]>
Commit | Line | Data |
---|---|---|
3c4b2390 SB |
1 | /* |
2 | * Copyright (c) 2013, Kenneth MacKay | |
3 | * All rights reserved. | |
4 | * | |
5 | * Redistribution and use in source and binary forms, with or without | |
6 | * modification, are permitted provided that the following conditions are | |
7 | * met: | |
8 | * * Redistributions of source code must retain the above copyright | |
9 | * notice, this list of conditions and the following disclaimer. | |
10 | * * Redistributions in binary form must reproduce the above copyright | |
11 | * notice, this list of conditions and the following disclaimer in the | |
12 | * documentation and/or other materials provided with the distribution. | |
13 | * | |
14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
25 | */ | |
26 | ||
27 | #include <linux/random.h> | |
28 | #include <linux/slab.h> | |
29 | #include <linux/swab.h> | |
30 | #include <linux/fips.h> | |
31 | #include <crypto/ecdh.h> | |
6755fd26 | 32 | #include <crypto/rng.h> |
3c4b2390 SB |
33 | |
34 | #include "ecc.h" | |
35 | #include "ecc_curve_defs.h" | |
36 | ||
37 | typedef struct { | |
38 | u64 m_low; | |
39 | u64 m_high; | |
40 | } uint128_t; | |
41 | ||
42 | static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id) | |
43 | { | |
44 | switch (curve_id) { | |
45 | /* In FIPS mode only allow P256 and higher */ | |
46 | case ECC_CURVE_NIST_P192: | |
47 | return fips_enabled ? NULL : &nist_p192; | |
48 | case ECC_CURVE_NIST_P256: | |
49 | return &nist_p256; | |
50 | default: | |
51 | return NULL; | |
52 | } | |
53 | } | |
54 | ||
55 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) | |
56 | { | |
57 | size_t len = ndigits * sizeof(u64); | |
58 | ||
59 | if (!len) | |
60 | return NULL; | |
61 | ||
62 | return kmalloc(len, GFP_KERNEL); | |
63 | } | |
64 | ||
65 | static void ecc_free_digits_space(u64 *space) | |
66 | { | |
67 | kzfree(space); | |
68 | } | |
69 | ||
70 | static struct ecc_point *ecc_alloc_point(unsigned int ndigits) | |
71 | { | |
72 | struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); | |
73 | ||
74 | if (!p) | |
75 | return NULL; | |
76 | ||
77 | p->x = ecc_alloc_digits_space(ndigits); | |
78 | if (!p->x) | |
79 | goto err_alloc_x; | |
80 | ||
81 | p->y = ecc_alloc_digits_space(ndigits); | |
82 | if (!p->y) | |
83 | goto err_alloc_y; | |
84 | ||
85 | p->ndigits = ndigits; | |
86 | ||
87 | return p; | |
88 | ||
89 | err_alloc_y: | |
90 | ecc_free_digits_space(p->x); | |
91 | err_alloc_x: | |
92 | kfree(p); | |
93 | return NULL; | |
94 | } | |
95 | ||
96 | static void ecc_free_point(struct ecc_point *p) | |
97 | { | |
98 | if (!p) | |
99 | return; | |
100 | ||
101 | kzfree(p->x); | |
102 | kzfree(p->y); | |
103 | kzfree(p); | |
104 | } | |
105 | ||
106 | static void vli_clear(u64 *vli, unsigned int ndigits) | |
107 | { | |
108 | int i; | |
109 | ||
110 | for (i = 0; i < ndigits; i++) | |
111 | vli[i] = 0; | |
112 | } | |
113 | ||
114 | /* Returns true if vli == 0, false otherwise. */ | |
115 | static bool vli_is_zero(const u64 *vli, unsigned int ndigits) | |
116 | { | |
117 | int i; | |
118 | ||
119 | for (i = 0; i < ndigits; i++) { | |
120 | if (vli[i]) | |
121 | return false; | |
122 | } | |
123 | ||
124 | return true; | |
125 | } | |
126 | ||
127 | /* Returns nonzero if bit bit of vli is set. */ | |
128 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) | |
129 | { | |
130 | return (vli[bit / 64] & ((u64)1 << (bit % 64))); | |
131 | } | |
132 | ||
133 | /* Counts the number of 64-bit "digits" in vli. */ | |
134 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) | |
135 | { | |
136 | int i; | |
137 | ||
138 | /* Search from the end until we find a non-zero digit. | |
139 | * We do it in reverse because we expect that most digits will | |
140 | * be nonzero. | |
141 | */ | |
142 | for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); | |
143 | ||
144 | return (i + 1); | |
145 | } | |
146 | ||
147 | /* Counts the number of bits required for vli. */ | |
148 | static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) | |
149 | { | |
150 | unsigned int i, num_digits; | |
151 | u64 digit; | |
152 | ||
153 | num_digits = vli_num_digits(vli, ndigits); | |
154 | if (num_digits == 0) | |
155 | return 0; | |
156 | ||
157 | digit = vli[num_digits - 1]; | |
158 | for (i = 0; digit; i++) | |
159 | digit >>= 1; | |
160 | ||
161 | return ((num_digits - 1) * 64 + i); | |
162 | } | |
163 | ||
164 | /* Sets dest = src. */ | |
165 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) | |
166 | { | |
167 | int i; | |
168 | ||
169 | for (i = 0; i < ndigits; i++) | |
170 | dest[i] = src[i]; | |
171 | } | |
172 | ||
173 | /* Returns sign of left - right. */ | |
174 | static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) | |
175 | { | |
176 | int i; | |
177 | ||
178 | for (i = ndigits - 1; i >= 0; i--) { | |
179 | if (left[i] > right[i]) | |
180 | return 1; | |
181 | else if (left[i] < right[i]) | |
182 | return -1; | |
183 | } | |
184 | ||
185 | return 0; | |
186 | } | |
187 | ||
188 | /* Computes result = in << c, returning carry. Can modify in place | |
189 | * (if result == in). 0 < shift < 64. | |
190 | */ | |
191 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, | |
192 | unsigned int ndigits) | |
193 | { | |
194 | u64 carry = 0; | |
195 | int i; | |
196 | ||
197 | for (i = 0; i < ndigits; i++) { | |
198 | u64 temp = in[i]; | |
199 | ||
200 | result[i] = (temp << shift) | carry; | |
201 | carry = temp >> (64 - shift); | |
202 | } | |
203 | ||
204 | return carry; | |
205 | } | |
206 | ||
207 | /* Computes vli = vli >> 1. */ | |
208 | static void vli_rshift1(u64 *vli, unsigned int ndigits) | |
209 | { | |
210 | u64 *end = vli; | |
211 | u64 carry = 0; | |
212 | ||
213 | vli += ndigits; | |
214 | ||
215 | while (vli-- > end) { | |
216 | u64 temp = *vli; | |
217 | *vli = (temp >> 1) | carry; | |
218 | carry = temp << 63; | |
219 | } | |
220 | } | |
221 | ||
222 | /* Computes result = left + right, returning carry. Can modify in place. */ | |
223 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, | |
224 | unsigned int ndigits) | |
225 | { | |
226 | u64 carry = 0; | |
227 | int i; | |
228 | ||
229 | for (i = 0; i < ndigits; i++) { | |
230 | u64 sum; | |
231 | ||
232 | sum = left[i] + right[i] + carry; | |
233 | if (sum != left[i]) | |
234 | carry = (sum < left[i]); | |
235 | ||
236 | result[i] = sum; | |
237 | } | |
238 | ||
239 | return carry; | |
240 | } | |
241 | ||
242 | /* Computes result = left - right, returning borrow. Can modify in place. */ | |
243 | static u64 vli_sub(u64 *result, const u64 *left, const u64 *right, | |
244 | unsigned int ndigits) | |
245 | { | |
246 | u64 borrow = 0; | |
247 | int i; | |
248 | ||
249 | for (i = 0; i < ndigits; i++) { | |
250 | u64 diff; | |
251 | ||
252 | diff = left[i] - right[i] - borrow; | |
253 | if (diff != left[i]) | |
254 | borrow = (diff > left[i]); | |
255 | ||
256 | result[i] = diff; | |
257 | } | |
258 | ||
259 | return borrow; | |
260 | } | |
261 | ||
262 | static uint128_t mul_64_64(u64 left, u64 right) | |
263 | { | |
264 | u64 a0 = left & 0xffffffffull; | |
265 | u64 a1 = left >> 32; | |
266 | u64 b0 = right & 0xffffffffull; | |
267 | u64 b1 = right >> 32; | |
268 | u64 m0 = a0 * b0; | |
269 | u64 m1 = a0 * b1; | |
270 | u64 m2 = a1 * b0; | |
271 | u64 m3 = a1 * b1; | |
272 | uint128_t result; | |
273 | ||
274 | m2 += (m0 >> 32); | |
275 | m2 += m1; | |
276 | ||
277 | /* Overflow */ | |
278 | if (m2 < m1) | |
279 | m3 += 0x100000000ull; | |
280 | ||
281 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); | |
282 | result.m_high = m3 + (m2 >> 32); | |
283 | ||
284 | return result; | |
285 | } | |
286 | ||
287 | static uint128_t add_128_128(uint128_t a, uint128_t b) | |
288 | { | |
289 | uint128_t result; | |
290 | ||
291 | result.m_low = a.m_low + b.m_low; | |
292 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); | |
293 | ||
294 | return result; | |
295 | } | |
296 | ||
297 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, | |
298 | unsigned int ndigits) | |
299 | { | |
300 | uint128_t r01 = { 0, 0 }; | |
301 | u64 r2 = 0; | |
302 | unsigned int i, k; | |
303 | ||
304 | /* Compute each digit of result in sequence, maintaining the | |
305 | * carries. | |
306 | */ | |
307 | for (k = 0; k < ndigits * 2 - 1; k++) { | |
308 | unsigned int min; | |
309 | ||
310 | if (k < ndigits) | |
311 | min = 0; | |
312 | else | |
313 | min = (k + 1) - ndigits; | |
314 | ||
315 | for (i = min; i <= k && i < ndigits; i++) { | |
316 | uint128_t product; | |
317 | ||
318 | product = mul_64_64(left[i], right[k - i]); | |
319 | ||
320 | r01 = add_128_128(r01, product); | |
321 | r2 += (r01.m_high < product.m_high); | |
322 | } | |
323 | ||
324 | result[k] = r01.m_low; | |
325 | r01.m_low = r01.m_high; | |
326 | r01.m_high = r2; | |
327 | r2 = 0; | |
328 | } | |
329 | ||
330 | result[ndigits * 2 - 1] = r01.m_low; | |
331 | } | |
332 | ||
333 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) | |
334 | { | |
335 | uint128_t r01 = { 0, 0 }; | |
336 | u64 r2 = 0; | |
337 | int i, k; | |
338 | ||
339 | for (k = 0; k < ndigits * 2 - 1; k++) { | |
340 | unsigned int min; | |
341 | ||
342 | if (k < ndigits) | |
343 | min = 0; | |
344 | else | |
345 | min = (k + 1) - ndigits; | |
346 | ||
347 | for (i = min; i <= k && i <= k - i; i++) { | |
348 | uint128_t product; | |
349 | ||
350 | product = mul_64_64(left[i], left[k - i]); | |
351 | ||
352 | if (i < k - i) { | |
353 | r2 += product.m_high >> 63; | |
354 | product.m_high = (product.m_high << 1) | | |
355 | (product.m_low >> 63); | |
356 | product.m_low <<= 1; | |
357 | } | |
358 | ||
359 | r01 = add_128_128(r01, product); | |
360 | r2 += (r01.m_high < product.m_high); | |
361 | } | |
362 | ||
363 | result[k] = r01.m_low; | |
364 | r01.m_low = r01.m_high; | |
365 | r01.m_high = r2; | |
366 | r2 = 0; | |
367 | } | |
368 | ||
369 | result[ndigits * 2 - 1] = r01.m_low; | |
370 | } | |
371 | ||
372 | /* Computes result = (left + right) % mod. | |
373 | * Assumes that left < mod and right < mod, result != mod. | |
374 | */ | |
375 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, | |
376 | const u64 *mod, unsigned int ndigits) | |
377 | { | |
378 | u64 carry; | |
379 | ||
380 | carry = vli_add(result, left, right, ndigits); | |
381 | ||
382 | /* result > mod (result = mod + remainder), so subtract mod to | |
383 | * get remainder. | |
384 | */ | |
385 | if (carry || vli_cmp(result, mod, ndigits) >= 0) | |
386 | vli_sub(result, result, mod, ndigits); | |
387 | } | |
388 | ||
389 | /* Computes result = (left - right) % mod. | |
390 | * Assumes that left < mod and right < mod, result != mod. | |
391 | */ | |
392 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, | |
393 | const u64 *mod, unsigned int ndigits) | |
394 | { | |
395 | u64 borrow = vli_sub(result, left, right, ndigits); | |
396 | ||
397 | /* In this case, p_result == -diff == (max int) - diff. | |
398 | * Since -x % d == d - x, we can get the correct result from | |
399 | * result + mod (with overflow). | |
400 | */ | |
401 | if (borrow) | |
402 | vli_add(result, result, mod, ndigits); | |
403 | } | |
404 | ||
405 | /* Computes p_result = p_product % curve_p. | |
406 | * See algorithm 5 and 6 from | |
407 | * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf | |
408 | */ | |
409 | static void vli_mmod_fast_192(u64 *result, const u64 *product, | |
410 | const u64 *curve_prime, u64 *tmp) | |
411 | { | |
412 | const unsigned int ndigits = 3; | |
413 | int carry; | |
414 | ||
415 | vli_set(result, product, ndigits); | |
416 | ||
417 | vli_set(tmp, &product[3], ndigits); | |
418 | carry = vli_add(result, result, tmp, ndigits); | |
419 | ||
420 | tmp[0] = 0; | |
421 | tmp[1] = product[3]; | |
422 | tmp[2] = product[4]; | |
423 | carry += vli_add(result, result, tmp, ndigits); | |
424 | ||
425 | tmp[0] = tmp[1] = product[5]; | |
426 | tmp[2] = 0; | |
427 | carry += vli_add(result, result, tmp, ndigits); | |
428 | ||
429 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | |
430 | carry -= vli_sub(result, result, curve_prime, ndigits); | |
431 | } | |
432 | ||
433 | /* Computes result = product % curve_prime | |
434 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf | |
435 | */ | |
436 | static void vli_mmod_fast_256(u64 *result, const u64 *product, | |
437 | const u64 *curve_prime, u64 *tmp) | |
438 | { | |
439 | int carry; | |
440 | const unsigned int ndigits = 4; | |
441 | ||
442 | /* t */ | |
443 | vli_set(result, product, ndigits); | |
444 | ||
445 | /* s1 */ | |
446 | tmp[0] = 0; | |
447 | tmp[1] = product[5] & 0xffffffff00000000ull; | |
448 | tmp[2] = product[6]; | |
449 | tmp[3] = product[7]; | |
450 | carry = vli_lshift(tmp, tmp, 1, ndigits); | |
451 | carry += vli_add(result, result, tmp, ndigits); | |
452 | ||
453 | /* s2 */ | |
454 | tmp[1] = product[6] << 32; | |
455 | tmp[2] = (product[6] >> 32) | (product[7] << 32); | |
456 | tmp[3] = product[7] >> 32; | |
457 | carry += vli_lshift(tmp, tmp, 1, ndigits); | |
458 | carry += vli_add(result, result, tmp, ndigits); | |
459 | ||
460 | /* s3 */ | |
461 | tmp[0] = product[4]; | |
462 | tmp[1] = product[5] & 0xffffffff; | |
463 | tmp[2] = 0; | |
464 | tmp[3] = product[7]; | |
465 | carry += vli_add(result, result, tmp, ndigits); | |
466 | ||
467 | /* s4 */ | |
468 | tmp[0] = (product[4] >> 32) | (product[5] << 32); | |
469 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); | |
470 | tmp[2] = product[7]; | |
471 | tmp[3] = (product[6] >> 32) | (product[4] << 32); | |
472 | carry += vli_add(result, result, tmp, ndigits); | |
473 | ||
474 | /* d1 */ | |
475 | tmp[0] = (product[5] >> 32) | (product[6] << 32); | |
476 | tmp[1] = (product[6] >> 32); | |
477 | tmp[2] = 0; | |
478 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); | |
479 | carry -= vli_sub(result, result, tmp, ndigits); | |
480 | ||
481 | /* d2 */ | |
482 | tmp[0] = product[6]; | |
483 | tmp[1] = product[7]; | |
484 | tmp[2] = 0; | |
485 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); | |
486 | carry -= vli_sub(result, result, tmp, ndigits); | |
487 | ||
488 | /* d3 */ | |
489 | tmp[0] = (product[6] >> 32) | (product[7] << 32); | |
490 | tmp[1] = (product[7] >> 32) | (product[4] << 32); | |
491 | tmp[2] = (product[4] >> 32) | (product[5] << 32); | |
492 | tmp[3] = (product[6] << 32); | |
493 | carry -= vli_sub(result, result, tmp, ndigits); | |
494 | ||
495 | /* d4 */ | |
496 | tmp[0] = product[7]; | |
497 | tmp[1] = product[4] & 0xffffffff00000000ull; | |
498 | tmp[2] = product[5]; | |
499 | tmp[3] = product[6] & 0xffffffff00000000ull; | |
500 | carry -= vli_sub(result, result, tmp, ndigits); | |
501 | ||
502 | if (carry < 0) { | |
503 | do { | |
504 | carry += vli_add(result, result, curve_prime, ndigits); | |
505 | } while (carry < 0); | |
506 | } else { | |
507 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) | |
508 | carry -= vli_sub(result, result, curve_prime, ndigits); | |
509 | } | |
510 | } | |
511 | ||
512 | /* Computes result = product % curve_prime | |
513 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf | |
514 | */ | |
515 | static bool vli_mmod_fast(u64 *result, u64 *product, | |
516 | const u64 *curve_prime, unsigned int ndigits) | |
517 | { | |
d5c3b178 | 518 | u64 tmp[2 * ECC_MAX_DIGITS]; |
3c4b2390 SB |
519 | |
520 | switch (ndigits) { | |
521 | case 3: | |
522 | vli_mmod_fast_192(result, product, curve_prime, tmp); | |
523 | break; | |
524 | case 4: | |
525 | vli_mmod_fast_256(result, product, curve_prime, tmp); | |
526 | break; | |
527 | default: | |
528 | pr_err("unsupports digits size!\n"); | |
529 | return false; | |
530 | } | |
531 | ||
532 | return true; | |
533 | } | |
534 | ||
535 | /* Computes result = (left * right) % curve_prime. */ | |
536 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, | |
537 | const u64 *curve_prime, unsigned int ndigits) | |
538 | { | |
d5c3b178 | 539 | u64 product[2 * ECC_MAX_DIGITS]; |
3c4b2390 SB |
540 | |
541 | vli_mult(product, left, right, ndigits); | |
542 | vli_mmod_fast(result, product, curve_prime, ndigits); | |
543 | } | |
544 | ||
545 | /* Computes result = left^2 % curve_prime. */ | |
546 | static void vli_mod_square_fast(u64 *result, const u64 *left, | |
547 | const u64 *curve_prime, unsigned int ndigits) | |
548 | { | |
d5c3b178 | 549 | u64 product[2 * ECC_MAX_DIGITS]; |
3c4b2390 SB |
550 | |
551 | vli_square(product, left, ndigits); | |
552 | vli_mmod_fast(result, product, curve_prime, ndigits); | |
553 | } | |
554 | ||
555 | #define EVEN(vli) (!(vli[0] & 1)) | |
556 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. | |
557 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" | |
558 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf | |
559 | */ | |
560 | static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, | |
561 | unsigned int ndigits) | |
562 | { | |
d5c3b178 KC |
563 | u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; |
564 | u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
565 | u64 carry; |
566 | int cmp_result; | |
567 | ||
568 | if (vli_is_zero(input, ndigits)) { | |
569 | vli_clear(result, ndigits); | |
570 | return; | |
571 | } | |
572 | ||
573 | vli_set(a, input, ndigits); | |
574 | vli_set(b, mod, ndigits); | |
575 | vli_clear(u, ndigits); | |
576 | u[0] = 1; | |
577 | vli_clear(v, ndigits); | |
578 | ||
579 | while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { | |
580 | carry = 0; | |
581 | ||
582 | if (EVEN(a)) { | |
583 | vli_rshift1(a, ndigits); | |
584 | ||
585 | if (!EVEN(u)) | |
586 | carry = vli_add(u, u, mod, ndigits); | |
587 | ||
588 | vli_rshift1(u, ndigits); | |
589 | if (carry) | |
590 | u[ndigits - 1] |= 0x8000000000000000ull; | |
591 | } else if (EVEN(b)) { | |
592 | vli_rshift1(b, ndigits); | |
593 | ||
594 | if (!EVEN(v)) | |
595 | carry = vli_add(v, v, mod, ndigits); | |
596 | ||
597 | vli_rshift1(v, ndigits); | |
598 | if (carry) | |
599 | v[ndigits - 1] |= 0x8000000000000000ull; | |
600 | } else if (cmp_result > 0) { | |
601 | vli_sub(a, a, b, ndigits); | |
602 | vli_rshift1(a, ndigits); | |
603 | ||
604 | if (vli_cmp(u, v, ndigits) < 0) | |
605 | vli_add(u, u, mod, ndigits); | |
606 | ||
607 | vli_sub(u, u, v, ndigits); | |
608 | if (!EVEN(u)) | |
609 | carry = vli_add(u, u, mod, ndigits); | |
610 | ||
611 | vli_rshift1(u, ndigits); | |
612 | if (carry) | |
613 | u[ndigits - 1] |= 0x8000000000000000ull; | |
614 | } else { | |
615 | vli_sub(b, b, a, ndigits); | |
616 | vli_rshift1(b, ndigits); | |
617 | ||
618 | if (vli_cmp(v, u, ndigits) < 0) | |
619 | vli_add(v, v, mod, ndigits); | |
620 | ||
621 | vli_sub(v, v, u, ndigits); | |
622 | if (!EVEN(v)) | |
623 | carry = vli_add(v, v, mod, ndigits); | |
624 | ||
625 | vli_rshift1(v, ndigits); | |
626 | if (carry) | |
627 | v[ndigits - 1] |= 0x8000000000000000ull; | |
628 | } | |
629 | } | |
630 | ||
631 | vli_set(result, u, ndigits); | |
632 | } | |
633 | ||
634 | /* ------ Point operations ------ */ | |
635 | ||
636 | /* Returns true if p_point is the point at infinity, false otherwise. */ | |
637 | static bool ecc_point_is_zero(const struct ecc_point *point) | |
638 | { | |
639 | return (vli_is_zero(point->x, point->ndigits) && | |
640 | vli_is_zero(point->y, point->ndigits)); | |
641 | } | |
642 | ||
643 | /* Point multiplication algorithm using Montgomery's ladder with co-Z | |
644 | * coordinates. From http://eprint.iacr.org/2011/338.pdf | |
645 | */ | |
646 | ||
647 | /* Double in place */ | |
648 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, | |
649 | u64 *curve_prime, unsigned int ndigits) | |
650 | { | |
651 | /* t1 = x, t2 = y, t3 = z */ | |
d5c3b178 KC |
652 | u64 t4[ECC_MAX_DIGITS]; |
653 | u64 t5[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
654 | |
655 | if (vli_is_zero(z1, ndigits)) | |
656 | return; | |
657 | ||
658 | /* t4 = y1^2 */ | |
659 | vli_mod_square_fast(t4, y1, curve_prime, ndigits); | |
660 | /* t5 = x1*y1^2 = A */ | |
661 | vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); | |
662 | /* t4 = y1^4 */ | |
663 | vli_mod_square_fast(t4, t4, curve_prime, ndigits); | |
664 | /* t2 = y1*z1 = z3 */ | |
665 | vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); | |
666 | /* t3 = z1^2 */ | |
667 | vli_mod_square_fast(z1, z1, curve_prime, ndigits); | |
668 | ||
669 | /* t1 = x1 + z1^2 */ | |
670 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); | |
671 | /* t3 = 2*z1^2 */ | |
672 | vli_mod_add(z1, z1, z1, curve_prime, ndigits); | |
673 | /* t3 = x1 - z1^2 */ | |
674 | vli_mod_sub(z1, x1, z1, curve_prime, ndigits); | |
675 | /* t1 = x1^2 - z1^4 */ | |
676 | vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); | |
677 | ||
678 | /* t3 = 2*(x1^2 - z1^4) */ | |
679 | vli_mod_add(z1, x1, x1, curve_prime, ndigits); | |
680 | /* t1 = 3*(x1^2 - z1^4) */ | |
681 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); | |
682 | if (vli_test_bit(x1, 0)) { | |
683 | u64 carry = vli_add(x1, x1, curve_prime, ndigits); | |
684 | ||
685 | vli_rshift1(x1, ndigits); | |
686 | x1[ndigits - 1] |= carry << 63; | |
687 | } else { | |
688 | vli_rshift1(x1, ndigits); | |
689 | } | |
690 | /* t1 = 3/2*(x1^2 - z1^4) = B */ | |
691 | ||
692 | /* t3 = B^2 */ | |
693 | vli_mod_square_fast(z1, x1, curve_prime, ndigits); | |
694 | /* t3 = B^2 - A */ | |
695 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | |
696 | /* t3 = B^2 - 2A = x3 */ | |
697 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); | |
698 | /* t5 = A - x3 */ | |
699 | vli_mod_sub(t5, t5, z1, curve_prime, ndigits); | |
700 | /* t1 = B * (A - x3) */ | |
701 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
702 | /* t4 = B * (A - x3) - y1^4 = y3 */ | |
703 | vli_mod_sub(t4, x1, t4, curve_prime, ndigits); | |
704 | ||
705 | vli_set(x1, z1, ndigits); | |
706 | vli_set(z1, y1, ndigits); | |
707 | vli_set(y1, t4, ndigits); | |
708 | } | |
709 | ||
710 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ | |
711 | static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime, | |
712 | unsigned int ndigits) | |
713 | { | |
d5c3b178 | 714 | u64 t1[ECC_MAX_DIGITS]; |
3c4b2390 SB |
715 | |
716 | vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ | |
717 | vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ | |
718 | vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ | |
719 | vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ | |
720 | } | |
721 | ||
722 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ | |
723 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | |
724 | u64 *p_initial_z, u64 *curve_prime, | |
725 | unsigned int ndigits) | |
726 | { | |
d5c3b178 | 727 | u64 z[ECC_MAX_DIGITS]; |
3c4b2390 SB |
728 | |
729 | vli_set(x2, x1, ndigits); | |
730 | vli_set(y2, y1, ndigits); | |
731 | ||
732 | vli_clear(z, ndigits); | |
733 | z[0] = 1; | |
734 | ||
735 | if (p_initial_z) | |
736 | vli_set(z, p_initial_z, ndigits); | |
737 | ||
738 | apply_z(x1, y1, z, curve_prime, ndigits); | |
739 | ||
740 | ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); | |
741 | ||
742 | apply_z(x2, y2, z, curve_prime, ndigits); | |
743 | } | |
744 | ||
745 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | |
746 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) | |
747 | * or P => P', Q => P + Q | |
748 | */ | |
749 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, | |
750 | unsigned int ndigits) | |
751 | { | |
752 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | |
d5c3b178 | 753 | u64 t5[ECC_MAX_DIGITS]; |
3c4b2390 SB |
754 | |
755 | /* t5 = x2 - x1 */ | |
756 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | |
757 | /* t5 = (x2 - x1)^2 = A */ | |
758 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); | |
759 | /* t1 = x1*A = B */ | |
760 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
761 | /* t3 = x2*A = C */ | |
762 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); | |
763 | /* t4 = y2 - y1 */ | |
764 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
765 | /* t5 = (y2 - y1)^2 = D */ | |
766 | vli_mod_square_fast(t5, y2, curve_prime, ndigits); | |
767 | ||
768 | /* t5 = D - B */ | |
769 | vli_mod_sub(t5, t5, x1, curve_prime, ndigits); | |
770 | /* t5 = D - B - C = x3 */ | |
771 | vli_mod_sub(t5, t5, x2, curve_prime, ndigits); | |
772 | /* t3 = C - B */ | |
773 | vli_mod_sub(x2, x2, x1, curve_prime, ndigits); | |
774 | /* t2 = y1*(C - B) */ | |
775 | vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); | |
776 | /* t3 = B - x3 */ | |
777 | vli_mod_sub(x2, x1, t5, curve_prime, ndigits); | |
778 | /* t4 = (y2 - y1)*(B - x3) */ | |
779 | vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); | |
780 | /* t4 = y3 */ | |
781 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
782 | ||
783 | vli_set(x2, t5, ndigits); | |
784 | } | |
785 | ||
786 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | |
787 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) | |
788 | * or P => P - Q, Q => P + Q | |
789 | */ | |
790 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, | |
791 | unsigned int ndigits) | |
792 | { | |
793 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | |
d5c3b178 KC |
794 | u64 t5[ECC_MAX_DIGITS]; |
795 | u64 t6[ECC_MAX_DIGITS]; | |
796 | u64 t7[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
797 | |
798 | /* t5 = x2 - x1 */ | |
799 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); | |
800 | /* t5 = (x2 - x1)^2 = A */ | |
801 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); | |
802 | /* t1 = x1*A = B */ | |
803 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); | |
804 | /* t3 = x2*A = C */ | |
805 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); | |
806 | /* t4 = y2 + y1 */ | |
807 | vli_mod_add(t5, y2, y1, curve_prime, ndigits); | |
808 | /* t4 = y2 - y1 */ | |
809 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
810 | ||
811 | /* t6 = C - B */ | |
812 | vli_mod_sub(t6, x2, x1, curve_prime, ndigits); | |
813 | /* t2 = y1 * (C - B) */ | |
814 | vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); | |
815 | /* t6 = B + C */ | |
816 | vli_mod_add(t6, x1, x2, curve_prime, ndigits); | |
817 | /* t3 = (y2 - y1)^2 */ | |
818 | vli_mod_square_fast(x2, y2, curve_prime, ndigits); | |
819 | /* t3 = x3 */ | |
820 | vli_mod_sub(x2, x2, t6, curve_prime, ndigits); | |
821 | ||
822 | /* t7 = B - x3 */ | |
823 | vli_mod_sub(t7, x1, x2, curve_prime, ndigits); | |
824 | /* t4 = (y2 - y1)*(B - x3) */ | |
825 | vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); | |
826 | /* t4 = y3 */ | |
827 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); | |
828 | ||
829 | /* t7 = (y2 + y1)^2 = F */ | |
830 | vli_mod_square_fast(t7, t5, curve_prime, ndigits); | |
831 | /* t7 = x3' */ | |
832 | vli_mod_sub(t7, t7, t6, curve_prime, ndigits); | |
833 | /* t6 = x3' - B */ | |
834 | vli_mod_sub(t6, t7, x1, curve_prime, ndigits); | |
835 | /* t6 = (y2 + y1)*(x3' - B) */ | |
836 | vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); | |
837 | /* t2 = y3' */ | |
838 | vli_mod_sub(y1, t6, y1, curve_prime, ndigits); | |
839 | ||
840 | vli_set(x1, t7, ndigits); | |
841 | } | |
842 | ||
843 | static void ecc_point_mult(struct ecc_point *result, | |
844 | const struct ecc_point *point, const u64 *scalar, | |
845 | u64 *initial_z, u64 *curve_prime, | |
846 | unsigned int ndigits) | |
847 | { | |
848 | /* R0 and R1 */ | |
d5c3b178 KC |
849 | u64 rx[2][ECC_MAX_DIGITS]; |
850 | u64 ry[2][ECC_MAX_DIGITS]; | |
851 | u64 z[ECC_MAX_DIGITS]; | |
3c4b2390 SB |
852 | int i, nb; |
853 | int num_bits = vli_num_bits(scalar, ndigits); | |
854 | ||
855 | vli_set(rx[1], point->x, ndigits); | |
856 | vli_set(ry[1], point->y, ndigits); | |
857 | ||
858 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, | |
859 | ndigits); | |
860 | ||
861 | for (i = num_bits - 2; i > 0; i--) { | |
862 | nb = !vli_test_bit(scalar, i); | |
863 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, | |
864 | ndigits); | |
865 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, | |
866 | ndigits); | |
867 | } | |
868 | ||
869 | nb = !vli_test_bit(scalar, 0); | |
870 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, | |
871 | ndigits); | |
872 | ||
873 | /* Find final 1/Z value. */ | |
874 | /* X1 - X0 */ | |
875 | vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); | |
876 | /* Yb * (X1 - X0) */ | |
877 | vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); | |
878 | /* xP * Yb * (X1 - X0) */ | |
879 | vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); | |
880 | ||
881 | /* 1 / (xP * Yb * (X1 - X0)) */ | |
882 | vli_mod_inv(z, z, curve_prime, point->ndigits); | |
883 | ||
884 | /* yP / (xP * Yb * (X1 - X0)) */ | |
885 | vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); | |
886 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ | |
887 | vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); | |
888 | /* End 1/Z calculation */ | |
889 | ||
890 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); | |
891 | ||
892 | apply_z(rx[0], ry[0], z, curve_prime, ndigits); | |
893 | ||
894 | vli_set(result->x, rx[0], ndigits); | |
895 | vli_set(result->y, ry[0], ndigits); | |
896 | } | |
897 | ||
898 | static inline void ecc_swap_digits(const u64 *in, u64 *out, | |
899 | unsigned int ndigits) | |
900 | { | |
901 | int i; | |
902 | ||
903 | for (i = 0; i < ndigits; i++) | |
904 | out[i] = __swab64(in[ndigits - 1 - i]); | |
905 | } | |
906 | ||
907 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, | |
ad269597 | 908 | const u64 *private_key, unsigned int private_key_len) |
3c4b2390 SB |
909 | { |
910 | int nbytes; | |
911 | const struct ecc_curve *curve = ecc_get_curve(curve_id); | |
912 | ||
913 | if (!private_key) | |
914 | return -EINVAL; | |
915 | ||
916 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; | |
917 | ||
918 | if (private_key_len != nbytes) | |
919 | return -EINVAL; | |
920 | ||
ad269597 | 921 | if (vli_is_zero(private_key, ndigits)) |
3c4b2390 SB |
922 | return -EINVAL; |
923 | ||
924 | /* Make sure the private key is in the range [1, n-1]. */ | |
ad269597 | 925 | if (vli_cmp(curve->n, private_key, ndigits) != 1) |
3c4b2390 SB |
926 | return -EINVAL; |
927 | ||
928 | return 0; | |
929 | } | |
930 | ||
6755fd26 TA |
931 | /* |
932 | * ECC private keys are generated using the method of extra random bits, | |
933 | * equivalent to that described in FIPS 186-4, Appendix B.4.1. | |
934 | * | |
935 | * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer | |
936 | * than requested | |
937 | * 0 <= c mod(n-1) <= n-2 and implies that | |
938 | * 1 <= d <= n-1 | |
939 | * | |
940 | * This method generates a private key uniformly distributed in the range | |
941 | * [1, n-1]. | |
942 | */ | |
943 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) | |
944 | { | |
945 | const struct ecc_curve *curve = ecc_get_curve(curve_id); | |
d5c3b178 | 946 | u64 priv[ECC_MAX_DIGITS]; |
6755fd26 TA |
947 | unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
948 | unsigned int nbits = vli_num_bits(curve->n, ndigits); | |
949 | int err; | |
950 | ||
951 | /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ | |
d5c3b178 | 952 | if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) |
6755fd26 TA |
953 | return -EINVAL; |
954 | ||
955 | /* | |
956 | * FIPS 186-4 recommends that the private key should be obtained from a | |
957 | * RBG with a security strength equal to or greater than the security | |
958 | * strength associated with N. | |
959 | * | |
960 | * The maximum security strength identified by NIST SP800-57pt1r4 for | |
961 | * ECC is 256 (N >= 512). | |
962 | * | |
963 | * This condition is met by the default RNG because it selects a favored | |
964 | * DRBG with a security strength of 256. | |
965 | */ | |
966 | if (crypto_get_default_rng()) | |
4c0e22c9 | 967 | return -EFAULT; |
6755fd26 TA |
968 | |
969 | err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); | |
970 | crypto_put_default_rng(); | |
971 | if (err) | |
972 | return err; | |
973 | ||
974 | if (vli_is_zero(priv, ndigits)) | |
975 | return -EINVAL; | |
976 | ||
977 | /* Make sure the private key is in the range [1, n-1]. */ | |
978 | if (vli_cmp(curve->n, priv, ndigits) != 1) | |
979 | return -EINVAL; | |
980 | ||
981 | ecc_swap_digits(priv, privkey, ndigits); | |
982 | ||
983 | return 0; | |
984 | } | |
985 | ||
7380c56d TA |
986 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, |
987 | const u64 *private_key, u64 *public_key) | |
3c4b2390 SB |
988 | { |
989 | int ret = 0; | |
990 | struct ecc_point *pk; | |
d5c3b178 | 991 | u64 priv[ECC_MAX_DIGITS]; |
3c4b2390 SB |
992 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
993 | ||
d5c3b178 | 994 | if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { |
3c4b2390 SB |
995 | ret = -EINVAL; |
996 | goto out; | |
997 | } | |
998 | ||
ad269597 | 999 | ecc_swap_digits(private_key, priv, ndigits); |
3c4b2390 SB |
1000 | |
1001 | pk = ecc_alloc_point(ndigits); | |
1002 | if (!pk) { | |
1003 | ret = -ENOMEM; | |
1004 | goto out; | |
1005 | } | |
1006 | ||
1007 | ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits); | |
1008 | if (ecc_point_is_zero(pk)) { | |
1009 | ret = -EAGAIN; | |
1010 | goto err_free_point; | |
1011 | } | |
1012 | ||
ad269597 TA |
1013 | ecc_swap_digits(pk->x, public_key, ndigits); |
1014 | ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); | |
3c4b2390 SB |
1015 | |
1016 | err_free_point: | |
1017 | ecc_free_point(pk); | |
1018 | out: | |
1019 | return ret; | |
1020 | } | |
1021 | ||
ea169a30 SM |
1022 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ |
1023 | static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, | |
1024 | struct ecc_point *pk) | |
1025 | { | |
1026 | u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; | |
1027 | ||
1028 | /* Check 1: Verify key is not the zero point. */ | |
1029 | if (ecc_point_is_zero(pk)) | |
1030 | return -EINVAL; | |
1031 | ||
1032 | /* Check 2: Verify key is in the range [1, p-1]. */ | |
1033 | if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) | |
1034 | return -EINVAL; | |
1035 | if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) | |
1036 | return -EINVAL; | |
1037 | ||
1038 | /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ | |
1039 | vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */ | |
1040 | vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */ | |
1041 | vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */ | |
1042 | vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */ | |
1043 | vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ | |
1044 | vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ | |
1045 | if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ | |
1046 | return -EINVAL; | |
1047 | ||
1048 | return 0; | |
1049 | ||
1050 | } | |
1051 | ||
8f44df15 | 1052 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
ad269597 TA |
1053 | const u64 *private_key, const u64 *public_key, |
1054 | u64 *secret) | |
3c4b2390 SB |
1055 | { |
1056 | int ret = 0; | |
1057 | struct ecc_point *product, *pk; | |
d5c3b178 KC |
1058 | u64 priv[ECC_MAX_DIGITS]; |
1059 | u64 rand_z[ECC_MAX_DIGITS]; | |
1060 | unsigned int nbytes; | |
3c4b2390 SB |
1061 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
1062 | ||
d5c3b178 KC |
1063 | if (!private_key || !public_key || !curve || |
1064 | ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { | |
3c4b2390 SB |
1065 | ret = -EINVAL; |
1066 | goto out; | |
1067 | } | |
1068 | ||
d5c3b178 | 1069 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
3c4b2390 | 1070 | |
d5c3b178 | 1071 | get_random_bytes(rand_z, nbytes); |
3c4b2390 SB |
1072 | |
1073 | pk = ecc_alloc_point(ndigits); | |
1074 | if (!pk) { | |
1075 | ret = -ENOMEM; | |
d5c3b178 | 1076 | goto out; |
3c4b2390 SB |
1077 | } |
1078 | ||
ea169a30 SM |
1079 | ecc_swap_digits(public_key, pk->x, ndigits); |
1080 | ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); | |
1081 | ret = ecc_is_pubkey_valid_partial(curve, pk); | |
1082 | if (ret) | |
1083 | goto err_alloc_product; | |
1084 | ||
1085 | ecc_swap_digits(private_key, priv, ndigits); | |
1086 | ||
3c4b2390 SB |
1087 | product = ecc_alloc_point(ndigits); |
1088 | if (!product) { | |
1089 | ret = -ENOMEM; | |
1090 | goto err_alloc_product; | |
1091 | } | |
1092 | ||
3c4b2390 SB |
1093 | ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits); |
1094 | ||
ad269597 | 1095 | ecc_swap_digits(product->x, secret, ndigits); |
3c4b2390 SB |
1096 | |
1097 | if (ecc_point_is_zero(product)) | |
1098 | ret = -EFAULT; | |
1099 | ||
1100 | ecc_free_point(product); | |
1101 | err_alloc_product: | |
1102 | ecc_free_point(pk); | |
1103 | out: | |
1104 | return ret; | |
1105 | } |