]>
Commit | Line | Data |
---|---|---|
d475c634 MW |
1 | /* |
2 | * fs/dax.c - Direct Access filesystem code | |
3 | * Copyright (c) 2013-2014 Intel Corporation | |
4 | * Author: Matthew Wilcox <[email protected]> | |
5 | * Author: Ross Zwisler <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify it | |
8 | * under the terms and conditions of the GNU General Public License, | |
9 | * version 2, as published by the Free Software Foundation. | |
10 | * | |
11 | * This program is distributed in the hope it will be useful, but WITHOUT | |
12 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
14 | * more details. | |
15 | */ | |
16 | ||
17 | #include <linux/atomic.h> | |
18 | #include <linux/blkdev.h> | |
19 | #include <linux/buffer_head.h> | |
d77e92e2 | 20 | #include <linux/dax.h> |
d475c634 MW |
21 | #include <linux/fs.h> |
22 | #include <linux/genhd.h> | |
f7ca90b1 MW |
23 | #include <linux/highmem.h> |
24 | #include <linux/memcontrol.h> | |
25 | #include <linux/mm.h> | |
d475c634 | 26 | #include <linux/mutex.h> |
9973c98e | 27 | #include <linux/pagevec.h> |
289c6aed | 28 | #include <linux/sched.h> |
f361bf4a | 29 | #include <linux/sched/signal.h> |
d475c634 | 30 | #include <linux/uio.h> |
f7ca90b1 | 31 | #include <linux/vmstat.h> |
34c0fd54 | 32 | #include <linux/pfn_t.h> |
0e749e54 | 33 | #include <linux/sizes.h> |
4b4bb46d | 34 | #include <linux/mmu_notifier.h> |
a254e568 CH |
35 | #include <linux/iomap.h> |
36 | #include "internal.h" | |
d475c634 | 37 | |
282a8e03 RZ |
38 | #define CREATE_TRACE_POINTS |
39 | #include <trace/events/fs_dax.h> | |
40 | ||
ac401cc7 JK |
41 | /* We choose 4096 entries - same as per-zone page wait tables */ |
42 | #define DAX_WAIT_TABLE_BITS 12 | |
43 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | |
44 | ||
917f3452 RZ |
45 | /* The 'colour' (ie low bits) within a PMD of a page offset. */ |
46 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
977fbdcd | 47 | #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) |
917f3452 | 48 | |
ce95ab0f | 49 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; |
ac401cc7 JK |
50 | |
51 | static int __init init_dax_wait_table(void) | |
52 | { | |
53 | int i; | |
54 | ||
55 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | |
56 | init_waitqueue_head(wait_table + i); | |
57 | return 0; | |
58 | } | |
59 | fs_initcall(init_dax_wait_table); | |
60 | ||
527b19d0 RZ |
61 | /* |
62 | * We use lowest available bit in exceptional entry for locking, one bit for | |
63 | * the entry size (PMD) and two more to tell us if the entry is a zero page or | |
64 | * an empty entry that is just used for locking. In total four special bits. | |
65 | * | |
66 | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | |
67 | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | |
68 | * block allocation. | |
69 | */ | |
70 | #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4) | |
71 | #define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT) | |
72 | #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1)) | |
73 | #define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2)) | |
74 | #define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)) | |
75 | ||
76 | static unsigned long dax_radix_sector(void *entry) | |
77 | { | |
78 | return (unsigned long)entry >> RADIX_DAX_SHIFT; | |
79 | } | |
80 | ||
81 | static void *dax_radix_locked_entry(sector_t sector, unsigned long flags) | |
82 | { | |
83 | return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags | | |
84 | ((unsigned long)sector << RADIX_DAX_SHIFT) | | |
85 | RADIX_DAX_ENTRY_LOCK); | |
86 | } | |
87 | ||
88 | static unsigned int dax_radix_order(void *entry) | |
89 | { | |
90 | if ((unsigned long)entry & RADIX_DAX_PMD) | |
91 | return PMD_SHIFT - PAGE_SHIFT; | |
92 | return 0; | |
93 | } | |
94 | ||
642261ac | 95 | static int dax_is_pmd_entry(void *entry) |
d1a5f2b4 | 96 | { |
642261ac | 97 | return (unsigned long)entry & RADIX_DAX_PMD; |
d1a5f2b4 DW |
98 | } |
99 | ||
642261ac | 100 | static int dax_is_pte_entry(void *entry) |
d475c634 | 101 | { |
642261ac | 102 | return !((unsigned long)entry & RADIX_DAX_PMD); |
d475c634 MW |
103 | } |
104 | ||
642261ac | 105 | static int dax_is_zero_entry(void *entry) |
d475c634 | 106 | { |
91d25ba8 | 107 | return (unsigned long)entry & RADIX_DAX_ZERO_PAGE; |
d475c634 MW |
108 | } |
109 | ||
642261ac | 110 | static int dax_is_empty_entry(void *entry) |
b2e0d162 | 111 | { |
642261ac | 112 | return (unsigned long)entry & RADIX_DAX_EMPTY; |
b2e0d162 DW |
113 | } |
114 | ||
ac401cc7 JK |
115 | /* |
116 | * DAX radix tree locking | |
117 | */ | |
118 | struct exceptional_entry_key { | |
119 | struct address_space *mapping; | |
63e95b5c | 120 | pgoff_t entry_start; |
ac401cc7 JK |
121 | }; |
122 | ||
123 | struct wait_exceptional_entry_queue { | |
ac6424b9 | 124 | wait_queue_entry_t wait; |
ac401cc7 JK |
125 | struct exceptional_entry_key key; |
126 | }; | |
127 | ||
63e95b5c RZ |
128 | static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, |
129 | pgoff_t index, void *entry, struct exceptional_entry_key *key) | |
130 | { | |
131 | unsigned long hash; | |
132 | ||
133 | /* | |
134 | * If 'entry' is a PMD, align the 'index' that we use for the wait | |
135 | * queue to the start of that PMD. This ensures that all offsets in | |
136 | * the range covered by the PMD map to the same bit lock. | |
137 | */ | |
642261ac | 138 | if (dax_is_pmd_entry(entry)) |
917f3452 | 139 | index &= ~PG_PMD_COLOUR; |
63e95b5c RZ |
140 | |
141 | key->mapping = mapping; | |
142 | key->entry_start = index; | |
143 | ||
144 | hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); | |
145 | return wait_table + hash; | |
146 | } | |
147 | ||
ac6424b9 | 148 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode, |
ac401cc7 JK |
149 | int sync, void *keyp) |
150 | { | |
151 | struct exceptional_entry_key *key = keyp; | |
152 | struct wait_exceptional_entry_queue *ewait = | |
153 | container_of(wait, struct wait_exceptional_entry_queue, wait); | |
154 | ||
155 | if (key->mapping != ewait->key.mapping || | |
63e95b5c | 156 | key->entry_start != ewait->key.entry_start) |
ac401cc7 JK |
157 | return 0; |
158 | return autoremove_wake_function(wait, mode, sync, NULL); | |
159 | } | |
160 | ||
e30331ff RZ |
161 | /* |
162 | * We do not necessarily hold the mapping->tree_lock when we call this | |
163 | * function so it is possible that 'entry' is no longer a valid item in the | |
164 | * radix tree. This is okay because all we really need to do is to find the | |
165 | * correct waitqueue where tasks might be waiting for that old 'entry' and | |
166 | * wake them. | |
167 | */ | |
d01ad197 | 168 | static void dax_wake_mapping_entry_waiter(struct address_space *mapping, |
e30331ff RZ |
169 | pgoff_t index, void *entry, bool wake_all) |
170 | { | |
171 | struct exceptional_entry_key key; | |
172 | wait_queue_head_t *wq; | |
173 | ||
174 | wq = dax_entry_waitqueue(mapping, index, entry, &key); | |
175 | ||
176 | /* | |
177 | * Checking for locked entry and prepare_to_wait_exclusive() happens | |
178 | * under mapping->tree_lock, ditto for entry handling in our callers. | |
179 | * So at this point all tasks that could have seen our entry locked | |
180 | * must be in the waitqueue and the following check will see them. | |
181 | */ | |
182 | if (waitqueue_active(wq)) | |
183 | __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); | |
184 | } | |
185 | ||
ac401cc7 JK |
186 | /* |
187 | * Check whether the given slot is locked. The function must be called with | |
188 | * mapping->tree_lock held | |
189 | */ | |
190 | static inline int slot_locked(struct address_space *mapping, void **slot) | |
191 | { | |
192 | unsigned long entry = (unsigned long) | |
193 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
194 | return entry & RADIX_DAX_ENTRY_LOCK; | |
195 | } | |
196 | ||
197 | /* | |
198 | * Mark the given slot is locked. The function must be called with | |
199 | * mapping->tree_lock held | |
200 | */ | |
201 | static inline void *lock_slot(struct address_space *mapping, void **slot) | |
202 | { | |
203 | unsigned long entry = (unsigned long) | |
204 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
205 | ||
206 | entry |= RADIX_DAX_ENTRY_LOCK; | |
6d75f366 | 207 | radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); |
ac401cc7 JK |
208 | return (void *)entry; |
209 | } | |
210 | ||
211 | /* | |
212 | * Mark the given slot is unlocked. The function must be called with | |
213 | * mapping->tree_lock held | |
214 | */ | |
215 | static inline void *unlock_slot(struct address_space *mapping, void **slot) | |
216 | { | |
217 | unsigned long entry = (unsigned long) | |
218 | radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
219 | ||
220 | entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; | |
6d75f366 | 221 | radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); |
ac401cc7 JK |
222 | return (void *)entry; |
223 | } | |
224 | ||
225 | /* | |
226 | * Lookup entry in radix tree, wait for it to become unlocked if it is | |
227 | * exceptional entry and return it. The caller must call | |
228 | * put_unlocked_mapping_entry() when he decided not to lock the entry or | |
229 | * put_locked_mapping_entry() when he locked the entry and now wants to | |
230 | * unlock it. | |
231 | * | |
232 | * The function must be called with mapping->tree_lock held. | |
233 | */ | |
234 | static void *get_unlocked_mapping_entry(struct address_space *mapping, | |
235 | pgoff_t index, void ***slotp) | |
236 | { | |
e3ad61c6 | 237 | void *entry, **slot; |
ac401cc7 | 238 | struct wait_exceptional_entry_queue ewait; |
63e95b5c | 239 | wait_queue_head_t *wq; |
ac401cc7 JK |
240 | |
241 | init_wait(&ewait.wait); | |
242 | ewait.wait.func = wake_exceptional_entry_func; | |
ac401cc7 JK |
243 | |
244 | for (;;) { | |
e3ad61c6 | 245 | entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, |
ac401cc7 | 246 | &slot); |
91d25ba8 RZ |
247 | if (!entry || |
248 | WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) || | |
ac401cc7 JK |
249 | !slot_locked(mapping, slot)) { |
250 | if (slotp) | |
251 | *slotp = slot; | |
e3ad61c6 | 252 | return entry; |
ac401cc7 | 253 | } |
63e95b5c RZ |
254 | |
255 | wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); | |
ac401cc7 JK |
256 | prepare_to_wait_exclusive(wq, &ewait.wait, |
257 | TASK_UNINTERRUPTIBLE); | |
258 | spin_unlock_irq(&mapping->tree_lock); | |
259 | schedule(); | |
260 | finish_wait(wq, &ewait.wait); | |
261 | spin_lock_irq(&mapping->tree_lock); | |
262 | } | |
263 | } | |
264 | ||
b1aa812b JK |
265 | static void dax_unlock_mapping_entry(struct address_space *mapping, |
266 | pgoff_t index) | |
267 | { | |
268 | void *entry, **slot; | |
269 | ||
270 | spin_lock_irq(&mapping->tree_lock); | |
271 | entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); | |
272 | if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || | |
273 | !slot_locked(mapping, slot))) { | |
274 | spin_unlock_irq(&mapping->tree_lock); | |
275 | return; | |
276 | } | |
277 | unlock_slot(mapping, slot); | |
278 | spin_unlock_irq(&mapping->tree_lock); | |
279 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); | |
280 | } | |
281 | ||
422476c4 | 282 | static void put_locked_mapping_entry(struct address_space *mapping, |
91d25ba8 | 283 | pgoff_t index) |
422476c4 | 284 | { |
91d25ba8 | 285 | dax_unlock_mapping_entry(mapping, index); |
422476c4 RZ |
286 | } |
287 | ||
288 | /* | |
289 | * Called when we are done with radix tree entry we looked up via | |
290 | * get_unlocked_mapping_entry() and which we didn't lock in the end. | |
291 | */ | |
292 | static void put_unlocked_mapping_entry(struct address_space *mapping, | |
293 | pgoff_t index, void *entry) | |
294 | { | |
91d25ba8 | 295 | if (!entry) |
422476c4 RZ |
296 | return; |
297 | ||
298 | /* We have to wake up next waiter for the radix tree entry lock */ | |
299 | dax_wake_mapping_entry_waiter(mapping, index, entry, false); | |
300 | } | |
301 | ||
ac401cc7 | 302 | /* |
91d25ba8 RZ |
303 | * Find radix tree entry at given index. If it points to an exceptional entry, |
304 | * return it with the radix tree entry locked. If the radix tree doesn't | |
305 | * contain given index, create an empty exceptional entry for the index and | |
306 | * return with it locked. | |
ac401cc7 | 307 | * |
642261ac RZ |
308 | * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will |
309 | * either return that locked entry or will return an error. This error will | |
91d25ba8 RZ |
310 | * happen if there are any 4k entries within the 2MiB range that we are |
311 | * requesting. | |
642261ac RZ |
312 | * |
313 | * We always favor 4k entries over 2MiB entries. There isn't a flow where we | |
314 | * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB | |
315 | * insertion will fail if it finds any 4k entries already in the tree, and a | |
316 | * 4k insertion will cause an existing 2MiB entry to be unmapped and | |
317 | * downgraded to 4k entries. This happens for both 2MiB huge zero pages as | |
318 | * well as 2MiB empty entries. | |
319 | * | |
320 | * The exception to this downgrade path is for 2MiB DAX PMD entries that have | |
321 | * real storage backing them. We will leave these real 2MiB DAX entries in | |
322 | * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. | |
323 | * | |
ac401cc7 JK |
324 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For |
325 | * persistent memory the benefit is doubtful. We can add that later if we can | |
326 | * show it helps. | |
327 | */ | |
642261ac RZ |
328 | static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, |
329 | unsigned long size_flag) | |
ac401cc7 | 330 | { |
642261ac | 331 | bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ |
e3ad61c6 | 332 | void *entry, **slot; |
ac401cc7 JK |
333 | |
334 | restart: | |
335 | spin_lock_irq(&mapping->tree_lock); | |
e3ad61c6 | 336 | entry = get_unlocked_mapping_entry(mapping, index, &slot); |
642261ac | 337 | |
91d25ba8 RZ |
338 | if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) { |
339 | entry = ERR_PTR(-EIO); | |
340 | goto out_unlock; | |
341 | } | |
342 | ||
642261ac RZ |
343 | if (entry) { |
344 | if (size_flag & RADIX_DAX_PMD) { | |
91d25ba8 | 345 | if (dax_is_pte_entry(entry)) { |
642261ac RZ |
346 | put_unlocked_mapping_entry(mapping, index, |
347 | entry); | |
348 | entry = ERR_PTR(-EEXIST); | |
349 | goto out_unlock; | |
350 | } | |
351 | } else { /* trying to grab a PTE entry */ | |
91d25ba8 | 352 | if (dax_is_pmd_entry(entry) && |
642261ac RZ |
353 | (dax_is_zero_entry(entry) || |
354 | dax_is_empty_entry(entry))) { | |
355 | pmd_downgrade = true; | |
356 | } | |
357 | } | |
358 | } | |
359 | ||
ac401cc7 | 360 | /* No entry for given index? Make sure radix tree is big enough. */ |
642261ac | 361 | if (!entry || pmd_downgrade) { |
ac401cc7 JK |
362 | int err; |
363 | ||
642261ac RZ |
364 | if (pmd_downgrade) { |
365 | /* | |
366 | * Make sure 'entry' remains valid while we drop | |
367 | * mapping->tree_lock. | |
368 | */ | |
369 | entry = lock_slot(mapping, slot); | |
370 | } | |
371 | ||
ac401cc7 | 372 | spin_unlock_irq(&mapping->tree_lock); |
642261ac RZ |
373 | /* |
374 | * Besides huge zero pages the only other thing that gets | |
375 | * downgraded are empty entries which don't need to be | |
376 | * unmapped. | |
377 | */ | |
378 | if (pmd_downgrade && dax_is_zero_entry(entry)) | |
977fbdcd MW |
379 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
380 | PG_PMD_NR, false); | |
642261ac | 381 | |
ac401cc7 JK |
382 | err = radix_tree_preload( |
383 | mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); | |
0cb80b48 JK |
384 | if (err) { |
385 | if (pmd_downgrade) | |
91d25ba8 | 386 | put_locked_mapping_entry(mapping, index); |
ac401cc7 | 387 | return ERR_PTR(err); |
0cb80b48 | 388 | } |
ac401cc7 | 389 | spin_lock_irq(&mapping->tree_lock); |
642261ac | 390 | |
e11f8b7b RZ |
391 | if (!entry) { |
392 | /* | |
393 | * We needed to drop the page_tree lock while calling | |
394 | * radix_tree_preload() and we didn't have an entry to | |
395 | * lock. See if another thread inserted an entry at | |
396 | * our index during this time. | |
397 | */ | |
398 | entry = __radix_tree_lookup(&mapping->page_tree, index, | |
399 | NULL, &slot); | |
400 | if (entry) { | |
401 | radix_tree_preload_end(); | |
402 | spin_unlock_irq(&mapping->tree_lock); | |
403 | goto restart; | |
404 | } | |
405 | } | |
406 | ||
642261ac RZ |
407 | if (pmd_downgrade) { |
408 | radix_tree_delete(&mapping->page_tree, index); | |
409 | mapping->nrexceptional--; | |
410 | dax_wake_mapping_entry_waiter(mapping, index, entry, | |
411 | true); | |
412 | } | |
413 | ||
414 | entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); | |
415 | ||
416 | err = __radix_tree_insert(&mapping->page_tree, index, | |
417 | dax_radix_order(entry), entry); | |
ac401cc7 JK |
418 | radix_tree_preload_end(); |
419 | if (err) { | |
420 | spin_unlock_irq(&mapping->tree_lock); | |
642261ac | 421 | /* |
e11f8b7b RZ |
422 | * Our insertion of a DAX entry failed, most likely |
423 | * because we were inserting a PMD entry and it | |
424 | * collided with a PTE sized entry at a different | |
425 | * index in the PMD range. We haven't inserted | |
426 | * anything into the radix tree and have no waiters to | |
427 | * wake. | |
642261ac | 428 | */ |
ac401cc7 JK |
429 | return ERR_PTR(err); |
430 | } | |
431 | /* Good, we have inserted empty locked entry into the tree. */ | |
432 | mapping->nrexceptional++; | |
433 | spin_unlock_irq(&mapping->tree_lock); | |
e3ad61c6 | 434 | return entry; |
ac401cc7 | 435 | } |
e3ad61c6 | 436 | entry = lock_slot(mapping, slot); |
642261ac | 437 | out_unlock: |
ac401cc7 | 438 | spin_unlock_irq(&mapping->tree_lock); |
e3ad61c6 | 439 | return entry; |
ac401cc7 JK |
440 | } |
441 | ||
c6dcf52c JK |
442 | static int __dax_invalidate_mapping_entry(struct address_space *mapping, |
443 | pgoff_t index, bool trunc) | |
444 | { | |
445 | int ret = 0; | |
446 | void *entry; | |
447 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
448 | ||
449 | spin_lock_irq(&mapping->tree_lock); | |
450 | entry = get_unlocked_mapping_entry(mapping, index, NULL); | |
91d25ba8 | 451 | if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry))) |
c6dcf52c JK |
452 | goto out; |
453 | if (!trunc && | |
454 | (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || | |
455 | radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))) | |
456 | goto out; | |
457 | radix_tree_delete(page_tree, index); | |
458 | mapping->nrexceptional--; | |
459 | ret = 1; | |
460 | out: | |
461 | put_unlocked_mapping_entry(mapping, index, entry); | |
462 | spin_unlock_irq(&mapping->tree_lock); | |
463 | return ret; | |
464 | } | |
ac401cc7 JK |
465 | /* |
466 | * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree | |
467 | * entry to get unlocked before deleting it. | |
468 | */ | |
469 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | |
470 | { | |
c6dcf52c | 471 | int ret = __dax_invalidate_mapping_entry(mapping, index, true); |
ac401cc7 | 472 | |
ac401cc7 JK |
473 | /* |
474 | * This gets called from truncate / punch_hole path. As such, the caller | |
475 | * must hold locks protecting against concurrent modifications of the | |
476 | * radix tree (usually fs-private i_mmap_sem for writing). Since the | |
477 | * caller has seen exceptional entry for this index, we better find it | |
478 | * at that index as well... | |
479 | */ | |
c6dcf52c JK |
480 | WARN_ON_ONCE(!ret); |
481 | return ret; | |
482 | } | |
483 | ||
c6dcf52c JK |
484 | /* |
485 | * Invalidate exceptional DAX entry if it is clean. | |
486 | */ | |
487 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | |
488 | pgoff_t index) | |
489 | { | |
490 | return __dax_invalidate_mapping_entry(mapping, index, false); | |
ac401cc7 JK |
491 | } |
492 | ||
cccbce67 DW |
493 | static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, |
494 | sector_t sector, size_t size, struct page *to, | |
495 | unsigned long vaddr) | |
f7ca90b1 | 496 | { |
cccbce67 DW |
497 | void *vto, *kaddr; |
498 | pgoff_t pgoff; | |
499 | pfn_t pfn; | |
500 | long rc; | |
501 | int id; | |
502 | ||
503 | rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); | |
504 | if (rc) | |
505 | return rc; | |
506 | ||
507 | id = dax_read_lock(); | |
508 | rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, &pfn); | |
509 | if (rc < 0) { | |
510 | dax_read_unlock(id); | |
511 | return rc; | |
512 | } | |
f7ca90b1 | 513 | vto = kmap_atomic(to); |
cccbce67 | 514 | copy_user_page(vto, (void __force *)kaddr, vaddr, to); |
f7ca90b1 | 515 | kunmap_atomic(vto); |
cccbce67 | 516 | dax_read_unlock(id); |
f7ca90b1 MW |
517 | return 0; |
518 | } | |
519 | ||
642261ac RZ |
520 | /* |
521 | * By this point grab_mapping_entry() has ensured that we have a locked entry | |
522 | * of the appropriate size so we don't have to worry about downgrading PMDs to | |
523 | * PTEs. If we happen to be trying to insert a PTE and there is a PMD | |
524 | * already in the tree, we will skip the insertion and just dirty the PMD as | |
525 | * appropriate. | |
526 | */ | |
ac401cc7 JK |
527 | static void *dax_insert_mapping_entry(struct address_space *mapping, |
528 | struct vm_fault *vmf, | |
642261ac | 529 | void *entry, sector_t sector, |
f5b7b748 | 530 | unsigned long flags, bool dirty) |
9973c98e RZ |
531 | { |
532 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
ac401cc7 JK |
533 | void *new_entry; |
534 | pgoff_t index = vmf->pgoff; | |
9973c98e | 535 | |
f5b7b748 | 536 | if (dirty) |
d2b2a28e | 537 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
9973c98e | 538 | |
91d25ba8 RZ |
539 | if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) { |
540 | /* we are replacing a zero page with block mapping */ | |
541 | if (dax_is_pmd_entry(entry)) | |
977fbdcd MW |
542 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
543 | PG_PMD_NR, false); | |
91d25ba8 | 544 | else /* pte entry */ |
977fbdcd | 545 | unmap_mapping_pages(mapping, vmf->pgoff, 1, false); |
9973c98e RZ |
546 | } |
547 | ||
ac401cc7 | 548 | spin_lock_irq(&mapping->tree_lock); |
642261ac RZ |
549 | new_entry = dax_radix_locked_entry(sector, flags); |
550 | ||
91d25ba8 | 551 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { |
642261ac RZ |
552 | /* |
553 | * Only swap our new entry into the radix tree if the current | |
554 | * entry is a zero page or an empty entry. If a normal PTE or | |
555 | * PMD entry is already in the tree, we leave it alone. This | |
556 | * means that if we are trying to insert a PTE and the | |
557 | * existing entry is a PMD, we will just leave the PMD in the | |
558 | * tree and dirty it if necessary. | |
559 | */ | |
f7942430 | 560 | struct radix_tree_node *node; |
ac401cc7 JK |
561 | void **slot; |
562 | void *ret; | |
9973c98e | 563 | |
f7942430 | 564 | ret = __radix_tree_lookup(page_tree, index, &node, &slot); |
ac401cc7 | 565 | WARN_ON_ONCE(ret != entry); |
4d693d08 | 566 | __radix_tree_replace(page_tree, node, slot, |
c7df8ad2 | 567 | new_entry, NULL); |
91d25ba8 | 568 | entry = new_entry; |
9973c98e | 569 | } |
91d25ba8 | 570 | |
f5b7b748 | 571 | if (dirty) |
9973c98e | 572 | radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); |
91d25ba8 | 573 | |
9973c98e | 574 | spin_unlock_irq(&mapping->tree_lock); |
91d25ba8 | 575 | return entry; |
9973c98e RZ |
576 | } |
577 | ||
4b4bb46d JK |
578 | static inline unsigned long |
579 | pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) | |
580 | { | |
581 | unsigned long address; | |
582 | ||
583 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
584 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | |
585 | return address; | |
586 | } | |
587 | ||
588 | /* Walk all mappings of a given index of a file and writeprotect them */ | |
589 | static void dax_mapping_entry_mkclean(struct address_space *mapping, | |
590 | pgoff_t index, unsigned long pfn) | |
591 | { | |
592 | struct vm_area_struct *vma; | |
f729c8c9 RZ |
593 | pte_t pte, *ptep = NULL; |
594 | pmd_t *pmdp = NULL; | |
4b4bb46d | 595 | spinlock_t *ptl; |
4b4bb46d JK |
596 | |
597 | i_mmap_lock_read(mapping); | |
598 | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { | |
a4d1a885 | 599 | unsigned long address, start, end; |
4b4bb46d JK |
600 | |
601 | cond_resched(); | |
602 | ||
603 | if (!(vma->vm_flags & VM_SHARED)) | |
604 | continue; | |
605 | ||
606 | address = pgoff_address(index, vma); | |
a4d1a885 JG |
607 | |
608 | /* | |
609 | * Note because we provide start/end to follow_pte_pmd it will | |
610 | * call mmu_notifier_invalidate_range_start() on our behalf | |
611 | * before taking any lock. | |
612 | */ | |
613 | if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl)) | |
4b4bb46d | 614 | continue; |
4b4bb46d | 615 | |
0f10851e JG |
616 | /* |
617 | * No need to call mmu_notifier_invalidate_range() as we are | |
618 | * downgrading page table protection not changing it to point | |
619 | * to a new page. | |
620 | * | |
621 | * See Documentation/vm/mmu_notifier.txt | |
622 | */ | |
f729c8c9 RZ |
623 | if (pmdp) { |
624 | #ifdef CONFIG_FS_DAX_PMD | |
625 | pmd_t pmd; | |
626 | ||
627 | if (pfn != pmd_pfn(*pmdp)) | |
628 | goto unlock_pmd; | |
f6f37321 | 629 | if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) |
f729c8c9 RZ |
630 | goto unlock_pmd; |
631 | ||
632 | flush_cache_page(vma, address, pfn); | |
633 | pmd = pmdp_huge_clear_flush(vma, address, pmdp); | |
634 | pmd = pmd_wrprotect(pmd); | |
635 | pmd = pmd_mkclean(pmd); | |
636 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); | |
f729c8c9 | 637 | unlock_pmd: |
f729c8c9 | 638 | #endif |
ee190ca6 | 639 | spin_unlock(ptl); |
f729c8c9 RZ |
640 | } else { |
641 | if (pfn != pte_pfn(*ptep)) | |
642 | goto unlock_pte; | |
643 | if (!pte_dirty(*ptep) && !pte_write(*ptep)) | |
644 | goto unlock_pte; | |
645 | ||
646 | flush_cache_page(vma, address, pfn); | |
647 | pte = ptep_clear_flush(vma, address, ptep); | |
648 | pte = pte_wrprotect(pte); | |
649 | pte = pte_mkclean(pte); | |
650 | set_pte_at(vma->vm_mm, address, ptep, pte); | |
f729c8c9 RZ |
651 | unlock_pte: |
652 | pte_unmap_unlock(ptep, ptl); | |
653 | } | |
4b4bb46d | 654 | |
a4d1a885 | 655 | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); |
4b4bb46d JK |
656 | } |
657 | i_mmap_unlock_read(mapping); | |
658 | } | |
659 | ||
9973c98e | 660 | static int dax_writeback_one(struct block_device *bdev, |
cccbce67 DW |
661 | struct dax_device *dax_dev, struct address_space *mapping, |
662 | pgoff_t index, void *entry) | |
9973c98e RZ |
663 | { |
664 | struct radix_tree_root *page_tree = &mapping->page_tree; | |
cccbce67 DW |
665 | void *entry2, **slot, *kaddr; |
666 | long ret = 0, id; | |
667 | sector_t sector; | |
668 | pgoff_t pgoff; | |
669 | size_t size; | |
670 | pfn_t pfn; | |
9973c98e | 671 | |
9973c98e | 672 | /* |
a6abc2c0 JK |
673 | * A page got tagged dirty in DAX mapping? Something is seriously |
674 | * wrong. | |
9973c98e | 675 | */ |
a6abc2c0 JK |
676 | if (WARN_ON(!radix_tree_exceptional_entry(entry))) |
677 | return -EIO; | |
9973c98e | 678 | |
a6abc2c0 JK |
679 | spin_lock_irq(&mapping->tree_lock); |
680 | entry2 = get_unlocked_mapping_entry(mapping, index, &slot); | |
681 | /* Entry got punched out / reallocated? */ | |
91d25ba8 | 682 | if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2))) |
a6abc2c0 JK |
683 | goto put_unlocked; |
684 | /* | |
685 | * Entry got reallocated elsewhere? No need to writeback. We have to | |
686 | * compare sectors as we must not bail out due to difference in lockbit | |
687 | * or entry type. | |
688 | */ | |
689 | if (dax_radix_sector(entry2) != dax_radix_sector(entry)) | |
690 | goto put_unlocked; | |
642261ac RZ |
691 | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || |
692 | dax_is_zero_entry(entry))) { | |
9973c98e | 693 | ret = -EIO; |
a6abc2c0 | 694 | goto put_unlocked; |
9973c98e RZ |
695 | } |
696 | ||
a6abc2c0 JK |
697 | /* Another fsync thread may have already written back this entry */ |
698 | if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) | |
699 | goto put_unlocked; | |
700 | /* Lock the entry to serialize with page faults */ | |
701 | entry = lock_slot(mapping, slot); | |
702 | /* | |
703 | * We can clear the tag now but we have to be careful so that concurrent | |
704 | * dax_writeback_one() calls for the same index cannot finish before we | |
705 | * actually flush the caches. This is achieved as the calls will look | |
706 | * at the entry only under tree_lock and once they do that they will | |
707 | * see the entry locked and wait for it to unlock. | |
708 | */ | |
709 | radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); | |
710 | spin_unlock_irq(&mapping->tree_lock); | |
711 | ||
642261ac RZ |
712 | /* |
713 | * Even if dax_writeback_mapping_range() was given a wbc->range_start | |
714 | * in the middle of a PMD, the 'index' we are given will be aligned to | |
715 | * the start index of the PMD, as will the sector we pull from | |
716 | * 'entry'. This allows us to flush for PMD_SIZE and not have to | |
717 | * worry about partial PMD writebacks. | |
718 | */ | |
cccbce67 DW |
719 | sector = dax_radix_sector(entry); |
720 | size = PAGE_SIZE << dax_radix_order(entry); | |
721 | ||
722 | id = dax_read_lock(); | |
723 | ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); | |
724 | if (ret) | |
725 | goto dax_unlock; | |
9973c98e RZ |
726 | |
727 | /* | |
cccbce67 DW |
728 | * dax_direct_access() may sleep, so cannot hold tree_lock over |
729 | * its invocation. | |
9973c98e | 730 | */ |
cccbce67 DW |
731 | ret = dax_direct_access(dax_dev, pgoff, size / PAGE_SIZE, &kaddr, &pfn); |
732 | if (ret < 0) | |
733 | goto dax_unlock; | |
9973c98e | 734 | |
cccbce67 | 735 | if (WARN_ON_ONCE(ret < size / PAGE_SIZE)) { |
9973c98e | 736 | ret = -EIO; |
cccbce67 | 737 | goto dax_unlock; |
9973c98e RZ |
738 | } |
739 | ||
cccbce67 | 740 | dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(pfn)); |
c3ca015f | 741 | dax_flush(dax_dev, kaddr, size); |
4b4bb46d JK |
742 | /* |
743 | * After we have flushed the cache, we can clear the dirty tag. There | |
744 | * cannot be new dirty data in the pfn after the flush has completed as | |
745 | * the pfn mappings are writeprotected and fault waits for mapping | |
746 | * entry lock. | |
747 | */ | |
748 | spin_lock_irq(&mapping->tree_lock); | |
749 | radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); | |
750 | spin_unlock_irq(&mapping->tree_lock); | |
f9bc3a07 | 751 | trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT); |
cccbce67 DW |
752 | dax_unlock: |
753 | dax_read_unlock(id); | |
91d25ba8 | 754 | put_locked_mapping_entry(mapping, index); |
9973c98e RZ |
755 | return ret; |
756 | ||
a6abc2c0 JK |
757 | put_unlocked: |
758 | put_unlocked_mapping_entry(mapping, index, entry2); | |
9973c98e RZ |
759 | spin_unlock_irq(&mapping->tree_lock); |
760 | return ret; | |
761 | } | |
762 | ||
763 | /* | |
764 | * Flush the mapping to the persistent domain within the byte range of [start, | |
765 | * end]. This is required by data integrity operations to ensure file data is | |
766 | * on persistent storage prior to completion of the operation. | |
767 | */ | |
7f6d5b52 RZ |
768 | int dax_writeback_mapping_range(struct address_space *mapping, |
769 | struct block_device *bdev, struct writeback_control *wbc) | |
9973c98e RZ |
770 | { |
771 | struct inode *inode = mapping->host; | |
642261ac | 772 | pgoff_t start_index, end_index; |
9973c98e | 773 | pgoff_t indices[PAGEVEC_SIZE]; |
cccbce67 | 774 | struct dax_device *dax_dev; |
9973c98e RZ |
775 | struct pagevec pvec; |
776 | bool done = false; | |
777 | int i, ret = 0; | |
9973c98e RZ |
778 | |
779 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
780 | return -EIO; | |
781 | ||
7f6d5b52 RZ |
782 | if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) |
783 | return 0; | |
784 | ||
cccbce67 DW |
785 | dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); |
786 | if (!dax_dev) | |
787 | return -EIO; | |
788 | ||
09cbfeaf KS |
789 | start_index = wbc->range_start >> PAGE_SHIFT; |
790 | end_index = wbc->range_end >> PAGE_SHIFT; | |
9973c98e | 791 | |
d14a3f48 RZ |
792 | trace_dax_writeback_range(inode, start_index, end_index); |
793 | ||
9973c98e RZ |
794 | tag_pages_for_writeback(mapping, start_index, end_index); |
795 | ||
86679820 | 796 | pagevec_init(&pvec); |
9973c98e RZ |
797 | while (!done) { |
798 | pvec.nr = find_get_entries_tag(mapping, start_index, | |
799 | PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, | |
800 | pvec.pages, indices); | |
801 | ||
802 | if (pvec.nr == 0) | |
803 | break; | |
804 | ||
805 | for (i = 0; i < pvec.nr; i++) { | |
806 | if (indices[i] > end_index) { | |
807 | done = true; | |
808 | break; | |
809 | } | |
810 | ||
cccbce67 DW |
811 | ret = dax_writeback_one(bdev, dax_dev, mapping, |
812 | indices[i], pvec.pages[i]); | |
819ec6b9 JL |
813 | if (ret < 0) { |
814 | mapping_set_error(mapping, ret); | |
d14a3f48 | 815 | goto out; |
819ec6b9 | 816 | } |
9973c98e | 817 | } |
1eb643d0 | 818 | start_index = indices[pvec.nr - 1] + 1; |
9973c98e | 819 | } |
d14a3f48 | 820 | out: |
cccbce67 | 821 | put_dax(dax_dev); |
d14a3f48 RZ |
822 | trace_dax_writeback_range_done(inode, start_index, end_index); |
823 | return (ret < 0 ? ret : 0); | |
9973c98e RZ |
824 | } |
825 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
826 | ||
31a6f1a6 | 827 | static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) |
f7ca90b1 | 828 | { |
a3841f94 | 829 | return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; |
31a6f1a6 JK |
830 | } |
831 | ||
5e161e40 JK |
832 | static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, |
833 | pfn_t *pfnp) | |
f7ca90b1 | 834 | { |
31a6f1a6 | 835 | const sector_t sector = dax_iomap_sector(iomap, pos); |
cccbce67 | 836 | pgoff_t pgoff; |
5e161e40 | 837 | void *kaddr; |
cccbce67 | 838 | int id, rc; |
5e161e40 | 839 | long length; |
f7ca90b1 | 840 | |
5e161e40 | 841 | rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); |
cccbce67 DW |
842 | if (rc) |
843 | return rc; | |
cccbce67 | 844 | id = dax_read_lock(); |
5e161e40 JK |
845 | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), |
846 | &kaddr, pfnp); | |
847 | if (length < 0) { | |
848 | rc = length; | |
849 | goto out; | |
cccbce67 | 850 | } |
5e161e40 JK |
851 | rc = -EINVAL; |
852 | if (PFN_PHYS(length) < size) | |
853 | goto out; | |
854 | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | |
855 | goto out; | |
856 | /* For larger pages we need devmap */ | |
857 | if (length > 1 && !pfn_t_devmap(*pfnp)) | |
858 | goto out; | |
859 | rc = 0; | |
860 | out: | |
cccbce67 | 861 | dax_read_unlock(id); |
5e161e40 | 862 | return rc; |
0e3b210c | 863 | } |
0e3b210c | 864 | |
e30331ff | 865 | /* |
91d25ba8 RZ |
866 | * The user has performed a load from a hole in the file. Allocating a new |
867 | * page in the file would cause excessive storage usage for workloads with | |
868 | * sparse files. Instead we insert a read-only mapping of the 4k zero page. | |
869 | * If this page is ever written to we will re-fault and change the mapping to | |
870 | * point to real DAX storage instead. | |
e30331ff | 871 | */ |
91d25ba8 | 872 | static int dax_load_hole(struct address_space *mapping, void *entry, |
e30331ff RZ |
873 | struct vm_fault *vmf) |
874 | { | |
875 | struct inode *inode = mapping->host; | |
91d25ba8 RZ |
876 | unsigned long vaddr = vmf->address; |
877 | int ret = VM_FAULT_NOPAGE; | |
878 | struct page *zero_page; | |
879 | void *entry2; | |
e30331ff | 880 | |
91d25ba8 RZ |
881 | zero_page = ZERO_PAGE(0); |
882 | if (unlikely(!zero_page)) { | |
e30331ff RZ |
883 | ret = VM_FAULT_OOM; |
884 | goto out; | |
885 | } | |
886 | ||
91d25ba8 | 887 | entry2 = dax_insert_mapping_entry(mapping, vmf, entry, 0, |
f5b7b748 | 888 | RADIX_DAX_ZERO_PAGE, false); |
91d25ba8 RZ |
889 | if (IS_ERR(entry2)) { |
890 | ret = VM_FAULT_SIGBUS; | |
891 | goto out; | |
e30331ff | 892 | } |
91d25ba8 RZ |
893 | |
894 | vm_insert_mixed(vmf->vma, vaddr, page_to_pfn_t(zero_page)); | |
e30331ff RZ |
895 | out: |
896 | trace_dax_load_hole(inode, vmf, ret); | |
897 | return ret; | |
898 | } | |
899 | ||
4b0228fa VV |
900 | static bool dax_range_is_aligned(struct block_device *bdev, |
901 | unsigned int offset, unsigned int length) | |
902 | { | |
903 | unsigned short sector_size = bdev_logical_block_size(bdev); | |
904 | ||
905 | if (!IS_ALIGNED(offset, sector_size)) | |
906 | return false; | |
907 | if (!IS_ALIGNED(length, sector_size)) | |
908 | return false; | |
909 | ||
910 | return true; | |
911 | } | |
912 | ||
cccbce67 DW |
913 | int __dax_zero_page_range(struct block_device *bdev, |
914 | struct dax_device *dax_dev, sector_t sector, | |
915 | unsigned int offset, unsigned int size) | |
679c8bd3 | 916 | { |
cccbce67 DW |
917 | if (dax_range_is_aligned(bdev, offset, size)) { |
918 | sector_t start_sector = sector + (offset >> 9); | |
4b0228fa VV |
919 | |
920 | return blkdev_issue_zeroout(bdev, start_sector, | |
53ef7d0e | 921 | size >> 9, GFP_NOFS, 0); |
4b0228fa | 922 | } else { |
cccbce67 DW |
923 | pgoff_t pgoff; |
924 | long rc, id; | |
925 | void *kaddr; | |
926 | pfn_t pfn; | |
927 | ||
e84b83b9 | 928 | rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); |
cccbce67 DW |
929 | if (rc) |
930 | return rc; | |
931 | ||
932 | id = dax_read_lock(); | |
e84b83b9 | 933 | rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, |
cccbce67 DW |
934 | &pfn); |
935 | if (rc < 0) { | |
936 | dax_read_unlock(id); | |
937 | return rc; | |
938 | } | |
81f55870 | 939 | memset(kaddr + offset, 0, size); |
c3ca015f | 940 | dax_flush(dax_dev, kaddr + offset, size); |
cccbce67 | 941 | dax_read_unlock(id); |
4b0228fa | 942 | } |
679c8bd3 CH |
943 | return 0; |
944 | } | |
945 | EXPORT_SYMBOL_GPL(__dax_zero_page_range); | |
946 | ||
a254e568 | 947 | static loff_t |
11c59c92 | 948 | dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
a254e568 CH |
949 | struct iomap *iomap) |
950 | { | |
cccbce67 DW |
951 | struct block_device *bdev = iomap->bdev; |
952 | struct dax_device *dax_dev = iomap->dax_dev; | |
a254e568 CH |
953 | struct iov_iter *iter = data; |
954 | loff_t end = pos + length, done = 0; | |
955 | ssize_t ret = 0; | |
cccbce67 | 956 | int id; |
a254e568 CH |
957 | |
958 | if (iov_iter_rw(iter) == READ) { | |
959 | end = min(end, i_size_read(inode)); | |
960 | if (pos >= end) | |
961 | return 0; | |
962 | ||
963 | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) | |
964 | return iov_iter_zero(min(length, end - pos), iter); | |
965 | } | |
966 | ||
967 | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) | |
968 | return -EIO; | |
969 | ||
e3fce68c JK |
970 | /* |
971 | * Write can allocate block for an area which has a hole page mapped | |
972 | * into page tables. We have to tear down these mappings so that data | |
973 | * written by write(2) is visible in mmap. | |
974 | */ | |
cd656375 | 975 | if (iomap->flags & IOMAP_F_NEW) { |
e3fce68c JK |
976 | invalidate_inode_pages2_range(inode->i_mapping, |
977 | pos >> PAGE_SHIFT, | |
978 | (end - 1) >> PAGE_SHIFT); | |
979 | } | |
980 | ||
cccbce67 | 981 | id = dax_read_lock(); |
a254e568 CH |
982 | while (pos < end) { |
983 | unsigned offset = pos & (PAGE_SIZE - 1); | |
cccbce67 DW |
984 | const size_t size = ALIGN(length + offset, PAGE_SIZE); |
985 | const sector_t sector = dax_iomap_sector(iomap, pos); | |
a254e568 | 986 | ssize_t map_len; |
cccbce67 DW |
987 | pgoff_t pgoff; |
988 | void *kaddr; | |
989 | pfn_t pfn; | |
a254e568 | 990 | |
d1908f52 MH |
991 | if (fatal_signal_pending(current)) { |
992 | ret = -EINTR; | |
993 | break; | |
994 | } | |
995 | ||
cccbce67 DW |
996 | ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); |
997 | if (ret) | |
998 | break; | |
999 | ||
1000 | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | |
1001 | &kaddr, &pfn); | |
a254e568 CH |
1002 | if (map_len < 0) { |
1003 | ret = map_len; | |
1004 | break; | |
1005 | } | |
1006 | ||
cccbce67 DW |
1007 | map_len = PFN_PHYS(map_len); |
1008 | kaddr += offset; | |
a254e568 CH |
1009 | map_len -= offset; |
1010 | if (map_len > end - pos) | |
1011 | map_len = end - pos; | |
1012 | ||
a2e050f5 RZ |
1013 | /* |
1014 | * The userspace address for the memory copy has already been | |
1015 | * validated via access_ok() in either vfs_read() or | |
1016 | * vfs_write(), depending on which operation we are doing. | |
1017 | */ | |
a254e568 | 1018 | if (iov_iter_rw(iter) == WRITE) |
fec53774 DW |
1019 | map_len = dax_copy_from_iter(dax_dev, pgoff, kaddr, |
1020 | map_len, iter); | |
a254e568 | 1021 | else |
cccbce67 | 1022 | map_len = copy_to_iter(kaddr, map_len, iter); |
a254e568 CH |
1023 | if (map_len <= 0) { |
1024 | ret = map_len ? map_len : -EFAULT; | |
1025 | break; | |
1026 | } | |
1027 | ||
1028 | pos += map_len; | |
1029 | length -= map_len; | |
1030 | done += map_len; | |
1031 | } | |
cccbce67 | 1032 | dax_read_unlock(id); |
a254e568 CH |
1033 | |
1034 | return done ? done : ret; | |
1035 | } | |
1036 | ||
1037 | /** | |
11c59c92 | 1038 | * dax_iomap_rw - Perform I/O to a DAX file |
a254e568 CH |
1039 | * @iocb: The control block for this I/O |
1040 | * @iter: The addresses to do I/O from or to | |
1041 | * @ops: iomap ops passed from the file system | |
1042 | * | |
1043 | * This function performs read and write operations to directly mapped | |
1044 | * persistent memory. The callers needs to take care of read/write exclusion | |
1045 | * and evicting any page cache pages in the region under I/O. | |
1046 | */ | |
1047 | ssize_t | |
11c59c92 | 1048 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, |
8ff6daa1 | 1049 | const struct iomap_ops *ops) |
a254e568 CH |
1050 | { |
1051 | struct address_space *mapping = iocb->ki_filp->f_mapping; | |
1052 | struct inode *inode = mapping->host; | |
1053 | loff_t pos = iocb->ki_pos, ret = 0, done = 0; | |
1054 | unsigned flags = 0; | |
1055 | ||
168316db CH |
1056 | if (iov_iter_rw(iter) == WRITE) { |
1057 | lockdep_assert_held_exclusive(&inode->i_rwsem); | |
a254e568 | 1058 | flags |= IOMAP_WRITE; |
168316db CH |
1059 | } else { |
1060 | lockdep_assert_held(&inode->i_rwsem); | |
1061 | } | |
a254e568 | 1062 | |
a254e568 CH |
1063 | while (iov_iter_count(iter)) { |
1064 | ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, | |
11c59c92 | 1065 | iter, dax_iomap_actor); |
a254e568 CH |
1066 | if (ret <= 0) |
1067 | break; | |
1068 | pos += ret; | |
1069 | done += ret; | |
1070 | } | |
1071 | ||
1072 | iocb->ki_pos += done; | |
1073 | return done ? done : ret; | |
1074 | } | |
11c59c92 | 1075 | EXPORT_SYMBOL_GPL(dax_iomap_rw); |
a7d73fe6 | 1076 | |
9f141d6e JK |
1077 | static int dax_fault_return(int error) |
1078 | { | |
1079 | if (error == 0) | |
1080 | return VM_FAULT_NOPAGE; | |
1081 | if (error == -ENOMEM) | |
1082 | return VM_FAULT_OOM; | |
1083 | return VM_FAULT_SIGBUS; | |
1084 | } | |
1085 | ||
aaa422c4 DW |
1086 | /* |
1087 | * MAP_SYNC on a dax mapping guarantees dirty metadata is | |
1088 | * flushed on write-faults (non-cow), but not read-faults. | |
1089 | */ | |
1090 | static bool dax_fault_is_synchronous(unsigned long flags, | |
1091 | struct vm_area_struct *vma, struct iomap *iomap) | |
1092 | { | |
1093 | return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) | |
1094 | && (iomap->flags & IOMAP_F_DIRTY); | |
1095 | } | |
1096 | ||
9a0dd422 | 1097 | static int dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, |
c0b24625 | 1098 | int *iomap_errp, const struct iomap_ops *ops) |
a7d73fe6 | 1099 | { |
a0987ad5 JK |
1100 | struct vm_area_struct *vma = vmf->vma; |
1101 | struct address_space *mapping = vma->vm_file->f_mapping; | |
a7d73fe6 | 1102 | struct inode *inode = mapping->host; |
1a29d85e | 1103 | unsigned long vaddr = vmf->address; |
a7d73fe6 | 1104 | loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; |
a7d73fe6 | 1105 | struct iomap iomap = { 0 }; |
9484ab1b | 1106 | unsigned flags = IOMAP_FAULT; |
a7d73fe6 | 1107 | int error, major = 0; |
d2c43ef1 | 1108 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
caa51d26 | 1109 | bool sync; |
b1aa812b | 1110 | int vmf_ret = 0; |
a7d73fe6 | 1111 | void *entry; |
1b5a1cb2 | 1112 | pfn_t pfn; |
a7d73fe6 | 1113 | |
a9c42b33 | 1114 | trace_dax_pte_fault(inode, vmf, vmf_ret); |
a7d73fe6 CH |
1115 | /* |
1116 | * Check whether offset isn't beyond end of file now. Caller is supposed | |
1117 | * to hold locks serializing us with truncate / punch hole so this is | |
1118 | * a reliable test. | |
1119 | */ | |
a9c42b33 RZ |
1120 | if (pos >= i_size_read(inode)) { |
1121 | vmf_ret = VM_FAULT_SIGBUS; | |
1122 | goto out; | |
1123 | } | |
a7d73fe6 | 1124 | |
d2c43ef1 | 1125 | if (write && !vmf->cow_page) |
a7d73fe6 CH |
1126 | flags |= IOMAP_WRITE; |
1127 | ||
13e451fd JK |
1128 | entry = grab_mapping_entry(mapping, vmf->pgoff, 0); |
1129 | if (IS_ERR(entry)) { | |
1130 | vmf_ret = dax_fault_return(PTR_ERR(entry)); | |
1131 | goto out; | |
1132 | } | |
1133 | ||
e2093926 RZ |
1134 | /* |
1135 | * It is possible, particularly with mixed reads & writes to private | |
1136 | * mappings, that we have raced with a PMD fault that overlaps with | |
1137 | * the PTE we need to set up. If so just return and the fault will be | |
1138 | * retried. | |
1139 | */ | |
1140 | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | |
1141 | vmf_ret = VM_FAULT_NOPAGE; | |
1142 | goto unlock_entry; | |
1143 | } | |
1144 | ||
a7d73fe6 CH |
1145 | /* |
1146 | * Note that we don't bother to use iomap_apply here: DAX required | |
1147 | * the file system block size to be equal the page size, which means | |
1148 | * that we never have to deal with more than a single extent here. | |
1149 | */ | |
1150 | error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); | |
c0b24625 JK |
1151 | if (iomap_errp) |
1152 | *iomap_errp = error; | |
a9c42b33 RZ |
1153 | if (error) { |
1154 | vmf_ret = dax_fault_return(error); | |
13e451fd | 1155 | goto unlock_entry; |
a9c42b33 | 1156 | } |
a7d73fe6 | 1157 | if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { |
13e451fd JK |
1158 | error = -EIO; /* fs corruption? */ |
1159 | goto error_finish_iomap; | |
a7d73fe6 CH |
1160 | } |
1161 | ||
a7d73fe6 | 1162 | if (vmf->cow_page) { |
31a6f1a6 JK |
1163 | sector_t sector = dax_iomap_sector(&iomap, pos); |
1164 | ||
a7d73fe6 CH |
1165 | switch (iomap.type) { |
1166 | case IOMAP_HOLE: | |
1167 | case IOMAP_UNWRITTEN: | |
1168 | clear_user_highpage(vmf->cow_page, vaddr); | |
1169 | break; | |
1170 | case IOMAP_MAPPED: | |
cccbce67 DW |
1171 | error = copy_user_dax(iomap.bdev, iomap.dax_dev, |
1172 | sector, PAGE_SIZE, vmf->cow_page, vaddr); | |
a7d73fe6 CH |
1173 | break; |
1174 | default: | |
1175 | WARN_ON_ONCE(1); | |
1176 | error = -EIO; | |
1177 | break; | |
1178 | } | |
1179 | ||
1180 | if (error) | |
13e451fd | 1181 | goto error_finish_iomap; |
b1aa812b JK |
1182 | |
1183 | __SetPageUptodate(vmf->cow_page); | |
1184 | vmf_ret = finish_fault(vmf); | |
1185 | if (!vmf_ret) | |
1186 | vmf_ret = VM_FAULT_DONE_COW; | |
13e451fd | 1187 | goto finish_iomap; |
a7d73fe6 CH |
1188 | } |
1189 | ||
aaa422c4 | 1190 | sync = dax_fault_is_synchronous(flags, vma, &iomap); |
caa51d26 | 1191 | |
a7d73fe6 CH |
1192 | switch (iomap.type) { |
1193 | case IOMAP_MAPPED: | |
1194 | if (iomap.flags & IOMAP_F_NEW) { | |
1195 | count_vm_event(PGMAJFAULT); | |
a0987ad5 | 1196 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
a7d73fe6 CH |
1197 | major = VM_FAULT_MAJOR; |
1198 | } | |
1b5a1cb2 JK |
1199 | error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); |
1200 | if (error < 0) | |
1201 | goto error_finish_iomap; | |
1202 | ||
1203 | entry = dax_insert_mapping_entry(mapping, vmf, entry, | |
1204 | dax_iomap_sector(&iomap, pos), | |
caa51d26 | 1205 | 0, write && !sync); |
1b5a1cb2 JK |
1206 | if (IS_ERR(entry)) { |
1207 | error = PTR_ERR(entry); | |
1208 | goto error_finish_iomap; | |
1209 | } | |
1210 | ||
caa51d26 JK |
1211 | /* |
1212 | * If we are doing synchronous page fault and inode needs fsync, | |
1213 | * we can insert PTE into page tables only after that happens. | |
1214 | * Skip insertion for now and return the pfn so that caller can | |
1215 | * insert it after fsync is done. | |
1216 | */ | |
1217 | if (sync) { | |
1218 | if (WARN_ON_ONCE(!pfnp)) { | |
1219 | error = -EIO; | |
1220 | goto error_finish_iomap; | |
1221 | } | |
1222 | *pfnp = pfn; | |
1223 | vmf_ret = VM_FAULT_NEEDDSYNC | major; | |
1224 | goto finish_iomap; | |
1225 | } | |
1b5a1cb2 JK |
1226 | trace_dax_insert_mapping(inode, vmf, entry); |
1227 | if (write) | |
1228 | error = vm_insert_mixed_mkwrite(vma, vaddr, pfn); | |
1229 | else | |
1230 | error = vm_insert_mixed(vma, vaddr, pfn); | |
1231 | ||
9f141d6e JK |
1232 | /* -EBUSY is fine, somebody else faulted on the same PTE */ |
1233 | if (error == -EBUSY) | |
1234 | error = 0; | |
a7d73fe6 CH |
1235 | break; |
1236 | case IOMAP_UNWRITTEN: | |
1237 | case IOMAP_HOLE: | |
d2c43ef1 | 1238 | if (!write) { |
91d25ba8 | 1239 | vmf_ret = dax_load_hole(mapping, entry, vmf); |
13e451fd | 1240 | goto finish_iomap; |
1550290b | 1241 | } |
a7d73fe6 CH |
1242 | /*FALLTHRU*/ |
1243 | default: | |
1244 | WARN_ON_ONCE(1); | |
1245 | error = -EIO; | |
1246 | break; | |
1247 | } | |
1248 | ||
13e451fd | 1249 | error_finish_iomap: |
9f141d6e | 1250 | vmf_ret = dax_fault_return(error) | major; |
9f141d6e JK |
1251 | finish_iomap: |
1252 | if (ops->iomap_end) { | |
1253 | int copied = PAGE_SIZE; | |
1254 | ||
1255 | if (vmf_ret & VM_FAULT_ERROR) | |
1256 | copied = 0; | |
1257 | /* | |
1258 | * The fault is done by now and there's no way back (other | |
1259 | * thread may be already happily using PTE we have installed). | |
1260 | * Just ignore error from ->iomap_end since we cannot do much | |
1261 | * with it. | |
1262 | */ | |
1263 | ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); | |
1550290b | 1264 | } |
13e451fd | 1265 | unlock_entry: |
91d25ba8 | 1266 | put_locked_mapping_entry(mapping, vmf->pgoff); |
13e451fd | 1267 | out: |
a9c42b33 | 1268 | trace_dax_pte_fault_done(inode, vmf, vmf_ret); |
9f141d6e | 1269 | return vmf_ret; |
a7d73fe6 | 1270 | } |
642261ac RZ |
1271 | |
1272 | #ifdef CONFIG_FS_DAX_PMD | |
f4200391 | 1273 | static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, |
91d25ba8 | 1274 | void *entry) |
642261ac | 1275 | { |
f4200391 DJ |
1276 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
1277 | unsigned long pmd_addr = vmf->address & PMD_MASK; | |
653b2ea3 | 1278 | struct inode *inode = mapping->host; |
642261ac | 1279 | struct page *zero_page; |
653b2ea3 | 1280 | void *ret = NULL; |
642261ac RZ |
1281 | spinlock_t *ptl; |
1282 | pmd_t pmd_entry; | |
642261ac | 1283 | |
f4200391 | 1284 | zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); |
642261ac RZ |
1285 | |
1286 | if (unlikely(!zero_page)) | |
653b2ea3 | 1287 | goto fallback; |
642261ac | 1288 | |
91d25ba8 | 1289 | ret = dax_insert_mapping_entry(mapping, vmf, entry, 0, |
f5b7b748 | 1290 | RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false); |
642261ac | 1291 | if (IS_ERR(ret)) |
653b2ea3 | 1292 | goto fallback; |
642261ac | 1293 | |
f4200391 DJ |
1294 | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
1295 | if (!pmd_none(*(vmf->pmd))) { | |
642261ac | 1296 | spin_unlock(ptl); |
653b2ea3 | 1297 | goto fallback; |
642261ac RZ |
1298 | } |
1299 | ||
f4200391 | 1300 | pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); |
642261ac | 1301 | pmd_entry = pmd_mkhuge(pmd_entry); |
f4200391 | 1302 | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); |
642261ac | 1303 | spin_unlock(ptl); |
f4200391 | 1304 | trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); |
642261ac | 1305 | return VM_FAULT_NOPAGE; |
653b2ea3 RZ |
1306 | |
1307 | fallback: | |
f4200391 | 1308 | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); |
653b2ea3 | 1309 | return VM_FAULT_FALLBACK; |
642261ac RZ |
1310 | } |
1311 | ||
9a0dd422 | 1312 | static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
a2d58167 | 1313 | const struct iomap_ops *ops) |
642261ac | 1314 | { |
f4200391 | 1315 | struct vm_area_struct *vma = vmf->vma; |
642261ac | 1316 | struct address_space *mapping = vma->vm_file->f_mapping; |
d8a849e1 DJ |
1317 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
1318 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
caa51d26 | 1319 | bool sync; |
9484ab1b | 1320 | unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; |
642261ac RZ |
1321 | struct inode *inode = mapping->host; |
1322 | int result = VM_FAULT_FALLBACK; | |
1323 | struct iomap iomap = { 0 }; | |
1324 | pgoff_t max_pgoff, pgoff; | |
642261ac RZ |
1325 | void *entry; |
1326 | loff_t pos; | |
1327 | int error; | |
302a5e31 | 1328 | pfn_t pfn; |
642261ac | 1329 | |
282a8e03 RZ |
1330 | /* |
1331 | * Check whether offset isn't beyond end of file now. Caller is | |
1332 | * supposed to hold locks serializing us with truncate / punch hole so | |
1333 | * this is a reliable test. | |
1334 | */ | |
1335 | pgoff = linear_page_index(vma, pmd_addr); | |
957ac8c4 | 1336 | max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
282a8e03 | 1337 | |
f4200391 | 1338 | trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); |
282a8e03 | 1339 | |
fffa281b RZ |
1340 | /* |
1341 | * Make sure that the faulting address's PMD offset (color) matches | |
1342 | * the PMD offset from the start of the file. This is necessary so | |
1343 | * that a PMD range in the page table overlaps exactly with a PMD | |
1344 | * range in the radix tree. | |
1345 | */ | |
1346 | if ((vmf->pgoff & PG_PMD_COLOUR) != | |
1347 | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | |
1348 | goto fallback; | |
1349 | ||
642261ac RZ |
1350 | /* Fall back to PTEs if we're going to COW */ |
1351 | if (write && !(vma->vm_flags & VM_SHARED)) | |
1352 | goto fallback; | |
1353 | ||
1354 | /* If the PMD would extend outside the VMA */ | |
1355 | if (pmd_addr < vma->vm_start) | |
1356 | goto fallback; | |
1357 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) | |
1358 | goto fallback; | |
1359 | ||
957ac8c4 | 1360 | if (pgoff >= max_pgoff) { |
282a8e03 RZ |
1361 | result = VM_FAULT_SIGBUS; |
1362 | goto out; | |
1363 | } | |
642261ac RZ |
1364 | |
1365 | /* If the PMD would extend beyond the file size */ | |
957ac8c4 | 1366 | if ((pgoff | PG_PMD_COLOUR) >= max_pgoff) |
642261ac RZ |
1367 | goto fallback; |
1368 | ||
876f2946 | 1369 | /* |
91d25ba8 RZ |
1370 | * grab_mapping_entry() will make sure we get a 2MiB empty entry, a |
1371 | * 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page | |
1372 | * is already in the tree, for instance), it will return -EEXIST and | |
1373 | * we just fall back to 4k entries. | |
876f2946 RZ |
1374 | */ |
1375 | entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); | |
1376 | if (IS_ERR(entry)) | |
1377 | goto fallback; | |
1378 | ||
e2093926 RZ |
1379 | /* |
1380 | * It is possible, particularly with mixed reads & writes to private | |
1381 | * mappings, that we have raced with a PTE fault that overlaps with | |
1382 | * the PMD we need to set up. If so just return and the fault will be | |
1383 | * retried. | |
1384 | */ | |
1385 | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | |
1386 | !pmd_devmap(*vmf->pmd)) { | |
1387 | result = 0; | |
1388 | goto unlock_entry; | |
1389 | } | |
1390 | ||
642261ac RZ |
1391 | /* |
1392 | * Note that we don't use iomap_apply here. We aren't doing I/O, only | |
1393 | * setting up a mapping, so really we're using iomap_begin() as a way | |
1394 | * to look up our filesystem block. | |
1395 | */ | |
1396 | pos = (loff_t)pgoff << PAGE_SHIFT; | |
1397 | error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); | |
1398 | if (error) | |
876f2946 | 1399 | goto unlock_entry; |
9f141d6e | 1400 | |
642261ac RZ |
1401 | if (iomap.offset + iomap.length < pos + PMD_SIZE) |
1402 | goto finish_iomap; | |
1403 | ||
aaa422c4 | 1404 | sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); |
caa51d26 | 1405 | |
642261ac RZ |
1406 | switch (iomap.type) { |
1407 | case IOMAP_MAPPED: | |
302a5e31 JK |
1408 | error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); |
1409 | if (error < 0) | |
1410 | goto finish_iomap; | |
1411 | ||
1412 | entry = dax_insert_mapping_entry(mapping, vmf, entry, | |
1413 | dax_iomap_sector(&iomap, pos), | |
caa51d26 | 1414 | RADIX_DAX_PMD, write && !sync); |
302a5e31 JK |
1415 | if (IS_ERR(entry)) |
1416 | goto finish_iomap; | |
1417 | ||
caa51d26 JK |
1418 | /* |
1419 | * If we are doing synchronous page fault and inode needs fsync, | |
1420 | * we can insert PMD into page tables only after that happens. | |
1421 | * Skip insertion for now and return the pfn so that caller can | |
1422 | * insert it after fsync is done. | |
1423 | */ | |
1424 | if (sync) { | |
1425 | if (WARN_ON_ONCE(!pfnp)) | |
1426 | goto finish_iomap; | |
1427 | *pfnp = pfn; | |
1428 | result = VM_FAULT_NEEDDSYNC; | |
1429 | goto finish_iomap; | |
1430 | } | |
1431 | ||
302a5e31 JK |
1432 | trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); |
1433 | result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, | |
1434 | write); | |
642261ac RZ |
1435 | break; |
1436 | case IOMAP_UNWRITTEN: | |
1437 | case IOMAP_HOLE: | |
1438 | if (WARN_ON_ONCE(write)) | |
876f2946 | 1439 | break; |
91d25ba8 | 1440 | result = dax_pmd_load_hole(vmf, &iomap, entry); |
642261ac RZ |
1441 | break; |
1442 | default: | |
1443 | WARN_ON_ONCE(1); | |
1444 | break; | |
1445 | } | |
1446 | ||
1447 | finish_iomap: | |
1448 | if (ops->iomap_end) { | |
9f141d6e JK |
1449 | int copied = PMD_SIZE; |
1450 | ||
1451 | if (result == VM_FAULT_FALLBACK) | |
1452 | copied = 0; | |
1453 | /* | |
1454 | * The fault is done by now and there's no way back (other | |
1455 | * thread may be already happily using PMD we have installed). | |
1456 | * Just ignore error from ->iomap_end since we cannot do much | |
1457 | * with it. | |
1458 | */ | |
1459 | ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, | |
1460 | &iomap); | |
642261ac | 1461 | } |
876f2946 | 1462 | unlock_entry: |
91d25ba8 | 1463 | put_locked_mapping_entry(mapping, pgoff); |
642261ac RZ |
1464 | fallback: |
1465 | if (result == VM_FAULT_FALLBACK) { | |
d8a849e1 | 1466 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
642261ac RZ |
1467 | count_vm_event(THP_FAULT_FALLBACK); |
1468 | } | |
282a8e03 | 1469 | out: |
f4200391 | 1470 | trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); |
642261ac RZ |
1471 | return result; |
1472 | } | |
a2d58167 | 1473 | #else |
9a0dd422 | 1474 | static int dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
01cddfe9 | 1475 | const struct iomap_ops *ops) |
a2d58167 DJ |
1476 | { |
1477 | return VM_FAULT_FALLBACK; | |
1478 | } | |
642261ac | 1479 | #endif /* CONFIG_FS_DAX_PMD */ |
a2d58167 DJ |
1480 | |
1481 | /** | |
1482 | * dax_iomap_fault - handle a page fault on a DAX file | |
1483 | * @vmf: The description of the fault | |
cec04e8c | 1484 | * @pe_size: Size of the page to fault in |
9a0dd422 | 1485 | * @pfnp: PFN to insert for synchronous faults if fsync is required |
c0b24625 | 1486 | * @iomap_errp: Storage for detailed error code in case of error |
cec04e8c | 1487 | * @ops: Iomap ops passed from the file system |
a2d58167 DJ |
1488 | * |
1489 | * When a page fault occurs, filesystems may call this helper in | |
1490 | * their fault handler for DAX files. dax_iomap_fault() assumes the caller | |
1491 | * has done all the necessary locking for page fault to proceed | |
1492 | * successfully. | |
1493 | */ | |
c791ace1 | 1494 | int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, |
c0b24625 | 1495 | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) |
a2d58167 | 1496 | { |
c791ace1 DJ |
1497 | switch (pe_size) { |
1498 | case PE_SIZE_PTE: | |
c0b24625 | 1499 | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); |
c791ace1 | 1500 | case PE_SIZE_PMD: |
9a0dd422 | 1501 | return dax_iomap_pmd_fault(vmf, pfnp, ops); |
a2d58167 DJ |
1502 | default: |
1503 | return VM_FAULT_FALLBACK; | |
1504 | } | |
1505 | } | |
1506 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | |
71eab6df JK |
1507 | |
1508 | /** | |
1509 | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables | |
1510 | * @vmf: The description of the fault | |
1511 | * @pe_size: Size of entry to be inserted | |
1512 | * @pfn: PFN to insert | |
1513 | * | |
1514 | * This function inserts writeable PTE or PMD entry into page tables for mmaped | |
1515 | * DAX file. It takes care of marking corresponding radix tree entry as dirty | |
1516 | * as well. | |
1517 | */ | |
1518 | static int dax_insert_pfn_mkwrite(struct vm_fault *vmf, | |
1519 | enum page_entry_size pe_size, | |
1520 | pfn_t pfn) | |
1521 | { | |
1522 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | |
1523 | void *entry, **slot; | |
1524 | pgoff_t index = vmf->pgoff; | |
1525 | int vmf_ret, error; | |
1526 | ||
1527 | spin_lock_irq(&mapping->tree_lock); | |
1528 | entry = get_unlocked_mapping_entry(mapping, index, &slot); | |
1529 | /* Did we race with someone splitting entry or so? */ | |
1530 | if (!entry || | |
1531 | (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) || | |
1532 | (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) { | |
1533 | put_unlocked_mapping_entry(mapping, index, entry); | |
1534 | spin_unlock_irq(&mapping->tree_lock); | |
1535 | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, | |
1536 | VM_FAULT_NOPAGE); | |
1537 | return VM_FAULT_NOPAGE; | |
1538 | } | |
1539 | radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); | |
1540 | entry = lock_slot(mapping, slot); | |
1541 | spin_unlock_irq(&mapping->tree_lock); | |
1542 | switch (pe_size) { | |
1543 | case PE_SIZE_PTE: | |
1544 | error = vm_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); | |
1545 | vmf_ret = dax_fault_return(error); | |
1546 | break; | |
1547 | #ifdef CONFIG_FS_DAX_PMD | |
1548 | case PE_SIZE_PMD: | |
1549 | vmf_ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, | |
1550 | pfn, true); | |
1551 | break; | |
1552 | #endif | |
1553 | default: | |
1554 | vmf_ret = VM_FAULT_FALLBACK; | |
1555 | } | |
1556 | put_locked_mapping_entry(mapping, index); | |
1557 | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, vmf_ret); | |
1558 | return vmf_ret; | |
1559 | } | |
1560 | ||
1561 | /** | |
1562 | * dax_finish_sync_fault - finish synchronous page fault | |
1563 | * @vmf: The description of the fault | |
1564 | * @pe_size: Size of entry to be inserted | |
1565 | * @pfn: PFN to insert | |
1566 | * | |
1567 | * This function ensures that the file range touched by the page fault is | |
1568 | * stored persistently on the media and handles inserting of appropriate page | |
1569 | * table entry. | |
1570 | */ | |
1571 | int dax_finish_sync_fault(struct vm_fault *vmf, enum page_entry_size pe_size, | |
1572 | pfn_t pfn) | |
1573 | { | |
1574 | int err; | |
1575 | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | |
1576 | size_t len = 0; | |
1577 | ||
1578 | if (pe_size == PE_SIZE_PTE) | |
1579 | len = PAGE_SIZE; | |
1580 | else if (pe_size == PE_SIZE_PMD) | |
1581 | len = PMD_SIZE; | |
1582 | else | |
1583 | WARN_ON_ONCE(1); | |
1584 | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); | |
1585 | if (err) | |
1586 | return VM_FAULT_SIGBUS; | |
1587 | return dax_insert_pfn_mkwrite(vmf, pe_size, pfn); | |
1588 | } | |
1589 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); |