]>
Commit | Line | Data |
---|---|---|
fe4fa4b8 DC |
1 | /* |
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | |
3 | * All Rights Reserved. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or | |
6 | * modify it under the terms of the GNU General Public License as | |
7 | * published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope that it would be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
17 | */ | |
18 | #include "xfs.h" | |
19 | #include "xfs_fs.h" | |
6ca1c906 | 20 | #include "xfs_format.h" |
239880ef DC |
21 | #include "xfs_log_format.h" |
22 | #include "xfs_trans_resv.h" | |
fe4fa4b8 | 23 | #include "xfs_sb.h" |
fe4fa4b8 | 24 | #include "xfs_mount.h" |
fe4fa4b8 | 25 | #include "xfs_inode.h" |
fe4fa4b8 | 26 | #include "xfs_error.h" |
239880ef DC |
27 | #include "xfs_trans.h" |
28 | #include "xfs_trans_priv.h" | |
fe4fa4b8 | 29 | #include "xfs_inode_item.h" |
7d095257 | 30 | #include "xfs_quota.h" |
0b1b213f | 31 | #include "xfs_trace.h" |
6d8b79cf | 32 | #include "xfs_icache.h" |
c24b5dfa | 33 | #include "xfs_bmap_util.h" |
dc06f398 BF |
34 | #include "xfs_dquot_item.h" |
35 | #include "xfs_dquot.h" | |
fe4fa4b8 | 36 | |
a167b17e DC |
37 | #include <linux/kthread.h> |
38 | #include <linux/freezer.h> | |
39 | ||
33479e05 DC |
40 | STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp, |
41 | struct xfs_perag *pag, struct xfs_inode *ip); | |
42 | ||
43 | /* | |
44 | * Allocate and initialise an xfs_inode. | |
45 | */ | |
638f4416 | 46 | struct xfs_inode * |
33479e05 DC |
47 | xfs_inode_alloc( |
48 | struct xfs_mount *mp, | |
49 | xfs_ino_t ino) | |
50 | { | |
51 | struct xfs_inode *ip; | |
52 | ||
53 | /* | |
54 | * if this didn't occur in transactions, we could use | |
55 | * KM_MAYFAIL and return NULL here on ENOMEM. Set the | |
56 | * code up to do this anyway. | |
57 | */ | |
58 | ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP); | |
59 | if (!ip) | |
60 | return NULL; | |
61 | if (inode_init_always(mp->m_super, VFS_I(ip))) { | |
62 | kmem_zone_free(xfs_inode_zone, ip); | |
63 | return NULL; | |
64 | } | |
65 | ||
ff6d6af2 | 66 | XFS_STATS_INC(mp, vn_active); |
33479e05 DC |
67 | ASSERT(atomic_read(&ip->i_pincount) == 0); |
68 | ASSERT(!spin_is_locked(&ip->i_flags_lock)); | |
69 | ASSERT(!xfs_isiflocked(ip)); | |
70 | ASSERT(ip->i_ino == 0); | |
71 | ||
72 | mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); | |
73 | ||
74 | /* initialise the xfs inode */ | |
75 | ip->i_ino = ino; | |
76 | ip->i_mount = mp; | |
77 | memset(&ip->i_imap, 0, sizeof(struct xfs_imap)); | |
78 | ip->i_afp = NULL; | |
79 | memset(&ip->i_df, 0, sizeof(xfs_ifork_t)); | |
80 | ip->i_flags = 0; | |
81 | ip->i_delayed_blks = 0; | |
82 | memset(&ip->i_d, 0, sizeof(xfs_icdinode_t)); | |
83 | ||
84 | return ip; | |
85 | } | |
86 | ||
87 | STATIC void | |
88 | xfs_inode_free_callback( | |
89 | struct rcu_head *head) | |
90 | { | |
91 | struct inode *inode = container_of(head, struct inode, i_rcu); | |
92 | struct xfs_inode *ip = XFS_I(inode); | |
93 | ||
94 | kmem_zone_free(xfs_inode_zone, ip); | |
95 | } | |
96 | ||
638f4416 | 97 | void |
33479e05 DC |
98 | xfs_inode_free( |
99 | struct xfs_inode *ip) | |
100 | { | |
101 | switch (ip->i_d.di_mode & S_IFMT) { | |
102 | case S_IFREG: | |
103 | case S_IFDIR: | |
104 | case S_IFLNK: | |
105 | xfs_idestroy_fork(ip, XFS_DATA_FORK); | |
106 | break; | |
107 | } | |
108 | ||
109 | if (ip->i_afp) | |
110 | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | |
111 | ||
112 | if (ip->i_itemp) { | |
113 | ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL)); | |
114 | xfs_inode_item_destroy(ip); | |
115 | ip->i_itemp = NULL; | |
116 | } | |
117 | ||
33479e05 DC |
118 | /* |
119 | * Because we use RCU freeing we need to ensure the inode always | |
120 | * appears to be reclaimed with an invalid inode number when in the | |
121 | * free state. The ip->i_flags_lock provides the barrier against lookup | |
122 | * races. | |
123 | */ | |
124 | spin_lock(&ip->i_flags_lock); | |
125 | ip->i_flags = XFS_IRECLAIM; | |
126 | ip->i_ino = 0; | |
127 | spin_unlock(&ip->i_flags_lock); | |
128 | ||
b313a5f1 DC |
129 | /* asserts to verify all state is correct here */ |
130 | ASSERT(atomic_read(&ip->i_pincount) == 0); | |
131 | ASSERT(!xfs_isiflocked(ip)); | |
ff6d6af2 | 132 | XFS_STATS_DEC(ip->i_mount, vn_active); |
b313a5f1 | 133 | |
33479e05 DC |
134 | call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback); |
135 | } | |
136 | ||
137 | /* | |
138 | * Check the validity of the inode we just found it the cache | |
139 | */ | |
140 | static int | |
141 | xfs_iget_cache_hit( | |
142 | struct xfs_perag *pag, | |
143 | struct xfs_inode *ip, | |
144 | xfs_ino_t ino, | |
145 | int flags, | |
146 | int lock_flags) __releases(RCU) | |
147 | { | |
148 | struct inode *inode = VFS_I(ip); | |
149 | struct xfs_mount *mp = ip->i_mount; | |
150 | int error; | |
151 | ||
152 | /* | |
153 | * check for re-use of an inode within an RCU grace period due to the | |
154 | * radix tree nodes not being updated yet. We monitor for this by | |
155 | * setting the inode number to zero before freeing the inode structure. | |
156 | * If the inode has been reallocated and set up, then the inode number | |
157 | * will not match, so check for that, too. | |
158 | */ | |
159 | spin_lock(&ip->i_flags_lock); | |
160 | if (ip->i_ino != ino) { | |
161 | trace_xfs_iget_skip(ip); | |
ff6d6af2 | 162 | XFS_STATS_INC(mp, xs_ig_frecycle); |
2451337d | 163 | error = -EAGAIN; |
33479e05 DC |
164 | goto out_error; |
165 | } | |
166 | ||
167 | ||
168 | /* | |
169 | * If we are racing with another cache hit that is currently | |
170 | * instantiating this inode or currently recycling it out of | |
171 | * reclaimabe state, wait for the initialisation to complete | |
172 | * before continuing. | |
173 | * | |
174 | * XXX(hch): eventually we should do something equivalent to | |
175 | * wait_on_inode to wait for these flags to be cleared | |
176 | * instead of polling for it. | |
177 | */ | |
178 | if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) { | |
179 | trace_xfs_iget_skip(ip); | |
ff6d6af2 | 180 | XFS_STATS_INC(mp, xs_ig_frecycle); |
2451337d | 181 | error = -EAGAIN; |
33479e05 DC |
182 | goto out_error; |
183 | } | |
184 | ||
185 | /* | |
186 | * If lookup is racing with unlink return an error immediately. | |
187 | */ | |
188 | if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) { | |
2451337d | 189 | error = -ENOENT; |
33479e05 DC |
190 | goto out_error; |
191 | } | |
192 | ||
193 | /* | |
194 | * If IRECLAIMABLE is set, we've torn down the VFS inode already. | |
195 | * Need to carefully get it back into useable state. | |
196 | */ | |
197 | if (ip->i_flags & XFS_IRECLAIMABLE) { | |
198 | trace_xfs_iget_reclaim(ip); | |
199 | ||
200 | /* | |
201 | * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode | |
202 | * from stomping over us while we recycle the inode. We can't | |
203 | * clear the radix tree reclaimable tag yet as it requires | |
204 | * pag_ici_lock to be held exclusive. | |
205 | */ | |
206 | ip->i_flags |= XFS_IRECLAIM; | |
207 | ||
208 | spin_unlock(&ip->i_flags_lock); | |
209 | rcu_read_unlock(); | |
210 | ||
2451337d | 211 | error = inode_init_always(mp->m_super, inode); |
33479e05 DC |
212 | if (error) { |
213 | /* | |
214 | * Re-initializing the inode failed, and we are in deep | |
215 | * trouble. Try to re-add it to the reclaim list. | |
216 | */ | |
217 | rcu_read_lock(); | |
218 | spin_lock(&ip->i_flags_lock); | |
219 | ||
220 | ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM); | |
221 | ASSERT(ip->i_flags & XFS_IRECLAIMABLE); | |
222 | trace_xfs_iget_reclaim_fail(ip); | |
223 | goto out_error; | |
224 | } | |
225 | ||
226 | spin_lock(&pag->pag_ici_lock); | |
227 | spin_lock(&ip->i_flags_lock); | |
228 | ||
229 | /* | |
230 | * Clear the per-lifetime state in the inode as we are now | |
231 | * effectively a new inode and need to return to the initial | |
232 | * state before reuse occurs. | |
233 | */ | |
234 | ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS; | |
235 | ip->i_flags |= XFS_INEW; | |
236 | __xfs_inode_clear_reclaim_tag(mp, pag, ip); | |
237 | inode->i_state = I_NEW; | |
238 | ||
239 | ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); | |
240 | mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino); | |
241 | ||
242 | spin_unlock(&ip->i_flags_lock); | |
243 | spin_unlock(&pag->pag_ici_lock); | |
244 | } else { | |
245 | /* If the VFS inode is being torn down, pause and try again. */ | |
246 | if (!igrab(inode)) { | |
247 | trace_xfs_iget_skip(ip); | |
2451337d | 248 | error = -EAGAIN; |
33479e05 DC |
249 | goto out_error; |
250 | } | |
251 | ||
252 | /* We've got a live one. */ | |
253 | spin_unlock(&ip->i_flags_lock); | |
254 | rcu_read_unlock(); | |
255 | trace_xfs_iget_hit(ip); | |
256 | } | |
257 | ||
258 | if (lock_flags != 0) | |
259 | xfs_ilock(ip, lock_flags); | |
260 | ||
261 | xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE); | |
ff6d6af2 | 262 | XFS_STATS_INC(mp, xs_ig_found); |
33479e05 DC |
263 | |
264 | return 0; | |
265 | ||
266 | out_error: | |
267 | spin_unlock(&ip->i_flags_lock); | |
268 | rcu_read_unlock(); | |
269 | return error; | |
270 | } | |
271 | ||
272 | ||
273 | static int | |
274 | xfs_iget_cache_miss( | |
275 | struct xfs_mount *mp, | |
276 | struct xfs_perag *pag, | |
277 | xfs_trans_t *tp, | |
278 | xfs_ino_t ino, | |
279 | struct xfs_inode **ipp, | |
280 | int flags, | |
281 | int lock_flags) | |
282 | { | |
283 | struct xfs_inode *ip; | |
284 | int error; | |
285 | xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino); | |
286 | int iflags; | |
287 | ||
288 | ip = xfs_inode_alloc(mp, ino); | |
289 | if (!ip) | |
2451337d | 290 | return -ENOMEM; |
33479e05 DC |
291 | |
292 | error = xfs_iread(mp, tp, ip, flags); | |
293 | if (error) | |
294 | goto out_destroy; | |
295 | ||
296 | trace_xfs_iget_miss(ip); | |
297 | ||
298 | if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) { | |
2451337d | 299 | error = -ENOENT; |
33479e05 DC |
300 | goto out_destroy; |
301 | } | |
302 | ||
303 | /* | |
304 | * Preload the radix tree so we can insert safely under the | |
305 | * write spinlock. Note that we cannot sleep inside the preload | |
306 | * region. Since we can be called from transaction context, don't | |
307 | * recurse into the file system. | |
308 | */ | |
309 | if (radix_tree_preload(GFP_NOFS)) { | |
2451337d | 310 | error = -EAGAIN; |
33479e05 DC |
311 | goto out_destroy; |
312 | } | |
313 | ||
314 | /* | |
315 | * Because the inode hasn't been added to the radix-tree yet it can't | |
316 | * be found by another thread, so we can do the non-sleeping lock here. | |
317 | */ | |
318 | if (lock_flags) { | |
319 | if (!xfs_ilock_nowait(ip, lock_flags)) | |
320 | BUG(); | |
321 | } | |
322 | ||
323 | /* | |
324 | * These values must be set before inserting the inode into the radix | |
325 | * tree as the moment it is inserted a concurrent lookup (allowed by the | |
326 | * RCU locking mechanism) can find it and that lookup must see that this | |
327 | * is an inode currently under construction (i.e. that XFS_INEW is set). | |
328 | * The ip->i_flags_lock that protects the XFS_INEW flag forms the | |
329 | * memory barrier that ensures this detection works correctly at lookup | |
330 | * time. | |
331 | */ | |
332 | iflags = XFS_INEW; | |
333 | if (flags & XFS_IGET_DONTCACHE) | |
334 | iflags |= XFS_IDONTCACHE; | |
113a5683 CS |
335 | ip->i_udquot = NULL; |
336 | ip->i_gdquot = NULL; | |
92f8ff73 | 337 | ip->i_pdquot = NULL; |
33479e05 DC |
338 | xfs_iflags_set(ip, iflags); |
339 | ||
340 | /* insert the new inode */ | |
341 | spin_lock(&pag->pag_ici_lock); | |
342 | error = radix_tree_insert(&pag->pag_ici_root, agino, ip); | |
343 | if (unlikely(error)) { | |
344 | WARN_ON(error != -EEXIST); | |
ff6d6af2 | 345 | XFS_STATS_INC(mp, xs_ig_dup); |
2451337d | 346 | error = -EAGAIN; |
33479e05 DC |
347 | goto out_preload_end; |
348 | } | |
349 | spin_unlock(&pag->pag_ici_lock); | |
350 | radix_tree_preload_end(); | |
351 | ||
352 | *ipp = ip; | |
353 | return 0; | |
354 | ||
355 | out_preload_end: | |
356 | spin_unlock(&pag->pag_ici_lock); | |
357 | radix_tree_preload_end(); | |
358 | if (lock_flags) | |
359 | xfs_iunlock(ip, lock_flags); | |
360 | out_destroy: | |
361 | __destroy_inode(VFS_I(ip)); | |
362 | xfs_inode_free(ip); | |
363 | return error; | |
364 | } | |
365 | ||
366 | /* | |
367 | * Look up an inode by number in the given file system. | |
368 | * The inode is looked up in the cache held in each AG. | |
369 | * If the inode is found in the cache, initialise the vfs inode | |
370 | * if necessary. | |
371 | * | |
372 | * If it is not in core, read it in from the file system's device, | |
373 | * add it to the cache and initialise the vfs inode. | |
374 | * | |
375 | * The inode is locked according to the value of the lock_flags parameter. | |
376 | * This flag parameter indicates how and if the inode's IO lock and inode lock | |
377 | * should be taken. | |
378 | * | |
379 | * mp -- the mount point structure for the current file system. It points | |
380 | * to the inode hash table. | |
381 | * tp -- a pointer to the current transaction if there is one. This is | |
382 | * simply passed through to the xfs_iread() call. | |
383 | * ino -- the number of the inode desired. This is the unique identifier | |
384 | * within the file system for the inode being requested. | |
385 | * lock_flags -- flags indicating how to lock the inode. See the comment | |
386 | * for xfs_ilock() for a list of valid values. | |
387 | */ | |
388 | int | |
389 | xfs_iget( | |
390 | xfs_mount_t *mp, | |
391 | xfs_trans_t *tp, | |
392 | xfs_ino_t ino, | |
393 | uint flags, | |
394 | uint lock_flags, | |
395 | xfs_inode_t **ipp) | |
396 | { | |
397 | xfs_inode_t *ip; | |
398 | int error; | |
399 | xfs_perag_t *pag; | |
400 | xfs_agino_t agino; | |
401 | ||
402 | /* | |
403 | * xfs_reclaim_inode() uses the ILOCK to ensure an inode | |
404 | * doesn't get freed while it's being referenced during a | |
405 | * radix tree traversal here. It assumes this function | |
406 | * aqcuires only the ILOCK (and therefore it has no need to | |
407 | * involve the IOLOCK in this synchronization). | |
408 | */ | |
409 | ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0); | |
410 | ||
411 | /* reject inode numbers outside existing AGs */ | |
412 | if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount) | |
2451337d | 413 | return -EINVAL; |
33479e05 | 414 | |
ff6d6af2 | 415 | XFS_STATS_INC(mp, xs_ig_attempts); |
8774cf8b | 416 | |
33479e05 DC |
417 | /* get the perag structure and ensure that it's inode capable */ |
418 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino)); | |
419 | agino = XFS_INO_TO_AGINO(mp, ino); | |
420 | ||
421 | again: | |
422 | error = 0; | |
423 | rcu_read_lock(); | |
424 | ip = radix_tree_lookup(&pag->pag_ici_root, agino); | |
425 | ||
426 | if (ip) { | |
427 | error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags); | |
428 | if (error) | |
429 | goto out_error_or_again; | |
430 | } else { | |
431 | rcu_read_unlock(); | |
ff6d6af2 | 432 | XFS_STATS_INC(mp, xs_ig_missed); |
33479e05 DC |
433 | |
434 | error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, | |
435 | flags, lock_flags); | |
436 | if (error) | |
437 | goto out_error_or_again; | |
438 | } | |
439 | xfs_perag_put(pag); | |
440 | ||
441 | *ipp = ip; | |
442 | ||
443 | /* | |
58c90473 | 444 | * If we have a real type for an on-disk inode, we can setup the inode |
33479e05 DC |
445 | * now. If it's a new inode being created, xfs_ialloc will handle it. |
446 | */ | |
447 | if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0) | |
58c90473 | 448 | xfs_setup_existing_inode(ip); |
33479e05 DC |
449 | return 0; |
450 | ||
451 | out_error_or_again: | |
2451337d | 452 | if (error == -EAGAIN) { |
33479e05 DC |
453 | delay(1); |
454 | goto again; | |
455 | } | |
456 | xfs_perag_put(pag); | |
457 | return error; | |
458 | } | |
459 | ||
78ae5256 DC |
460 | /* |
461 | * The inode lookup is done in batches to keep the amount of lock traffic and | |
462 | * radix tree lookups to a minimum. The batch size is a trade off between | |
463 | * lookup reduction and stack usage. This is in the reclaim path, so we can't | |
464 | * be too greedy. | |
465 | */ | |
466 | #define XFS_LOOKUP_BATCH 32 | |
467 | ||
e13de955 DC |
468 | STATIC int |
469 | xfs_inode_ag_walk_grab( | |
470 | struct xfs_inode *ip) | |
471 | { | |
472 | struct inode *inode = VFS_I(ip); | |
473 | ||
1a3e8f3d DC |
474 | ASSERT(rcu_read_lock_held()); |
475 | ||
476 | /* | |
477 | * check for stale RCU freed inode | |
478 | * | |
479 | * If the inode has been reallocated, it doesn't matter if it's not in | |
480 | * the AG we are walking - we are walking for writeback, so if it | |
481 | * passes all the "valid inode" checks and is dirty, then we'll write | |
482 | * it back anyway. If it has been reallocated and still being | |
483 | * initialised, the XFS_INEW check below will catch it. | |
484 | */ | |
485 | spin_lock(&ip->i_flags_lock); | |
486 | if (!ip->i_ino) | |
487 | goto out_unlock_noent; | |
488 | ||
489 | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | |
490 | if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | |
491 | goto out_unlock_noent; | |
492 | spin_unlock(&ip->i_flags_lock); | |
493 | ||
e13de955 DC |
494 | /* nothing to sync during shutdown */ |
495 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | |
2451337d | 496 | return -EFSCORRUPTED; |
e13de955 | 497 | |
e13de955 DC |
498 | /* If we can't grab the inode, it must on it's way to reclaim. */ |
499 | if (!igrab(inode)) | |
2451337d | 500 | return -ENOENT; |
e13de955 | 501 | |
e13de955 DC |
502 | /* inode is valid */ |
503 | return 0; | |
1a3e8f3d DC |
504 | |
505 | out_unlock_noent: | |
506 | spin_unlock(&ip->i_flags_lock); | |
2451337d | 507 | return -ENOENT; |
e13de955 DC |
508 | } |
509 | ||
75f3cb13 DC |
510 | STATIC int |
511 | xfs_inode_ag_walk( | |
512 | struct xfs_mount *mp, | |
5017e97d | 513 | struct xfs_perag *pag, |
e0094008 | 514 | int (*execute)(struct xfs_inode *ip, int flags, |
a454f742 BF |
515 | void *args), |
516 | int flags, | |
517 | void *args, | |
518 | int tag) | |
75f3cb13 | 519 | { |
75f3cb13 DC |
520 | uint32_t first_index; |
521 | int last_error = 0; | |
522 | int skipped; | |
65d0f205 | 523 | int done; |
78ae5256 | 524 | int nr_found; |
75f3cb13 DC |
525 | |
526 | restart: | |
65d0f205 | 527 | done = 0; |
75f3cb13 DC |
528 | skipped = 0; |
529 | first_index = 0; | |
78ae5256 | 530 | nr_found = 0; |
75f3cb13 | 531 | do { |
78ae5256 | 532 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
75f3cb13 | 533 | int error = 0; |
78ae5256 | 534 | int i; |
75f3cb13 | 535 | |
1a3e8f3d | 536 | rcu_read_lock(); |
a454f742 BF |
537 | |
538 | if (tag == -1) | |
539 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | |
78ae5256 DC |
540 | (void **)batch, first_index, |
541 | XFS_LOOKUP_BATCH); | |
a454f742 BF |
542 | else |
543 | nr_found = radix_tree_gang_lookup_tag( | |
544 | &pag->pag_ici_root, | |
545 | (void **) batch, first_index, | |
546 | XFS_LOOKUP_BATCH, tag); | |
547 | ||
65d0f205 | 548 | if (!nr_found) { |
1a3e8f3d | 549 | rcu_read_unlock(); |
75f3cb13 | 550 | break; |
c8e20be0 | 551 | } |
75f3cb13 | 552 | |
65d0f205 | 553 | /* |
78ae5256 DC |
554 | * Grab the inodes before we drop the lock. if we found |
555 | * nothing, nr == 0 and the loop will be skipped. | |
65d0f205 | 556 | */ |
78ae5256 DC |
557 | for (i = 0; i < nr_found; i++) { |
558 | struct xfs_inode *ip = batch[i]; | |
559 | ||
560 | if (done || xfs_inode_ag_walk_grab(ip)) | |
561 | batch[i] = NULL; | |
562 | ||
563 | /* | |
1a3e8f3d DC |
564 | * Update the index for the next lookup. Catch |
565 | * overflows into the next AG range which can occur if | |
566 | * we have inodes in the last block of the AG and we | |
567 | * are currently pointing to the last inode. | |
568 | * | |
569 | * Because we may see inodes that are from the wrong AG | |
570 | * due to RCU freeing and reallocation, only update the | |
571 | * index if it lies in this AG. It was a race that lead | |
572 | * us to see this inode, so another lookup from the | |
573 | * same index will not find it again. | |
78ae5256 | 574 | */ |
1a3e8f3d DC |
575 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) |
576 | continue; | |
78ae5256 DC |
577 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
578 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | |
579 | done = 1; | |
e13de955 | 580 | } |
78ae5256 DC |
581 | |
582 | /* unlock now we've grabbed the inodes. */ | |
1a3e8f3d | 583 | rcu_read_unlock(); |
e13de955 | 584 | |
78ae5256 DC |
585 | for (i = 0; i < nr_found; i++) { |
586 | if (!batch[i]) | |
587 | continue; | |
e0094008 | 588 | error = execute(batch[i], flags, args); |
78ae5256 | 589 | IRELE(batch[i]); |
2451337d | 590 | if (error == -EAGAIN) { |
78ae5256 DC |
591 | skipped++; |
592 | continue; | |
593 | } | |
2451337d | 594 | if (error && last_error != -EFSCORRUPTED) |
78ae5256 | 595 | last_error = error; |
75f3cb13 | 596 | } |
c8e20be0 DC |
597 | |
598 | /* bail out if the filesystem is corrupted. */ | |
2451337d | 599 | if (error == -EFSCORRUPTED) |
75f3cb13 DC |
600 | break; |
601 | ||
8daaa831 DC |
602 | cond_resched(); |
603 | ||
78ae5256 | 604 | } while (nr_found && !done); |
75f3cb13 DC |
605 | |
606 | if (skipped) { | |
607 | delay(1); | |
608 | goto restart; | |
609 | } | |
75f3cb13 DC |
610 | return last_error; |
611 | } | |
612 | ||
579b62fa BF |
613 | /* |
614 | * Background scanning to trim post-EOF preallocated space. This is queued | |
b9fe5052 | 615 | * based on the 'speculative_prealloc_lifetime' tunable (5m by default). |
579b62fa BF |
616 | */ |
617 | STATIC void | |
618 | xfs_queue_eofblocks( | |
619 | struct xfs_mount *mp) | |
620 | { | |
621 | rcu_read_lock(); | |
622 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG)) | |
623 | queue_delayed_work(mp->m_eofblocks_workqueue, | |
624 | &mp->m_eofblocks_work, | |
625 | msecs_to_jiffies(xfs_eofb_secs * 1000)); | |
626 | rcu_read_unlock(); | |
627 | } | |
628 | ||
629 | void | |
630 | xfs_eofblocks_worker( | |
631 | struct work_struct *work) | |
632 | { | |
633 | struct xfs_mount *mp = container_of(to_delayed_work(work), | |
634 | struct xfs_mount, m_eofblocks_work); | |
635 | xfs_icache_free_eofblocks(mp, NULL); | |
636 | xfs_queue_eofblocks(mp); | |
637 | } | |
638 | ||
fe588ed3 | 639 | int |
75f3cb13 DC |
640 | xfs_inode_ag_iterator( |
641 | struct xfs_mount *mp, | |
e0094008 | 642 | int (*execute)(struct xfs_inode *ip, int flags, |
a454f742 BF |
643 | void *args), |
644 | int flags, | |
645 | void *args) | |
75f3cb13 | 646 | { |
16fd5367 | 647 | struct xfs_perag *pag; |
75f3cb13 DC |
648 | int error = 0; |
649 | int last_error = 0; | |
650 | xfs_agnumber_t ag; | |
651 | ||
16fd5367 | 652 | ag = 0; |
65d0f205 DC |
653 | while ((pag = xfs_perag_get(mp, ag))) { |
654 | ag = pag->pag_agno + 1; | |
a454f742 BF |
655 | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1); |
656 | xfs_perag_put(pag); | |
657 | if (error) { | |
658 | last_error = error; | |
2451337d | 659 | if (error == -EFSCORRUPTED) |
a454f742 BF |
660 | break; |
661 | } | |
662 | } | |
b474c7ae | 663 | return last_error; |
a454f742 BF |
664 | } |
665 | ||
666 | int | |
667 | xfs_inode_ag_iterator_tag( | |
668 | struct xfs_mount *mp, | |
e0094008 | 669 | int (*execute)(struct xfs_inode *ip, int flags, |
a454f742 BF |
670 | void *args), |
671 | int flags, | |
672 | void *args, | |
673 | int tag) | |
674 | { | |
675 | struct xfs_perag *pag; | |
676 | int error = 0; | |
677 | int last_error = 0; | |
678 | xfs_agnumber_t ag; | |
679 | ||
680 | ag = 0; | |
681 | while ((pag = xfs_perag_get_tag(mp, ag, tag))) { | |
682 | ag = pag->pag_agno + 1; | |
683 | error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag); | |
5017e97d | 684 | xfs_perag_put(pag); |
75f3cb13 DC |
685 | if (error) { |
686 | last_error = error; | |
2451337d | 687 | if (error == -EFSCORRUPTED) |
75f3cb13 DC |
688 | break; |
689 | } | |
690 | } | |
b474c7ae | 691 | return last_error; |
75f3cb13 DC |
692 | } |
693 | ||
a7b339f1 DC |
694 | /* |
695 | * Queue a new inode reclaim pass if there are reclaimable inodes and there | |
696 | * isn't a reclaim pass already in progress. By default it runs every 5s based | |
5889608d | 697 | * on the xfs periodic sync default of 30s. Perhaps this should have it's own |
a7b339f1 DC |
698 | * tunable, but that can be done if this method proves to be ineffective or too |
699 | * aggressive. | |
700 | */ | |
701 | static void | |
5889608d | 702 | xfs_reclaim_work_queue( |
a7b339f1 | 703 | struct xfs_mount *mp) |
a167b17e | 704 | { |
a167b17e | 705 | |
a7b339f1 DC |
706 | rcu_read_lock(); |
707 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | |
5889608d | 708 | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, |
a7b339f1 | 709 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); |
a167b17e | 710 | } |
a7b339f1 DC |
711 | rcu_read_unlock(); |
712 | } | |
a167b17e | 713 | |
a7b339f1 DC |
714 | /* |
715 | * This is a fast pass over the inode cache to try to get reclaim moving on as | |
716 | * many inodes as possible in a short period of time. It kicks itself every few | |
717 | * seconds, as well as being kicked by the inode cache shrinker when memory | |
718 | * goes low. It scans as quickly as possible avoiding locked inodes or those | |
719 | * already being flushed, and once done schedules a future pass. | |
720 | */ | |
33c7a2bc | 721 | void |
a7b339f1 DC |
722 | xfs_reclaim_worker( |
723 | struct work_struct *work) | |
724 | { | |
725 | struct xfs_mount *mp = container_of(to_delayed_work(work), | |
726 | struct xfs_mount, m_reclaim_work); | |
727 | ||
728 | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | |
5889608d | 729 | xfs_reclaim_work_queue(mp); |
a7b339f1 DC |
730 | } |
731 | ||
33479e05 | 732 | static void |
bc990f5c CH |
733 | __xfs_inode_set_reclaim_tag( |
734 | struct xfs_perag *pag, | |
735 | struct xfs_inode *ip) | |
736 | { | |
737 | radix_tree_tag_set(&pag->pag_ici_root, | |
738 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | |
739 | XFS_ICI_RECLAIM_TAG); | |
16fd5367 DC |
740 | |
741 | if (!pag->pag_ici_reclaimable) { | |
742 | /* propagate the reclaim tag up into the perag radix tree */ | |
743 | spin_lock(&ip->i_mount->m_perag_lock); | |
744 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | |
745 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
746 | XFS_ICI_RECLAIM_TAG); | |
747 | spin_unlock(&ip->i_mount->m_perag_lock); | |
a7b339f1 DC |
748 | |
749 | /* schedule periodic background inode reclaim */ | |
5889608d | 750 | xfs_reclaim_work_queue(ip->i_mount); |
a7b339f1 | 751 | |
16fd5367 DC |
752 | trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, |
753 | -1, _RET_IP_); | |
754 | } | |
9bf729c0 | 755 | pag->pag_ici_reclaimable++; |
bc990f5c CH |
756 | } |
757 | ||
11654513 DC |
758 | /* |
759 | * We set the inode flag atomically with the radix tree tag. | |
760 | * Once we get tag lookups on the radix tree, this inode flag | |
761 | * can go away. | |
762 | */ | |
396beb85 DC |
763 | void |
764 | xfs_inode_set_reclaim_tag( | |
765 | xfs_inode_t *ip) | |
766 | { | |
5017e97d DC |
767 | struct xfs_mount *mp = ip->i_mount; |
768 | struct xfs_perag *pag; | |
396beb85 | 769 | |
5017e97d | 770 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
1a427ab0 | 771 | spin_lock(&pag->pag_ici_lock); |
396beb85 | 772 | spin_lock(&ip->i_flags_lock); |
bc990f5c | 773 | __xfs_inode_set_reclaim_tag(pag, ip); |
11654513 | 774 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); |
396beb85 | 775 | spin_unlock(&ip->i_flags_lock); |
1a427ab0 | 776 | spin_unlock(&pag->pag_ici_lock); |
5017e97d | 777 | xfs_perag_put(pag); |
396beb85 DC |
778 | } |
779 | ||
081003ff JW |
780 | STATIC void |
781 | __xfs_inode_clear_reclaim( | |
396beb85 DC |
782 | xfs_perag_t *pag, |
783 | xfs_inode_t *ip) | |
784 | { | |
9bf729c0 | 785 | pag->pag_ici_reclaimable--; |
16fd5367 DC |
786 | if (!pag->pag_ici_reclaimable) { |
787 | /* clear the reclaim tag from the perag radix tree */ | |
788 | spin_lock(&ip->i_mount->m_perag_lock); | |
789 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | |
790 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
791 | XFS_ICI_RECLAIM_TAG); | |
792 | spin_unlock(&ip->i_mount->m_perag_lock); | |
793 | trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, | |
794 | -1, _RET_IP_); | |
795 | } | |
396beb85 DC |
796 | } |
797 | ||
33479e05 | 798 | STATIC void |
081003ff JW |
799 | __xfs_inode_clear_reclaim_tag( |
800 | xfs_mount_t *mp, | |
801 | xfs_perag_t *pag, | |
802 | xfs_inode_t *ip) | |
803 | { | |
804 | radix_tree_tag_clear(&pag->pag_ici_root, | |
805 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | |
806 | __xfs_inode_clear_reclaim(pag, ip); | |
807 | } | |
808 | ||
e3a20c0b DC |
809 | /* |
810 | * Grab the inode for reclaim exclusively. | |
811 | * Return 0 if we grabbed it, non-zero otherwise. | |
812 | */ | |
813 | STATIC int | |
814 | xfs_reclaim_inode_grab( | |
815 | struct xfs_inode *ip, | |
816 | int flags) | |
817 | { | |
1a3e8f3d DC |
818 | ASSERT(rcu_read_lock_held()); |
819 | ||
820 | /* quick check for stale RCU freed inode */ | |
821 | if (!ip->i_ino) | |
822 | return 1; | |
e3a20c0b DC |
823 | |
824 | /* | |
474fce06 CH |
825 | * If we are asked for non-blocking operation, do unlocked checks to |
826 | * see if the inode already is being flushed or in reclaim to avoid | |
827 | * lock traffic. | |
e3a20c0b DC |
828 | */ |
829 | if ((flags & SYNC_TRYLOCK) && | |
474fce06 | 830 | __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) |
e3a20c0b | 831 | return 1; |
e3a20c0b DC |
832 | |
833 | /* | |
834 | * The radix tree lock here protects a thread in xfs_iget from racing | |
835 | * with us starting reclaim on the inode. Once we have the | |
836 | * XFS_IRECLAIM flag set it will not touch us. | |
1a3e8f3d DC |
837 | * |
838 | * Due to RCU lookup, we may find inodes that have been freed and only | |
839 | * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that | |
840 | * aren't candidates for reclaim at all, so we must check the | |
841 | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | |
e3a20c0b DC |
842 | */ |
843 | spin_lock(&ip->i_flags_lock); | |
1a3e8f3d DC |
844 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || |
845 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | |
846 | /* not a reclaim candidate. */ | |
e3a20c0b DC |
847 | spin_unlock(&ip->i_flags_lock); |
848 | return 1; | |
849 | } | |
850 | __xfs_iflags_set(ip, XFS_IRECLAIM); | |
851 | spin_unlock(&ip->i_flags_lock); | |
852 | return 0; | |
853 | } | |
854 | ||
777df5af | 855 | /* |
8a48088f CH |
856 | * Inodes in different states need to be treated differently. The following |
857 | * table lists the inode states and the reclaim actions necessary: | |
777df5af DC |
858 | * |
859 | * inode state iflush ret required action | |
860 | * --------------- ---------- --------------- | |
861 | * bad - reclaim | |
862 | * shutdown EIO unpin and reclaim | |
863 | * clean, unpinned 0 reclaim | |
864 | * stale, unpinned 0 reclaim | |
c854363e DC |
865 | * clean, pinned(*) 0 requeue |
866 | * stale, pinned EAGAIN requeue | |
8a48088f CH |
867 | * dirty, async - requeue |
868 | * dirty, sync 0 reclaim | |
777df5af DC |
869 | * |
870 | * (*) dgc: I don't think the clean, pinned state is possible but it gets | |
871 | * handled anyway given the order of checks implemented. | |
872 | * | |
c854363e DC |
873 | * Also, because we get the flush lock first, we know that any inode that has |
874 | * been flushed delwri has had the flush completed by the time we check that | |
8a48088f | 875 | * the inode is clean. |
c854363e | 876 | * |
8a48088f CH |
877 | * Note that because the inode is flushed delayed write by AIL pushing, the |
878 | * flush lock may already be held here and waiting on it can result in very | |
879 | * long latencies. Hence for sync reclaims, where we wait on the flush lock, | |
880 | * the caller should push the AIL first before trying to reclaim inodes to | |
881 | * minimise the amount of time spent waiting. For background relaim, we only | |
882 | * bother to reclaim clean inodes anyway. | |
c854363e | 883 | * |
777df5af DC |
884 | * Hence the order of actions after gaining the locks should be: |
885 | * bad => reclaim | |
886 | * shutdown => unpin and reclaim | |
8a48088f | 887 | * pinned, async => requeue |
c854363e | 888 | * pinned, sync => unpin |
777df5af DC |
889 | * stale => reclaim |
890 | * clean => reclaim | |
8a48088f | 891 | * dirty, async => requeue |
c854363e | 892 | * dirty, sync => flush, wait and reclaim |
777df5af | 893 | */ |
75f3cb13 | 894 | STATIC int |
c8e20be0 | 895 | xfs_reclaim_inode( |
75f3cb13 DC |
896 | struct xfs_inode *ip, |
897 | struct xfs_perag *pag, | |
c8e20be0 | 898 | int sync_mode) |
fce08f2f | 899 | { |
4c46819a CH |
900 | struct xfs_buf *bp = NULL; |
901 | int error; | |
777df5af | 902 | |
1bfd8d04 DC |
903 | restart: |
904 | error = 0; | |
c8e20be0 | 905 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
c854363e DC |
906 | if (!xfs_iflock_nowait(ip)) { |
907 | if (!(sync_mode & SYNC_WAIT)) | |
908 | goto out; | |
909 | xfs_iflock(ip); | |
910 | } | |
7a3be02b | 911 | |
777df5af DC |
912 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
913 | xfs_iunpin_wait(ip); | |
04913fdd | 914 | xfs_iflush_abort(ip, false); |
777df5af DC |
915 | goto reclaim; |
916 | } | |
c854363e | 917 | if (xfs_ipincount(ip)) { |
8a48088f CH |
918 | if (!(sync_mode & SYNC_WAIT)) |
919 | goto out_ifunlock; | |
777df5af | 920 | xfs_iunpin_wait(ip); |
c854363e | 921 | } |
777df5af DC |
922 | if (xfs_iflags_test(ip, XFS_ISTALE)) |
923 | goto reclaim; | |
924 | if (xfs_inode_clean(ip)) | |
925 | goto reclaim; | |
926 | ||
8a48088f CH |
927 | /* |
928 | * Never flush out dirty data during non-blocking reclaim, as it would | |
929 | * just contend with AIL pushing trying to do the same job. | |
930 | */ | |
931 | if (!(sync_mode & SYNC_WAIT)) | |
932 | goto out_ifunlock; | |
933 | ||
1bfd8d04 DC |
934 | /* |
935 | * Now we have an inode that needs flushing. | |
936 | * | |
4c46819a | 937 | * Note that xfs_iflush will never block on the inode buffer lock, as |
1bfd8d04 | 938 | * xfs_ifree_cluster() can lock the inode buffer before it locks the |
4c46819a | 939 | * ip->i_lock, and we are doing the exact opposite here. As a result, |
475ee413 CH |
940 | * doing a blocking xfs_imap_to_bp() to get the cluster buffer would |
941 | * result in an ABBA deadlock with xfs_ifree_cluster(). | |
1bfd8d04 DC |
942 | * |
943 | * As xfs_ifree_cluser() must gather all inodes that are active in the | |
944 | * cache to mark them stale, if we hit this case we don't actually want | |
945 | * to do IO here - we want the inode marked stale so we can simply | |
4c46819a CH |
946 | * reclaim it. Hence if we get an EAGAIN error here, just unlock the |
947 | * inode, back off and try again. Hopefully the next pass through will | |
948 | * see the stale flag set on the inode. | |
1bfd8d04 | 949 | */ |
4c46819a | 950 | error = xfs_iflush(ip, &bp); |
2451337d | 951 | if (error == -EAGAIN) { |
8a48088f CH |
952 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
953 | /* backoff longer than in xfs_ifree_cluster */ | |
954 | delay(2); | |
955 | goto restart; | |
c854363e | 956 | } |
c854363e | 957 | |
4c46819a CH |
958 | if (!error) { |
959 | error = xfs_bwrite(bp); | |
960 | xfs_buf_relse(bp); | |
961 | } | |
962 | ||
963 | xfs_iflock(ip); | |
777df5af DC |
964 | reclaim: |
965 | xfs_ifunlock(ip); | |
c8e20be0 | 966 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
2f11feab | 967 | |
ff6d6af2 | 968 | XFS_STATS_INC(ip->i_mount, xs_ig_reclaims); |
2f11feab DC |
969 | /* |
970 | * Remove the inode from the per-AG radix tree. | |
971 | * | |
972 | * Because radix_tree_delete won't complain even if the item was never | |
973 | * added to the tree assert that it's been there before to catch | |
974 | * problems with the inode life time early on. | |
975 | */ | |
1a427ab0 | 976 | spin_lock(&pag->pag_ici_lock); |
2f11feab DC |
977 | if (!radix_tree_delete(&pag->pag_ici_root, |
978 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) | |
979 | ASSERT(0); | |
081003ff | 980 | __xfs_inode_clear_reclaim(pag, ip); |
1a427ab0 | 981 | spin_unlock(&pag->pag_ici_lock); |
2f11feab DC |
982 | |
983 | /* | |
984 | * Here we do an (almost) spurious inode lock in order to coordinate | |
985 | * with inode cache radix tree lookups. This is because the lookup | |
986 | * can reference the inodes in the cache without taking references. | |
987 | * | |
988 | * We make that OK here by ensuring that we wait until the inode is | |
ad637a10 | 989 | * unlocked after the lookup before we go ahead and free it. |
2f11feab | 990 | */ |
ad637a10 | 991 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
2f11feab | 992 | xfs_qm_dqdetach(ip); |
ad637a10 | 993 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
2f11feab DC |
994 | |
995 | xfs_inode_free(ip); | |
ad637a10 | 996 | return error; |
8a48088f CH |
997 | |
998 | out_ifunlock: | |
999 | xfs_ifunlock(ip); | |
1000 | out: | |
1001 | xfs_iflags_clear(ip, XFS_IRECLAIM); | |
1002 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | |
1003 | /* | |
2451337d | 1004 | * We could return -EAGAIN here to make reclaim rescan the inode tree in |
8a48088f | 1005 | * a short while. However, this just burns CPU time scanning the tree |
5889608d DC |
1006 | * waiting for IO to complete and the reclaim work never goes back to |
1007 | * the idle state. Instead, return 0 to let the next scheduled | |
1008 | * background reclaim attempt to reclaim the inode again. | |
8a48088f CH |
1009 | */ |
1010 | return 0; | |
7a3be02b DC |
1011 | } |
1012 | ||
65d0f205 DC |
1013 | /* |
1014 | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | |
1015 | * corrupted, we still want to try to reclaim all the inodes. If we don't, | |
1016 | * then a shut down during filesystem unmount reclaim walk leak all the | |
1017 | * unreclaimed inodes. | |
1018 | */ | |
33479e05 | 1019 | STATIC int |
65d0f205 DC |
1020 | xfs_reclaim_inodes_ag( |
1021 | struct xfs_mount *mp, | |
1022 | int flags, | |
1023 | int *nr_to_scan) | |
1024 | { | |
1025 | struct xfs_perag *pag; | |
1026 | int error = 0; | |
1027 | int last_error = 0; | |
1028 | xfs_agnumber_t ag; | |
69b491c2 DC |
1029 | int trylock = flags & SYNC_TRYLOCK; |
1030 | int skipped; | |
65d0f205 | 1031 | |
69b491c2 | 1032 | restart: |
65d0f205 | 1033 | ag = 0; |
69b491c2 | 1034 | skipped = 0; |
65d0f205 DC |
1035 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
1036 | unsigned long first_index = 0; | |
1037 | int done = 0; | |
e3a20c0b | 1038 | int nr_found = 0; |
65d0f205 DC |
1039 | |
1040 | ag = pag->pag_agno + 1; | |
1041 | ||
69b491c2 DC |
1042 | if (trylock) { |
1043 | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | |
1044 | skipped++; | |
f83282a8 | 1045 | xfs_perag_put(pag); |
69b491c2 DC |
1046 | continue; |
1047 | } | |
1048 | first_index = pag->pag_ici_reclaim_cursor; | |
1049 | } else | |
1050 | mutex_lock(&pag->pag_ici_reclaim_lock); | |
1051 | ||
65d0f205 | 1052 | do { |
e3a20c0b DC |
1053 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; |
1054 | int i; | |
65d0f205 | 1055 | |
1a3e8f3d | 1056 | rcu_read_lock(); |
e3a20c0b DC |
1057 | nr_found = radix_tree_gang_lookup_tag( |
1058 | &pag->pag_ici_root, | |
1059 | (void **)batch, first_index, | |
1060 | XFS_LOOKUP_BATCH, | |
65d0f205 DC |
1061 | XFS_ICI_RECLAIM_TAG); |
1062 | if (!nr_found) { | |
b2232219 | 1063 | done = 1; |
1a3e8f3d | 1064 | rcu_read_unlock(); |
65d0f205 DC |
1065 | break; |
1066 | } | |
1067 | ||
1068 | /* | |
e3a20c0b DC |
1069 | * Grab the inodes before we drop the lock. if we found |
1070 | * nothing, nr == 0 and the loop will be skipped. | |
65d0f205 | 1071 | */ |
e3a20c0b DC |
1072 | for (i = 0; i < nr_found; i++) { |
1073 | struct xfs_inode *ip = batch[i]; | |
1074 | ||
1075 | if (done || xfs_reclaim_inode_grab(ip, flags)) | |
1076 | batch[i] = NULL; | |
1077 | ||
1078 | /* | |
1079 | * Update the index for the next lookup. Catch | |
1080 | * overflows into the next AG range which can | |
1081 | * occur if we have inodes in the last block of | |
1082 | * the AG and we are currently pointing to the | |
1083 | * last inode. | |
1a3e8f3d DC |
1084 | * |
1085 | * Because we may see inodes that are from the | |
1086 | * wrong AG due to RCU freeing and | |
1087 | * reallocation, only update the index if it | |
1088 | * lies in this AG. It was a race that lead us | |
1089 | * to see this inode, so another lookup from | |
1090 | * the same index will not find it again. | |
e3a20c0b | 1091 | */ |
1a3e8f3d DC |
1092 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != |
1093 | pag->pag_agno) | |
1094 | continue; | |
e3a20c0b DC |
1095 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); |
1096 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | |
1097 | done = 1; | |
1098 | } | |
65d0f205 | 1099 | |
e3a20c0b | 1100 | /* unlock now we've grabbed the inodes. */ |
1a3e8f3d | 1101 | rcu_read_unlock(); |
e3a20c0b DC |
1102 | |
1103 | for (i = 0; i < nr_found; i++) { | |
1104 | if (!batch[i]) | |
1105 | continue; | |
1106 | error = xfs_reclaim_inode(batch[i], pag, flags); | |
2451337d | 1107 | if (error && last_error != -EFSCORRUPTED) |
e3a20c0b DC |
1108 | last_error = error; |
1109 | } | |
1110 | ||
1111 | *nr_to_scan -= XFS_LOOKUP_BATCH; | |
65d0f205 | 1112 | |
8daaa831 DC |
1113 | cond_resched(); |
1114 | ||
e3a20c0b | 1115 | } while (nr_found && !done && *nr_to_scan > 0); |
65d0f205 | 1116 | |
69b491c2 DC |
1117 | if (trylock && !done) |
1118 | pag->pag_ici_reclaim_cursor = first_index; | |
1119 | else | |
1120 | pag->pag_ici_reclaim_cursor = 0; | |
1121 | mutex_unlock(&pag->pag_ici_reclaim_lock); | |
65d0f205 DC |
1122 | xfs_perag_put(pag); |
1123 | } | |
69b491c2 DC |
1124 | |
1125 | /* | |
1126 | * if we skipped any AG, and we still have scan count remaining, do | |
1127 | * another pass this time using blocking reclaim semantics (i.e | |
1128 | * waiting on the reclaim locks and ignoring the reclaim cursors). This | |
1129 | * ensure that when we get more reclaimers than AGs we block rather | |
1130 | * than spin trying to execute reclaim. | |
1131 | */ | |
8daaa831 | 1132 | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { |
69b491c2 DC |
1133 | trylock = 0; |
1134 | goto restart; | |
1135 | } | |
b474c7ae | 1136 | return last_error; |
65d0f205 DC |
1137 | } |
1138 | ||
7a3be02b DC |
1139 | int |
1140 | xfs_reclaim_inodes( | |
1141 | xfs_mount_t *mp, | |
7a3be02b DC |
1142 | int mode) |
1143 | { | |
65d0f205 DC |
1144 | int nr_to_scan = INT_MAX; |
1145 | ||
1146 | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | |
9bf729c0 DC |
1147 | } |
1148 | ||
1149 | /* | |
8daaa831 | 1150 | * Scan a certain number of inodes for reclaim. |
a7b339f1 DC |
1151 | * |
1152 | * When called we make sure that there is a background (fast) inode reclaim in | |
8daaa831 | 1153 | * progress, while we will throttle the speed of reclaim via doing synchronous |
a7b339f1 DC |
1154 | * reclaim of inodes. That means if we come across dirty inodes, we wait for |
1155 | * them to be cleaned, which we hope will not be very long due to the | |
1156 | * background walker having already kicked the IO off on those dirty inodes. | |
9bf729c0 | 1157 | */ |
0a234c6d | 1158 | long |
8daaa831 DC |
1159 | xfs_reclaim_inodes_nr( |
1160 | struct xfs_mount *mp, | |
1161 | int nr_to_scan) | |
9bf729c0 | 1162 | { |
8daaa831 | 1163 | /* kick background reclaimer and push the AIL */ |
5889608d | 1164 | xfs_reclaim_work_queue(mp); |
8daaa831 | 1165 | xfs_ail_push_all(mp->m_ail); |
a7b339f1 | 1166 | |
0a234c6d | 1167 | return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); |
8daaa831 | 1168 | } |
9bf729c0 | 1169 | |
8daaa831 DC |
1170 | /* |
1171 | * Return the number of reclaimable inodes in the filesystem for | |
1172 | * the shrinker to determine how much to reclaim. | |
1173 | */ | |
1174 | int | |
1175 | xfs_reclaim_inodes_count( | |
1176 | struct xfs_mount *mp) | |
1177 | { | |
1178 | struct xfs_perag *pag; | |
1179 | xfs_agnumber_t ag = 0; | |
1180 | int reclaimable = 0; | |
9bf729c0 | 1181 | |
65d0f205 DC |
1182 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { |
1183 | ag = pag->pag_agno + 1; | |
70e60ce7 DC |
1184 | reclaimable += pag->pag_ici_reclaimable; |
1185 | xfs_perag_put(pag); | |
9bf729c0 | 1186 | } |
9bf729c0 DC |
1187 | return reclaimable; |
1188 | } | |
1189 | ||
3e3f9f58 BF |
1190 | STATIC int |
1191 | xfs_inode_match_id( | |
1192 | struct xfs_inode *ip, | |
1193 | struct xfs_eofblocks *eofb) | |
1194 | { | |
b9fe5052 DE |
1195 | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && |
1196 | !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | |
1b556048 | 1197 | return 0; |
3e3f9f58 | 1198 | |
b9fe5052 DE |
1199 | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && |
1200 | !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | |
1b556048 BF |
1201 | return 0; |
1202 | ||
b9fe5052 | 1203 | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && |
1b556048 BF |
1204 | xfs_get_projid(ip) != eofb->eof_prid) |
1205 | return 0; | |
1206 | ||
1207 | return 1; | |
3e3f9f58 BF |
1208 | } |
1209 | ||
f4526397 BF |
1210 | /* |
1211 | * A union-based inode filtering algorithm. Process the inode if any of the | |
1212 | * criteria match. This is for global/internal scans only. | |
1213 | */ | |
1214 | STATIC int | |
1215 | xfs_inode_match_id_union( | |
1216 | struct xfs_inode *ip, | |
1217 | struct xfs_eofblocks *eofb) | |
1218 | { | |
1219 | if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) && | |
1220 | uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid)) | |
1221 | return 1; | |
1222 | ||
1223 | if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) && | |
1224 | gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid)) | |
1225 | return 1; | |
1226 | ||
1227 | if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) && | |
1228 | xfs_get_projid(ip) == eofb->eof_prid) | |
1229 | return 1; | |
1230 | ||
1231 | return 0; | |
1232 | } | |
1233 | ||
41176a68 BF |
1234 | STATIC int |
1235 | xfs_inode_free_eofblocks( | |
1236 | struct xfs_inode *ip, | |
41176a68 BF |
1237 | int flags, |
1238 | void *args) | |
1239 | { | |
1240 | int ret; | |
3e3f9f58 | 1241 | struct xfs_eofblocks *eofb = args; |
5400da7d | 1242 | bool need_iolock = true; |
f4526397 | 1243 | int match; |
5400da7d BF |
1244 | |
1245 | ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0)); | |
41176a68 BF |
1246 | |
1247 | if (!xfs_can_free_eofblocks(ip, false)) { | |
1248 | /* inode could be preallocated or append-only */ | |
1249 | trace_xfs_inode_free_eofblocks_invalid(ip); | |
1250 | xfs_inode_clear_eofblocks_tag(ip); | |
1251 | return 0; | |
1252 | } | |
1253 | ||
1254 | /* | |
1255 | * If the mapping is dirty the operation can block and wait for some | |
1256 | * time. Unless we are waiting, skip it. | |
1257 | */ | |
1258 | if (!(flags & SYNC_WAIT) && | |
1259 | mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY)) | |
1260 | return 0; | |
1261 | ||
00ca79a0 | 1262 | if (eofb) { |
f4526397 BF |
1263 | if (eofb->eof_flags & XFS_EOF_FLAGS_UNION) |
1264 | match = xfs_inode_match_id_union(ip, eofb); | |
1265 | else | |
1266 | match = xfs_inode_match_id(ip, eofb); | |
1267 | if (!match) | |
00ca79a0 BF |
1268 | return 0; |
1269 | ||
1270 | /* skip the inode if the file size is too small */ | |
1271 | if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE && | |
1272 | XFS_ISIZE(ip) < eofb->eof_min_file_size) | |
1273 | return 0; | |
5400da7d BF |
1274 | |
1275 | /* | |
1276 | * A scan owner implies we already hold the iolock. Skip it in | |
1277 | * xfs_free_eofblocks() to avoid deadlock. This also eliminates | |
1278 | * the possibility of EAGAIN being returned. | |
1279 | */ | |
1280 | if (eofb->eof_scan_owner == ip->i_ino) | |
1281 | need_iolock = false; | |
00ca79a0 | 1282 | } |
3e3f9f58 | 1283 | |
5400da7d | 1284 | ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock); |
41176a68 BF |
1285 | |
1286 | /* don't revisit the inode if we're not waiting */ | |
2451337d | 1287 | if (ret == -EAGAIN && !(flags & SYNC_WAIT)) |
41176a68 BF |
1288 | ret = 0; |
1289 | ||
1290 | return ret; | |
1291 | } | |
1292 | ||
1293 | int | |
1294 | xfs_icache_free_eofblocks( | |
1295 | struct xfs_mount *mp, | |
8ca149de | 1296 | struct xfs_eofblocks *eofb) |
41176a68 | 1297 | { |
8ca149de BF |
1298 | int flags = SYNC_TRYLOCK; |
1299 | ||
1300 | if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC)) | |
1301 | flags = SYNC_WAIT; | |
1302 | ||
41176a68 | 1303 | return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags, |
8ca149de | 1304 | eofb, XFS_ICI_EOFBLOCKS_TAG); |
41176a68 BF |
1305 | } |
1306 | ||
dc06f398 BF |
1307 | /* |
1308 | * Run eofblocks scans on the quotas applicable to the inode. For inodes with | |
1309 | * multiple quotas, we don't know exactly which quota caused an allocation | |
1310 | * failure. We make a best effort by including each quota under low free space | |
1311 | * conditions (less than 1% free space) in the scan. | |
1312 | */ | |
1313 | int | |
1314 | xfs_inode_free_quota_eofblocks( | |
1315 | struct xfs_inode *ip) | |
1316 | { | |
1317 | int scan = 0; | |
1318 | struct xfs_eofblocks eofb = {0}; | |
1319 | struct xfs_dquot *dq; | |
1320 | ||
1321 | ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); | |
1322 | ||
1323 | /* | |
1324 | * Set the scan owner to avoid a potential livelock. Otherwise, the scan | |
1325 | * can repeatedly trylock on the inode we're currently processing. We | |
1326 | * run a sync scan to increase effectiveness and use the union filter to | |
1327 | * cover all applicable quotas in a single scan. | |
1328 | */ | |
1329 | eofb.eof_scan_owner = ip->i_ino; | |
1330 | eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC; | |
1331 | ||
1332 | if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) { | |
1333 | dq = xfs_inode_dquot(ip, XFS_DQ_USER); | |
1334 | if (dq && xfs_dquot_lowsp(dq)) { | |
1335 | eofb.eof_uid = VFS_I(ip)->i_uid; | |
1336 | eofb.eof_flags |= XFS_EOF_FLAGS_UID; | |
1337 | scan = 1; | |
1338 | } | |
1339 | } | |
1340 | ||
1341 | if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) { | |
1342 | dq = xfs_inode_dquot(ip, XFS_DQ_GROUP); | |
1343 | if (dq && xfs_dquot_lowsp(dq)) { | |
1344 | eofb.eof_gid = VFS_I(ip)->i_gid; | |
1345 | eofb.eof_flags |= XFS_EOF_FLAGS_GID; | |
1346 | scan = 1; | |
1347 | } | |
1348 | } | |
1349 | ||
1350 | if (scan) | |
1351 | xfs_icache_free_eofblocks(ip->i_mount, &eofb); | |
1352 | ||
1353 | return scan; | |
1354 | } | |
1355 | ||
27b52867 BF |
1356 | void |
1357 | xfs_inode_set_eofblocks_tag( | |
1358 | xfs_inode_t *ip) | |
1359 | { | |
1360 | struct xfs_mount *mp = ip->i_mount; | |
1361 | struct xfs_perag *pag; | |
1362 | int tagged; | |
1363 | ||
1364 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | |
1365 | spin_lock(&pag->pag_ici_lock); | |
1366 | trace_xfs_inode_set_eofblocks_tag(ip); | |
1367 | ||
1368 | tagged = radix_tree_tagged(&pag->pag_ici_root, | |
1369 | XFS_ICI_EOFBLOCKS_TAG); | |
1370 | radix_tree_tag_set(&pag->pag_ici_root, | |
1371 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | |
1372 | XFS_ICI_EOFBLOCKS_TAG); | |
1373 | if (!tagged) { | |
1374 | /* propagate the eofblocks tag up into the perag radix tree */ | |
1375 | spin_lock(&ip->i_mount->m_perag_lock); | |
1376 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | |
1377 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
1378 | XFS_ICI_EOFBLOCKS_TAG); | |
1379 | spin_unlock(&ip->i_mount->m_perag_lock); | |
579b62fa BF |
1380 | |
1381 | /* kick off background trimming */ | |
1382 | xfs_queue_eofblocks(ip->i_mount); | |
27b52867 BF |
1383 | |
1384 | trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno, | |
1385 | -1, _RET_IP_); | |
1386 | } | |
1387 | ||
1388 | spin_unlock(&pag->pag_ici_lock); | |
1389 | xfs_perag_put(pag); | |
1390 | } | |
1391 | ||
1392 | void | |
1393 | xfs_inode_clear_eofblocks_tag( | |
1394 | xfs_inode_t *ip) | |
1395 | { | |
1396 | struct xfs_mount *mp = ip->i_mount; | |
1397 | struct xfs_perag *pag; | |
1398 | ||
1399 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | |
1400 | spin_lock(&pag->pag_ici_lock); | |
1401 | trace_xfs_inode_clear_eofblocks_tag(ip); | |
1402 | ||
1403 | radix_tree_tag_clear(&pag->pag_ici_root, | |
1404 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | |
1405 | XFS_ICI_EOFBLOCKS_TAG); | |
1406 | if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) { | |
1407 | /* clear the eofblocks tag from the perag radix tree */ | |
1408 | spin_lock(&ip->i_mount->m_perag_lock); | |
1409 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | |
1410 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | |
1411 | XFS_ICI_EOFBLOCKS_TAG); | |
1412 | spin_unlock(&ip->i_mount->m_perag_lock); | |
1413 | trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno, | |
1414 | -1, _RET_IP_); | |
1415 | } | |
1416 | ||
1417 | spin_unlock(&pag->pag_ici_lock); | |
1418 | xfs_perag_put(pag); | |
1419 | } | |
1420 |