]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
38498a67 TG |
2 | /* |
3 | * Common SMP CPU bringup/teardown functions | |
4 | */ | |
f97f8f06 | 5 | #include <linux/cpu.h> |
29d5e047 TG |
6 | #include <linux/err.h> |
7 | #include <linux/smp.h> | |
8038dad7 | 8 | #include <linux/delay.h> |
38498a67 | 9 | #include <linux/init.h> |
f97f8f06 TG |
10 | #include <linux/list.h> |
11 | #include <linux/slab.h> | |
29d5e047 | 12 | #include <linux/sched.h> |
29930025 | 13 | #include <linux/sched/task.h> |
f97f8f06 | 14 | #include <linux/export.h> |
29d5e047 | 15 | #include <linux/percpu.h> |
f97f8f06 TG |
16 | #include <linux/kthread.h> |
17 | #include <linux/smpboot.h> | |
38498a67 TG |
18 | |
19 | #include "smpboot.h" | |
20 | ||
3180d89b PM |
21 | #ifdef CONFIG_SMP |
22 | ||
29d5e047 | 23 | #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD |
29d5e047 TG |
24 | /* |
25 | * For the hotplug case we keep the task structs around and reuse | |
26 | * them. | |
27 | */ | |
28 | static DEFINE_PER_CPU(struct task_struct *, idle_threads); | |
29 | ||
0db0628d | 30 | struct task_struct *idle_thread_get(unsigned int cpu) |
29d5e047 TG |
31 | { |
32 | struct task_struct *tsk = per_cpu(idle_threads, cpu); | |
33 | ||
34 | if (!tsk) | |
3bb5d2ee | 35 | return ERR_PTR(-ENOMEM); |
29d5e047 TG |
36 | init_idle(tsk, cpu); |
37 | return tsk; | |
38 | } | |
39 | ||
3bb5d2ee | 40 | void __init idle_thread_set_boot_cpu(void) |
29d5e047 | 41 | { |
3bb5d2ee | 42 | per_cpu(idle_threads, smp_processor_id()) = current; |
29d5e047 TG |
43 | } |
44 | ||
4a70d2d9 SB |
45 | /** |
46 | * idle_init - Initialize the idle thread for a cpu | |
47 | * @cpu: The cpu for which the idle thread should be initialized | |
48 | * | |
49 | * Creates the thread if it does not exist. | |
50 | */ | |
3bb5d2ee | 51 | static inline void idle_init(unsigned int cpu) |
29d5e047 | 52 | { |
3bb5d2ee SS |
53 | struct task_struct *tsk = per_cpu(idle_threads, cpu); |
54 | ||
55 | if (!tsk) { | |
56 | tsk = fork_idle(cpu); | |
57 | if (IS_ERR(tsk)) | |
58 | pr_err("SMP: fork_idle() failed for CPU %u\n", cpu); | |
59 | else | |
60 | per_cpu(idle_threads, cpu) = tsk; | |
61 | } | |
29d5e047 TG |
62 | } |
63 | ||
64 | /** | |
4a70d2d9 | 65 | * idle_threads_init - Initialize idle threads for all cpus |
29d5e047 | 66 | */ |
3bb5d2ee | 67 | void __init idle_threads_init(void) |
29d5e047 | 68 | { |
ee74d132 SB |
69 | unsigned int cpu, boot_cpu; |
70 | ||
71 | boot_cpu = smp_processor_id(); | |
29d5e047 | 72 | |
3bb5d2ee | 73 | for_each_possible_cpu(cpu) { |
ee74d132 | 74 | if (cpu != boot_cpu) |
3bb5d2ee | 75 | idle_init(cpu); |
29d5e047 | 76 | } |
29d5e047 | 77 | } |
29d5e047 | 78 | #endif |
f97f8f06 | 79 | |
3180d89b PM |
80 | #endif /* #ifdef CONFIG_SMP */ |
81 | ||
f97f8f06 TG |
82 | static LIST_HEAD(hotplug_threads); |
83 | static DEFINE_MUTEX(smpboot_threads_lock); | |
84 | ||
85 | struct smpboot_thread_data { | |
86 | unsigned int cpu; | |
87 | unsigned int status; | |
88 | struct smp_hotplug_thread *ht; | |
89 | }; | |
90 | ||
91 | enum { | |
92 | HP_THREAD_NONE = 0, | |
93 | HP_THREAD_ACTIVE, | |
94 | HP_THREAD_PARKED, | |
95 | }; | |
96 | ||
97 | /** | |
98 | * smpboot_thread_fn - percpu hotplug thread loop function | |
99 | * @data: thread data pointer | |
100 | * | |
101 | * Checks for thread stop and park conditions. Calls the necessary | |
102 | * setup, cleanup, park and unpark functions for the registered | |
103 | * thread. | |
104 | * | |
105 | * Returns 1 when the thread should exit, 0 otherwise. | |
106 | */ | |
107 | static int smpboot_thread_fn(void *data) | |
108 | { | |
109 | struct smpboot_thread_data *td = data; | |
110 | struct smp_hotplug_thread *ht = td->ht; | |
111 | ||
112 | while (1) { | |
113 | set_current_state(TASK_INTERRUPTIBLE); | |
114 | preempt_disable(); | |
115 | if (kthread_should_stop()) { | |
7d4d2696 | 116 | __set_current_state(TASK_RUNNING); |
f97f8f06 | 117 | preempt_enable(); |
3dd08c0c FW |
118 | /* cleanup must mirror setup */ |
119 | if (ht->cleanup && td->status != HP_THREAD_NONE) | |
f97f8f06 TG |
120 | ht->cleanup(td->cpu, cpu_online(td->cpu)); |
121 | kfree(td); | |
122 | return 0; | |
123 | } | |
124 | ||
125 | if (kthread_should_park()) { | |
126 | __set_current_state(TASK_RUNNING); | |
be6a2e4c | 127 | preempt_enable(); |
f97f8f06 TG |
128 | if (ht->park && td->status == HP_THREAD_ACTIVE) { |
129 | BUG_ON(td->cpu != smp_processor_id()); | |
130 | ht->park(td->cpu); | |
131 | td->status = HP_THREAD_PARKED; | |
132 | } | |
133 | kthread_parkme(); | |
134 | /* We might have been woken for stop */ | |
135 | continue; | |
136 | } | |
137 | ||
dc893e19 | 138 | BUG_ON(td->cpu != smp_processor_id()); |
f97f8f06 TG |
139 | |
140 | /* Check for state change setup */ | |
141 | switch (td->status) { | |
142 | case HP_THREAD_NONE: | |
7d4d2696 | 143 | __set_current_state(TASK_RUNNING); |
f97f8f06 TG |
144 | preempt_enable(); |
145 | if (ht->setup) | |
146 | ht->setup(td->cpu); | |
147 | td->status = HP_THREAD_ACTIVE; | |
7d4d2696 PZ |
148 | continue; |
149 | ||
f97f8f06 | 150 | case HP_THREAD_PARKED: |
7d4d2696 | 151 | __set_current_state(TASK_RUNNING); |
f97f8f06 TG |
152 | preempt_enable(); |
153 | if (ht->unpark) | |
154 | ht->unpark(td->cpu); | |
155 | td->status = HP_THREAD_ACTIVE; | |
7d4d2696 | 156 | continue; |
f97f8f06 TG |
157 | } |
158 | ||
159 | if (!ht->thread_should_run(td->cpu)) { | |
7d4d2696 | 160 | preempt_enable_no_resched(); |
f97f8f06 TG |
161 | schedule(); |
162 | } else { | |
7d4d2696 | 163 | __set_current_state(TASK_RUNNING); |
f97f8f06 TG |
164 | preempt_enable(); |
165 | ht->thread_fn(td->cpu); | |
166 | } | |
167 | } | |
168 | } | |
169 | ||
170 | static int | |
171 | __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | |
172 | { | |
173 | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | |
174 | struct smpboot_thread_data *td; | |
175 | ||
176 | if (tsk) | |
177 | return 0; | |
178 | ||
179 | td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu)); | |
180 | if (!td) | |
181 | return -ENOMEM; | |
182 | td->cpu = cpu; | |
183 | td->ht = ht; | |
184 | ||
185 | tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu, | |
186 | ht->thread_comm); | |
187 | if (IS_ERR(tsk)) { | |
188 | kfree(td); | |
189 | return PTR_ERR(tsk); | |
190 | } | |
a65d4096 PM |
191 | /* |
192 | * Park the thread so that it could start right on the CPU | |
193 | * when it is available. | |
194 | */ | |
195 | kthread_park(tsk); | |
f97f8f06 TG |
196 | get_task_struct(tsk); |
197 | *per_cpu_ptr(ht->store, cpu) = tsk; | |
f2530dc7 TG |
198 | if (ht->create) { |
199 | /* | |
200 | * Make sure that the task has actually scheduled out | |
201 | * into park position, before calling the create | |
202 | * callback. At least the migration thread callback | |
203 | * requires that the task is off the runqueue. | |
204 | */ | |
205 | if (!wait_task_inactive(tsk, TASK_PARKED)) | |
206 | WARN_ON(1); | |
207 | else | |
208 | ht->create(cpu); | |
209 | } | |
f97f8f06 TG |
210 | return 0; |
211 | } | |
212 | ||
213 | int smpboot_create_threads(unsigned int cpu) | |
214 | { | |
215 | struct smp_hotplug_thread *cur; | |
216 | int ret = 0; | |
217 | ||
218 | mutex_lock(&smpboot_threads_lock); | |
219 | list_for_each_entry(cur, &hotplug_threads, list) { | |
220 | ret = __smpboot_create_thread(cur, cpu); | |
221 | if (ret) | |
222 | break; | |
223 | } | |
224 | mutex_unlock(&smpboot_threads_lock); | |
225 | return ret; | |
226 | } | |
227 | ||
228 | static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | |
229 | { | |
230 | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | |
231 | ||
c00166d8 ON |
232 | if (!ht->selfparking) |
233 | kthread_unpark(tsk); | |
f97f8f06 TG |
234 | } |
235 | ||
931ef163 | 236 | int smpboot_unpark_threads(unsigned int cpu) |
f97f8f06 TG |
237 | { |
238 | struct smp_hotplug_thread *cur; | |
239 | ||
240 | mutex_lock(&smpboot_threads_lock); | |
241 | list_for_each_entry(cur, &hotplug_threads, list) | |
167a8867 | 242 | smpboot_unpark_thread(cur, cpu); |
f97f8f06 | 243 | mutex_unlock(&smpboot_threads_lock); |
931ef163 | 244 | return 0; |
f97f8f06 TG |
245 | } |
246 | ||
247 | static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu) | |
248 | { | |
249 | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | |
250 | ||
7d7e499f | 251 | if (tsk && !ht->selfparking) |
f97f8f06 TG |
252 | kthread_park(tsk); |
253 | } | |
254 | ||
931ef163 | 255 | int smpboot_park_threads(unsigned int cpu) |
f97f8f06 TG |
256 | { |
257 | struct smp_hotplug_thread *cur; | |
258 | ||
259 | mutex_lock(&smpboot_threads_lock); | |
260 | list_for_each_entry_reverse(cur, &hotplug_threads, list) | |
261 | smpboot_park_thread(cur, cpu); | |
262 | mutex_unlock(&smpboot_threads_lock); | |
931ef163 | 263 | return 0; |
f97f8f06 TG |
264 | } |
265 | ||
266 | static void smpboot_destroy_threads(struct smp_hotplug_thread *ht) | |
267 | { | |
268 | unsigned int cpu; | |
269 | ||
270 | /* We need to destroy also the parked threads of offline cpus */ | |
271 | for_each_possible_cpu(cpu) { | |
272 | struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu); | |
273 | ||
274 | if (tsk) { | |
275 | kthread_stop(tsk); | |
276 | put_task_struct(tsk); | |
277 | *per_cpu_ptr(ht->store, cpu) = NULL; | |
278 | } | |
279 | } | |
280 | } | |
281 | ||
282 | /** | |
167a8867 | 283 | * smpboot_register_percpu_thread - Register a per_cpu thread related |
230ec939 | 284 | * to hotplug |
f97f8f06 TG |
285 | * @plug_thread: Hotplug thread descriptor |
286 | * | |
287 | * Creates and starts the threads on all online cpus. | |
288 | */ | |
167a8867 | 289 | int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread) |
f97f8f06 TG |
290 | { |
291 | unsigned int cpu; | |
292 | int ret = 0; | |
293 | ||
4bee9686 | 294 | get_online_cpus(); |
f97f8f06 TG |
295 | mutex_lock(&smpboot_threads_lock); |
296 | for_each_online_cpu(cpu) { | |
297 | ret = __smpboot_create_thread(plug_thread, cpu); | |
298 | if (ret) { | |
299 | smpboot_destroy_threads(plug_thread); | |
300 | goto out; | |
301 | } | |
167a8867 | 302 | smpboot_unpark_thread(plug_thread, cpu); |
f97f8f06 TG |
303 | } |
304 | list_add(&plug_thread->list, &hotplug_threads); | |
305 | out: | |
306 | mutex_unlock(&smpboot_threads_lock); | |
4bee9686 | 307 | put_online_cpus(); |
f97f8f06 TG |
308 | return ret; |
309 | } | |
167a8867 | 310 | EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread); |
f97f8f06 TG |
311 | |
312 | /** | |
313 | * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug | |
314 | * @plug_thread: Hotplug thread descriptor | |
315 | * | |
316 | * Stops all threads on all possible cpus. | |
317 | */ | |
318 | void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread) | |
319 | { | |
320 | get_online_cpus(); | |
321 | mutex_lock(&smpboot_threads_lock); | |
322 | list_del(&plug_thread->list); | |
323 | smpboot_destroy_threads(plug_thread); | |
324 | mutex_unlock(&smpboot_threads_lock); | |
325 | put_online_cpus(); | |
326 | } | |
327 | EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread); | |
8038dad7 PM |
328 | |
329 | static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD); | |
330 | ||
331 | /* | |
332 | * Called to poll specified CPU's state, for example, when waiting for | |
333 | * a CPU to come online. | |
334 | */ | |
335 | int cpu_report_state(int cpu) | |
336 | { | |
337 | return atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | |
338 | } | |
339 | ||
340 | /* | |
341 | * If CPU has died properly, set its state to CPU_UP_PREPARE and | |
342 | * return success. Otherwise, return -EBUSY if the CPU died after | |
343 | * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN | |
344 | * if cpu_wait_death() timed out and the CPU still hasn't gotten around | |
345 | * to dying. In the latter two cases, the CPU might not be set up | |
346 | * properly, but it is up to the arch-specific code to decide. | |
347 | * Finally, -EIO indicates an unanticipated problem. | |
348 | * | |
349 | * Note that it is permissible to omit this call entirely, as is | |
350 | * done in architectures that do no CPU-hotplug error checking. | |
351 | */ | |
352 | int cpu_check_up_prepare(int cpu) | |
353 | { | |
354 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) { | |
355 | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); | |
356 | return 0; | |
357 | } | |
358 | ||
359 | switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) { | |
360 | ||
361 | case CPU_POST_DEAD: | |
362 | ||
363 | /* The CPU died properly, so just start it up again. */ | |
364 | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE); | |
365 | return 0; | |
366 | ||
367 | case CPU_DEAD_FROZEN: | |
368 | ||
369 | /* | |
370 | * Timeout during CPU death, so let caller know. | |
371 | * The outgoing CPU completed its processing, but after | |
372 | * cpu_wait_death() timed out and reported the error. The | |
373 | * caller is free to proceed, in which case the state | |
374 | * will be reset properly by cpu_set_state_online(). | |
375 | * Proceeding despite this -EBUSY return makes sense | |
376 | * for systems where the outgoing CPUs take themselves | |
377 | * offline, with no post-death manipulation required from | |
378 | * a surviving CPU. | |
379 | */ | |
380 | return -EBUSY; | |
381 | ||
382 | case CPU_BROKEN: | |
383 | ||
384 | /* | |
385 | * The most likely reason we got here is that there was | |
386 | * a timeout during CPU death, and the outgoing CPU never | |
387 | * did complete its processing. This could happen on | |
388 | * a virtualized system if the outgoing VCPU gets preempted | |
389 | * for more than five seconds, and the user attempts to | |
390 | * immediately online that same CPU. Trying again later | |
391 | * might return -EBUSY above, hence -EAGAIN. | |
392 | */ | |
393 | return -EAGAIN; | |
394 | ||
395 | default: | |
396 | ||
397 | /* Should not happen. Famous last words. */ | |
398 | return -EIO; | |
399 | } | |
400 | } | |
401 | ||
402 | /* | |
403 | * Mark the specified CPU online. | |
404 | * | |
405 | * Note that it is permissible to omit this call entirely, as is | |
406 | * done in architectures that do no CPU-hotplug error checking. | |
407 | */ | |
408 | void cpu_set_state_online(int cpu) | |
409 | { | |
410 | (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE); | |
411 | } | |
412 | ||
413 | #ifdef CONFIG_HOTPLUG_CPU | |
414 | ||
415 | /* | |
416 | * Wait for the specified CPU to exit the idle loop and die. | |
417 | */ | |
418 | bool cpu_wait_death(unsigned int cpu, int seconds) | |
419 | { | |
420 | int jf_left = seconds * HZ; | |
421 | int oldstate; | |
422 | bool ret = true; | |
423 | int sleep_jf = 1; | |
424 | ||
425 | might_sleep(); | |
426 | ||
427 | /* The outgoing CPU will normally get done quite quickly. */ | |
428 | if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD) | |
429 | goto update_state; | |
430 | udelay(5); | |
431 | ||
432 | /* But if the outgoing CPU dawdles, wait increasingly long times. */ | |
433 | while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) { | |
434 | schedule_timeout_uninterruptible(sleep_jf); | |
435 | jf_left -= sleep_jf; | |
436 | if (jf_left <= 0) | |
437 | break; | |
438 | sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10); | |
439 | } | |
440 | update_state: | |
441 | oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | |
442 | if (oldstate == CPU_DEAD) { | |
443 | /* Outgoing CPU died normally, update state. */ | |
444 | smp_mb(); /* atomic_read() before update. */ | |
445 | atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD); | |
446 | } else { | |
447 | /* Outgoing CPU still hasn't died, set state accordingly. */ | |
448 | if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), | |
449 | oldstate, CPU_BROKEN) != oldstate) | |
450 | goto update_state; | |
451 | ret = false; | |
452 | } | |
453 | return ret; | |
454 | } | |
455 | ||
456 | /* | |
457 | * Called by the outgoing CPU to report its successful death. Return | |
458 | * false if this report follows the surviving CPU's timing out. | |
459 | * | |
460 | * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU | |
461 | * timed out. This approach allows architectures to omit calls to | |
462 | * cpu_check_up_prepare() and cpu_set_state_online() without defeating | |
463 | * the next cpu_wait_death()'s polling loop. | |
464 | */ | |
465 | bool cpu_report_death(void) | |
466 | { | |
467 | int oldstate; | |
468 | int newstate; | |
469 | int cpu = smp_processor_id(); | |
470 | ||
471 | do { | |
472 | oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu)); | |
473 | if (oldstate != CPU_BROKEN) | |
474 | newstate = CPU_DEAD; | |
475 | else | |
476 | newstate = CPU_DEAD_FROZEN; | |
477 | } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu), | |
478 | oldstate, newstate) != oldstate); | |
479 | return newstate == CPU_DEAD; | |
480 | } | |
481 | ||
482 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ |