]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * JFFS2 -- Journalling Flash File System, Version 2. | |
3 | * | |
4 | * Copyright (C) 2001-2003 Red Hat, Inc. | |
5 | * | |
6 | * Created by David Woodhouse <[email protected]> | |
7 | * | |
8 | * For licensing information, see the file 'LICENCE' in this directory. | |
9 | * | |
182ec4ee | 10 | * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $ |
1da177e4 LT |
11 | * |
12 | */ | |
13 | ||
14 | #include <linux/kernel.h> | |
15 | #include <linux/mtd/mtd.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/pagemap.h> | |
18 | #include <linux/crc32.h> | |
19 | #include <linux/compiler.h> | |
20 | #include <linux/stat.h> | |
21 | #include "nodelist.h" | |
22 | #include "compr.h" | |
23 | ||
182ec4ee | 24 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
25 | struct jffs2_inode_cache *ic, |
26 | struct jffs2_raw_node_ref *raw); | |
182ec4ee | 27 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 28 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); |
182ec4ee | 29 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 | 30 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
182ec4ee | 31 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
32 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
33 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
34 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
35 | uint32_t start, uint32_t end); | |
36 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
37 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
38 | uint32_t start, uint32_t end); | |
39 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
40 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); | |
41 | ||
42 | /* Called with erase_completion_lock held */ | |
43 | static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) | |
44 | { | |
45 | struct jffs2_eraseblock *ret; | |
46 | struct list_head *nextlist = NULL; | |
47 | int n = jiffies % 128; | |
48 | ||
49 | /* Pick an eraseblock to garbage collect next. This is where we'll | |
50 | put the clever wear-levelling algorithms. Eventually. */ | |
51 | /* We possibly want to favour the dirtier blocks more when the | |
52 | number of free blocks is low. */ | |
a42163d7 | 53 | again: |
1da177e4 LT |
54 | if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { |
55 | D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); | |
56 | nextlist = &c->bad_used_list; | |
57 | } else if (n < 50 && !list_empty(&c->erasable_list)) { | |
182ec4ee | 58 | /* Note that most of them will have gone directly to be erased. |
1da177e4 LT |
59 | So don't favour the erasable_list _too_ much. */ |
60 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); | |
61 | nextlist = &c->erasable_list; | |
62 | } else if (n < 110 && !list_empty(&c->very_dirty_list)) { | |
63 | /* Most of the time, pick one off the very_dirty list */ | |
64 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); | |
65 | nextlist = &c->very_dirty_list; | |
66 | } else if (n < 126 && !list_empty(&c->dirty_list)) { | |
67 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); | |
68 | nextlist = &c->dirty_list; | |
69 | } else if (!list_empty(&c->clean_list)) { | |
70 | D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); | |
71 | nextlist = &c->clean_list; | |
72 | } else if (!list_empty(&c->dirty_list)) { | |
73 | D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); | |
74 | ||
75 | nextlist = &c->dirty_list; | |
76 | } else if (!list_empty(&c->very_dirty_list)) { | |
77 | D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); | |
78 | nextlist = &c->very_dirty_list; | |
79 | } else if (!list_empty(&c->erasable_list)) { | |
80 | D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); | |
81 | ||
82 | nextlist = &c->erasable_list; | |
a42163d7 AB |
83 | } else if (!list_empty(&c->erasable_pending_wbuf_list)) { |
84 | /* There are blocks are wating for the wbuf sync */ | |
85 | D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); | |
3cceb9f6 | 86 | spin_unlock(&c->erase_completion_lock); |
a42163d7 | 87 | jffs2_flush_wbuf_pad(c); |
3cceb9f6 | 88 | spin_lock(&c->erase_completion_lock); |
a42163d7 | 89 | goto again; |
1da177e4 LT |
90 | } else { |
91 | /* Eep. All were empty */ | |
92 | D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); | |
93 | return NULL; | |
94 | } | |
95 | ||
96 | ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); | |
97 | list_del(&ret->list); | |
98 | c->gcblock = ret; | |
99 | ret->gc_node = ret->first_node; | |
100 | if (!ret->gc_node) { | |
101 | printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); | |
102 | BUG(); | |
103 | } | |
182ec4ee | 104 | |
1da177e4 LT |
105 | /* Have we accidentally picked a clean block with wasted space ? */ |
106 | if (ret->wasted_size) { | |
107 | D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); | |
108 | ret->dirty_size += ret->wasted_size; | |
109 | c->wasted_size -= ret->wasted_size; | |
110 | c->dirty_size += ret->wasted_size; | |
111 | ret->wasted_size = 0; | |
112 | } | |
113 | ||
1da177e4 LT |
114 | return ret; |
115 | } | |
116 | ||
117 | /* jffs2_garbage_collect_pass | |
118 | * Make a single attempt to progress GC. Move one node, and possibly | |
119 | * start erasing one eraseblock. | |
120 | */ | |
121 | int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) | |
122 | { | |
123 | struct jffs2_inode_info *f; | |
124 | struct jffs2_inode_cache *ic; | |
125 | struct jffs2_eraseblock *jeb; | |
126 | struct jffs2_raw_node_ref *raw; | |
127 | int ret = 0, inum, nlink; | |
aa98d7cf | 128 | int xattr = 0; |
1da177e4 LT |
129 | |
130 | if (down_interruptible(&c->alloc_sem)) | |
131 | return -EINTR; | |
132 | ||
133 | for (;;) { | |
134 | spin_lock(&c->erase_completion_lock); | |
135 | if (!c->unchecked_size) | |
136 | break; | |
137 | ||
138 | /* We can't start doing GC yet. We haven't finished checking | |
139 | the node CRCs etc. Do it now. */ | |
182ec4ee | 140 | |
1da177e4 | 141 | /* checked_ino is protected by the alloc_sem */ |
aa98d7cf | 142 | if (c->checked_ino > c->highest_ino && xattr) { |
1da177e4 LT |
143 | printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", |
144 | c->unchecked_size); | |
e0c8e42f | 145 | jffs2_dbg_dump_block_lists_nolock(c); |
1da177e4 LT |
146 | spin_unlock(&c->erase_completion_lock); |
147 | BUG(); | |
148 | } | |
149 | ||
150 | spin_unlock(&c->erase_completion_lock); | |
151 | ||
aa98d7cf KK |
152 | if (!xattr) |
153 | xattr = jffs2_verify_xattr(c); | |
154 | ||
1da177e4 LT |
155 | spin_lock(&c->inocache_lock); |
156 | ||
157 | ic = jffs2_get_ino_cache(c, c->checked_ino++); | |
158 | ||
159 | if (!ic) { | |
160 | spin_unlock(&c->inocache_lock); | |
161 | continue; | |
162 | } | |
163 | ||
164 | if (!ic->nlink) { | |
165 | D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n", | |
166 | ic->ino)); | |
167 | spin_unlock(&c->inocache_lock); | |
355ed4e1 | 168 | jffs2_xattr_delete_inode(c, ic); |
1da177e4 LT |
169 | continue; |
170 | } | |
171 | switch(ic->state) { | |
172 | case INO_STATE_CHECKEDABSENT: | |
173 | case INO_STATE_PRESENT: | |
174 | D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); | |
175 | spin_unlock(&c->inocache_lock); | |
176 | continue; | |
177 | ||
178 | case INO_STATE_GC: | |
179 | case INO_STATE_CHECKING: | |
180 | printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); | |
181 | spin_unlock(&c->inocache_lock); | |
182 | BUG(); | |
183 | ||
184 | case INO_STATE_READING: | |
185 | /* We need to wait for it to finish, lest we move on | |
182ec4ee | 186 | and trigger the BUG() above while we haven't yet |
1da177e4 LT |
187 | finished checking all its nodes */ |
188 | D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); | |
d96fb997 DW |
189 | /* We need to come back again for the _same_ inode. We've |
190 | made no progress in this case, but that should be OK */ | |
191 | c->checked_ino--; | |
192 | ||
1da177e4 LT |
193 | up(&c->alloc_sem); |
194 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | |
195 | return 0; | |
196 | ||
197 | default: | |
198 | BUG(); | |
199 | ||
200 | case INO_STATE_UNCHECKED: | |
201 | ; | |
202 | } | |
203 | ic->state = INO_STATE_CHECKING; | |
204 | spin_unlock(&c->inocache_lock); | |
205 | ||
206 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); | |
207 | ||
208 | ret = jffs2_do_crccheck_inode(c, ic); | |
209 | if (ret) | |
210 | printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); | |
211 | ||
212 | jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); | |
213 | up(&c->alloc_sem); | |
214 | return ret; | |
215 | } | |
216 | ||
217 | /* First, work out which block we're garbage-collecting */ | |
218 | jeb = c->gcblock; | |
219 | ||
220 | if (!jeb) | |
221 | jeb = jffs2_find_gc_block(c); | |
222 | ||
223 | if (!jeb) { | |
224 | D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); | |
225 | spin_unlock(&c->erase_completion_lock); | |
226 | up(&c->alloc_sem); | |
227 | return -EIO; | |
228 | } | |
229 | ||
230 | D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); | |
231 | D1(if (c->nextblock) | |
232 | printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); | |
233 | ||
234 | if (!jeb->used_size) { | |
235 | up(&c->alloc_sem); | |
236 | goto eraseit; | |
237 | } | |
238 | ||
239 | raw = jeb->gc_node; | |
182ec4ee | 240 | |
1da177e4 LT |
241 | while(ref_obsolete(raw)) { |
242 | D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); | |
99988f7b | 243 | raw = ref_next(raw); |
1da177e4 LT |
244 | if (unlikely(!raw)) { |
245 | printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); | |
182ec4ee | 246 | printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", |
1da177e4 LT |
247 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); |
248 | jeb->gc_node = raw; | |
249 | spin_unlock(&c->erase_completion_lock); | |
250 | up(&c->alloc_sem); | |
251 | BUG(); | |
252 | } | |
253 | } | |
254 | jeb->gc_node = raw; | |
255 | ||
256 | D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); | |
257 | ||
258 | if (!raw->next_in_ino) { | |
259 | /* Inode-less node. Clean marker, snapshot or something like that */ | |
1da177e4 | 260 | spin_unlock(&c->erase_completion_lock); |
6171586a DW |
261 | if (ref_flags(raw) == REF_PRISTINE) { |
262 | /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */ | |
263 | jffs2_garbage_collect_pristine(c, NULL, raw); | |
264 | } else { | |
265 | /* Just mark it obsolete */ | |
266 | jffs2_mark_node_obsolete(c, raw); | |
267 | } | |
1da177e4 LT |
268 | up(&c->alloc_sem); |
269 | goto eraseit_lock; | |
270 | } | |
271 | ||
272 | ic = jffs2_raw_ref_to_ic(raw); | |
273 | ||
084702e0 | 274 | #ifdef CONFIG_JFFS2_FS_XATTR |
aa98d7cf | 275 | /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr. |
084702e0 KK |
276 | * We can decide whether this node is inode or xattr by ic->class. */ |
277 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM | |
278 | || ic->class == RAWNODE_CLASS_XATTR_REF) { | |
084702e0 KK |
279 | spin_unlock(&c->erase_completion_lock); |
280 | ||
281 | if (ic->class == RAWNODE_CLASS_XATTR_DATUM) { | |
c9f700f8 | 282 | ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic, raw); |
084702e0 | 283 | } else { |
c9f700f8 | 284 | ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic, raw); |
084702e0 | 285 | } |
aa98d7cf | 286 | goto release_sem; |
084702e0 KK |
287 | } |
288 | #endif | |
aa98d7cf | 289 | |
1da177e4 | 290 | /* We need to hold the inocache. Either the erase_completion_lock or |
182ec4ee | 291 | the inocache_lock are sufficient; we trade down since the inocache_lock |
1da177e4 LT |
292 | causes less contention. */ |
293 | spin_lock(&c->inocache_lock); | |
294 | ||
295 | spin_unlock(&c->erase_completion_lock); | |
296 | ||
297 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); | |
298 | ||
299 | /* Three possibilities: | |
300 | 1. Inode is already in-core. We must iget it and do proper | |
301 | updating to its fragtree, etc. | |
302 | 2. Inode is not in-core, node is REF_PRISTINE. We lock the | |
303 | inocache to prevent a read_inode(), copy the node intact. | |
304 | 3. Inode is not in-core, node is not pristine. We must iget() | |
305 | and take the slow path. | |
306 | */ | |
307 | ||
308 | switch(ic->state) { | |
309 | case INO_STATE_CHECKEDABSENT: | |
182ec4ee | 310 | /* It's been checked, but it's not currently in-core. |
1da177e4 LT |
311 | We can just copy any pristine nodes, but have |
312 | to prevent anyone else from doing read_inode() while | |
313 | we're at it, so we set the state accordingly */ | |
314 | if (ref_flags(raw) == REF_PRISTINE) | |
315 | ic->state = INO_STATE_GC; | |
316 | else { | |
182ec4ee | 317 | D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", |
1da177e4 LT |
318 | ic->ino)); |
319 | } | |
320 | break; | |
321 | ||
322 | case INO_STATE_PRESENT: | |
323 | /* It's in-core. GC must iget() it. */ | |
324 | break; | |
325 | ||
326 | case INO_STATE_UNCHECKED: | |
327 | case INO_STATE_CHECKING: | |
328 | case INO_STATE_GC: | |
329 | /* Should never happen. We should have finished checking | |
182ec4ee TG |
330 | by the time we actually start doing any GC, and since |
331 | we're holding the alloc_sem, no other garbage collection | |
1da177e4 LT |
332 | can happen. |
333 | */ | |
334 | printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", | |
335 | ic->ino, ic->state); | |
336 | up(&c->alloc_sem); | |
337 | spin_unlock(&c->inocache_lock); | |
338 | BUG(); | |
339 | ||
340 | case INO_STATE_READING: | |
341 | /* Someone's currently trying to read it. We must wait for | |
342 | them to finish and then go through the full iget() route | |
343 | to do the GC. However, sometimes read_inode() needs to get | |
344 | the alloc_sem() (for marking nodes invalid) so we must | |
345 | drop the alloc_sem before sleeping. */ | |
346 | ||
347 | up(&c->alloc_sem); | |
348 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", | |
349 | ic->ino, ic->state)); | |
350 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | |
182ec4ee | 351 | /* And because we dropped the alloc_sem we must start again from the |
1da177e4 LT |
352 | beginning. Ponder chance of livelock here -- we're returning success |
353 | without actually making any progress. | |
354 | ||
182ec4ee | 355 | Q: What are the chances that the inode is back in INO_STATE_READING |
1da177e4 LT |
356 | again by the time we next enter this function? And that this happens |
357 | enough times to cause a real delay? | |
358 | ||
182ec4ee | 359 | A: Small enough that I don't care :) |
1da177e4 LT |
360 | */ |
361 | return 0; | |
362 | } | |
363 | ||
364 | /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the | |
182ec4ee | 365 | node intact, and we don't have to muck about with the fragtree etc. |
1da177e4 LT |
366 | because we know it's not in-core. If it _was_ in-core, we go through |
367 | all the iget() crap anyway */ | |
368 | ||
369 | if (ic->state == INO_STATE_GC) { | |
370 | spin_unlock(&c->inocache_lock); | |
371 | ||
372 | ret = jffs2_garbage_collect_pristine(c, ic, raw); | |
373 | ||
374 | spin_lock(&c->inocache_lock); | |
375 | ic->state = INO_STATE_CHECKEDABSENT; | |
376 | wake_up(&c->inocache_wq); | |
377 | ||
378 | if (ret != -EBADFD) { | |
379 | spin_unlock(&c->inocache_lock); | |
380 | goto release_sem; | |
381 | } | |
382 | ||
383 | /* Fall through if it wanted us to, with inocache_lock held */ | |
384 | } | |
385 | ||
386 | /* Prevent the fairly unlikely race where the gcblock is | |
387 | entirely obsoleted by the final close of a file which had | |
388 | the only valid nodes in the block, followed by erasure, | |
389 | followed by freeing of the ic because the erased block(s) | |
390 | held _all_ the nodes of that inode.... never been seen but | |
391 | it's vaguely possible. */ | |
392 | ||
393 | inum = ic->ino; | |
394 | nlink = ic->nlink; | |
395 | spin_unlock(&c->inocache_lock); | |
396 | ||
397 | f = jffs2_gc_fetch_inode(c, inum, nlink); | |
398 | if (IS_ERR(f)) { | |
399 | ret = PTR_ERR(f); | |
400 | goto release_sem; | |
401 | } | |
402 | if (!f) { | |
403 | ret = 0; | |
404 | goto release_sem; | |
405 | } | |
406 | ||
407 | ret = jffs2_garbage_collect_live(c, jeb, raw, f); | |
408 | ||
409 | jffs2_gc_release_inode(c, f); | |
410 | ||
411 | release_sem: | |
412 | up(&c->alloc_sem); | |
413 | ||
414 | eraseit_lock: | |
415 | /* If we've finished this block, start it erasing */ | |
416 | spin_lock(&c->erase_completion_lock); | |
417 | ||
418 | eraseit: | |
419 | if (c->gcblock && !c->gcblock->used_size) { | |
420 | D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); | |
421 | /* We're GC'ing an empty block? */ | |
422 | list_add_tail(&c->gcblock->list, &c->erase_pending_list); | |
423 | c->gcblock = NULL; | |
424 | c->nr_erasing_blocks++; | |
425 | jffs2_erase_pending_trigger(c); | |
426 | } | |
427 | spin_unlock(&c->erase_completion_lock); | |
428 | ||
429 | return ret; | |
430 | } | |
431 | ||
432 | static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
433 | struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) | |
434 | { | |
435 | struct jffs2_node_frag *frag; | |
436 | struct jffs2_full_dnode *fn = NULL; | |
437 | struct jffs2_full_dirent *fd; | |
438 | uint32_t start = 0, end = 0, nrfrags = 0; | |
439 | int ret = 0; | |
440 | ||
441 | down(&f->sem); | |
442 | ||
443 | /* Now we have the lock for this inode. Check that it's still the one at the head | |
444 | of the list. */ | |
445 | ||
446 | spin_lock(&c->erase_completion_lock); | |
447 | ||
448 | if (c->gcblock != jeb) { | |
449 | spin_unlock(&c->erase_completion_lock); | |
450 | D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); | |
451 | goto upnout; | |
452 | } | |
453 | if (ref_obsolete(raw)) { | |
454 | spin_unlock(&c->erase_completion_lock); | |
455 | D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); | |
456 | /* They'll call again */ | |
457 | goto upnout; | |
458 | } | |
459 | spin_unlock(&c->erase_completion_lock); | |
460 | ||
461 | /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ | |
462 | if (f->metadata && f->metadata->raw == raw) { | |
463 | fn = f->metadata; | |
464 | ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); | |
465 | goto upnout; | |
466 | } | |
467 | ||
468 | /* FIXME. Read node and do lookup? */ | |
469 | for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { | |
470 | if (frag->node && frag->node->raw == raw) { | |
471 | fn = frag->node; | |
472 | end = frag->ofs + frag->size; | |
473 | if (!nrfrags++) | |
474 | start = frag->ofs; | |
475 | if (nrfrags == frag->node->frags) | |
476 | break; /* We've found them all */ | |
477 | } | |
478 | } | |
479 | if (fn) { | |
480 | if (ref_flags(raw) == REF_PRISTINE) { | |
481 | ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); | |
482 | if (!ret) { | |
483 | /* Urgh. Return it sensibly. */ | |
484 | frag->node->raw = f->inocache->nodes; | |
182ec4ee | 485 | } |
1da177e4 LT |
486 | if (ret != -EBADFD) |
487 | goto upnout; | |
488 | } | |
489 | /* We found a datanode. Do the GC */ | |
490 | if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { | |
491 | /* It crosses a page boundary. Therefore, it must be a hole. */ | |
492 | ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); | |
493 | } else { | |
494 | /* It could still be a hole. But we GC the page this way anyway */ | |
495 | ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); | |
496 | } | |
497 | goto upnout; | |
498 | } | |
182ec4ee | 499 | |
1da177e4 LT |
500 | /* Wasn't a dnode. Try dirent */ |
501 | for (fd = f->dents; fd; fd=fd->next) { | |
502 | if (fd->raw == raw) | |
503 | break; | |
504 | } | |
505 | ||
506 | if (fd && fd->ino) { | |
507 | ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
508 | } else if (fd) { | |
509 | ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); | |
510 | } else { | |
511 | printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", | |
512 | ref_offset(raw), f->inocache->ino); | |
513 | if (ref_obsolete(raw)) { | |
514 | printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); | |
515 | } else { | |
e0c8e42f AB |
516 | jffs2_dbg_dump_node(c, ref_offset(raw)); |
517 | BUG(); | |
1da177e4 LT |
518 | } |
519 | } | |
520 | upnout: | |
521 | up(&f->sem); | |
522 | ||
523 | return ret; | |
524 | } | |
525 | ||
182ec4ee | 526 | static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
1da177e4 LT |
527 | struct jffs2_inode_cache *ic, |
528 | struct jffs2_raw_node_ref *raw) | |
529 | { | |
530 | union jffs2_node_union *node; | |
1da177e4 LT |
531 | size_t retlen; |
532 | int ret; | |
533 | uint32_t phys_ofs, alloclen; | |
534 | uint32_t crc, rawlen; | |
535 | int retried = 0; | |
536 | ||
537 | D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); | |
538 | ||
6171586a | 539 | alloclen = rawlen = ref_totlen(c, c->gcblock, raw); |
1da177e4 LT |
540 | |
541 | /* Ask for a small amount of space (or the totlen if smaller) because we | |
542 | don't want to force wastage of the end of a block if splitting would | |
543 | work. */ | |
6171586a DW |
544 | if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) |
545 | alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN; | |
546 | ||
9fe4854c | 547 | ret = jffs2_reserve_space_gc(c, alloclen, &alloclen, rawlen); |
6171586a | 548 | /* 'rawlen' is not the exact summary size; it is only an upper estimation */ |
e631ddba | 549 | |
1da177e4 LT |
550 | if (ret) |
551 | return ret; | |
552 | ||
553 | if (alloclen < rawlen) { | |
554 | /* Doesn't fit untouched. We'll go the old route and split it */ | |
555 | return -EBADFD; | |
556 | } | |
557 | ||
558 | node = kmalloc(rawlen, GFP_KERNEL); | |
559 | if (!node) | |
560 | return -ENOMEM; | |
561 | ||
562 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); | |
563 | if (!ret && retlen != rawlen) | |
564 | ret = -EIO; | |
565 | if (ret) | |
566 | goto out_node; | |
567 | ||
568 | crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); | |
569 | if (je32_to_cpu(node->u.hdr_crc) != crc) { | |
570 | printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
571 | ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); | |
572 | goto bail; | |
573 | } | |
574 | ||
575 | switch(je16_to_cpu(node->u.nodetype)) { | |
576 | case JFFS2_NODETYPE_INODE: | |
577 | crc = crc32(0, node, sizeof(node->i)-8); | |
578 | if (je32_to_cpu(node->i.node_crc) != crc) { | |
579 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
580 | ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); | |
581 | goto bail; | |
582 | } | |
583 | ||
584 | if (je32_to_cpu(node->i.dsize)) { | |
585 | crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); | |
586 | if (je32_to_cpu(node->i.data_crc) != crc) { | |
587 | printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
588 | ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); | |
589 | goto bail; | |
590 | } | |
591 | } | |
592 | break; | |
593 | ||
594 | case JFFS2_NODETYPE_DIRENT: | |
595 | crc = crc32(0, node, sizeof(node->d)-8); | |
596 | if (je32_to_cpu(node->d.node_crc) != crc) { | |
597 | printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
598 | ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); | |
599 | goto bail; | |
600 | } | |
601 | ||
602 | if (node->d.nsize) { | |
603 | crc = crc32(0, node->d.name, node->d.nsize); | |
604 | if (je32_to_cpu(node->d.name_crc) != crc) { | |
605 | printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n", | |
606 | ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); | |
607 | goto bail; | |
608 | } | |
609 | } | |
610 | break; | |
611 | default: | |
6171586a DW |
612 | /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ |
613 | if (ic) { | |
614 | printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", | |
615 | ref_offset(raw), je16_to_cpu(node->u.nodetype)); | |
616 | goto bail; | |
617 | } | |
1da177e4 LT |
618 | } |
619 | ||
1da177e4 LT |
620 | /* OK, all the CRCs are good; this node can just be copied as-is. */ |
621 | retry: | |
2f785402 | 622 | phys_ofs = write_ofs(c); |
1da177e4 LT |
623 | |
624 | ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); | |
625 | ||
626 | if (ret || (retlen != rawlen)) { | |
627 | printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", | |
2f785402 | 628 | rawlen, phys_ofs, ret, retlen); |
1da177e4 | 629 | if (retlen) { |
2f785402 | 630 | jffs2_add_physical_node_ref(c, phys_ofs | REF_OBSOLETE, rawlen, NULL); |
1da177e4 | 631 | } else { |
2f785402 | 632 | printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", phys_ofs); |
1da177e4 | 633 | } |
2f785402 | 634 | if (!retried) { |
1da177e4 LT |
635 | /* Try to reallocate space and retry */ |
636 | uint32_t dummy; | |
637 | struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; | |
638 | ||
639 | retried = 1; | |
640 | ||
641 | D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); | |
182ec4ee | 642 | |
730554d9 AB |
643 | jffs2_dbg_acct_sanity_check(c,jeb); |
644 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 | 645 | |
9fe4854c | 646 | ret = jffs2_reserve_space_gc(c, rawlen, &dummy, rawlen); |
e631ddba FH |
647 | /* this is not the exact summary size of it, |
648 | it is only an upper estimation */ | |
1da177e4 LT |
649 | |
650 | if (!ret) { | |
651 | D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); | |
652 | ||
730554d9 AB |
653 | jffs2_dbg_acct_sanity_check(c,jeb); |
654 | jffs2_dbg_acct_paranoia_check(c, jeb); | |
1da177e4 LT |
655 | |
656 | goto retry; | |
657 | } | |
658 | D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); | |
1da177e4 LT |
659 | } |
660 | ||
1da177e4 LT |
661 | if (!ret) |
662 | ret = -EIO; | |
663 | goto out_node; | |
664 | } | |
2f785402 | 665 | jffs2_add_physical_node_ref(c, phys_ofs | REF_PRISTINE, rawlen, ic); |
1da177e4 | 666 | |
1da177e4 LT |
667 | jffs2_mark_node_obsolete(c, raw); |
668 | D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); | |
669 | ||
670 | out_node: | |
671 | kfree(node); | |
672 | return ret; | |
673 | bail: | |
674 | ret = -EBADFD; | |
675 | goto out_node; | |
676 | } | |
677 | ||
182ec4ee | 678 | static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
679 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) |
680 | { | |
681 | struct jffs2_full_dnode *new_fn; | |
682 | struct jffs2_raw_inode ri; | |
8557fd51 | 683 | struct jffs2_node_frag *last_frag; |
aef9ab47 | 684 | union jffs2_device_node dev; |
1da177e4 | 685 | char *mdata = NULL, mdatalen = 0; |
9fe4854c | 686 | uint32_t alloclen, ilen; |
1da177e4 LT |
687 | int ret; |
688 | ||
689 | if (S_ISBLK(JFFS2_F_I_MODE(f)) || | |
690 | S_ISCHR(JFFS2_F_I_MODE(f)) ) { | |
691 | /* For these, we don't actually need to read the old node */ | |
aef9ab47 | 692 | mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); |
1da177e4 | 693 | mdata = (char *)&dev; |
1da177e4 LT |
694 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); |
695 | } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { | |
696 | mdatalen = fn->size; | |
697 | mdata = kmalloc(fn->size, GFP_KERNEL); | |
698 | if (!mdata) { | |
699 | printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); | |
700 | return -ENOMEM; | |
701 | } | |
702 | ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); | |
703 | if (ret) { | |
704 | printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); | |
705 | kfree(mdata); | |
706 | return ret; | |
707 | } | |
708 | D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); | |
709 | ||
710 | } | |
182ec4ee | 711 | |
9fe4854c | 712 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &alloclen, |
e631ddba | 713 | JFFS2_SUMMARY_INODE_SIZE); |
1da177e4 LT |
714 | if (ret) { |
715 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", | |
716 | sizeof(ri)+ mdatalen, ret); | |
717 | goto out; | |
718 | } | |
182ec4ee | 719 | |
8557fd51 AB |
720 | last_frag = frag_last(&f->fragtree); |
721 | if (last_frag) | |
722 | /* Fetch the inode length from the fragtree rather then | |
723 | * from i_size since i_size may have not been updated yet */ | |
724 | ilen = last_frag->ofs + last_frag->size; | |
725 | else | |
726 | ilen = JFFS2_F_I_SIZE(f); | |
182ec4ee | 727 | |
1da177e4 LT |
728 | memset(&ri, 0, sizeof(ri)); |
729 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
730 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
731 | ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); | |
732 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
733 | ||
734 | ri.ino = cpu_to_je32(f->inocache->ino); | |
735 | ri.version = cpu_to_je32(++f->highest_version); | |
736 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
737 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
738 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 739 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
740 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
741 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
742 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
743 | ri.offset = cpu_to_je32(0); | |
744 | ri.csize = cpu_to_je32(mdatalen); | |
745 | ri.dsize = cpu_to_je32(mdatalen); | |
746 | ri.compr = JFFS2_COMPR_NONE; | |
747 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
748 | ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); | |
749 | ||
9fe4854c | 750 | new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, ALLOC_GC); |
1da177e4 LT |
751 | |
752 | if (IS_ERR(new_fn)) { | |
753 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
754 | ret = PTR_ERR(new_fn); | |
755 | goto out; | |
756 | } | |
757 | jffs2_mark_node_obsolete(c, fn->raw); | |
758 | jffs2_free_full_dnode(fn); | |
759 | f->metadata = new_fn; | |
760 | out: | |
761 | if (S_ISLNK(JFFS2_F_I_MODE(f))) | |
762 | kfree(mdata); | |
763 | return ret; | |
764 | } | |
765 | ||
182ec4ee | 766 | static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
767 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
768 | { | |
769 | struct jffs2_full_dirent *new_fd; | |
770 | struct jffs2_raw_dirent rd; | |
9fe4854c | 771 | uint32_t alloclen; |
1da177e4 LT |
772 | int ret; |
773 | ||
774 | rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
775 | rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); | |
776 | rd.nsize = strlen(fd->name); | |
777 | rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); | |
778 | rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); | |
779 | ||
780 | rd.pino = cpu_to_je32(f->inocache->ino); | |
781 | rd.version = cpu_to_je32(++f->highest_version); | |
782 | rd.ino = cpu_to_je32(fd->ino); | |
3a69e0cd AB |
783 | /* If the times on this inode were set by explicit utime() they can be different, |
784 | so refrain from splatting them. */ | |
785 | if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f)) | |
786 | rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
182ec4ee | 787 | else |
3a69e0cd | 788 | rd.mctime = cpu_to_je32(0); |
1da177e4 LT |
789 | rd.type = fd->type; |
790 | rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); | |
791 | rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); | |
182ec4ee | 792 | |
9fe4854c | 793 | ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &alloclen, |
e631ddba | 794 | JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); |
1da177e4 LT |
795 | if (ret) { |
796 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", | |
797 | sizeof(rd)+rd.nsize, ret); | |
798 | return ret; | |
799 | } | |
9fe4854c | 800 | new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, ALLOC_GC); |
1da177e4 LT |
801 | |
802 | if (IS_ERR(new_fd)) { | |
803 | printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); | |
804 | return PTR_ERR(new_fd); | |
805 | } | |
806 | jffs2_add_fd_to_list(c, new_fd, &f->dents); | |
807 | return 0; | |
808 | } | |
809 | ||
182ec4ee | 810 | static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
1da177e4 LT |
811 | struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
812 | { | |
813 | struct jffs2_full_dirent **fdp = &f->dents; | |
814 | int found = 0; | |
815 | ||
816 | /* On a medium where we can't actually mark nodes obsolete | |
817 | pernamently, such as NAND flash, we need to work out | |
818 | whether this deletion dirent is still needed to actively | |
819 | delete a 'real' dirent with the same name that's still | |
820 | somewhere else on the flash. */ | |
821 | if (!jffs2_can_mark_obsolete(c)) { | |
822 | struct jffs2_raw_dirent *rd; | |
823 | struct jffs2_raw_node_ref *raw; | |
824 | int ret; | |
825 | size_t retlen; | |
826 | int name_len = strlen(fd->name); | |
827 | uint32_t name_crc = crc32(0, fd->name, name_len); | |
828 | uint32_t rawlen = ref_totlen(c, jeb, fd->raw); | |
829 | ||
830 | rd = kmalloc(rawlen, GFP_KERNEL); | |
831 | if (!rd) | |
832 | return -ENOMEM; | |
833 | ||
834 | /* Prevent the erase code from nicking the obsolete node refs while | |
835 | we're looking at them. I really don't like this extra lock but | |
836 | can't see any alternative. Suggestions on a postcard to... */ | |
837 | down(&c->erase_free_sem); | |
838 | ||
839 | for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { | |
840 | ||
aba54da3 AB |
841 | cond_resched(); |
842 | ||
1da177e4 LT |
843 | /* We only care about obsolete ones */ |
844 | if (!(ref_obsolete(raw))) | |
845 | continue; | |
846 | ||
847 | /* Any dirent with the same name is going to have the same length... */ | |
848 | if (ref_totlen(c, NULL, raw) != rawlen) | |
849 | continue; | |
850 | ||
182ec4ee | 851 | /* Doesn't matter if there's one in the same erase block. We're going to |
1da177e4 | 852 | delete it too at the same time. */ |
3be36675 | 853 | if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) |
1da177e4 LT |
854 | continue; |
855 | ||
856 | D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); | |
857 | ||
858 | /* This is an obsolete node belonging to the same directory, and it's of the right | |
859 | length. We need to take a closer look...*/ | |
860 | ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); | |
861 | if (ret) { | |
862 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); | |
863 | /* If we can't read it, we don't need to continue to obsolete it. Continue */ | |
864 | continue; | |
865 | } | |
866 | if (retlen != rawlen) { | |
867 | printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", | |
868 | retlen, rawlen, ref_offset(raw)); | |
869 | continue; | |
870 | } | |
871 | ||
872 | if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) | |
873 | continue; | |
874 | ||
875 | /* If the name CRC doesn't match, skip */ | |
876 | if (je32_to_cpu(rd->name_crc) != name_crc) | |
877 | continue; | |
878 | ||
879 | /* If the name length doesn't match, or it's another deletion dirent, skip */ | |
880 | if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) | |
881 | continue; | |
882 | ||
883 | /* OK, check the actual name now */ | |
884 | if (memcmp(rd->name, fd->name, name_len)) | |
885 | continue; | |
886 | ||
887 | /* OK. The name really does match. There really is still an older node on | |
888 | the flash which our deletion dirent obsoletes. So we have to write out | |
889 | a new deletion dirent to replace it */ | |
890 | up(&c->erase_free_sem); | |
891 | ||
892 | D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", | |
893 | ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); | |
894 | kfree(rd); | |
895 | ||
896 | return jffs2_garbage_collect_dirent(c, jeb, f, fd); | |
897 | } | |
898 | ||
899 | up(&c->erase_free_sem); | |
900 | kfree(rd); | |
901 | } | |
902 | ||
182ec4ee | 903 | /* FIXME: If we're deleting a dirent which contains the current mtime and ctime, |
3a69e0cd AB |
904 | we should update the metadata node with those times accordingly */ |
905 | ||
1da177e4 LT |
906 | /* No need for it any more. Just mark it obsolete and remove it from the list */ |
907 | while (*fdp) { | |
908 | if ((*fdp) == fd) { | |
909 | found = 1; | |
910 | *fdp = fd->next; | |
911 | break; | |
912 | } | |
913 | fdp = &(*fdp)->next; | |
914 | } | |
915 | if (!found) { | |
916 | printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); | |
917 | } | |
918 | jffs2_mark_node_obsolete(c, fd->raw); | |
919 | jffs2_free_full_dirent(fd); | |
920 | return 0; | |
921 | } | |
922 | ||
923 | static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
924 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
925 | uint32_t start, uint32_t end) | |
926 | { | |
927 | struct jffs2_raw_inode ri; | |
928 | struct jffs2_node_frag *frag; | |
929 | struct jffs2_full_dnode *new_fn; | |
9fe4854c | 930 | uint32_t alloclen, ilen; |
1da177e4 LT |
931 | int ret; |
932 | ||
933 | D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", | |
934 | f->inocache->ino, start, end)); | |
182ec4ee | 935 | |
1da177e4 LT |
936 | memset(&ri, 0, sizeof(ri)); |
937 | ||
938 | if(fn->frags > 1) { | |
939 | size_t readlen; | |
940 | uint32_t crc; | |
182ec4ee | 941 | /* It's partially obsoleted by a later write. So we have to |
1da177e4 LT |
942 | write it out again with the _same_ version as before */ |
943 | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); | |
944 | if (readlen != sizeof(ri) || ret) { | |
945 | printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); | |
946 | goto fill; | |
947 | } | |
948 | if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { | |
949 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", | |
950 | ref_offset(fn->raw), | |
951 | je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); | |
952 | return -EIO; | |
953 | } | |
954 | if (je32_to_cpu(ri.totlen) != sizeof(ri)) { | |
955 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", | |
956 | ref_offset(fn->raw), | |
957 | je32_to_cpu(ri.totlen), sizeof(ri)); | |
958 | return -EIO; | |
959 | } | |
960 | crc = crc32(0, &ri, sizeof(ri)-8); | |
961 | if (crc != je32_to_cpu(ri.node_crc)) { | |
962 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", | |
182ec4ee | 963 | ref_offset(fn->raw), |
1da177e4 LT |
964 | je32_to_cpu(ri.node_crc), crc); |
965 | /* FIXME: We could possibly deal with this by writing new holes for each frag */ | |
182ec4ee | 966 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
967 | start, end, f->inocache->ino); |
968 | goto fill; | |
969 | } | |
970 | if (ri.compr != JFFS2_COMPR_ZERO) { | |
971 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); | |
182ec4ee | 972 | printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
1da177e4 LT |
973 | start, end, f->inocache->ino); |
974 | goto fill; | |
975 | } | |
976 | } else { | |
977 | fill: | |
978 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
979 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
980 | ri.totlen = cpu_to_je32(sizeof(ri)); | |
981 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
982 | ||
983 | ri.ino = cpu_to_je32(f->inocache->ino); | |
984 | ri.version = cpu_to_je32(++f->highest_version); | |
985 | ri.offset = cpu_to_je32(start); | |
986 | ri.dsize = cpu_to_je32(end - start); | |
987 | ri.csize = cpu_to_je32(0); | |
988 | ri.compr = JFFS2_COMPR_ZERO; | |
989 | } | |
182ec4ee | 990 | |
8557fd51 AB |
991 | frag = frag_last(&f->fragtree); |
992 | if (frag) | |
993 | /* Fetch the inode length from the fragtree rather then | |
994 | * from i_size since i_size may have not been updated yet */ | |
995 | ilen = frag->ofs + frag->size; | |
996 | else | |
997 | ilen = JFFS2_F_I_SIZE(f); | |
998 | ||
1da177e4 LT |
999 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
1000 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1001 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
8557fd51 | 1002 | ri.isize = cpu_to_je32(ilen); |
1da177e4 LT |
1003 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
1004 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1005 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1006 | ri.data_crc = cpu_to_je32(0); | |
1007 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1008 | ||
9fe4854c DW |
1009 | ret = jffs2_reserve_space_gc(c, sizeof(ri), &alloclen, |
1010 | JFFS2_SUMMARY_INODE_SIZE); | |
1da177e4 LT |
1011 | if (ret) { |
1012 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", | |
1013 | sizeof(ri), ret); | |
1014 | return ret; | |
1015 | } | |
9fe4854c | 1016 | new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_GC); |
1da177e4 LT |
1017 | |
1018 | if (IS_ERR(new_fn)) { | |
1019 | printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); | |
1020 | return PTR_ERR(new_fn); | |
1021 | } | |
1022 | if (je32_to_cpu(ri.version) == f->highest_version) { | |
1023 | jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1024 | if (f->metadata) { | |
1025 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1026 | jffs2_free_full_dnode(f->metadata); | |
1027 | f->metadata = NULL; | |
1028 | } | |
1029 | return 0; | |
1030 | } | |
1031 | ||
182ec4ee | 1032 | /* |
1da177e4 LT |
1033 | * We should only get here in the case where the node we are |
1034 | * replacing had more than one frag, so we kept the same version | |
182ec4ee | 1035 | * number as before. (Except in case of error -- see 'goto fill;' |
1da177e4 LT |
1036 | * above.) |
1037 | */ | |
1038 | D1(if(unlikely(fn->frags <= 1)) { | |
1039 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", | |
1040 | fn->frags, je32_to_cpu(ri.version), f->highest_version, | |
1041 | je32_to_cpu(ri.ino)); | |
1042 | }); | |
1043 | ||
1044 | /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ | |
1045 | mark_ref_normal(new_fn->raw); | |
1046 | ||
182ec4ee | 1047 | for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); |
1da177e4 LT |
1048 | frag; frag = frag_next(frag)) { |
1049 | if (frag->ofs > fn->size + fn->ofs) | |
1050 | break; | |
1051 | if (frag->node == fn) { | |
1052 | frag->node = new_fn; | |
1053 | new_fn->frags++; | |
1054 | fn->frags--; | |
1055 | } | |
1056 | } | |
1057 | if (fn->frags) { | |
1058 | printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); | |
1059 | BUG(); | |
1060 | } | |
1061 | if (!new_fn->frags) { | |
1062 | printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); | |
1063 | BUG(); | |
1064 | } | |
182ec4ee | 1065 | |
1da177e4 LT |
1066 | jffs2_mark_node_obsolete(c, fn->raw); |
1067 | jffs2_free_full_dnode(fn); | |
182ec4ee | 1068 | |
1da177e4 LT |
1069 | return 0; |
1070 | } | |
1071 | ||
1072 | static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, | |
1073 | struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, | |
1074 | uint32_t start, uint32_t end) | |
1075 | { | |
1076 | struct jffs2_full_dnode *new_fn; | |
1077 | struct jffs2_raw_inode ri; | |
9fe4854c | 1078 | uint32_t alloclen, offset, orig_end, orig_start; |
1da177e4 LT |
1079 | int ret = 0; |
1080 | unsigned char *comprbuf = NULL, *writebuf; | |
1081 | unsigned long pg; | |
1082 | unsigned char *pg_ptr; | |
182ec4ee | 1083 | |
1da177e4 LT |
1084 | memset(&ri, 0, sizeof(ri)); |
1085 | ||
1086 | D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", | |
1087 | f->inocache->ino, start, end)); | |
1088 | ||
1089 | orig_end = end; | |
1090 | orig_start = start; | |
1091 | ||
1092 | if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { | |
1093 | /* Attempt to do some merging. But only expand to cover logically | |
1094 | adjacent frags if the block containing them is already considered | |
182ec4ee TG |
1095 | to be dirty. Otherwise we end up with GC just going round in |
1096 | circles dirtying the nodes it already wrote out, especially | |
1da177e4 LT |
1097 | on NAND where we have small eraseblocks and hence a much higher |
1098 | chance of nodes having to be split to cross boundaries. */ | |
1099 | ||
1100 | struct jffs2_node_frag *frag; | |
1101 | uint32_t min, max; | |
1102 | ||
1103 | min = start & ~(PAGE_CACHE_SIZE-1); | |
1104 | max = min + PAGE_CACHE_SIZE; | |
1105 | ||
1106 | frag = jffs2_lookup_node_frag(&f->fragtree, start); | |
1107 | ||
1108 | /* BUG_ON(!frag) but that'll happen anyway... */ | |
1109 | ||
1110 | BUG_ON(frag->ofs != start); | |
1111 | ||
1112 | /* First grow down... */ | |
1113 | while((frag = frag_prev(frag)) && frag->ofs >= min) { | |
1114 | ||
1115 | /* If the previous frag doesn't even reach the beginning, there's | |
1116 | excessive fragmentation. Just merge. */ | |
1117 | if (frag->ofs > min) { | |
1118 | D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", | |
1119 | frag->ofs, frag->ofs+frag->size)); | |
1120 | start = frag->ofs; | |
1121 | continue; | |
1122 | } | |
1123 | /* OK. This frag holds the first byte of the page. */ | |
1124 | if (!frag->node || !frag->node->raw) { | |
1125 | D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", | |
1126 | frag->ofs, frag->ofs+frag->size)); | |
1127 | break; | |
1128 | } else { | |
1129 | ||
182ec4ee | 1130 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1131 | in a block which is still considered clean? If so, don't obsolete it. |
1132 | If not, cover it anyway. */ | |
1133 | ||
1134 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1135 | struct jffs2_eraseblock *jeb; | |
1136 | ||
1137 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1138 | ||
1139 | if (jeb == c->gcblock) { | |
1140 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1141 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1142 | start = frag->ofs; | |
1143 | break; | |
1144 | } | |
1145 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1146 | D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1147 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1148 | break; | |
1149 | } | |
1150 | ||
1151 | D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1152 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1153 | start = frag->ofs; | |
1154 | break; | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* ... then up */ | |
1159 | ||
1160 | /* Find last frag which is actually part of the node we're to GC. */ | |
1161 | frag = jffs2_lookup_node_frag(&f->fragtree, end-1); | |
1162 | ||
1163 | while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { | |
1164 | ||
1165 | /* If the previous frag doesn't even reach the beginning, there's lots | |
1166 | of fragmentation. Just merge. */ | |
1167 | if (frag->ofs+frag->size < max) { | |
1168 | D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", | |
1169 | frag->ofs, frag->ofs+frag->size)); | |
1170 | end = frag->ofs + frag->size; | |
1171 | continue; | |
1172 | } | |
1173 | ||
1174 | if (!frag->node || !frag->node->raw) { | |
1175 | D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", | |
1176 | frag->ofs, frag->ofs+frag->size)); | |
1177 | break; | |
1178 | } else { | |
1179 | ||
182ec4ee | 1180 | /* OK, it's a frag which extends to the beginning of the page. Does it live |
1da177e4 LT |
1181 | in a block which is still considered clean? If so, don't obsolete it. |
1182 | If not, cover it anyway. */ | |
1183 | ||
1184 | struct jffs2_raw_node_ref *raw = frag->node->raw; | |
1185 | struct jffs2_eraseblock *jeb; | |
1186 | ||
1187 | jeb = &c->blocks[raw->flash_offset / c->sector_size]; | |
1188 | ||
1189 | if (jeb == c->gcblock) { | |
1190 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", | |
1191 | frag->ofs, frag->ofs+frag->size, ref_offset(raw))); | |
1192 | end = frag->ofs + frag->size; | |
1193 | break; | |
1194 | } | |
1195 | if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { | |
1196 | D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", | |
1197 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1198 | break; | |
1199 | } | |
1200 | ||
1201 | D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", | |
1202 | frag->ofs, frag->ofs+frag->size, jeb->offset)); | |
1203 | end = frag->ofs + frag->size; | |
1204 | break; | |
1205 | } | |
1206 | } | |
182ec4ee | 1207 | D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", |
1da177e4 LT |
1208 | orig_start, orig_end, start, end)); |
1209 | ||
8557fd51 | 1210 | D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); |
1da177e4 LT |
1211 | BUG_ON(end < orig_end); |
1212 | BUG_ON(start > orig_start); | |
1213 | } | |
182ec4ee | 1214 | |
1da177e4 LT |
1215 | /* First, use readpage() to read the appropriate page into the page cache */ |
1216 | /* Q: What happens if we actually try to GC the _same_ page for which commit_write() | |
1217 | * triggered garbage collection in the first place? | |
1218 | * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the | |
1219 | * page OK. We'll actually write it out again in commit_write, which is a little | |
1220 | * suboptimal, but at least we're correct. | |
1221 | */ | |
1222 | pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); | |
1223 | ||
1224 | if (IS_ERR(pg_ptr)) { | |
1225 | printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); | |
1226 | return PTR_ERR(pg_ptr); | |
1227 | } | |
1228 | ||
1229 | offset = start; | |
1230 | while(offset < orig_end) { | |
1231 | uint32_t datalen; | |
1232 | uint32_t cdatalen; | |
1233 | uint16_t comprtype = JFFS2_COMPR_NONE; | |
1234 | ||
9fe4854c | 1235 | ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, |
e631ddba | 1236 | &alloclen, JFFS2_SUMMARY_INODE_SIZE); |
1da177e4 LT |
1237 | |
1238 | if (ret) { | |
1239 | printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", | |
1240 | sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); | |
1241 | break; | |
1242 | } | |
1243 | cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); | |
1244 | datalen = end - offset; | |
1245 | ||
1246 | writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); | |
1247 | ||
1248 | comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); | |
1249 | ||
1250 | ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); | |
1251 | ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); | |
1252 | ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); | |
1253 | ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); | |
1254 | ||
1255 | ri.ino = cpu_to_je32(f->inocache->ino); | |
1256 | ri.version = cpu_to_je32(++f->highest_version); | |
1257 | ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); | |
1258 | ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); | |
1259 | ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); | |
1260 | ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); | |
1261 | ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); | |
1262 | ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); | |
1263 | ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); | |
1264 | ri.offset = cpu_to_je32(offset); | |
1265 | ri.csize = cpu_to_je32(cdatalen); | |
1266 | ri.dsize = cpu_to_je32(datalen); | |
1267 | ri.compr = comprtype & 0xff; | |
1268 | ri.usercompr = (comprtype >> 8) & 0xff; | |
1269 | ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); | |
1270 | ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); | |
182ec4ee | 1271 | |
9fe4854c | 1272 | new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, ALLOC_GC); |
1da177e4 LT |
1273 | |
1274 | jffs2_free_comprbuf(comprbuf, writebuf); | |
1275 | ||
1276 | if (IS_ERR(new_fn)) { | |
1277 | printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); | |
1278 | ret = PTR_ERR(new_fn); | |
1279 | break; | |
1280 | } | |
1281 | ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); | |
1282 | offset += datalen; | |
1283 | if (f->metadata) { | |
1284 | jffs2_mark_node_obsolete(c, f->metadata->raw); | |
1285 | jffs2_free_full_dnode(f->metadata); | |
1286 | f->metadata = NULL; | |
1287 | } | |
1288 | } | |
1289 | ||
1290 | jffs2_gc_release_page(c, pg_ptr, &pg); | |
1291 | return ret; | |
1292 | } |