]>
Commit | Line | Data |
---|---|---|
263b4a30 RF |
1 | /* |
2 | * FDT related Helper functions used by the EFI stub on multiple | |
3 | * architectures. This should be #included by the EFI stub | |
4 | * implementation files. | |
5 | * | |
6 | * Copyright 2013 Linaro Limited; author Roy Franz | |
7 | * | |
8 | * This file is part of the Linux kernel, and is made available | |
9 | * under the terms of the GNU General Public License version 2. | |
10 | * | |
11 | */ | |
12 | ||
bd669475 AB |
13 | #include <linux/efi.h> |
14 | #include <linux/libfdt.h> | |
15 | #include <asm/efi.h> | |
16 | ||
f3cdfd23 AB |
17 | #include "efistub.h" |
18 | ||
ae8a442d SG |
19 | #define EFI_DT_ADDR_CELLS_DEFAULT 2 |
20 | #define EFI_DT_SIZE_CELLS_DEFAULT 2 | |
21 | ||
22 | static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt) | |
23 | { | |
24 | int offset; | |
25 | ||
26 | offset = fdt_path_offset(fdt, "/"); | |
27 | /* Set the #address-cells and #size-cells values for an empty tree */ | |
28 | ||
29 | fdt_setprop_u32(fdt, offset, "#address-cells", | |
30 | EFI_DT_ADDR_CELLS_DEFAULT); | |
31 | ||
32 | fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT); | |
33 | } | |
34 | ||
abfb7b68 AB |
35 | static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, |
36 | unsigned long orig_fdt_size, | |
37 | void *fdt, int new_fdt_size, char *cmdline_ptr, | |
38 | u64 initrd_addr, u64 initrd_size) | |
263b4a30 | 39 | { |
500899c2 | 40 | int node, num_rsv; |
263b4a30 RF |
41 | int status; |
42 | u32 fdt_val32; | |
43 | u64 fdt_val64; | |
44 | ||
263b4a30 RF |
45 | /* Do some checks on provided FDT, if it exists*/ |
46 | if (orig_fdt) { | |
47 | if (fdt_check_header(orig_fdt)) { | |
48 | pr_efi_err(sys_table, "Device Tree header not valid!\n"); | |
49 | return EFI_LOAD_ERROR; | |
50 | } | |
51 | /* | |
52 | * We don't get the size of the FDT if we get if from a | |
53 | * configuration table. | |
54 | */ | |
55 | if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { | |
56 | pr_efi_err(sys_table, "Truncated device tree! foo!\n"); | |
57 | return EFI_LOAD_ERROR; | |
58 | } | |
59 | } | |
60 | ||
ae8a442d | 61 | if (orig_fdt) { |
263b4a30 | 62 | status = fdt_open_into(orig_fdt, fdt, new_fdt_size); |
ae8a442d | 63 | } else { |
263b4a30 | 64 | status = fdt_create_empty_tree(fdt, new_fdt_size); |
ae8a442d SG |
65 | if (status == 0) { |
66 | /* | |
67 | * Any failure from the following function is non | |
68 | * critical | |
69 | */ | |
70 | fdt_update_cell_size(sys_table, fdt); | |
71 | } | |
72 | } | |
263b4a30 RF |
73 | |
74 | if (status != 0) | |
75 | goto fdt_set_fail; | |
76 | ||
0ceac9e0 MS |
77 | /* |
78 | * Delete all memory reserve map entries. When booting via UEFI, | |
79 | * kernel will use the UEFI memory map to find reserved regions. | |
80 | */ | |
81 | num_rsv = fdt_num_mem_rsv(fdt); | |
82 | while (num_rsv-- > 0) | |
83 | fdt_del_mem_rsv(fdt, num_rsv); | |
84 | ||
263b4a30 RF |
85 | node = fdt_subnode_offset(fdt, 0, "chosen"); |
86 | if (node < 0) { | |
87 | node = fdt_add_subnode(fdt, 0, "chosen"); | |
88 | if (node < 0) { | |
89 | status = node; /* node is error code when negative */ | |
90 | goto fdt_set_fail; | |
91 | } | |
92 | } | |
93 | ||
94 | if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { | |
95 | status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, | |
96 | strlen(cmdline_ptr) + 1); | |
97 | if (status) | |
98 | goto fdt_set_fail; | |
99 | } | |
100 | ||
101 | /* Set initrd address/end in device tree, if present */ | |
102 | if (initrd_size != 0) { | |
103 | u64 initrd_image_end; | |
104 | u64 initrd_image_start = cpu_to_fdt64(initrd_addr); | |
105 | ||
106 | status = fdt_setprop(fdt, node, "linux,initrd-start", | |
107 | &initrd_image_start, sizeof(u64)); | |
108 | if (status) | |
109 | goto fdt_set_fail; | |
110 | initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); | |
111 | status = fdt_setprop(fdt, node, "linux,initrd-end", | |
112 | &initrd_image_end, sizeof(u64)); | |
113 | if (status) | |
114 | goto fdt_set_fail; | |
115 | } | |
116 | ||
117 | /* Add FDT entries for EFI runtime services in chosen node. */ | |
118 | node = fdt_subnode_offset(fdt, 0, "chosen"); | |
119 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); | |
120 | status = fdt_setprop(fdt, node, "linux,uefi-system-table", | |
121 | &fdt_val64, sizeof(fdt_val64)); | |
122 | if (status) | |
123 | goto fdt_set_fail; | |
124 | ||
abfb7b68 | 125 | fdt_val64 = U64_MAX; /* placeholder */ |
263b4a30 RF |
126 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", |
127 | &fdt_val64, sizeof(fdt_val64)); | |
128 | if (status) | |
129 | goto fdt_set_fail; | |
130 | ||
abfb7b68 | 131 | fdt_val32 = U32_MAX; /* placeholder */ |
263b4a30 RF |
132 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", |
133 | &fdt_val32, sizeof(fdt_val32)); | |
134 | if (status) | |
135 | goto fdt_set_fail; | |
136 | ||
263b4a30 RF |
137 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", |
138 | &fdt_val32, sizeof(fdt_val32)); | |
139 | if (status) | |
140 | goto fdt_set_fail; | |
141 | ||
263b4a30 RF |
142 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", |
143 | &fdt_val32, sizeof(fdt_val32)); | |
144 | if (status) | |
145 | goto fdt_set_fail; | |
146 | ||
2b5fe07a AB |
147 | if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { |
148 | efi_status_t efi_status; | |
149 | ||
150 | efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64), | |
151 | (u8 *)&fdt_val64); | |
152 | if (efi_status == EFI_SUCCESS) { | |
153 | status = fdt_setprop(fdt, node, "kaslr-seed", | |
154 | &fdt_val64, sizeof(fdt_val64)); | |
155 | if (status) | |
156 | goto fdt_set_fail; | |
157 | } else if (efi_status != EFI_NOT_FOUND) { | |
158 | return efi_status; | |
159 | } | |
160 | } | |
263b4a30 RF |
161 | return EFI_SUCCESS; |
162 | ||
163 | fdt_set_fail: | |
164 | if (status == -FDT_ERR_NOSPACE) | |
165 | return EFI_BUFFER_TOO_SMALL; | |
166 | ||
167 | return EFI_LOAD_ERROR; | |
168 | } | |
169 | ||
abfb7b68 AB |
170 | static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map) |
171 | { | |
172 | int node = fdt_path_offset(fdt, "/chosen"); | |
173 | u64 fdt_val64; | |
174 | u32 fdt_val32; | |
175 | int err; | |
176 | ||
177 | if (node < 0) | |
178 | return EFI_LOAD_ERROR; | |
179 | ||
180 | fdt_val64 = cpu_to_fdt64((unsigned long)*map->map); | |
181 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-start", | |
182 | &fdt_val64, sizeof(fdt_val64)); | |
183 | if (err) | |
184 | return EFI_LOAD_ERROR; | |
185 | ||
186 | fdt_val32 = cpu_to_fdt32(*map->map_size); | |
187 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-size", | |
188 | &fdt_val32, sizeof(fdt_val32)); | |
189 | if (err) | |
190 | return EFI_LOAD_ERROR; | |
191 | ||
192 | fdt_val32 = cpu_to_fdt32(*map->desc_size); | |
193 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-size", | |
194 | &fdt_val32, sizeof(fdt_val32)); | |
195 | if (err) | |
196 | return EFI_LOAD_ERROR; | |
197 | ||
198 | fdt_val32 = cpu_to_fdt32(*map->desc_ver); | |
199 | err = fdt_setprop_inplace(fdt, node, "linux,uefi-mmap-desc-ver", | |
200 | &fdt_val32, sizeof(fdt_val32)); | |
201 | if (err) | |
202 | return EFI_LOAD_ERROR; | |
203 | ||
204 | return EFI_SUCCESS; | |
205 | } | |
206 | ||
263b4a30 RF |
207 | #ifndef EFI_FDT_ALIGN |
208 | #define EFI_FDT_ALIGN EFI_PAGE_SIZE | |
209 | #endif | |
210 | ||
ed9cc156 JH |
211 | struct exit_boot_struct { |
212 | efi_memory_desc_t *runtime_map; | |
213 | int *runtime_entry_count; | |
c8f325a5 | 214 | void *new_fdt_addr; |
ed9cc156 JH |
215 | }; |
216 | ||
217 | static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, | |
218 | struct efi_boot_memmap *map, | |
219 | void *priv) | |
220 | { | |
221 | struct exit_boot_struct *p = priv; | |
222 | /* | |
223 | * Update the memory map with virtual addresses. The function will also | |
224 | * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME | |
225 | * entries so that we can pass it straight to SetVirtualAddressMap() | |
226 | */ | |
227 | efi_get_virtmap(*map->map, *map->map_size, *map->desc_size, | |
228 | p->runtime_map, p->runtime_entry_count); | |
229 | ||
c8f325a5 | 230 | return update_fdt_memmap(p->new_fdt_addr, map); |
ed9cc156 JH |
231 | } |
232 | ||
24d7c494 AB |
233 | #ifndef MAX_FDT_SIZE |
234 | #define MAX_FDT_SIZE SZ_2M | |
235 | #endif | |
236 | ||
263b4a30 RF |
237 | /* |
238 | * Allocate memory for a new FDT, then add EFI, commandline, and | |
239 | * initrd related fields to the FDT. This routine increases the | |
240 | * FDT allocation size until the allocated memory is large | |
241 | * enough. EFI allocations are in EFI_PAGE_SIZE granules, | |
242 | * which are fixed at 4K bytes, so in most cases the first | |
243 | * allocation should succeed. | |
244 | * EFI boot services are exited at the end of this function. | |
245 | * There must be no allocations between the get_memory_map() | |
246 | * call and the exit_boot_services() call, so the exiting of | |
247 | * boot services is very tightly tied to the creation of the FDT | |
248 | * with the final memory map in it. | |
249 | */ | |
250 | ||
251 | efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, | |
252 | void *handle, | |
253 | unsigned long *new_fdt_addr, | |
254 | unsigned long max_addr, | |
255 | u64 initrd_addr, u64 initrd_size, | |
256 | char *cmdline_ptr, | |
257 | unsigned long fdt_addr, | |
258 | unsigned long fdt_size) | |
259 | { | |
dadb57ab | 260 | unsigned long map_size, desc_size, buff_size; |
263b4a30 RF |
261 | u32 desc_ver; |
262 | unsigned long mmap_key; | |
f3cdfd23 | 263 | efi_memory_desc_t *memory_map, *runtime_map; |
263b4a30 | 264 | efi_status_t status; |
f3cdfd23 | 265 | int runtime_entry_count = 0; |
dadb57ab | 266 | struct efi_boot_memmap map; |
ed9cc156 | 267 | struct exit_boot_struct priv; |
dadb57ab JH |
268 | |
269 | map.map = &runtime_map; | |
270 | map.map_size = &map_size; | |
271 | map.desc_size = &desc_size; | |
272 | map.desc_ver = &desc_ver; | |
273 | map.key_ptr = &mmap_key; | |
274 | map.buff_size = &buff_size; | |
f3cdfd23 AB |
275 | |
276 | /* | |
277 | * Get a copy of the current memory map that we will use to prepare | |
278 | * the input for SetVirtualAddressMap(). We don't have to worry about | |
279 | * subsequent allocations adding entries, since they could not affect | |
280 | * the number of EFI_MEMORY_RUNTIME regions. | |
281 | */ | |
dadb57ab | 282 | status = efi_get_memory_map(sys_table, &map); |
f3cdfd23 AB |
283 | if (status != EFI_SUCCESS) { |
284 | pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n"); | |
285 | return status; | |
286 | } | |
287 | ||
288 | pr_efi(sys_table, | |
289 | "Exiting boot services and installing virtual address map...\n"); | |
263b4a30 | 290 | |
dadb57ab | 291 | map.map = &memory_map; |
24d7c494 AB |
292 | status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN, |
293 | new_fdt_addr, max_addr); | |
294 | if (status != EFI_SUCCESS) { | |
295 | pr_efi_err(sys_table, | |
296 | "Unable to allocate memory for new device tree.\n"); | |
297 | goto fail; | |
298 | } | |
299 | ||
263b4a30 | 300 | /* |
24d7c494 AB |
301 | * Now that we have done our final memory allocation (and free) |
302 | * we can get the memory map key needed for exit_boot_services(). | |
263b4a30 | 303 | */ |
24d7c494 AB |
304 | status = efi_get_memory_map(sys_table, &map); |
305 | if (status != EFI_SUCCESS) | |
306 | goto fail_free_new_fdt; | |
263b4a30 | 307 | |
24d7c494 AB |
308 | status = update_fdt(sys_table, (void *)fdt_addr, fdt_size, |
309 | (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr, | |
310 | initrd_addr, initrd_size); | |
263b4a30 | 311 | |
24d7c494 AB |
312 | if (status != EFI_SUCCESS) { |
313 | pr_efi_err(sys_table, "Unable to construct new device tree.\n"); | |
314 | goto fail_free_new_fdt; | |
263b4a30 RF |
315 | } |
316 | ||
ed9cc156 JH |
317 | priv.runtime_map = runtime_map; |
318 | priv.runtime_entry_count = &runtime_entry_count; | |
c8f325a5 | 319 | priv.new_fdt_addr = (void *)*new_fdt_addr; |
ed9cc156 JH |
320 | status = efi_exit_boot_services(sys_table, handle, &map, &priv, |
321 | exit_boot_func); | |
263b4a30 | 322 | |
f3cdfd23 AB |
323 | if (status == EFI_SUCCESS) { |
324 | efi_set_virtual_address_map_t *svam; | |
263b4a30 | 325 | |
f3cdfd23 AB |
326 | /* Install the new virtual address map */ |
327 | svam = sys_table->runtime->set_virtual_address_map; | |
328 | status = svam(runtime_entry_count * desc_size, desc_size, | |
329 | desc_ver, runtime_map); | |
330 | ||
331 | /* | |
332 | * We are beyond the point of no return here, so if the call to | |
333 | * SetVirtualAddressMap() failed, we need to signal that to the | |
334 | * incoming kernel but proceed normally otherwise. | |
335 | */ | |
336 | if (status != EFI_SUCCESS) { | |
337 | int l; | |
338 | ||
339 | /* | |
340 | * Set the virtual address field of all | |
341 | * EFI_MEMORY_RUNTIME entries to 0. This will signal | |
342 | * the incoming kernel that no virtual translation has | |
343 | * been installed. | |
344 | */ | |
345 | for (l = 0; l < map_size; l += desc_size) { | |
346 | efi_memory_desc_t *p = (void *)memory_map + l; | |
347 | ||
348 | if (p->attribute & EFI_MEMORY_RUNTIME) | |
349 | p->virt_addr = 0; | |
350 | } | |
351 | } | |
352 | return EFI_SUCCESS; | |
353 | } | |
263b4a30 RF |
354 | |
355 | pr_efi_err(sys_table, "Exit boot services failed.\n"); | |
356 | ||
263b4a30 | 357 | fail_free_new_fdt: |
24d7c494 | 358 | efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr); |
263b4a30 RF |
359 | |
360 | fail: | |
f3cdfd23 | 361 | sys_table->boottime->free_pool(runtime_map); |
263b4a30 RF |
362 | return EFI_LOAD_ERROR; |
363 | } | |
364 | ||
a643375f | 365 | void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size) |
263b4a30 RF |
366 | { |
367 | efi_guid_t fdt_guid = DEVICE_TREE_GUID; | |
368 | efi_config_table_t *tables; | |
369 | void *fdt; | |
370 | int i; | |
371 | ||
372 | tables = (efi_config_table_t *) sys_table->tables; | |
373 | fdt = NULL; | |
374 | ||
375 | for (i = 0; i < sys_table->nr_tables; i++) | |
376 | if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { | |
377 | fdt = (void *) tables[i].table; | |
a643375f AB |
378 | if (fdt_check_header(fdt) != 0) { |
379 | pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n"); | |
380 | return NULL; | |
381 | } | |
382 | *fdt_size = fdt_totalsize(fdt); | |
263b4a30 RF |
383 | break; |
384 | } | |
385 | ||
386 | return fdt; | |
387 | } |