]>
Commit | Line | Data |
---|---|---|
ad80da65 XS |
1 | /* |
2 | * drivers/dma/fsl_raid.c | |
3 | * | |
4 | * Freescale RAID Engine device driver | |
5 | * | |
6 | * Author: | |
7 | * Harninder Rai <[email protected]> | |
8 | * Naveen Burmi <[email protected]> | |
9 | * | |
10 | * Rewrite: | |
11 | * Xuelin Shi <[email protected]> | |
12 | * | |
13 | * Copyright (c) 2010-2014 Freescale Semiconductor, Inc. | |
14 | * | |
15 | * Redistribution and use in source and binary forms, with or without | |
16 | * modification, are permitted provided that the following conditions are met: | |
17 | * * Redistributions of source code must retain the above copyright | |
18 | * notice, this list of conditions and the following disclaimer. | |
19 | * * Redistributions in binary form must reproduce the above copyright | |
20 | * notice, this list of conditions and the following disclaimer in the | |
21 | * documentation and/or other materials provided with the distribution. | |
22 | * * Neither the name of Freescale Semiconductor nor the | |
23 | * names of its contributors may be used to endorse or promote products | |
24 | * derived from this software without specific prior written permission. | |
25 | * | |
26 | * ALTERNATIVELY, this software may be distributed under the terms of the | |
27 | * GNU General Public License ("GPL") as published by the Free Software | |
28 | * Foundation, either version 2 of that License or (at your option) any | |
29 | * later version. | |
30 | * | |
31 | * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY | |
32 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
33 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
34 | * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY | |
35 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
36 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | |
37 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | |
38 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
39 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
40 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
41 | * | |
42 | * Theory of operation: | |
43 | * | |
44 | * General capabilities: | |
45 | * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q | |
46 | * calculations required in RAID5 and RAID6 operations. RE driver | |
47 | * registers with Linux's ASYNC layer as dma driver. RE hardware | |
48 | * maintains strict ordering of the requests through chained | |
49 | * command queueing. | |
50 | * | |
51 | * Data flow: | |
52 | * Software RAID layer of Linux (MD layer) maintains RAID partitions, | |
53 | * strips, stripes etc. It sends requests to the underlying ASYNC layer | |
54 | * which further passes it to RE driver. ASYNC layer decides which request | |
55 | * goes to which job ring of RE hardware. For every request processed by | |
56 | * RAID Engine, driver gets an interrupt unless coalescing is set. The | |
57 | * per job ring interrupt handler checks the status register for errors, | |
58 | * clears the interrupt and leave the post interrupt processing to the irq | |
59 | * thread. | |
60 | */ | |
61 | #include <linux/interrupt.h> | |
62 | #include <linux/module.h> | |
63 | #include <linux/of_irq.h> | |
64 | #include <linux/of_address.h> | |
65 | #include <linux/of_platform.h> | |
66 | #include <linux/dma-mapping.h> | |
67 | #include <linux/dmapool.h> | |
68 | #include <linux/dmaengine.h> | |
69 | #include <linux/io.h> | |
70 | #include <linux/spinlock.h> | |
71 | #include <linux/slab.h> | |
72 | ||
73 | #include "dmaengine.h" | |
74 | #include "fsl_raid.h" | |
75 | ||
76 | #define FSL_RE_MAX_XOR_SRCS 16 | |
77 | #define FSL_RE_MAX_PQ_SRCS 16 | |
78 | #define FSL_RE_MIN_DESCS 256 | |
79 | #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS) | |
80 | #define FSL_RE_FRAME_FORMAT 0x1 | |
81 | #define FSL_RE_MAX_DATA_LEN (1024*1024) | |
82 | ||
83 | #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx) | |
84 | ||
85 | /* Add descriptors into per chan software queue - submit_q */ | |
86 | static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx) | |
87 | { | |
88 | struct fsl_re_desc *desc; | |
89 | struct fsl_re_chan *re_chan; | |
90 | dma_cookie_t cookie; | |
91 | unsigned long flags; | |
92 | ||
93 | desc = to_fsl_re_dma_desc(tx); | |
94 | re_chan = container_of(tx->chan, struct fsl_re_chan, chan); | |
95 | ||
96 | spin_lock_irqsave(&re_chan->desc_lock, flags); | |
97 | cookie = dma_cookie_assign(tx); | |
98 | list_add_tail(&desc->node, &re_chan->submit_q); | |
99 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | |
100 | ||
101 | return cookie; | |
102 | } | |
103 | ||
104 | /* Copy descriptor from per chan software queue into hardware job ring */ | |
105 | static void fsl_re_issue_pending(struct dma_chan *chan) | |
106 | { | |
107 | struct fsl_re_chan *re_chan; | |
108 | int avail; | |
109 | struct fsl_re_desc *desc, *_desc; | |
110 | unsigned long flags; | |
111 | ||
112 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
113 | ||
114 | spin_lock_irqsave(&re_chan->desc_lock, flags); | |
115 | avail = FSL_RE_SLOT_AVAIL( | |
116 | in_be32(&re_chan->jrregs->inbring_slot_avail)); | |
117 | ||
118 | list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) { | |
119 | if (!avail) | |
120 | break; | |
121 | ||
122 | list_move_tail(&desc->node, &re_chan->active_q); | |
123 | ||
124 | memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count], | |
125 | &desc->hwdesc, sizeof(struct fsl_re_hw_desc)); | |
126 | ||
127 | re_chan->inb_count = (re_chan->inb_count + 1) & | |
128 | FSL_RE_RING_SIZE_MASK; | |
129 | out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1)); | |
130 | avail--; | |
131 | } | |
132 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | |
133 | } | |
134 | ||
135 | static void fsl_re_desc_done(struct fsl_re_desc *desc) | |
136 | { | |
137 | dma_async_tx_callback callback; | |
138 | void *callback_param; | |
139 | ||
140 | dma_cookie_complete(&desc->async_tx); | |
141 | ||
142 | callback = desc->async_tx.callback; | |
143 | callback_param = desc->async_tx.callback_param; | |
144 | if (callback) | |
145 | callback(callback_param); | |
146 | ||
147 | dma_descriptor_unmap(&desc->async_tx); | |
148 | } | |
149 | ||
150 | static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan) | |
151 | { | |
152 | struct fsl_re_desc *desc, *_desc; | |
153 | unsigned long flags; | |
154 | ||
155 | spin_lock_irqsave(&re_chan->desc_lock, flags); | |
156 | list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) { | |
157 | if (async_tx_test_ack(&desc->async_tx)) | |
158 | list_move_tail(&desc->node, &re_chan->free_q); | |
159 | } | |
160 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | |
161 | ||
162 | fsl_re_issue_pending(&re_chan->chan); | |
163 | } | |
164 | ||
165 | static void fsl_re_dequeue(unsigned long data) | |
166 | { | |
167 | struct fsl_re_chan *re_chan; | |
168 | struct fsl_re_desc *desc, *_desc; | |
169 | struct fsl_re_hw_desc *hwdesc; | |
170 | unsigned long flags; | |
171 | unsigned int count, oub_count; | |
172 | int found; | |
173 | ||
174 | re_chan = dev_get_drvdata((struct device *)data); | |
175 | ||
176 | fsl_re_cleanup_descs(re_chan); | |
177 | ||
178 | spin_lock_irqsave(&re_chan->desc_lock, flags); | |
179 | count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full)); | |
180 | while (count--) { | |
181 | found = 0; | |
182 | hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count]; | |
183 | list_for_each_entry_safe(desc, _desc, &re_chan->active_q, | |
184 | node) { | |
185 | /* compare the hw dma addr to find the completed */ | |
186 | if (desc->hwdesc.lbea32 == hwdesc->lbea32 && | |
187 | desc->hwdesc.addr_low == hwdesc->addr_low) { | |
188 | found = 1; | |
189 | break; | |
190 | } | |
191 | } | |
192 | ||
193 | if (found) { | |
194 | fsl_re_desc_done(desc); | |
195 | list_move_tail(&desc->node, &re_chan->ack_q); | |
196 | } else { | |
197 | dev_err(re_chan->dev, | |
198 | "found hwdesc not in sw queue, discard it\n"); | |
199 | } | |
200 | ||
201 | oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK; | |
202 | re_chan->oub_count = oub_count; | |
203 | ||
204 | out_be32(&re_chan->jrregs->oubring_job_rmvd, | |
205 | FSL_RE_RMVD_JOB(1)); | |
206 | } | |
207 | spin_unlock_irqrestore(&re_chan->desc_lock, flags); | |
208 | } | |
209 | ||
210 | /* Per Job Ring interrupt handler */ | |
211 | static irqreturn_t fsl_re_isr(int irq, void *data) | |
212 | { | |
213 | struct fsl_re_chan *re_chan; | |
214 | u32 irqstate, status; | |
215 | ||
216 | re_chan = dev_get_drvdata((struct device *)data); | |
217 | ||
218 | irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status); | |
219 | if (!irqstate) | |
220 | return IRQ_NONE; | |
221 | ||
222 | /* | |
223 | * There's no way in upper layer (read MD layer) to recover from | |
224 | * error conditions except restart everything. In long term we | |
225 | * need to do something more than just crashing | |
226 | */ | |
227 | if (irqstate & FSL_RE_ERROR) { | |
228 | status = in_be32(&re_chan->jrregs->jr_status); | |
229 | dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n", | |
230 | irqstate, status); | |
231 | } | |
232 | ||
233 | /* Clear interrupt */ | |
234 | out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR); | |
235 | ||
236 | tasklet_schedule(&re_chan->irqtask); | |
237 | ||
238 | return IRQ_HANDLED; | |
239 | } | |
240 | ||
241 | static enum dma_status fsl_re_tx_status(struct dma_chan *chan, | |
242 | dma_cookie_t cookie, | |
243 | struct dma_tx_state *txstate) | |
244 | { | |
245 | return dma_cookie_status(chan, cookie, txstate); | |
246 | } | |
247 | ||
248 | static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index, | |
249 | size_t length, dma_addr_t addr, bool final) | |
250 | { | |
251 | u32 efrl = length & FSL_RE_CF_LENGTH_MASK; | |
252 | ||
253 | efrl |= final << FSL_RE_CF_FINAL_SHIFT; | |
254 | cf[index].efrl32 = efrl; | |
255 | cf[index].addr_high = upper_32_bits(addr); | |
256 | cf[index].addr_low = lower_32_bits(addr); | |
257 | } | |
258 | ||
259 | static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan, | |
260 | struct fsl_re_desc *desc, | |
261 | void *cf, dma_addr_t paddr) | |
262 | { | |
263 | desc->re_chan = re_chan; | |
264 | desc->async_tx.tx_submit = fsl_re_tx_submit; | |
265 | dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan); | |
266 | INIT_LIST_HEAD(&desc->node); | |
267 | ||
268 | desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT; | |
269 | desc->hwdesc.lbea32 = upper_32_bits(paddr); | |
270 | desc->hwdesc.addr_low = lower_32_bits(paddr); | |
271 | desc->cf_addr = cf; | |
272 | desc->cf_paddr = paddr; | |
273 | ||
274 | desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE); | |
275 | desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE; | |
276 | ||
277 | return desc; | |
278 | } | |
279 | ||
280 | static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan, | |
281 | unsigned long flags) | |
282 | { | |
283 | struct fsl_re_desc *desc = NULL; | |
284 | void *cf; | |
285 | dma_addr_t paddr; | |
286 | unsigned long lock_flag; | |
287 | ||
288 | fsl_re_cleanup_descs(re_chan); | |
289 | ||
290 | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); | |
291 | if (!list_empty(&re_chan->free_q)) { | |
292 | /* take one desc from free_q */ | |
293 | desc = list_first_entry(&re_chan->free_q, | |
294 | struct fsl_re_desc, node); | |
295 | list_del(&desc->node); | |
296 | ||
297 | desc->async_tx.flags = flags; | |
298 | } | |
299 | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); | |
300 | ||
301 | if (!desc) { | |
302 | desc = kzalloc(sizeof(*desc), GFP_NOWAIT); | |
303 | if (!desc) | |
304 | return NULL; | |
305 | ||
306 | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT, | |
307 | &paddr); | |
308 | if (!cf) { | |
309 | kfree(desc); | |
310 | return NULL; | |
311 | } | |
312 | ||
313 | desc = fsl_re_init_desc(re_chan, desc, cf, paddr); | |
314 | desc->async_tx.flags = flags; | |
315 | ||
316 | spin_lock_irqsave(&re_chan->desc_lock, lock_flag); | |
317 | re_chan->alloc_count++; | |
318 | spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag); | |
319 | } | |
320 | ||
321 | return desc; | |
322 | } | |
323 | ||
324 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq( | |
325 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, | |
326 | unsigned int src_cnt, const unsigned char *scf, size_t len, | |
327 | unsigned long flags) | |
328 | { | |
329 | struct fsl_re_chan *re_chan; | |
330 | struct fsl_re_desc *desc; | |
331 | struct fsl_re_xor_cdb *xor; | |
332 | struct fsl_re_cmpnd_frame *cf; | |
333 | u32 cdb; | |
334 | unsigned int i, j; | |
335 | unsigned int save_src_cnt = src_cnt; | |
336 | int cont_q = 0; | |
337 | ||
338 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
339 | if (len > FSL_RE_MAX_DATA_LEN) { | |
340 | dev_err(re_chan->dev, "genq tx length %lu, max length %d\n", | |
341 | len, FSL_RE_MAX_DATA_LEN); | |
342 | return NULL; | |
343 | } | |
344 | ||
345 | desc = fsl_re_chan_alloc_desc(re_chan, flags); | |
346 | if (desc <= 0) | |
347 | return NULL; | |
348 | ||
349 | if (scf && (flags & DMA_PREP_CONTINUE)) { | |
350 | cont_q = 1; | |
351 | src_cnt += 1; | |
352 | } | |
353 | ||
354 | /* Filling xor CDB */ | |
355 | cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | |
356 | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; | |
357 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | |
358 | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; | |
359 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | |
360 | xor = desc->cdb_addr; | |
361 | xor->cdb32 = cdb; | |
362 | ||
363 | if (scf) { | |
364 | /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */ | |
365 | for (i = 0; i < save_src_cnt; i++) | |
366 | xor->gfm[i] = scf[i]; | |
367 | if (cont_q) | |
368 | xor->gfm[i++] = 1; | |
369 | } else { | |
370 | /* compute P, that is XOR all srcs */ | |
371 | for (i = 0; i < src_cnt; i++) | |
372 | xor->gfm[i] = 1; | |
373 | } | |
374 | ||
375 | /* Filling frame 0 of compound frame descriptor with CDB */ | |
376 | cf = desc->cf_addr; | |
377 | fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0); | |
378 | ||
379 | /* Fill CFD's 1st frame with dest buffer */ | |
380 | fill_cfd_frame(cf, 1, len, dest, 0); | |
381 | ||
382 | /* Fill CFD's rest of the frames with source buffers */ | |
383 | for (i = 2, j = 0; j < save_src_cnt; i++, j++) | |
384 | fill_cfd_frame(cf, i, len, src[j], 0); | |
385 | ||
386 | if (cont_q) | |
387 | fill_cfd_frame(cf, i++, len, dest, 0); | |
388 | ||
389 | /* Setting the final bit in the last source buffer frame in CFD */ | |
390 | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; | |
391 | ||
392 | return &desc->async_tx; | |
393 | } | |
394 | ||
395 | /* | |
396 | * Prep function for P parity calculation.In RAID Engine terminology, | |
397 | * XOR calculation is called GenQ calculation done through GenQ command | |
398 | */ | |
399 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor( | |
400 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, | |
401 | unsigned int src_cnt, size_t len, unsigned long flags) | |
402 | { | |
403 | /* NULL let genq take all coef as 1 */ | |
404 | return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags); | |
405 | } | |
406 | ||
407 | /* | |
408 | * Prep function for P/Q parity calculation.In RAID Engine terminology, | |
409 | * P/Q calculation is called GenQQ done through GenQQ command | |
410 | */ | |
411 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq( | |
412 | struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src, | |
413 | unsigned int src_cnt, const unsigned char *scf, size_t len, | |
414 | unsigned long flags) | |
415 | { | |
416 | struct fsl_re_chan *re_chan; | |
417 | struct fsl_re_desc *desc; | |
418 | struct fsl_re_pq_cdb *pq; | |
419 | struct fsl_re_cmpnd_frame *cf; | |
420 | u32 cdb; | |
421 | u8 *p; | |
422 | int gfmq_len, i, j; | |
423 | unsigned int save_src_cnt = src_cnt; | |
424 | ||
425 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
426 | if (len > FSL_RE_MAX_DATA_LEN) { | |
427 | dev_err(re_chan->dev, "pq tx length is %lu, max length is %d\n", | |
428 | len, FSL_RE_MAX_DATA_LEN); | |
429 | return NULL; | |
430 | } | |
431 | ||
432 | /* | |
433 | * RE requires at least 2 sources, if given only one source, we pass the | |
434 | * second source same as the first one. | |
435 | * With only one source, generating P is meaningless, only generate Q. | |
436 | */ | |
437 | if (src_cnt == 1) { | |
438 | struct dma_async_tx_descriptor *tx; | |
439 | dma_addr_t dma_src[2]; | |
440 | unsigned char coef[2]; | |
441 | ||
442 | dma_src[0] = *src; | |
443 | coef[0] = *scf; | |
444 | dma_src[1] = *src; | |
445 | coef[1] = 0; | |
446 | tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len, | |
447 | flags); | |
448 | if (tx) | |
449 | desc = to_fsl_re_dma_desc(tx); | |
450 | ||
451 | return tx; | |
452 | } | |
453 | ||
454 | /* | |
455 | * During RAID6 array creation, Linux's MD layer gets P and Q | |
456 | * calculated separately in two steps. But our RAID Engine has | |
457 | * the capability to calculate both P and Q with a single command | |
458 | * Hence to merge well with MD layer, we need to provide a hook | |
459 | * here and call re_jq_prep_dma_genq() function | |
460 | */ | |
461 | ||
462 | if (flags & DMA_PREP_PQ_DISABLE_P) | |
463 | return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt, | |
464 | scf, len, flags); | |
465 | ||
466 | if (flags & DMA_PREP_CONTINUE) | |
467 | src_cnt += 3; | |
468 | ||
469 | desc = fsl_re_chan_alloc_desc(re_chan, flags); | |
470 | if (desc <= 0) | |
471 | return NULL; | |
472 | ||
473 | /* Filling GenQQ CDB */ | |
474 | cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | |
475 | cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT; | |
476 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | |
477 | cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT; | |
478 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | |
479 | ||
480 | pq = desc->cdb_addr; | |
481 | pq->cdb32 = cdb; | |
482 | ||
483 | p = pq->gfm_q1; | |
484 | /* Init gfm_q1[] */ | |
485 | for (i = 0; i < src_cnt; i++) | |
486 | p[i] = 1; | |
487 | ||
488 | /* Align gfm[] to 32bit */ | |
489 | gfmq_len = ALIGN(src_cnt, 4); | |
490 | ||
491 | /* Init gfm_q2[] */ | |
492 | p += gfmq_len; | |
493 | for (i = 0; i < src_cnt; i++) | |
494 | p[i] = scf[i]; | |
495 | ||
496 | /* Filling frame 0 of compound frame descriptor with CDB */ | |
497 | cf = desc->cf_addr; | |
498 | fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0); | |
499 | ||
500 | /* Fill CFD's 1st & 2nd frame with dest buffers */ | |
501 | for (i = 1, j = 0; i < 3; i++, j++) | |
502 | fill_cfd_frame(cf, i, len, dest[j], 0); | |
503 | ||
504 | /* Fill CFD's rest of the frames with source buffers */ | |
505 | for (i = 3, j = 0; j < save_src_cnt; i++, j++) | |
506 | fill_cfd_frame(cf, i, len, src[j], 0); | |
507 | ||
508 | /* PQ computation continuation */ | |
509 | if (flags & DMA_PREP_CONTINUE) { | |
510 | if (src_cnt - save_src_cnt == 3) { | |
511 | p[save_src_cnt] = 0; | |
512 | p[save_src_cnt + 1] = 0; | |
513 | p[save_src_cnt + 2] = 1; | |
514 | fill_cfd_frame(cf, i++, len, dest[0], 0); | |
515 | fill_cfd_frame(cf, i++, len, dest[1], 0); | |
516 | fill_cfd_frame(cf, i++, len, dest[1], 0); | |
517 | } else { | |
518 | dev_err(re_chan->dev, "PQ tx continuation error!\n"); | |
519 | return NULL; | |
520 | } | |
521 | } | |
522 | ||
523 | /* Setting the final bit in the last source buffer frame in CFD */ | |
524 | cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT; | |
525 | ||
526 | return &desc->async_tx; | |
527 | } | |
528 | ||
529 | /* | |
530 | * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE | |
531 | * command. Logic of this function will need to be modified once multipage | |
532 | * support is added in Linux's MD/ASYNC Layer | |
533 | */ | |
534 | static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy( | |
535 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, | |
536 | size_t len, unsigned long flags) | |
537 | { | |
538 | struct fsl_re_chan *re_chan; | |
539 | struct fsl_re_desc *desc; | |
540 | size_t length; | |
541 | struct fsl_re_cmpnd_frame *cf; | |
542 | struct fsl_re_move_cdb *move; | |
543 | u32 cdb; | |
544 | ||
545 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
546 | ||
547 | if (len > FSL_RE_MAX_DATA_LEN) { | |
548 | dev_err(re_chan->dev, "cp tx length is %lu, max length is %d\n", | |
549 | len, FSL_RE_MAX_DATA_LEN); | |
550 | return NULL; | |
551 | } | |
552 | ||
553 | desc = fsl_re_chan_alloc_desc(re_chan, flags); | |
554 | if (desc <= 0) | |
555 | return NULL; | |
556 | ||
557 | /* Filling move CDB */ | |
558 | cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT; | |
559 | cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT; | |
560 | cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT; | |
561 | cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT; | |
562 | ||
563 | move = desc->cdb_addr; | |
564 | move->cdb32 = cdb; | |
565 | ||
566 | /* Filling frame 0 of CFD with move CDB */ | |
567 | cf = desc->cf_addr; | |
568 | fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0); | |
569 | ||
570 | length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN); | |
571 | ||
572 | /* Fill CFD's 1st frame with dest buffer */ | |
573 | fill_cfd_frame(cf, 1, length, dest, 0); | |
574 | ||
575 | /* Fill CFD's 2nd frame with src buffer */ | |
576 | fill_cfd_frame(cf, 2, length, src, 1); | |
577 | ||
578 | return &desc->async_tx; | |
579 | } | |
580 | ||
581 | static int fsl_re_alloc_chan_resources(struct dma_chan *chan) | |
582 | { | |
583 | struct fsl_re_chan *re_chan; | |
584 | struct fsl_re_desc *desc; | |
585 | void *cf; | |
586 | dma_addr_t paddr; | |
587 | int i; | |
588 | ||
589 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
590 | for (i = 0; i < FSL_RE_MIN_DESCS; i++) { | |
591 | desc = kzalloc(sizeof(*desc), GFP_KERNEL); | |
592 | if (!desc) | |
593 | break; | |
594 | ||
595 | cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL, | |
596 | &paddr); | |
597 | if (!cf) { | |
598 | kfree(desc); | |
599 | break; | |
600 | } | |
601 | ||
602 | INIT_LIST_HEAD(&desc->node); | |
603 | fsl_re_init_desc(re_chan, desc, cf, paddr); | |
604 | ||
605 | list_add_tail(&desc->node, &re_chan->free_q); | |
606 | re_chan->alloc_count++; | |
607 | } | |
608 | return re_chan->alloc_count; | |
609 | } | |
610 | ||
611 | static void fsl_re_free_chan_resources(struct dma_chan *chan) | |
612 | { | |
613 | struct fsl_re_chan *re_chan; | |
614 | struct fsl_re_desc *desc; | |
615 | ||
616 | re_chan = container_of(chan, struct fsl_re_chan, chan); | |
617 | while (re_chan->alloc_count--) { | |
618 | desc = list_first_entry(&re_chan->free_q, | |
619 | struct fsl_re_desc, | |
620 | node); | |
621 | ||
622 | list_del(&desc->node); | |
623 | dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr, | |
624 | desc->cf_paddr); | |
625 | kfree(desc); | |
626 | } | |
627 | ||
628 | if (!list_empty(&re_chan->free_q)) | |
629 | dev_err(re_chan->dev, "chan resource cannot be cleaned!\n"); | |
630 | } | |
631 | ||
453dcdb5 | 632 | static int fsl_re_chan_probe(struct platform_device *ofdev, |
ad80da65 XS |
633 | struct device_node *np, u8 q, u32 off) |
634 | { | |
635 | struct device *dev, *chandev; | |
636 | struct fsl_re_drv_private *re_priv; | |
637 | struct fsl_re_chan *chan; | |
638 | struct dma_device *dma_dev; | |
639 | u32 ptr; | |
640 | u32 status; | |
641 | int ret = 0, rc; | |
642 | struct platform_device *chan_ofdev; | |
643 | ||
644 | dev = &ofdev->dev; | |
645 | re_priv = dev_get_drvdata(dev); | |
646 | dma_dev = &re_priv->dma_dev; | |
647 | ||
648 | chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL); | |
649 | if (!chan) | |
650 | return -ENOMEM; | |
651 | ||
652 | /* create platform device for chan node */ | |
653 | chan_ofdev = of_platform_device_create(np, NULL, dev); | |
654 | if (!chan_ofdev) { | |
655 | dev_err(dev, "Not able to create ofdev for jr %d\n", q); | |
656 | ret = -EINVAL; | |
657 | goto err_free; | |
658 | } | |
659 | ||
660 | /* read reg property from dts */ | |
661 | rc = of_property_read_u32(np, "reg", &ptr); | |
662 | if (rc) { | |
663 | dev_err(dev, "Reg property not found in jr %d\n", q); | |
664 | ret = -ENODEV; | |
665 | goto err_free; | |
666 | } | |
667 | ||
668 | chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs + | |
669 | off + ptr); | |
670 | ||
671 | /* read irq property from dts */ | |
672 | chan->irq = irq_of_parse_and_map(np, 0); | |
673 | if (chan->irq == NO_IRQ) { | |
674 | dev_err(dev, "No IRQ defined for JR %d\n", q); | |
675 | ret = -ENODEV; | |
676 | goto err_free; | |
677 | } | |
678 | ||
679 | snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q); | |
680 | ||
681 | chandev = &chan_ofdev->dev; | |
682 | tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev); | |
683 | ||
684 | ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev); | |
685 | if (ret) { | |
686 | dev_err(dev, "Unable to register interrupt for JR %d\n", q); | |
687 | ret = -EINVAL; | |
688 | goto err_free; | |
689 | } | |
690 | ||
691 | re_priv->re_jrs[q] = chan; | |
692 | chan->chan.device = dma_dev; | |
693 | chan->chan.private = chan; | |
694 | chan->dev = chandev; | |
695 | chan->re_dev = re_priv; | |
696 | ||
697 | spin_lock_init(&chan->desc_lock); | |
698 | INIT_LIST_HEAD(&chan->ack_q); | |
699 | INIT_LIST_HEAD(&chan->active_q); | |
700 | INIT_LIST_HEAD(&chan->submit_q); | |
701 | INIT_LIST_HEAD(&chan->free_q); | |
702 | ||
703 | chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, | |
704 | GFP_KERNEL, &chan->inb_phys_addr); | |
705 | if (!chan->inb_ring_virt_addr) { | |
706 | dev_err(dev, "No dma memory for inb_ring_virt_addr\n"); | |
707 | ret = -ENOMEM; | |
708 | goto err_free; | |
709 | } | |
710 | ||
711 | chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool, | |
712 | GFP_KERNEL, &chan->oub_phys_addr); | |
713 | if (!chan->oub_ring_virt_addr) { | |
714 | dev_err(dev, "No dma memory for oub_ring_virt_addr\n"); | |
715 | ret = -ENOMEM; | |
716 | goto err_free_1; | |
717 | } | |
718 | ||
719 | /* Program the Inbound/Outbound ring base addresses and size */ | |
720 | out_be32(&chan->jrregs->inbring_base_h, | |
721 | chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK); | |
722 | out_be32(&chan->jrregs->oubring_base_h, | |
723 | chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK); | |
724 | out_be32(&chan->jrregs->inbring_base_l, | |
725 | chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); | |
726 | out_be32(&chan->jrregs->oubring_base_l, | |
727 | chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT); | |
728 | out_be32(&chan->jrregs->inbring_size, | |
729 | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); | |
730 | out_be32(&chan->jrregs->oubring_size, | |
731 | FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT); | |
732 | ||
733 | /* Read LIODN value from u-boot */ | |
734 | status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK; | |
735 | ||
736 | /* Program the CFG reg */ | |
737 | out_be32(&chan->jrregs->jr_config_1, | |
738 | FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status); | |
739 | ||
740 | dev_set_drvdata(chandev, chan); | |
741 | ||
742 | /* Enable RE/CHAN */ | |
743 | out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE); | |
744 | ||
745 | return 0; | |
746 | ||
747 | err_free_1: | |
748 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, | |
749 | chan->inb_phys_addr); | |
750 | err_free: | |
751 | return ret; | |
752 | } | |
753 | ||
754 | /* Probe function for RAID Engine */ | |
755 | static int fsl_re_probe(struct platform_device *ofdev) | |
756 | { | |
757 | struct fsl_re_drv_private *re_priv; | |
758 | struct device_node *np; | |
759 | struct device_node *child; | |
760 | u32 off; | |
761 | u8 ridx = 0; | |
762 | struct dma_device *dma_dev; | |
763 | struct resource *res; | |
764 | int rc; | |
765 | struct device *dev = &ofdev->dev; | |
766 | ||
767 | re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL); | |
768 | if (!re_priv) | |
769 | return -ENOMEM; | |
770 | ||
771 | res = platform_get_resource(ofdev, IORESOURCE_MEM, 0); | |
772 | if (!res) | |
773 | return -ENODEV; | |
774 | ||
775 | /* IOMAP the entire RAID Engine region */ | |
776 | re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res)); | |
777 | if (!re_priv->re_regs) | |
778 | return -EBUSY; | |
779 | ||
780 | /* Program the RE mode */ | |
781 | out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE); | |
782 | ||
783 | /* Program Galois Field polynomial */ | |
784 | out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY); | |
785 | ||
786 | dev_info(dev, "version %x, mode %x, gfp %x\n", | |
787 | in_be32(&re_priv->re_regs->re_version_id), | |
788 | in_be32(&re_priv->re_regs->global_config), | |
789 | in_be32(&re_priv->re_regs->galois_field_config)); | |
790 | ||
791 | dma_dev = &re_priv->dma_dev; | |
792 | dma_dev->dev = dev; | |
793 | INIT_LIST_HEAD(&dma_dev->channels); | |
794 | dma_set_mask(dev, DMA_BIT_MASK(40)); | |
795 | ||
796 | dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources; | |
797 | dma_dev->device_tx_status = fsl_re_tx_status; | |
798 | dma_dev->device_issue_pending = fsl_re_issue_pending; | |
799 | ||
800 | dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS; | |
801 | dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor; | |
802 | dma_cap_set(DMA_XOR, dma_dev->cap_mask); | |
803 | ||
804 | dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS; | |
805 | dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq; | |
806 | dma_cap_set(DMA_PQ, dma_dev->cap_mask); | |
807 | ||
808 | dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy; | |
809 | dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); | |
810 | ||
811 | dma_dev->device_free_chan_resources = fsl_re_free_chan_resources; | |
812 | ||
813 | re_priv->total_chans = 0; | |
814 | ||
815 | re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev, | |
816 | FSL_RE_CF_CDB_SIZE, | |
817 | FSL_RE_CF_CDB_ALIGN, 0); | |
818 | ||
819 | if (!re_priv->cf_desc_pool) { | |
820 | dev_err(dev, "No memory for fsl re_cf desc pool\n"); | |
821 | return -ENOMEM; | |
822 | } | |
823 | ||
824 | re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev, | |
825 | sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE, | |
826 | FSL_RE_FRAME_ALIGN, 0); | |
827 | if (!re_priv->hw_desc_pool) { | |
828 | dev_err(dev, "No memory for fsl re_hw desc pool\n"); | |
829 | return -ENOMEM; | |
830 | } | |
831 | ||
832 | dev_set_drvdata(dev, re_priv); | |
833 | ||
834 | /* Parse Device tree to find out the total number of JQs present */ | |
835 | for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") { | |
836 | rc = of_property_read_u32(np, "reg", &off); | |
837 | if (rc) { | |
838 | dev_err(dev, "Reg property not found in JQ node\n"); | |
839 | return -ENODEV; | |
840 | } | |
841 | /* Find out the Job Rings present under each JQ */ | |
842 | for_each_child_of_node(np, child) { | |
843 | rc = of_device_is_compatible(child, | |
844 | "fsl,raideng-v1.0-job-ring"); | |
845 | if (rc) { | |
846 | fsl_re_chan_probe(ofdev, child, ridx++, off); | |
847 | re_priv->total_chans++; | |
848 | } | |
849 | } | |
850 | } | |
851 | ||
852 | dma_async_device_register(dma_dev); | |
853 | ||
854 | return 0; | |
855 | } | |
856 | ||
857 | static void fsl_re_remove_chan(struct fsl_re_chan *chan) | |
858 | { | |
859 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr, | |
860 | chan->inb_phys_addr); | |
861 | ||
862 | dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr, | |
863 | chan->oub_phys_addr); | |
864 | } | |
865 | ||
866 | static int fsl_re_remove(struct platform_device *ofdev) | |
867 | { | |
868 | struct fsl_re_drv_private *re_priv; | |
869 | struct device *dev; | |
870 | int i; | |
871 | ||
872 | dev = &ofdev->dev; | |
873 | re_priv = dev_get_drvdata(dev); | |
874 | ||
875 | /* Cleanup chan related memory areas */ | |
876 | for (i = 0; i < re_priv->total_chans; i++) | |
877 | fsl_re_remove_chan(re_priv->re_jrs[i]); | |
878 | ||
879 | /* Unregister the driver */ | |
880 | dma_async_device_unregister(&re_priv->dma_dev); | |
881 | ||
882 | return 0; | |
883 | } | |
884 | ||
885 | static struct of_device_id fsl_re_ids[] = { | |
886 | { .compatible = "fsl,raideng-v1.0", }, | |
887 | {} | |
888 | }; | |
889 | ||
890 | static struct platform_driver fsl_re_driver = { | |
891 | .driver = { | |
892 | .name = "fsl-raideng", | |
893 | .owner = THIS_MODULE, | |
894 | .of_match_table = fsl_re_ids, | |
895 | }, | |
896 | .probe = fsl_re_probe, | |
897 | .remove = fsl_re_remove, | |
898 | }; | |
899 | ||
900 | module_platform_driver(fsl_re_driver); | |
901 | ||
902 | MODULE_AUTHOR("Harninder Rai <[email protected]>"); | |
903 | MODULE_LICENSE("GPL v2"); | |
904 | MODULE_DESCRIPTION("Freescale RAID Engine Device Driver"); |