481 EB |
402 | const u64 *kptr = tctx->nhkey; |
403 | const u64 pkh = tctx->polykey[0]; | |
404 | const u64 pkl = tctx->polykey[1]; | |
405 | u64 ch = dctx->polytmp[0]; | |
406 | u64 cl = dctx->polytmp[1]; | |
407 | u64 rh, rl; | |
408 | ||
409 | if (!dctx->first_block_processed) { | |
410 | dctx->first_block_processed = true; | |
f1939f7c SW |
411 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
412 | rh &= m62; | |
413 | ADD128(ch, cl, rh, rl); | |
414 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
bb296481 | 415 | blocks--; |
f1939f7c SW |
416 | } |
417 | ||
bb296481 | 418 | while (blocks--) { |
f1939f7c SW |
419 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
420 | rh &= m62; | |
421 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
422 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
423 | } | |
424 | ||
bb296481 EB |
425 | dctx->polytmp[0] = ch; |
426 | dctx->polytmp[1] = cl; | |
f1939f7c SW |
427 | } |
428 | ||
bb296481 EB |
429 | static int vmac_setkey(struct crypto_shash *tfm, |
430 | const u8 *key, unsigned int keylen) | |
f1939f7c | 431 | { |
bb296481 EB |
432 | struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm); |
433 | __be64 out[2]; | |
434 | u8 in[16] = { 0 }; | |
435 | unsigned int i; | |
436 | int err; | |
f1939f7c | 437 | |
bb296481 EB |
438 | if (keylen != VMAC_KEY_LEN) { |
439 | crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | |
440 | return -EINVAL; | |
f1939f7c | 441 | } |
f1939f7c | 442 | |
bb296481 | 443 | err = crypto_cipher_setkey(tctx->cipher, key, keylen); |
f1939f7c SW |
444 | if (err) |
445 | return err; | |
446 | ||
447 | /* Fill nh key */ | |
bb296481 EB |
448 | in[0] = 0x80; |
449 | for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) { | |
450 | crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); | |
451 | tctx->nhkey[i] = be64_to_cpu(out[0]); | |
452 | tctx->nhkey[i+1] = be64_to_cpu(out[1]); | |
453 | in[15]++; | |
f1939f7c SW |
454 | } |
455 | ||
456 | /* Fill poly key */ | |
bb296481 EB |
457 | in[0] = 0xC0; |
458 | in[15] = 0; | |
459 | for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) { | |
460 | crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); | |
461 | tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly; | |
462 | tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly; | |
463 | in[15]++; | |
f1939f7c SW |
464 | } |
465 | ||
466 | /* Fill ip key */ | |
bb296481 EB |
467 | in[0] = 0xE0; |
468 | in[15] = 0; | |
469 | for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) { | |
f1939f7c | 470 | do { |
bb296481 EB |
471 | crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); |
472 | tctx->l3key[i] = be64_to_cpu(out[0]); | |
473 | tctx->l3key[i+1] = be64_to_cpu(out[1]); | |
474 | in[15]++; | |
475 | } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64); | |
f1939f7c SW |
476 | } |
477 | ||
bb296481 | 478 | return 0; |
f1939f7c SW |
479 | } |
480 | ||
bb296481 | 481 | static int vmac_init(struct shash_desc *desc) |
f1939f7c | 482 | { |
bb296481 EB |
483 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
484 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); | |
f1939f7c | 485 | |
bb296481 EB |
486 | dctx->partial_size = 0; |
487 | dctx->first_block_processed = false; | |
488 | memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp)); | |
ed331ada EB |
489 | dctx->nonce_size = 0; |
490 | return 0; | |
491 | } | |
492 | ||
bb296481 | 493 | static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len) |
f1939f7c | 494 | { |
bb296481 EB |
495 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
496 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); | |
497 | unsigned int n; | |
498 | ||
ed331ada EB |
499 | /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */ |
500 | if (dctx->nonce_size < VMAC_NONCEBYTES) { | |
501 | n = min(len, VMAC_NONCEBYTES - dctx->nonce_size); | |
502 | memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n); | |
503 | dctx->nonce_size += n; | |
504 | p += n; | |
505 | len -= n; | |
506 | } | |
507 | ||
bb296481 EB |
508 | if (dctx->partial_size) { |
509 | n = min(len, VMAC_NHBYTES - dctx->partial_size); | |
510 | memcpy(&dctx->partial[dctx->partial_size], p, n); | |
511 | dctx->partial_size += n; | |
512 | p += n; | |
513 | len -= n; | |
514 | if (dctx->partial_size == VMAC_NHBYTES) { | |
515 | vhash_blocks(tctx, dctx, dctx->partial_words, 1); | |
516 | dctx->partial_size = 0; | |
517 | } | |
518 | } | |
ba1ee070 | 519 | |
bb296481 EB |
520 | if (len >= VMAC_NHBYTES) { |
521 | n = round_down(len, VMAC_NHBYTES); | |
522 | /* TODO: 'p' may be misaligned here */ | |
523 | vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES); | |
524 | p += n; | |
525 | len -= n; | |
ba1ee070 SQ |
526 | } |
527 | ||
bb296481 EB |
528 | if (len) { |
529 | memcpy(dctx->partial, p, len); | |
530 | dctx->partial_size = len; | |
531 | } | |
f1939f7c SW |
532 | |
533 | return 0; | |
534 | } | |
535 | ||
bb296481 EB |
536 | static u64 vhash_final(const struct vmac_tfm_ctx *tctx, |
537 | struct vmac_desc_ctx *dctx) | |
f1939f7c | 538 | { |
bb296481 EB |
539 | unsigned int partial = dctx->partial_size; |
540 | u64 ch = dctx->polytmp[0]; | |
541 | u64 cl = dctx->polytmp[1]; | |
542 | ||
543 | /* L1 and L2-hash the final block if needed */ | |
544 | if (partial) { | |
545 | /* Zero-pad to next 128-bit boundary */ | |
546 | unsigned int n = round_up(partial, 16); | |
547 | u64 rh, rl; | |
548 | ||
549 | memset(&dctx->partial[partial], 0, n - partial); | |
550 | nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl); | |
551 | rh &= m62; | |
552 | if (dctx->first_block_processed) | |
553 | poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1], | |
554 | rh, rl); | |
555 | else | |
556 | ADD128(ch, cl, rh, rl); | |
ba1ee070 | 557 | } |
bb296481 EB |
558 | |
559 | /* L3-hash the 128-bit output of L2-hash */ | |
560 | return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8); | |
561 | } | |
562 | ||
0917b873 | 563 | static int vmac_final(struct shash_desc *desc, u8 *out) |
bb296481 EB |
564 | { |
565 | const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); | |
566 | struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); | |
bb296481 EB |
567 | int index; |
568 | u64 hash, pad; | |
569 | ||
ed331ada EB |
570 | if (dctx->nonce_size != VMAC_NONCEBYTES) |
571 | return -EINVAL; | |
572 | ||
573 | /* | |
574 | * The VMAC specification requires a nonce at least 1 bit shorter than | |
575 | * the block cipher's block length, so we actually only accept a 127-bit | |
576 | * nonce. We define the unused bit to be the first one and require that | |
577 | * it be 0, so the needed prepending of a 0 bit is implicit. | |
578 | */ | |
579 | if (dctx->nonce.bytes[0] & 0x80) | |
580 | return -EINVAL; | |
581 | ||
bb296481 EB |
582 | /* Finish calculating the VHASH of the message */ |
583 | hash = vhash_final(tctx, dctx); | |
584 | ||
585 | /* Generate pseudorandom pad by encrypting the nonce */ | |
ed331ada EB |
586 | BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8)); |
587 | index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1; | |
588 | dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1; | |
589 | crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes, | |
590 | dctx->nonce.bytes); | |
591 | pad = be64_to_cpu(dctx->nonce.pads[index]); | |
bb296481 EB |
592 | |
593 | /* The VMAC is the sum of VHASH and the pseudorandom pad */ | |
0917b873 | 594 | put_unaligned_be64(hash + pad, out); |
f1939f7c SW |
595 | return 0; |
596 | } | |
597 | ||
598 | static int vmac_init_tfm(struct crypto_tfm *tfm) | |
599 | { | |
bb296481 | 600 | struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); |
f1939f7c | 601 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
bb296481 EB |
602 | struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); |
603 | struct crypto_cipher *cipher; | |
f1939f7c SW |
604 | |
605 | cipher = crypto_spawn_cipher(spawn); | |
606 | if (IS_ERR(cipher)) | |
607 | return PTR_ERR(cipher); | |
608 | ||
bb296481 | 609 | tctx->cipher = cipher; |
f1939f7c SW |
610 | return 0; |
611 | } | |
612 | ||
613 | static void vmac_exit_tfm(struct crypto_tfm *tfm) | |
614 | { | |
bb296481 EB |
615 | struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); |
616 | ||
617 | crypto_free_cipher(tctx->cipher); | |
f1939f7c SW |
618 | } |
619 | ||
0917b873 | 620 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) |
f1939f7c SW |
621 | { |
622 | struct shash_instance *inst; | |
623 | struct crypto_alg *alg; | |
624 | int err; | |
625 | ||
626 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | |
627 | if (err) | |
628 | return err; | |
629 | ||
630 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | |
631 | CRYPTO_ALG_TYPE_MASK); | |
632 | if (IS_ERR(alg)) | |
633 | return PTR_ERR(alg); | |
634 | ||
73bf20ef | 635 | err = -EINVAL; |
ed331ada | 636 | if (alg->cra_blocksize != VMAC_NONCEBYTES) |
73bf20ef EB |
637 | goto out_put_alg; |
638 | ||
ed331ada | 639 | inst = shash_alloc_instance(tmpl->name, alg); |
f1939f7c SW |
640 | err = PTR_ERR(inst); |
641 | if (IS_ERR(inst)) | |
642 | goto out_put_alg; | |
643 | ||
644 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, | |
645 | shash_crypto_instance(inst), | |
646 | CRYPTO_ALG_TYPE_MASK); | |
647 | if (err) | |
648 | goto out_free_inst; | |
649 | ||
650 | inst->alg.base.cra_priority = alg->cra_priority; | |
651 | inst->alg.base.cra_blocksize = alg->cra_blocksize; | |
652 | inst->alg.base.cra_alignmask = alg->cra_alignmask; | |
653 | ||
bb296481 | 654 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx); |
f1939f7c SW |
655 | inst->alg.base.cra_init = vmac_init_tfm; |
656 | inst->alg.base.cra_exit = vmac_exit_tfm; | |
657 | ||
bb296481 EB |
658 | inst->alg.descsize = sizeof(struct vmac_desc_ctx); |
659 | inst->alg.digestsize = VMAC_TAG_LEN / 8; | |
0917b873 | 660 | inst->alg.init = vmac_init; |
f1939f7c | 661 | inst->alg.update = vmac_update; |
0917b873 | 662 | inst->alg.final = vmac_final; |
f1939f7c SW |
663 | inst->alg.setkey = vmac_setkey; |
664 | ||
665 | err = shash_register_instance(tmpl, inst); | |
666 | if (err) { | |
667 | out_free_inst: | |
668 | shash_free_instance(shash_crypto_instance(inst)); | |
669 | } | |
670 | ||
671 | out_put_alg: | |
672 | crypto_mod_put(alg); | |
673 | return err; | |
674 | } | |
675 | ||
ed331ada EB |
676 | static struct crypto_template vmac64_tmpl = { |
677 | .name = "vmac64", | |
0917b873 | 678 | .create = vmac_create, |
ed331ada EB |
679 | .free = shash_free_instance, |
680 | .module = THIS_MODULE, | |
681 | }; | |
682 | ||
f1939f7c SW |
683 | static int __init vmac_module_init(void) |
684 | { | |
0917b873 | 685 | return crypto_register_template(&vmac64_tmpl); |
f1939f7c SW |
686 | } |
687 | ||
688 | static void __exit vmac_module_exit(void) | |
689 | { | |
ed331ada | 690 | crypto_unregister_template(&vmac64_tmpl); |
f1939f7c SW |
691 | } |
692 | ||
693 | module_init(vmac_module_init); | |
694 | module_exit(vmac_module_exit); | |
695 | ||
696 | MODULE_LICENSE("GPL"); | |
697 | MODULE_DESCRIPTION("VMAC hash algorithm"); | |
ed331ada | 698 | MODULE_ALIAS_CRYPTO("vmac64"); |