]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * 2002-10-18 written by Jim Houston [email protected] | |
3 | * Copyright (C) 2002 by Concurrent Computer Corporation | |
4 | * Distributed under the GNU GPL license version 2. | |
5 | * | |
6 | * Modified by George Anzinger to reuse immediately and to use | |
7 | * find bit instructions. Also removed _irq on spinlocks. | |
8 | * | |
3219b3b7 ND |
9 | * Modified by Nadia Derbey to make it RCU safe. |
10 | * | |
e15ae2dd | 11 | * Small id to pointer translation service. |
1da177e4 | 12 | * |
e15ae2dd | 13 | * It uses a radix tree like structure as a sparse array indexed |
1da177e4 | 14 | * by the id to obtain the pointer. The bitmap makes allocating |
e15ae2dd | 15 | * a new id quick. |
1da177e4 LT |
16 | * |
17 | * You call it to allocate an id (an int) an associate with that id a | |
18 | * pointer or what ever, we treat it as a (void *). You can pass this | |
19 | * id to a user for him to pass back at a later time. You then pass | |
20 | * that id to this code and it returns your pointer. | |
1da177e4 LT |
21 | */ |
22 | ||
23 | #ifndef TEST // to test in user space... | |
24 | #include <linux/slab.h> | |
25 | #include <linux/init.h> | |
8bc3bcc9 | 26 | #include <linux/export.h> |
1da177e4 | 27 | #endif |
5806f07c | 28 | #include <linux/err.h> |
1da177e4 LT |
29 | #include <linux/string.h> |
30 | #include <linux/idr.h> | |
88eca020 | 31 | #include <linux/spinlock.h> |
d5c7409f TH |
32 | #include <linux/percpu.h> |
33 | #include <linux/hardirq.h> | |
1da177e4 | 34 | |
e8c8d1bc TH |
35 | #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) |
36 | #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) | |
37 | ||
38 | /* Leave the possibility of an incomplete final layer */ | |
39 | #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) | |
40 | ||
41 | /* Number of id_layer structs to leave in free list */ | |
42 | #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) | |
43 | ||
e18b890b | 44 | static struct kmem_cache *idr_layer_cache; |
d5c7409f TH |
45 | static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); |
46 | static DEFINE_PER_CPU(int, idr_preload_cnt); | |
88eca020 | 47 | static DEFINE_SPINLOCK(simple_ida_lock); |
1da177e4 | 48 | |
326cf0f0 TH |
49 | /* the maximum ID which can be allocated given idr->layers */ |
50 | static int idr_max(int layers) | |
51 | { | |
52 | int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); | |
53 | ||
54 | return (1 << bits) - 1; | |
55 | } | |
56 | ||
54616283 TH |
57 | /* |
58 | * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is | |
59 | * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and | |
60 | * so on. | |
61 | */ | |
62 | static int idr_layer_prefix_mask(int layer) | |
63 | { | |
64 | return ~idr_max(layer + 1); | |
65 | } | |
66 | ||
4ae53789 | 67 | static struct idr_layer *get_from_free_list(struct idr *idp) |
1da177e4 LT |
68 | { |
69 | struct idr_layer *p; | |
c259cc28 | 70 | unsigned long flags; |
1da177e4 | 71 | |
c259cc28 | 72 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
73 | if ((p = idp->id_free)) { |
74 | idp->id_free = p->ary[0]; | |
75 | idp->id_free_cnt--; | |
76 | p->ary[0] = NULL; | |
77 | } | |
c259cc28 | 78 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
79 | return(p); |
80 | } | |
81 | ||
d5c7409f TH |
82 | /** |
83 | * idr_layer_alloc - allocate a new idr_layer | |
84 | * @gfp_mask: allocation mask | |
85 | * @layer_idr: optional idr to allocate from | |
86 | * | |
87 | * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch | |
88 | * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch | |
89 | * an idr_layer from @idr->id_free. | |
90 | * | |
91 | * @layer_idr is to maintain backward compatibility with the old alloc | |
92 | * interface - idr_pre_get() and idr_get_new*() - and will be removed | |
93 | * together with per-pool preload buffer. | |
94 | */ | |
95 | static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) | |
96 | { | |
97 | struct idr_layer *new; | |
98 | ||
99 | /* this is the old path, bypass to get_from_free_list() */ | |
100 | if (layer_idr) | |
101 | return get_from_free_list(layer_idr); | |
102 | ||
59bfbcf0 TH |
103 | /* |
104 | * Try to allocate directly from kmem_cache. We want to try this | |
105 | * before preload buffer; otherwise, non-preloading idr_alloc() | |
106 | * users will end up taking advantage of preloading ones. As the | |
107 | * following is allowed to fail for preloaded cases, suppress | |
108 | * warning this time. | |
109 | */ | |
110 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); | |
d5c7409f TH |
111 | if (new) |
112 | return new; | |
113 | ||
114 | /* | |
115 | * Try to fetch one from the per-cpu preload buffer if in process | |
116 | * context. See idr_preload() for details. | |
117 | */ | |
59bfbcf0 TH |
118 | if (!in_interrupt()) { |
119 | preempt_disable(); | |
120 | new = __this_cpu_read(idr_preload_head); | |
121 | if (new) { | |
122 | __this_cpu_write(idr_preload_head, new->ary[0]); | |
123 | __this_cpu_dec(idr_preload_cnt); | |
124 | new->ary[0] = NULL; | |
125 | } | |
126 | preempt_enable(); | |
127 | if (new) | |
128 | return new; | |
d5c7409f | 129 | } |
59bfbcf0 TH |
130 | |
131 | /* | |
132 | * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so | |
133 | * that memory allocation failure warning is printed as intended. | |
134 | */ | |
135 | return kmem_cache_zalloc(idr_layer_cache, gfp_mask); | |
d5c7409f TH |
136 | } |
137 | ||
cf481c20 ND |
138 | static void idr_layer_rcu_free(struct rcu_head *head) |
139 | { | |
140 | struct idr_layer *layer; | |
141 | ||
142 | layer = container_of(head, struct idr_layer, rcu_head); | |
143 | kmem_cache_free(idr_layer_cache, layer); | |
144 | } | |
145 | ||
0ffc2a9c | 146 | static inline void free_layer(struct idr *idr, struct idr_layer *p) |
cf481c20 | 147 | { |
15f3ec3f | 148 | if (idr->hint == p) |
0ffc2a9c | 149 | RCU_INIT_POINTER(idr->hint, NULL); |
cf481c20 ND |
150 | call_rcu(&p->rcu_head, idr_layer_rcu_free); |
151 | } | |
152 | ||
1eec0056 | 153 | /* only called when idp->lock is held */ |
4ae53789 | 154 | static void __move_to_free_list(struct idr *idp, struct idr_layer *p) |
1eec0056 SR |
155 | { |
156 | p->ary[0] = idp->id_free; | |
157 | idp->id_free = p; | |
158 | idp->id_free_cnt++; | |
159 | } | |
160 | ||
4ae53789 | 161 | static void move_to_free_list(struct idr *idp, struct idr_layer *p) |
1da177e4 | 162 | { |
c259cc28 RD |
163 | unsigned long flags; |
164 | ||
1da177e4 LT |
165 | /* |
166 | * Depends on the return element being zeroed. | |
167 | */ | |
c259cc28 | 168 | spin_lock_irqsave(&idp->lock, flags); |
4ae53789 | 169 | __move_to_free_list(idp, p); |
c259cc28 | 170 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
171 | } |
172 | ||
e33ac8bd TH |
173 | static void idr_mark_full(struct idr_layer **pa, int id) |
174 | { | |
175 | struct idr_layer *p = pa[0]; | |
176 | int l = 0; | |
177 | ||
1d9b2e1e | 178 | __set_bit(id & IDR_MASK, p->bitmap); |
e33ac8bd TH |
179 | /* |
180 | * If this layer is full mark the bit in the layer above to | |
181 | * show that this part of the radix tree is full. This may | |
182 | * complete the layer above and require walking up the radix | |
183 | * tree. | |
184 | */ | |
1d9b2e1e | 185 | while (bitmap_full(p->bitmap, IDR_SIZE)) { |
e33ac8bd TH |
186 | if (!(p = pa[++l])) |
187 | break; | |
188 | id = id >> IDR_BITS; | |
1d9b2e1e | 189 | __set_bit((id & IDR_MASK), p->bitmap); |
e33ac8bd TH |
190 | } |
191 | } | |
192 | ||
90ae3ae5 | 193 | static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
1da177e4 | 194 | { |
125c4c70 | 195 | while (idp->id_free_cnt < MAX_IDR_FREE) { |
1da177e4 | 196 | struct idr_layer *new; |
5b019e99 | 197 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); |
e15ae2dd | 198 | if (new == NULL) |
1da177e4 | 199 | return (0); |
4ae53789 | 200 | move_to_free_list(idp, new); |
1da177e4 LT |
201 | } |
202 | return 1; | |
203 | } | |
1da177e4 | 204 | |
12d1b439 TH |
205 | /** |
206 | * sub_alloc - try to allocate an id without growing the tree depth | |
207 | * @idp: idr handle | |
208 | * @starting_id: id to start search at | |
12d1b439 | 209 | * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer |
d5c7409f TH |
210 | * @gfp_mask: allocation mask for idr_layer_alloc() |
211 | * @layer_idr: optional idr passed to idr_layer_alloc() | |
12d1b439 TH |
212 | * |
213 | * Allocate an id in range [@starting_id, INT_MAX] from @idp without | |
214 | * growing its depth. Returns | |
215 | * | |
216 | * the allocated id >= 0 if successful, | |
217 | * -EAGAIN if the tree needs to grow for allocation to succeed, | |
218 | * -ENOSPC if the id space is exhausted, | |
219 | * -ENOMEM if more idr_layers need to be allocated. | |
220 | */ | |
d5c7409f TH |
221 | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, |
222 | gfp_t gfp_mask, struct idr *layer_idr) | |
1da177e4 LT |
223 | { |
224 | int n, m, sh; | |
225 | struct idr_layer *p, *new; | |
7aae6dd8 | 226 | int l, id, oid; |
1da177e4 LT |
227 | |
228 | id = *starting_id; | |
7aae6dd8 | 229 | restart: |
1da177e4 LT |
230 | p = idp->top; |
231 | l = idp->layers; | |
232 | pa[l--] = NULL; | |
233 | while (1) { | |
234 | /* | |
235 | * We run around this while until we reach the leaf node... | |
236 | */ | |
237 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | |
1d9b2e1e | 238 | m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); |
1da177e4 LT |
239 | if (m == IDR_SIZE) { |
240 | /* no space available go back to previous layer. */ | |
241 | l++; | |
7aae6dd8 | 242 | oid = id; |
e15ae2dd | 243 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
7aae6dd8 TH |
244 | |
245 | /* if already at the top layer, we need to grow */ | |
3afb69cb | 246 | if (id > idr_max(idp->layers)) { |
1da177e4 | 247 | *starting_id = id; |
12d1b439 | 248 | return -EAGAIN; |
1da177e4 | 249 | } |
d2e7276b TH |
250 | p = pa[l]; |
251 | BUG_ON(!p); | |
7aae6dd8 TH |
252 | |
253 | /* If we need to go up one layer, continue the | |
254 | * loop; otherwise, restart from the top. | |
255 | */ | |
256 | sh = IDR_BITS * (l + 1); | |
257 | if (oid >> sh == id >> sh) | |
258 | continue; | |
259 | else | |
260 | goto restart; | |
1da177e4 LT |
261 | } |
262 | if (m != n) { | |
263 | sh = IDR_BITS*l; | |
264 | id = ((id >> sh) ^ n ^ m) << sh; | |
265 | } | |
125c4c70 | 266 | if ((id >= MAX_IDR_BIT) || (id < 0)) |
12d1b439 | 267 | return -ENOSPC; |
1da177e4 LT |
268 | if (l == 0) |
269 | break; | |
270 | /* | |
271 | * Create the layer below if it is missing. | |
272 | */ | |
273 | if (!p->ary[m]) { | |
d5c7409f | 274 | new = idr_layer_alloc(gfp_mask, layer_idr); |
4ae53789 | 275 | if (!new) |
12d1b439 | 276 | return -ENOMEM; |
6ff2d39b | 277 | new->layer = l-1; |
54616283 | 278 | new->prefix = id & idr_layer_prefix_mask(new->layer); |
3219b3b7 | 279 | rcu_assign_pointer(p->ary[m], new); |
1da177e4 LT |
280 | p->count++; |
281 | } | |
282 | pa[l--] = p; | |
283 | p = p->ary[m]; | |
284 | } | |
e33ac8bd TH |
285 | |
286 | pa[l] = p; | |
287 | return id; | |
1da177e4 LT |
288 | } |
289 | ||
e33ac8bd | 290 | static int idr_get_empty_slot(struct idr *idp, int starting_id, |
d5c7409f TH |
291 | struct idr_layer **pa, gfp_t gfp_mask, |
292 | struct idr *layer_idr) | |
1da177e4 LT |
293 | { |
294 | struct idr_layer *p, *new; | |
295 | int layers, v, id; | |
c259cc28 | 296 | unsigned long flags; |
e15ae2dd | 297 | |
1da177e4 LT |
298 | id = starting_id; |
299 | build_up: | |
300 | p = idp->top; | |
301 | layers = idp->layers; | |
302 | if (unlikely(!p)) { | |
d5c7409f | 303 | if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) |
12d1b439 | 304 | return -ENOMEM; |
6ff2d39b | 305 | p->layer = 0; |
1da177e4 LT |
306 | layers = 1; |
307 | } | |
308 | /* | |
309 | * Add a new layer to the top of the tree if the requested | |
310 | * id is larger than the currently allocated space. | |
311 | */ | |
326cf0f0 | 312 | while (id > idr_max(layers)) { |
1da177e4 | 313 | layers++; |
711a49a0 MS |
314 | if (!p->count) { |
315 | /* special case: if the tree is currently empty, | |
316 | * then we grow the tree by moving the top node | |
317 | * upwards. | |
318 | */ | |
319 | p->layer++; | |
54616283 | 320 | WARN_ON_ONCE(p->prefix); |
1da177e4 | 321 | continue; |
711a49a0 | 322 | } |
d5c7409f | 323 | if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { |
1da177e4 LT |
324 | /* |
325 | * The allocation failed. If we built part of | |
326 | * the structure tear it down. | |
327 | */ | |
c259cc28 | 328 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
329 | for (new = p; p && p != idp->top; new = p) { |
330 | p = p->ary[0]; | |
331 | new->ary[0] = NULL; | |
1d9b2e1e TH |
332 | new->count = 0; |
333 | bitmap_clear(new->bitmap, 0, IDR_SIZE); | |
4ae53789 | 334 | __move_to_free_list(idp, new); |
1da177e4 | 335 | } |
c259cc28 | 336 | spin_unlock_irqrestore(&idp->lock, flags); |
12d1b439 | 337 | return -ENOMEM; |
1da177e4 LT |
338 | } |
339 | new->ary[0] = p; | |
340 | new->count = 1; | |
6ff2d39b | 341 | new->layer = layers-1; |
54616283 | 342 | new->prefix = id & idr_layer_prefix_mask(new->layer); |
1d9b2e1e TH |
343 | if (bitmap_full(p->bitmap, IDR_SIZE)) |
344 | __set_bit(0, new->bitmap); | |
1da177e4 LT |
345 | p = new; |
346 | } | |
3219b3b7 | 347 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 348 | idp->layers = layers; |
d5c7409f | 349 | v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); |
12d1b439 | 350 | if (v == -EAGAIN) |
1da177e4 LT |
351 | goto build_up; |
352 | return(v); | |
353 | } | |
354 | ||
3594eb28 TH |
355 | /* |
356 | * @id and @pa are from a successful allocation from idr_get_empty_slot(). | |
357 | * Install the user pointer @ptr and mark the slot full. | |
358 | */ | |
0ffc2a9c TH |
359 | static void idr_fill_slot(struct idr *idr, void *ptr, int id, |
360 | struct idr_layer **pa) | |
e33ac8bd | 361 | { |
0ffc2a9c TH |
362 | /* update hint used for lookup, cleared from free_layer() */ |
363 | rcu_assign_pointer(idr->hint, pa[0]); | |
364 | ||
3594eb28 TH |
365 | rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); |
366 | pa[0]->count++; | |
367 | idr_mark_full(pa, id); | |
e33ac8bd TH |
368 | } |
369 | ||
1da177e4 | 370 | |
d5c7409f TH |
371 | /** |
372 | * idr_preload - preload for idr_alloc() | |
373 | * @gfp_mask: allocation mask to use for preloading | |
374 | * | |
375 | * Preload per-cpu layer buffer for idr_alloc(). Can only be used from | |
376 | * process context and each idr_preload() invocation should be matched with | |
377 | * idr_preload_end(). Note that preemption is disabled while preloaded. | |
378 | * | |
379 | * The first idr_alloc() in the preloaded section can be treated as if it | |
380 | * were invoked with @gfp_mask used for preloading. This allows using more | |
381 | * permissive allocation masks for idrs protected by spinlocks. | |
382 | * | |
383 | * For example, if idr_alloc() below fails, the failure can be treated as | |
384 | * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. | |
385 | * | |
386 | * idr_preload(GFP_KERNEL); | |
387 | * spin_lock(lock); | |
388 | * | |
389 | * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); | |
390 | * | |
391 | * spin_unlock(lock); | |
392 | * idr_preload_end(); | |
393 | * if (id < 0) | |
394 | * error; | |
395 | */ | |
396 | void idr_preload(gfp_t gfp_mask) | |
397 | { | |
398 | /* | |
399 | * Consuming preload buffer from non-process context breaks preload | |
400 | * allocation guarantee. Disallow usage from those contexts. | |
401 | */ | |
402 | WARN_ON_ONCE(in_interrupt()); | |
403 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
404 | ||
405 | preempt_disable(); | |
406 | ||
407 | /* | |
408 | * idr_alloc() is likely to succeed w/o full idr_layer buffer and | |
409 | * return value from idr_alloc() needs to be checked for failure | |
410 | * anyway. Silently give up if allocation fails. The caller can | |
411 | * treat failures from idr_alloc() as if idr_alloc() were called | |
412 | * with @gfp_mask which should be enough. | |
413 | */ | |
414 | while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { | |
415 | struct idr_layer *new; | |
416 | ||
417 | preempt_enable(); | |
418 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | |
419 | preempt_disable(); | |
420 | if (!new) | |
421 | break; | |
422 | ||
423 | /* link the new one to per-cpu preload list */ | |
424 | new->ary[0] = __this_cpu_read(idr_preload_head); | |
425 | __this_cpu_write(idr_preload_head, new); | |
426 | __this_cpu_inc(idr_preload_cnt); | |
427 | } | |
428 | } | |
429 | EXPORT_SYMBOL(idr_preload); | |
430 | ||
431 | /** | |
432 | * idr_alloc - allocate new idr entry | |
433 | * @idr: the (initialized) idr | |
434 | * @ptr: pointer to be associated with the new id | |
435 | * @start: the minimum id (inclusive) | |
436 | * @end: the maximum id (exclusive, <= 0 for max) | |
437 | * @gfp_mask: memory allocation flags | |
438 | * | |
439 | * Allocate an id in [start, end) and associate it with @ptr. If no ID is | |
440 | * available in the specified range, returns -ENOSPC. On memory allocation | |
441 | * failure, returns -ENOMEM. | |
442 | * | |
443 | * Note that @end is treated as max when <= 0. This is to always allow | |
444 | * using @start + N as @end as long as N is inside integer range. | |
445 | * | |
446 | * The user is responsible for exclusively synchronizing all operations | |
447 | * which may modify @idr. However, read-only accesses such as idr_find() | |
448 | * or iteration can be performed under RCU read lock provided the user | |
449 | * destroys @ptr in RCU-safe way after removal from idr. | |
450 | */ | |
451 | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) | |
452 | { | |
453 | int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ | |
326cf0f0 | 454 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
d5c7409f TH |
455 | int id; |
456 | ||
457 | might_sleep_if(gfp_mask & __GFP_WAIT); | |
458 | ||
459 | /* sanity checks */ | |
460 | if (WARN_ON_ONCE(start < 0)) | |
461 | return -EINVAL; | |
462 | if (unlikely(max < start)) | |
463 | return -ENOSPC; | |
464 | ||
465 | /* allocate id */ | |
466 | id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); | |
467 | if (unlikely(id < 0)) | |
468 | return id; | |
469 | if (unlikely(id > max)) | |
470 | return -ENOSPC; | |
471 | ||
0ffc2a9c | 472 | idr_fill_slot(idr, ptr, id, pa); |
d5c7409f TH |
473 | return id; |
474 | } | |
475 | EXPORT_SYMBOL_GPL(idr_alloc); | |
476 | ||
3e6628c4 JL |
477 | /** |
478 | * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion | |
479 | * @idr: the (initialized) idr | |
480 | * @ptr: pointer to be associated with the new id | |
481 | * @start: the minimum id (inclusive) | |
482 | * @end: the maximum id (exclusive, <= 0 for max) | |
483 | * @gfp_mask: memory allocation flags | |
484 | * | |
485 | * Essentially the same as idr_alloc, but prefers to allocate progressively | |
486 | * higher ids if it can. If the "cur" counter wraps, then it will start again | |
487 | * at the "start" end of the range and allocate one that has already been used. | |
488 | */ | |
489 | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, | |
490 | gfp_t gfp_mask) | |
491 | { | |
492 | int id; | |
493 | ||
494 | id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); | |
495 | if (id == -ENOSPC) | |
496 | id = idr_alloc(idr, ptr, start, end, gfp_mask); | |
497 | ||
498 | if (likely(id >= 0)) | |
499 | idr->cur = id + 1; | |
500 | return id; | |
501 | } | |
502 | EXPORT_SYMBOL(idr_alloc_cyclic); | |
503 | ||
1da177e4 LT |
504 | static void idr_remove_warning(int id) |
505 | { | |
dd04b452 | 506 | WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); |
1da177e4 LT |
507 | } |
508 | ||
509 | static void sub_remove(struct idr *idp, int shift, int id) | |
510 | { | |
511 | struct idr_layer *p = idp->top; | |
326cf0f0 | 512 | struct idr_layer **pa[MAX_IDR_LEVEL + 1]; |
1da177e4 | 513 | struct idr_layer ***paa = &pa[0]; |
cf481c20 | 514 | struct idr_layer *to_free; |
1da177e4 LT |
515 | int n; |
516 | ||
517 | *paa = NULL; | |
518 | *++paa = &idp->top; | |
519 | ||
520 | while ((shift > 0) && p) { | |
521 | n = (id >> shift) & IDR_MASK; | |
1d9b2e1e | 522 | __clear_bit(n, p->bitmap); |
1da177e4 LT |
523 | *++paa = &p->ary[n]; |
524 | p = p->ary[n]; | |
525 | shift -= IDR_BITS; | |
526 | } | |
527 | n = id & IDR_MASK; | |
1d9b2e1e TH |
528 | if (likely(p != NULL && test_bit(n, p->bitmap))) { |
529 | __clear_bit(n, p->bitmap); | |
3f59b067 | 530 | RCU_INIT_POINTER(p->ary[n], NULL); |
cf481c20 | 531 | to_free = NULL; |
1da177e4 | 532 | while(*paa && ! --((**paa)->count)){ |
cf481c20 | 533 | if (to_free) |
0ffc2a9c | 534 | free_layer(idp, to_free); |
cf481c20 | 535 | to_free = **paa; |
1da177e4 LT |
536 | **paa-- = NULL; |
537 | } | |
e15ae2dd | 538 | if (!*paa) |
1da177e4 | 539 | idp->layers = 0; |
cf481c20 | 540 | if (to_free) |
0ffc2a9c | 541 | free_layer(idp, to_free); |
e15ae2dd | 542 | } else |
1da177e4 | 543 | idr_remove_warning(id); |
1da177e4 LT |
544 | } |
545 | ||
546 | /** | |
56083ab1 | 547 | * idr_remove - remove the given id and free its slot |
72fd4a35 RD |
548 | * @idp: idr handle |
549 | * @id: unique key | |
1da177e4 LT |
550 | */ |
551 | void idr_remove(struct idr *idp, int id) | |
552 | { | |
553 | struct idr_layer *p; | |
cf481c20 | 554 | struct idr_layer *to_free; |
1da177e4 | 555 | |
2e1c9b28 | 556 | if (id < 0) |
e8c8d1bc | 557 | return; |
1da177e4 | 558 | |
8f9f665a LJ |
559 | if (id > idr_max(idp->layers)) { |
560 | idr_remove_warning(id); | |
561 | return; | |
562 | } | |
563 | ||
1da177e4 | 564 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); |
e15ae2dd | 565 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
cf481c20 ND |
566 | idp->top->ary[0]) { |
567 | /* | |
568 | * Single child at leftmost slot: we can shrink the tree. | |
569 | * This level is not needed anymore since when layers are | |
570 | * inserted, they are inserted at the top of the existing | |
571 | * tree. | |
572 | */ | |
573 | to_free = idp->top; | |
1da177e4 | 574 | p = idp->top->ary[0]; |
cf481c20 | 575 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 576 | --idp->layers; |
1d9b2e1e TH |
577 | to_free->count = 0; |
578 | bitmap_clear(to_free->bitmap, 0, IDR_SIZE); | |
0ffc2a9c | 579 | free_layer(idp, to_free); |
1da177e4 | 580 | } |
1da177e4 LT |
581 | } |
582 | EXPORT_SYMBOL(idr_remove); | |
583 | ||
90ae3ae5 | 584 | static void __idr_remove_all(struct idr *idp) |
23936cc0 | 585 | { |
6ace06dc | 586 | int n, id, max; |
2dcb22b3 | 587 | int bt_mask; |
23936cc0 | 588 | struct idr_layer *p; |
326cf0f0 | 589 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
23936cc0 KH |
590 | struct idr_layer **paa = &pa[0]; |
591 | ||
592 | n = idp->layers * IDR_BITS; | |
93b7aca3 | 593 | *paa = idp->top; |
3f59b067 | 594 | RCU_INIT_POINTER(idp->top, NULL); |
326cf0f0 | 595 | max = idr_max(idp->layers); |
23936cc0 KH |
596 | |
597 | id = 0; | |
326cf0f0 | 598 | while (id >= 0 && id <= max) { |
93b7aca3 | 599 | p = *paa; |
23936cc0 KH |
600 | while (n > IDR_BITS && p) { |
601 | n -= IDR_BITS; | |
23936cc0 | 602 | p = p->ary[(id >> n) & IDR_MASK]; |
93b7aca3 | 603 | *++paa = p; |
23936cc0 KH |
604 | } |
605 | ||
2dcb22b3 | 606 | bt_mask = id; |
23936cc0 | 607 | id += 1 << n; |
2dcb22b3 ID |
608 | /* Get the highest bit that the above add changed from 0->1. */ |
609 | while (n < fls(id ^ bt_mask)) { | |
93b7aca3 AR |
610 | if (*paa) |
611 | free_layer(idp, *paa); | |
23936cc0 | 612 | n += IDR_BITS; |
93b7aca3 | 613 | --paa; |
23936cc0 KH |
614 | } |
615 | } | |
23936cc0 KH |
616 | idp->layers = 0; |
617 | } | |
23936cc0 | 618 | |
8d3b3591 AM |
619 | /** |
620 | * idr_destroy - release all cached layers within an idr tree | |
ea24ea85 | 621 | * @idp: idr handle |
9bb26bc1 TH |
622 | * |
623 | * Free all id mappings and all idp_layers. After this function, @idp is | |
624 | * completely unused and can be freed / recycled. The caller is | |
625 | * responsible for ensuring that no one else accesses @idp during or after | |
626 | * idr_destroy(). | |
627 | * | |
628 | * A typical clean-up sequence for objects stored in an idr tree will use | |
da3dae54 | 629 | * idr_for_each() to free all objects, if necessary, then idr_destroy() to |
9bb26bc1 | 630 | * free up the id mappings and cached idr_layers. |
8d3b3591 AM |
631 | */ |
632 | void idr_destroy(struct idr *idp) | |
633 | { | |
fe6e24ec | 634 | __idr_remove_all(idp); |
9bb26bc1 | 635 | |
8d3b3591 | 636 | while (idp->id_free_cnt) { |
4ae53789 | 637 | struct idr_layer *p = get_from_free_list(idp); |
8d3b3591 AM |
638 | kmem_cache_free(idr_layer_cache, p); |
639 | } | |
640 | } | |
641 | EXPORT_SYMBOL(idr_destroy); | |
642 | ||
0ffc2a9c | 643 | void *idr_find_slowpath(struct idr *idp, int id) |
1da177e4 LT |
644 | { |
645 | int n; | |
646 | struct idr_layer *p; | |
647 | ||
2e1c9b28 | 648 | if (id < 0) |
e8c8d1bc TH |
649 | return NULL; |
650 | ||
96be753a | 651 | p = rcu_dereference_raw(idp->top); |
6ff2d39b MS |
652 | if (!p) |
653 | return NULL; | |
654 | n = (p->layer+1) * IDR_BITS; | |
1da177e4 | 655 | |
326cf0f0 | 656 | if (id > idr_max(p->layer + 1)) |
1da177e4 | 657 | return NULL; |
6ff2d39b | 658 | BUG_ON(n == 0); |
1da177e4 LT |
659 | |
660 | while (n > 0 && p) { | |
661 | n -= IDR_BITS; | |
6ff2d39b | 662 | BUG_ON(n != p->layer*IDR_BITS); |
96be753a | 663 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
1da177e4 LT |
664 | } |
665 | return((void *)p); | |
666 | } | |
0ffc2a9c | 667 | EXPORT_SYMBOL(idr_find_slowpath); |
1da177e4 | 668 | |
96d7fa42 KH |
669 | /** |
670 | * idr_for_each - iterate through all stored pointers | |
671 | * @idp: idr handle | |
672 | * @fn: function to be called for each pointer | |
673 | * @data: data passed back to callback function | |
674 | * | |
675 | * Iterate over the pointers registered with the given idr. The | |
676 | * callback function will be called for each pointer currently | |
677 | * registered, passing the id, the pointer and the data pointer passed | |
678 | * to this function. It is not safe to modify the idr tree while in | |
679 | * the callback, so functions such as idr_get_new and idr_remove are | |
680 | * not allowed. | |
681 | * | |
682 | * We check the return of @fn each time. If it returns anything other | |
56083ab1 | 683 | * than %0, we break out and return that value. |
96d7fa42 KH |
684 | * |
685 | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | |
686 | */ | |
687 | int idr_for_each(struct idr *idp, | |
688 | int (*fn)(int id, void *p, void *data), void *data) | |
689 | { | |
690 | int n, id, max, error = 0; | |
691 | struct idr_layer *p; | |
326cf0f0 | 692 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
96d7fa42 KH |
693 | struct idr_layer **paa = &pa[0]; |
694 | ||
695 | n = idp->layers * IDR_BITS; | |
93b7aca3 | 696 | *paa = rcu_dereference_raw(idp->top); |
326cf0f0 | 697 | max = idr_max(idp->layers); |
96d7fa42 KH |
698 | |
699 | id = 0; | |
326cf0f0 | 700 | while (id >= 0 && id <= max) { |
93b7aca3 | 701 | p = *paa; |
96d7fa42 KH |
702 | while (n > 0 && p) { |
703 | n -= IDR_BITS; | |
96be753a | 704 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
93b7aca3 | 705 | *++paa = p; |
96d7fa42 KH |
706 | } |
707 | ||
708 | if (p) { | |
709 | error = fn(id, (void *)p, data); | |
710 | if (error) | |
711 | break; | |
712 | } | |
713 | ||
714 | id += 1 << n; | |
715 | while (n < fls(id)) { | |
716 | n += IDR_BITS; | |
93b7aca3 | 717 | --paa; |
96d7fa42 KH |
718 | } |
719 | } | |
720 | ||
721 | return error; | |
722 | } | |
723 | EXPORT_SYMBOL(idr_for_each); | |
724 | ||
38460b48 KH |
725 | /** |
726 | * idr_get_next - lookup next object of id to given id. | |
727 | * @idp: idr handle | |
ea24ea85 | 728 | * @nextidp: pointer to lookup key |
38460b48 KH |
729 | * |
730 | * Returns pointer to registered object with id, which is next number to | |
1458ce16 NA |
731 | * given id. After being looked up, *@nextidp will be updated for the next |
732 | * iteration. | |
9f7de827 HD |
733 | * |
734 | * This function can be called under rcu_read_lock(), given that the leaf | |
735 | * pointers lifetimes are correctly managed. | |
38460b48 | 736 | */ |
38460b48 KH |
737 | void *idr_get_next(struct idr *idp, int *nextidp) |
738 | { | |
326cf0f0 | 739 | struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; |
38460b48 KH |
740 | struct idr_layer **paa = &pa[0]; |
741 | int id = *nextidp; | |
742 | int n, max; | |
743 | ||
744 | /* find first ent */ | |
93b7aca3 | 745 | p = *paa = rcu_dereference_raw(idp->top); |
38460b48 KH |
746 | if (!p) |
747 | return NULL; | |
9f7de827 | 748 | n = (p->layer + 1) * IDR_BITS; |
326cf0f0 | 749 | max = idr_max(p->layer + 1); |
38460b48 | 750 | |
326cf0f0 | 751 | while (id >= 0 && id <= max) { |
93b7aca3 | 752 | p = *paa; |
38460b48 KH |
753 | while (n > 0 && p) { |
754 | n -= IDR_BITS; | |
94bfa3b6 | 755 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
93b7aca3 | 756 | *++paa = p; |
38460b48 KH |
757 | } |
758 | ||
759 | if (p) { | |
760 | *nextidp = id; | |
761 | return p; | |
762 | } | |
763 | ||
6cdae741 TH |
764 | /* |
765 | * Proceed to the next layer at the current level. Unlike | |
766 | * idr_for_each(), @id isn't guaranteed to be aligned to | |
767 | * layer boundary at this point and adding 1 << n may | |
768 | * incorrectly skip IDs. Make sure we jump to the | |
769 | * beginning of the next layer using round_up(). | |
770 | */ | |
771 | id = round_up(id + 1, 1 << n); | |
38460b48 KH |
772 | while (n < fls(id)) { |
773 | n += IDR_BITS; | |
93b7aca3 | 774 | --paa; |
38460b48 KH |
775 | } |
776 | } | |
777 | return NULL; | |
778 | } | |
4d1ee80f | 779 | EXPORT_SYMBOL(idr_get_next); |
38460b48 KH |
780 | |
781 | ||
5806f07c JM |
782 | /** |
783 | * idr_replace - replace pointer for given id | |
784 | * @idp: idr handle | |
785 | * @ptr: pointer you want associated with the id | |
786 | * @id: lookup key | |
787 | * | |
788 | * Replace the pointer registered with an id and return the old value. | |
56083ab1 RD |
789 | * A %-ENOENT return indicates that @id was not found. |
790 | * A %-EINVAL return indicates that @id was not within valid constraints. | |
5806f07c | 791 | * |
cf481c20 | 792 | * The caller must serialize with writers. |
5806f07c JM |
793 | */ |
794 | void *idr_replace(struct idr *idp, void *ptr, int id) | |
795 | { | |
796 | int n; | |
797 | struct idr_layer *p, *old_p; | |
798 | ||
2e1c9b28 | 799 | if (id < 0) |
e8c8d1bc TH |
800 | return ERR_PTR(-EINVAL); |
801 | ||
5806f07c | 802 | p = idp->top; |
6ff2d39b | 803 | if (!p) |
b93804b2 | 804 | return ERR_PTR(-ENOENT); |
6ff2d39b | 805 | |
3afb69cb | 806 | if (id > idr_max(p->layer + 1)) |
b93804b2 | 807 | return ERR_PTR(-ENOENT); |
5806f07c | 808 | |
3afb69cb | 809 | n = p->layer * IDR_BITS; |
5806f07c JM |
810 | while ((n > 0) && p) { |
811 | p = p->ary[(id >> n) & IDR_MASK]; | |
812 | n -= IDR_BITS; | |
813 | } | |
814 | ||
815 | n = id & IDR_MASK; | |
1d9b2e1e | 816 | if (unlikely(p == NULL || !test_bit(n, p->bitmap))) |
5806f07c JM |
817 | return ERR_PTR(-ENOENT); |
818 | ||
819 | old_p = p->ary[n]; | |
cf481c20 | 820 | rcu_assign_pointer(p->ary[n], ptr); |
5806f07c JM |
821 | |
822 | return old_p; | |
823 | } | |
824 | EXPORT_SYMBOL(idr_replace); | |
825 | ||
199f0ca5 | 826 | void __init idr_init_cache(void) |
1da177e4 | 827 | { |
199f0ca5 | 828 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
5b019e99 | 829 | sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); |
1da177e4 LT |
830 | } |
831 | ||
832 | /** | |
833 | * idr_init - initialize idr handle | |
834 | * @idp: idr handle | |
835 | * | |
836 | * This function is use to set up the handle (@idp) that you will pass | |
837 | * to the rest of the functions. | |
838 | */ | |
839 | void idr_init(struct idr *idp) | |
840 | { | |
1da177e4 LT |
841 | memset(idp, 0, sizeof(struct idr)); |
842 | spin_lock_init(&idp->lock); | |
843 | } | |
844 | EXPORT_SYMBOL(idr_init); | |
72dba584 | 845 | |
05f7a7d6 AG |
846 | static int idr_has_entry(int id, void *p, void *data) |
847 | { | |
848 | return 1; | |
849 | } | |
850 | ||
851 | bool idr_is_empty(struct idr *idp) | |
852 | { | |
853 | return !idr_for_each(idp, idr_has_entry, NULL); | |
854 | } | |
855 | EXPORT_SYMBOL(idr_is_empty); | |
72dba584 | 856 | |
56083ab1 RD |
857 | /** |
858 | * DOC: IDA description | |
72dba584 TH |
859 | * IDA - IDR based ID allocator |
860 | * | |
56083ab1 | 861 | * This is id allocator without id -> pointer translation. Memory |
72dba584 TH |
862 | * usage is much lower than full blown idr because each id only |
863 | * occupies a bit. ida uses a custom leaf node which contains | |
864 | * IDA_BITMAP_BITS slots. | |
865 | * | |
866 | * 2007-04-25 written by Tejun Heo <[email protected]> | |
867 | */ | |
868 | ||
869 | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | |
870 | { | |
871 | unsigned long flags; | |
872 | ||
873 | if (!ida->free_bitmap) { | |
874 | spin_lock_irqsave(&ida->idr.lock, flags); | |
875 | if (!ida->free_bitmap) { | |
876 | ida->free_bitmap = bitmap; | |
877 | bitmap = NULL; | |
878 | } | |
879 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
880 | } | |
881 | ||
882 | kfree(bitmap); | |
883 | } | |
884 | ||
885 | /** | |
886 | * ida_pre_get - reserve resources for ida allocation | |
887 | * @ida: ida handle | |
888 | * @gfp_mask: memory allocation flag | |
889 | * | |
890 | * This function should be called prior to locking and calling the | |
891 | * following function. It preallocates enough memory to satisfy the | |
892 | * worst possible allocation. | |
893 | * | |
56083ab1 RD |
894 | * If the system is REALLY out of memory this function returns %0, |
895 | * otherwise %1. | |
72dba584 TH |
896 | */ |
897 | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | |
898 | { | |
899 | /* allocate idr_layers */ | |
c8615d37 | 900 | if (!__idr_pre_get(&ida->idr, gfp_mask)) |
72dba584 TH |
901 | return 0; |
902 | ||
903 | /* allocate free_bitmap */ | |
904 | if (!ida->free_bitmap) { | |
905 | struct ida_bitmap *bitmap; | |
906 | ||
907 | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | |
908 | if (!bitmap) | |
909 | return 0; | |
910 | ||
911 | free_bitmap(ida, bitmap); | |
912 | } | |
913 | ||
914 | return 1; | |
915 | } | |
916 | EXPORT_SYMBOL(ida_pre_get); | |
917 | ||
918 | /** | |
919 | * ida_get_new_above - allocate new ID above or equal to a start id | |
920 | * @ida: ida handle | |
ea24ea85 | 921 | * @starting_id: id to start search at |
72dba584 TH |
922 | * @p_id: pointer to the allocated handle |
923 | * | |
e3816c54 WSH |
924 | * Allocate new ID above or equal to @starting_id. It should be called |
925 | * with any required locks. | |
72dba584 | 926 | * |
56083ab1 | 927 | * If memory is required, it will return %-EAGAIN, you should unlock |
72dba584 | 928 | * and go back to the ida_pre_get() call. If the ida is full, it will |
56083ab1 | 929 | * return %-ENOSPC. |
72dba584 | 930 | * |
56083ab1 | 931 | * @p_id returns a value in the range @starting_id ... %0x7fffffff. |
72dba584 TH |
932 | */ |
933 | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | |
934 | { | |
326cf0f0 | 935 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
72dba584 TH |
936 | struct ida_bitmap *bitmap; |
937 | unsigned long flags; | |
938 | int idr_id = starting_id / IDA_BITMAP_BITS; | |
939 | int offset = starting_id % IDA_BITMAP_BITS; | |
940 | int t, id; | |
941 | ||
942 | restart: | |
943 | /* get vacant slot */ | |
d5c7409f | 944 | t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); |
944ca05c | 945 | if (t < 0) |
12d1b439 | 946 | return t == -ENOMEM ? -EAGAIN : t; |
72dba584 | 947 | |
125c4c70 | 948 | if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) |
72dba584 TH |
949 | return -ENOSPC; |
950 | ||
951 | if (t != idr_id) | |
952 | offset = 0; | |
953 | idr_id = t; | |
954 | ||
955 | /* if bitmap isn't there, create a new one */ | |
956 | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | |
957 | if (!bitmap) { | |
958 | spin_lock_irqsave(&ida->idr.lock, flags); | |
959 | bitmap = ida->free_bitmap; | |
960 | ida->free_bitmap = NULL; | |
961 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
962 | ||
963 | if (!bitmap) | |
964 | return -EAGAIN; | |
965 | ||
966 | memset(bitmap, 0, sizeof(struct ida_bitmap)); | |
3219b3b7 ND |
967 | rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], |
968 | (void *)bitmap); | |
72dba584 TH |
969 | pa[0]->count++; |
970 | } | |
971 | ||
972 | /* lookup for empty slot */ | |
973 | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | |
974 | if (t == IDA_BITMAP_BITS) { | |
975 | /* no empty slot after offset, continue to the next chunk */ | |
976 | idr_id++; | |
977 | offset = 0; | |
978 | goto restart; | |
979 | } | |
980 | ||
981 | id = idr_id * IDA_BITMAP_BITS + t; | |
125c4c70 | 982 | if (id >= MAX_IDR_BIT) |
72dba584 TH |
983 | return -ENOSPC; |
984 | ||
985 | __set_bit(t, bitmap->bitmap); | |
986 | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | |
987 | idr_mark_full(pa, idr_id); | |
988 | ||
989 | *p_id = id; | |
990 | ||
991 | /* Each leaf node can handle nearly a thousand slots and the | |
992 | * whole idea of ida is to have small memory foot print. | |
993 | * Throw away extra resources one by one after each successful | |
994 | * allocation. | |
995 | */ | |
996 | if (ida->idr.id_free_cnt || ida->free_bitmap) { | |
4ae53789 | 997 | struct idr_layer *p = get_from_free_list(&ida->idr); |
72dba584 TH |
998 | if (p) |
999 | kmem_cache_free(idr_layer_cache, p); | |
1000 | } | |
1001 | ||
1002 | return 0; | |
1003 | } | |
1004 | EXPORT_SYMBOL(ida_get_new_above); | |
1005 | ||
72dba584 TH |
1006 | /** |
1007 | * ida_remove - remove the given ID | |
1008 | * @ida: ida handle | |
1009 | * @id: ID to free | |
1010 | */ | |
1011 | void ida_remove(struct ida *ida, int id) | |
1012 | { | |
1013 | struct idr_layer *p = ida->idr.top; | |
1014 | int shift = (ida->idr.layers - 1) * IDR_BITS; | |
1015 | int idr_id = id / IDA_BITMAP_BITS; | |
1016 | int offset = id % IDA_BITMAP_BITS; | |
1017 | int n; | |
1018 | struct ida_bitmap *bitmap; | |
1019 | ||
8f9f665a LJ |
1020 | if (idr_id > idr_max(ida->idr.layers)) |
1021 | goto err; | |
1022 | ||
72dba584 TH |
1023 | /* clear full bits while looking up the leaf idr_layer */ |
1024 | while ((shift > 0) && p) { | |
1025 | n = (idr_id >> shift) & IDR_MASK; | |
1d9b2e1e | 1026 | __clear_bit(n, p->bitmap); |
72dba584 TH |
1027 | p = p->ary[n]; |
1028 | shift -= IDR_BITS; | |
1029 | } | |
1030 | ||
1031 | if (p == NULL) | |
1032 | goto err; | |
1033 | ||
1034 | n = idr_id & IDR_MASK; | |
1d9b2e1e | 1035 | __clear_bit(n, p->bitmap); |
72dba584 TH |
1036 | |
1037 | bitmap = (void *)p->ary[n]; | |
aef0f62e | 1038 | if (!bitmap || !test_bit(offset, bitmap->bitmap)) |
72dba584 TH |
1039 | goto err; |
1040 | ||
1041 | /* update bitmap and remove it if empty */ | |
1042 | __clear_bit(offset, bitmap->bitmap); | |
1043 | if (--bitmap->nr_busy == 0) { | |
1d9b2e1e | 1044 | __set_bit(n, p->bitmap); /* to please idr_remove() */ |
72dba584 TH |
1045 | idr_remove(&ida->idr, idr_id); |
1046 | free_bitmap(ida, bitmap); | |
1047 | } | |
1048 | ||
1049 | return; | |
1050 | ||
1051 | err: | |
dd04b452 | 1052 | WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); |
72dba584 TH |
1053 | } |
1054 | EXPORT_SYMBOL(ida_remove); | |
1055 | ||
1056 | /** | |
1057 | * ida_destroy - release all cached layers within an ida tree | |
ea24ea85 | 1058 | * @ida: ida handle |
72dba584 TH |
1059 | */ |
1060 | void ida_destroy(struct ida *ida) | |
1061 | { | |
1062 | idr_destroy(&ida->idr); | |
1063 | kfree(ida->free_bitmap); | |
1064 | } | |
1065 | EXPORT_SYMBOL(ida_destroy); | |
1066 | ||
88eca020 RR |
1067 | /** |
1068 | * ida_simple_get - get a new id. | |
1069 | * @ida: the (initialized) ida. | |
1070 | * @start: the minimum id (inclusive, < 0x8000000) | |
1071 | * @end: the maximum id (exclusive, < 0x8000000 or 0) | |
1072 | * @gfp_mask: memory allocation flags | |
1073 | * | |
1074 | * Allocates an id in the range start <= id < end, or returns -ENOSPC. | |
1075 | * On memory allocation failure, returns -ENOMEM. | |
1076 | * | |
1077 | * Use ida_simple_remove() to get rid of an id. | |
1078 | */ | |
1079 | int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, | |
1080 | gfp_t gfp_mask) | |
1081 | { | |
1082 | int ret, id; | |
1083 | unsigned int max; | |
46cbc1d3 | 1084 | unsigned long flags; |
88eca020 RR |
1085 | |
1086 | BUG_ON((int)start < 0); | |
1087 | BUG_ON((int)end < 0); | |
1088 | ||
1089 | if (end == 0) | |
1090 | max = 0x80000000; | |
1091 | else { | |
1092 | BUG_ON(end < start); | |
1093 | max = end - 1; | |
1094 | } | |
1095 | ||
1096 | again: | |
1097 | if (!ida_pre_get(ida, gfp_mask)) | |
1098 | return -ENOMEM; | |
1099 | ||
46cbc1d3 | 1100 | spin_lock_irqsave(&simple_ida_lock, flags); |
88eca020 RR |
1101 | ret = ida_get_new_above(ida, start, &id); |
1102 | if (!ret) { | |
1103 | if (id > max) { | |
1104 | ida_remove(ida, id); | |
1105 | ret = -ENOSPC; | |
1106 | } else { | |
1107 | ret = id; | |
1108 | } | |
1109 | } | |
46cbc1d3 | 1110 | spin_unlock_irqrestore(&simple_ida_lock, flags); |
88eca020 RR |
1111 | |
1112 | if (unlikely(ret == -EAGAIN)) | |
1113 | goto again; | |
1114 | ||
1115 | return ret; | |
1116 | } | |
1117 | EXPORT_SYMBOL(ida_simple_get); | |
1118 | ||
1119 | /** | |
1120 | * ida_simple_remove - remove an allocated id. | |
1121 | * @ida: the (initialized) ida. | |
1122 | * @id: the id returned by ida_simple_get. | |
1123 | */ | |
1124 | void ida_simple_remove(struct ida *ida, unsigned int id) | |
1125 | { | |
46cbc1d3 TH |
1126 | unsigned long flags; |
1127 | ||
88eca020 | 1128 | BUG_ON((int)id < 0); |
46cbc1d3 | 1129 | spin_lock_irqsave(&simple_ida_lock, flags); |
88eca020 | 1130 | ida_remove(ida, id); |
46cbc1d3 | 1131 | spin_unlock_irqrestore(&simple_ida_lock, flags); |
88eca020 RR |
1132 | } |
1133 | EXPORT_SYMBOL(ida_simple_remove); | |
1134 | ||
72dba584 TH |
1135 | /** |
1136 | * ida_init - initialize ida handle | |
1137 | * @ida: ida handle | |
1138 | * | |
1139 | * This function is use to set up the handle (@ida) that you will pass | |
1140 | * to the rest of the functions. | |
1141 | */ | |
1142 | void ida_init(struct ida *ida) | |
1143 | { | |
1144 | memset(ida, 0, sizeof(struct ida)); | |
1145 | idr_init(&ida->idr); | |
1146 | ||
1147 | } | |
1148 | EXPORT_SYMBOL(ida_init); |