]>
Commit | Line | Data |
---|---|---|
e28facde SM |
1 | /* |
2 | * Key Wrapping: RFC3394 / NIST SP800-38F | |
3 | * | |
4 | * Copyright (C) 2015, Stephan Mueller <[email protected]> | |
5 | * | |
6 | * Redistribution and use in source and binary forms, with or without | |
7 | * modification, are permitted provided that the following conditions | |
8 | * are met: | |
9 | * 1. Redistributions of source code must retain the above copyright | |
10 | * notice, and the entire permission notice in its entirety, | |
11 | * including the disclaimer of warranties. | |
12 | * 2. Redistributions in binary form must reproduce the above copyright | |
13 | * notice, this list of conditions and the following disclaimer in the | |
14 | * documentation and/or other materials provided with the distribution. | |
15 | * 3. The name of the author may not be used to endorse or promote | |
16 | * products derived from this software without specific prior | |
17 | * written permission. | |
18 | * | |
19 | * ALTERNATIVELY, this product may be distributed under the terms of | |
20 | * the GNU General Public License, in which case the provisions of the GPL2 | |
21 | * are required INSTEAD OF the above restrictions. (This clause is | |
22 | * necessary due to a potential bad interaction between the GPL and | |
23 | * the restrictions contained in a BSD-style copyright.) | |
24 | * | |
25 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | |
26 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | |
27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | |
28 | * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE | |
29 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
30 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | |
31 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | |
32 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
33 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
34 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |
35 | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | |
36 | * DAMAGE. | |
37 | */ | |
38 | ||
39 | /* | |
40 | * Note for using key wrapping: | |
41 | * | |
42 | * * The result of the encryption operation is the ciphertext starting | |
43 | * with the 2nd semiblock. The first semiblock is provided as the IV. | |
44 | * The IV used to start the encryption operation is the default IV. | |
45 | * | |
46 | * * The input for the decryption is the first semiblock handed in as an | |
47 | * IV. The ciphertext is the data starting with the 2nd semiblock. The | |
48 | * return code of the decryption operation will be EBADMSG in case an | |
49 | * integrity error occurs. | |
50 | * | |
51 | * To obtain the full result of an encryption as expected by SP800-38F, the | |
52 | * caller must allocate a buffer of plaintext + 8 bytes: | |
53 | * | |
54 | * unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm); | |
55 | * u8 data[datalen]; | |
56 | * u8 *iv = data; | |
57 | * u8 *pt = data + crypto_skcipher_ivsize(tfm); | |
58 | * <ensure that pt contains the plaintext of size ptlen> | |
59 | * sg_init_one(&sg, ptdata, ptlen); | |
60 | * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | |
61 | * | |
62 | * ==> After encryption, data now contains full KW result as per SP800-38F. | |
63 | * | |
64 | * In case of decryption, ciphertext now already has the expected length | |
65 | * and must be segmented appropriately: | |
66 | * | |
67 | * unsigned int datalen = CTLEN; | |
68 | * u8 data[datalen]; | |
69 | * <ensure that data contains full ciphertext> | |
70 | * u8 *iv = data; | |
71 | * u8 *ct = data + crypto_skcipher_ivsize(tfm); | |
72 | * unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm); | |
73 | * sg_init_one(&sg, ctdata, ctlen); | |
74 | * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | |
75 | * | |
76 | * ==> After decryption (which hopefully does not return EBADMSG), the ct | |
77 | * pointer now points to the plaintext of size ctlen. | |
78 | * | |
79 | * Note 2: KWP is not implemented as this would defy in-place operation. | |
80 | * If somebody wants to wrap non-aligned data, he should simply pad | |
81 | * the input with zeros to fill it up to the 8 byte boundary. | |
82 | */ | |
83 | ||
84 | #include <linux/module.h> | |
85 | #include <linux/crypto.h> | |
86 | #include <linux/scatterlist.h> | |
87 | #include <crypto/scatterwalk.h> | |
88 | #include <crypto/internal/skcipher.h> | |
89 | ||
90 | struct crypto_kw_ctx { | |
91 | struct crypto_cipher *child; | |
92 | }; | |
93 | ||
94 | struct crypto_kw_block { | |
95 | #define SEMIBSIZE 8 | |
9e49451d SM |
96 | __be64 A; |
97 | __be64 R; | |
e28facde SM |
98 | }; |
99 | ||
e28facde SM |
100 | /* |
101 | * Fast forward the SGL to the "end" length minus SEMIBSIZE. | |
102 | * The start in the SGL defined by the fast-forward is returned with | |
103 | * the walk variable | |
104 | */ | |
105 | static void crypto_kw_scatterlist_ff(struct scatter_walk *walk, | |
106 | struct scatterlist *sg, | |
107 | unsigned int end) | |
108 | { | |
109 | unsigned int skip = 0; | |
110 | ||
111 | /* The caller should only operate on full SEMIBLOCKs. */ | |
112 | BUG_ON(end < SEMIBSIZE); | |
113 | ||
114 | skip = end - SEMIBSIZE; | |
115 | while (sg) { | |
116 | if (sg->length > skip) { | |
117 | scatterwalk_start(walk, sg); | |
118 | scatterwalk_advance(walk, skip); | |
119 | break; | |
120 | } else | |
121 | skip -= sg->length; | |
122 | ||
123 | sg = sg_next(sg); | |
124 | } | |
125 | } | |
126 | ||
127 | static int crypto_kw_decrypt(struct blkcipher_desc *desc, | |
128 | struct scatterlist *dst, struct scatterlist *src, | |
129 | unsigned int nbytes) | |
130 | { | |
131 | struct crypto_blkcipher *tfm = desc->tfm; | |
132 | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | |
133 | struct crypto_cipher *child = ctx->child; | |
9e49451d | 134 | struct crypto_kw_block block; |
e28facde | 135 | struct scatterlist *lsrc, *ldst; |
9e49451d SM |
136 | u64 t = 6 * ((nbytes) >> 3); |
137 | unsigned int i; | |
e28facde SM |
138 | int ret = 0; |
139 | ||
140 | /* | |
141 | * Require at least 2 semiblocks (note, the 3rd semiblock that is | |
142 | * required by SP800-38F is the IV. | |
143 | */ | |
144 | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | |
145 | return -EINVAL; | |
146 | ||
147 | /* Place the IV into block A */ | |
9e49451d | 148 | memcpy(&block.A, desc->info, SEMIBSIZE); |
e28facde SM |
149 | |
150 | /* | |
151 | * src scatterlist is read-only. dst scatterlist is r/w. During the | |
152 | * first loop, lsrc points to src and ldst to dst. For any | |
153 | * subsequent round, the code operates on dst only. | |
154 | */ | |
155 | lsrc = src; | |
156 | ldst = dst; | |
157 | ||
158 | for (i = 0; i < 6; i++) { | |
e28facde | 159 | struct scatter_walk src_walk, dst_walk; |
9e49451d | 160 | unsigned int tmp_nbytes = nbytes; |
e28facde SM |
161 | |
162 | while (tmp_nbytes) { | |
163 | /* move pointer by tmp_nbytes in the SGL */ | |
164 | crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes); | |
165 | /* get the source block */ | |
9e49451d | 166 | scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE, |
e28facde SM |
167 | false); |
168 | ||
e28facde | 169 | /* perform KW operation: modify IV with counter */ |
9e49451d | 170 | block.A ^= cpu_to_be64(t); |
e28facde SM |
171 | t--; |
172 | /* perform KW operation: decrypt block */ | |
9e49451d SM |
173 | crypto_cipher_decrypt_one(child, (u8*)&block, |
174 | (u8*)&block); | |
e28facde SM |
175 | |
176 | /* move pointer by tmp_nbytes in the SGL */ | |
177 | crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes); | |
178 | /* Copy block->R into place */ | |
9e49451d | 179 | scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE, |
e28facde SM |
180 | true); |
181 | ||
182 | tmp_nbytes -= SEMIBSIZE; | |
183 | } | |
184 | ||
185 | /* we now start to operate on the dst SGL only */ | |
186 | lsrc = dst; | |
187 | ldst = dst; | |
188 | } | |
189 | ||
190 | /* Perform authentication check */ | |
c9683276 | 191 | if (block.A != cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL)) |
e28facde SM |
192 | ret = -EBADMSG; |
193 | ||
9e49451d | 194 | memzero_explicit(&block, sizeof(struct crypto_kw_block)); |
e28facde SM |
195 | |
196 | return ret; | |
197 | } | |
198 | ||
199 | static int crypto_kw_encrypt(struct blkcipher_desc *desc, | |
200 | struct scatterlist *dst, struct scatterlist *src, | |
201 | unsigned int nbytes) | |
202 | { | |
203 | struct crypto_blkcipher *tfm = desc->tfm; | |
204 | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | |
205 | struct crypto_cipher *child = ctx->child; | |
9e49451d | 206 | struct crypto_kw_block block; |
e28facde | 207 | struct scatterlist *lsrc, *ldst; |
9e49451d SM |
208 | u64 t = 1; |
209 | unsigned int i; | |
e28facde SM |
210 | |
211 | /* | |
212 | * Require at least 2 semiblocks (note, the 3rd semiblock that is | |
213 | * required by SP800-38F is the IV that occupies the first semiblock. | |
214 | * This means that the dst memory must be one semiblock larger than src. | |
215 | * Also ensure that the given data is aligned to semiblock. | |
216 | */ | |
217 | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | |
218 | return -EINVAL; | |
219 | ||
220 | /* | |
221 | * Place the predefined IV into block A -- for encrypt, the caller | |
222 | * does not need to provide an IV, but he needs to fetch the final IV. | |
223 | */ | |
c9683276 | 224 | block.A = cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL); |
e28facde SM |
225 | |
226 | /* | |
227 | * src scatterlist is read-only. dst scatterlist is r/w. During the | |
228 | * first loop, lsrc points to src and ldst to dst. For any | |
229 | * subsequent round, the code operates on dst only. | |
230 | */ | |
231 | lsrc = src; | |
232 | ldst = dst; | |
233 | ||
234 | for (i = 0; i < 6; i++) { | |
e28facde | 235 | struct scatter_walk src_walk, dst_walk; |
9e49451d | 236 | unsigned int tmp_nbytes = nbytes; |
e28facde SM |
237 | |
238 | scatterwalk_start(&src_walk, lsrc); | |
239 | scatterwalk_start(&dst_walk, ldst); | |
240 | ||
241 | while (tmp_nbytes) { | |
242 | /* get the source block */ | |
9e49451d | 243 | scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE, |
e28facde SM |
244 | false); |
245 | ||
246 | /* perform KW operation: encrypt block */ | |
9e49451d SM |
247 | crypto_cipher_encrypt_one(child, (u8 *)&block, |
248 | (u8 *)&block); | |
e28facde | 249 | /* perform KW operation: modify IV with counter */ |
9e49451d | 250 | block.A ^= cpu_to_be64(t); |
e28facde SM |
251 | t++; |
252 | ||
253 | /* Copy block->R into place */ | |
9e49451d | 254 | scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE, |
e28facde SM |
255 | true); |
256 | ||
257 | tmp_nbytes -= SEMIBSIZE; | |
258 | } | |
259 | ||
260 | /* we now start to operate on the dst SGL only */ | |
261 | lsrc = dst; | |
262 | ldst = dst; | |
263 | } | |
264 | ||
265 | /* establish the IV for the caller to pick up */ | |
9e49451d | 266 | memcpy(desc->info, &block.A, SEMIBSIZE); |
e28facde | 267 | |
9e49451d | 268 | memzero_explicit(&block, sizeof(struct crypto_kw_block)); |
e28facde SM |
269 | |
270 | return 0; | |
271 | } | |
272 | ||
273 | static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key, | |
274 | unsigned int keylen) | |
275 | { | |
276 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent); | |
277 | struct crypto_cipher *child = ctx->child; | |
278 | int err; | |
279 | ||
280 | crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | |
281 | crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & | |
282 | CRYPTO_TFM_REQ_MASK); | |
283 | err = crypto_cipher_setkey(child, key, keylen); | |
284 | crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & | |
285 | CRYPTO_TFM_RES_MASK); | |
286 | return err; | |
287 | } | |
288 | ||
289 | static int crypto_kw_init_tfm(struct crypto_tfm *tfm) | |
290 | { | |
291 | struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); | |
292 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | |
293 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | |
294 | struct crypto_cipher *cipher; | |
295 | ||
296 | cipher = crypto_spawn_cipher(spawn); | |
297 | if (IS_ERR(cipher)) | |
298 | return PTR_ERR(cipher); | |
299 | ||
300 | ctx->child = cipher; | |
301 | return 0; | |
302 | } | |
303 | ||
304 | static void crypto_kw_exit_tfm(struct crypto_tfm *tfm) | |
305 | { | |
306 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | |
307 | ||
308 | crypto_free_cipher(ctx->child); | |
309 | } | |
310 | ||
311 | static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb) | |
312 | { | |
313 | struct crypto_instance *inst = NULL; | |
314 | struct crypto_alg *alg = NULL; | |
315 | int err; | |
316 | ||
317 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); | |
318 | if (err) | |
319 | return ERR_PTR(err); | |
320 | ||
321 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | |
322 | CRYPTO_ALG_TYPE_MASK); | |
323 | if (IS_ERR(alg)) | |
324 | return ERR_CAST(alg); | |
325 | ||
326 | inst = ERR_PTR(-EINVAL); | |
327 | /* Section 5.1 requirement for KW */ | |
328 | if (alg->cra_blocksize != sizeof(struct crypto_kw_block)) | |
329 | goto err; | |
330 | ||
331 | inst = crypto_alloc_instance("kw", alg); | |
332 | if (IS_ERR(inst)) | |
333 | goto err; | |
334 | ||
335 | inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; | |
336 | inst->alg.cra_priority = alg->cra_priority; | |
337 | inst->alg.cra_blocksize = SEMIBSIZE; | |
338 | inst->alg.cra_alignmask = 0; | |
339 | inst->alg.cra_type = &crypto_blkcipher_type; | |
340 | inst->alg.cra_blkcipher.ivsize = SEMIBSIZE; | |
341 | inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize; | |
342 | inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize; | |
343 | ||
344 | inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx); | |
345 | ||
346 | inst->alg.cra_init = crypto_kw_init_tfm; | |
347 | inst->alg.cra_exit = crypto_kw_exit_tfm; | |
348 | ||
349 | inst->alg.cra_blkcipher.setkey = crypto_kw_setkey; | |
350 | inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt; | |
351 | inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt; | |
352 | ||
353 | err: | |
354 | crypto_mod_put(alg); | |
355 | return inst; | |
356 | } | |
357 | ||
358 | static void crypto_kw_free(struct crypto_instance *inst) | |
359 | { | |
360 | crypto_drop_spawn(crypto_instance_ctx(inst)); | |
361 | kfree(inst); | |
362 | } | |
363 | ||
364 | static struct crypto_template crypto_kw_tmpl = { | |
365 | .name = "kw", | |
366 | .alloc = crypto_kw_alloc, | |
367 | .free = crypto_kw_free, | |
368 | .module = THIS_MODULE, | |
369 | }; | |
370 | ||
371 | static int __init crypto_kw_init(void) | |
372 | { | |
373 | return crypto_register_template(&crypto_kw_tmpl); | |
374 | } | |
375 | ||
376 | static void __exit crypto_kw_exit(void) | |
377 | { | |
378 | crypto_unregister_template(&crypto_kw_tmpl); | |
379 | } | |
380 | ||
381 | module_init(crypto_kw_init); | |
382 | module_exit(crypto_kw_exit); | |
383 | ||
384 | MODULE_LICENSE("Dual BSD/GPL"); | |
385 | MODULE_AUTHOR("Stephan Mueller <[email protected]>"); | |
386 | MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)"); | |
387 | MODULE_ALIAS_CRYPTO("kw"); |