]>
Commit | Line | Data |
---|---|---|
9a8fd558 CZ |
1 | /* |
2 | * include/asm-xtensa/uaccess.h | |
3 | * | |
4 | * User space memory access functions | |
5 | * | |
6 | * These routines provide basic accessing functions to the user memory | |
7 | * space for the kernel. This header file provides fuctions such as: | |
8 | * | |
9 | * This file is subject to the terms and conditions of the GNU General Public | |
10 | * License. See the file "COPYING" in the main directory of this archive | |
11 | * for more details. | |
12 | * | |
13 | * Copyright (C) 2001 - 2005 Tensilica Inc. | |
14 | */ | |
15 | ||
16 | #ifndef _XTENSA_UACCESS_H | |
17 | #define _XTENSA_UACCESS_H | |
18 | ||
19 | #include <linux/errno.h> | |
20 | ||
21 | #define VERIFY_READ 0 | |
22 | #define VERIFY_WRITE 1 | |
23 | ||
24 | #ifdef __ASSEMBLY__ | |
25 | ||
26 | #define _ASMLANGUAGE | |
27 | #include <asm/current.h> | |
0013a854 | 28 | #include <asm/asm-offsets.h> |
9a8fd558 CZ |
29 | #include <asm/processor.h> |
30 | ||
31 | /* | |
32 | * These assembly macros mirror the C macros that follow below. They | |
33 | * should always have identical functionality. See | |
34 | * arch/xtensa/kernel/sys.S for usage. | |
35 | */ | |
36 | ||
37 | #define KERNEL_DS 0 | |
38 | #define USER_DS 1 | |
39 | ||
40 | #define get_ds (KERNEL_DS) | |
41 | ||
42 | /* | |
43 | * get_fs reads current->thread.current_ds into a register. | |
44 | * On Entry: | |
45 | * <ad> anything | |
46 | * <sp> stack | |
47 | * On Exit: | |
48 | * <ad> contains current->thread.current_ds | |
49 | */ | |
50 | .macro get_fs ad, sp | |
51 | GET_CURRENT(\ad,\sp) | |
52 | l32i \ad, \ad, THREAD_CURRENT_DS | |
53 | .endm | |
54 | ||
55 | /* | |
56 | * set_fs sets current->thread.current_ds to some value. | |
57 | * On Entry: | |
58 | * <at> anything (temp register) | |
59 | * <av> value to write | |
60 | * <sp> stack | |
61 | * On Exit: | |
62 | * <at> destroyed (actually, current) | |
63 | * <av> preserved, value to write | |
64 | */ | |
65 | .macro set_fs at, av, sp | |
66 | GET_CURRENT(\at,\sp) | |
67 | s32i \av, \at, THREAD_CURRENT_DS | |
68 | .endm | |
69 | ||
70 | /* | |
71 | * kernel_ok determines whether we should bypass addr/size checking. | |
72 | * See the equivalent C-macro version below for clarity. | |
73 | * On success, kernel_ok branches to a label indicated by parameter | |
74 | * <success>. This implies that the macro falls through to the next | |
75 | * insruction on an error. | |
76 | * | |
77 | * Note that while this macro can be used independently, we designed | |
78 | * in for optimal use in the access_ok macro below (i.e., we fall | |
79 | * through on error). | |
80 | * | |
81 | * On Entry: | |
82 | * <at> anything (temp register) | |
83 | * <success> label to branch to on success; implies | |
84 | * fall-through macro on error | |
85 | * <sp> stack pointer | |
86 | * On Exit: | |
87 | * <at> destroyed (actually, current->thread.current_ds) | |
88 | */ | |
89 | ||
90 | #if ((KERNEL_DS != 0) || (USER_DS == 0)) | |
91 | # error Assembly macro kernel_ok fails | |
92 | #endif | |
93 | .macro kernel_ok at, sp, success | |
94 | get_fs \at, \sp | |
95 | beqz \at, \success | |
96 | .endm | |
97 | ||
98 | /* | |
99 | * user_ok determines whether the access to user-space memory is allowed. | |
100 | * See the equivalent C-macro version below for clarity. | |
101 | * | |
102 | * On error, user_ok branches to a label indicated by parameter | |
103 | * <error>. This implies that the macro falls through to the next | |
104 | * instruction on success. | |
105 | * | |
106 | * Note that while this macro can be used independently, we designed | |
107 | * in for optimal use in the access_ok macro below (i.e., we fall | |
108 | * through on success). | |
109 | * | |
110 | * On Entry: | |
111 | * <aa> register containing memory address | |
112 | * <as> register containing memory size | |
113 | * <at> temp register | |
114 | * <error> label to branch to on error; implies fall-through | |
115 | * macro on success | |
116 | * On Exit: | |
117 | * <aa> preserved | |
118 | * <as> preserved | |
119 | * <at> destroyed (actually, (TASK_SIZE + 1 - size)) | |
120 | */ | |
121 | .macro user_ok aa, as, at, error | |
122 | movi \at, (TASK_SIZE+1) | |
123 | bgeu \as, \at, \error | |
124 | sub \at, \at, \as | |
125 | bgeu \aa, \at, \error | |
126 | .endm | |
127 | ||
128 | /* | |
129 | * access_ok determines whether a memory access is allowed. See the | |
130 | * equivalent C-macro version below for clarity. | |
131 | * | |
132 | * On error, access_ok branches to a label indicated by parameter | |
133 | * <error>. This implies that the macro falls through to the next | |
134 | * instruction on success. | |
135 | * | |
136 | * Note that we assume success is the common case, and we optimize the | |
137 | * branch fall-through case on success. | |
138 | * | |
139 | * On Entry: | |
140 | * <aa> register containing memory address | |
141 | * <as> register containing memory size | |
142 | * <at> temp register | |
143 | * <sp> | |
144 | * <error> label to branch to on error; implies fall-through | |
145 | * macro on success | |
146 | * On Exit: | |
147 | * <aa> preserved | |
148 | * <as> preserved | |
149 | * <at> destroyed | |
150 | */ | |
151 | .macro access_ok aa, as, at, sp, error | |
152 | kernel_ok \at, \sp, .Laccess_ok_\@ | |
153 | user_ok \aa, \as, \at, \error | |
154 | .Laccess_ok_\@: | |
155 | .endm | |
156 | ||
157 | /* | |
158 | * verify_area determines whether a memory access is allowed. It's | |
159 | * mostly an unnecessary wrapper for access_ok, but we provide it as a | |
160 | * duplicate of the verify_area() C inline function below. See the | |
161 | * equivalent C version below for clarity. | |
162 | * | |
163 | * On error, verify_area branches to a label indicated by parameter | |
164 | * <error>. This implies that the macro falls through to the next | |
165 | * instruction on success. | |
166 | * | |
167 | * Note that we assume success is the common case, and we optimize the | |
168 | * branch fall-through case on success. | |
169 | * | |
170 | * On Entry: | |
171 | * <aa> register containing memory address | |
172 | * <as> register containing memory size | |
173 | * <at> temp register | |
174 | * <error> label to branch to on error; implies fall-through | |
175 | * macro on success | |
176 | * On Exit: | |
177 | * <aa> preserved | |
178 | * <as> preserved | |
179 | * <at> destroyed | |
180 | */ | |
181 | .macro verify_area aa, as, at, sp, error | |
182 | access_ok \at, \aa, \as, \sp, \error | |
183 | .endm | |
184 | ||
185 | ||
186 | #else /* __ASSEMBLY__ not defined */ | |
187 | ||
188 | #include <linux/sched.h> | |
189 | #include <asm/types.h> | |
190 | ||
191 | /* | |
192 | * The fs value determines whether argument validity checking should | |
193 | * be performed or not. If get_fs() == USER_DS, checking is | |
194 | * performed, with get_fs() == KERNEL_DS, checking is bypassed. | |
195 | * | |
196 | * For historical reasons (Data Segment Register?), these macros are | |
197 | * grossly misnamed. | |
198 | */ | |
199 | ||
200 | #define KERNEL_DS ((mm_segment_t) { 0 }) | |
201 | #define USER_DS ((mm_segment_t) { 1 }) | |
202 | ||
203 | #define get_ds() (KERNEL_DS) | |
204 | #define get_fs() (current->thread.current_ds) | |
205 | #define set_fs(val) (current->thread.current_ds = (val)) | |
206 | ||
207 | #define segment_eq(a,b) ((a).seg == (b).seg) | |
208 | ||
209 | #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) | |
210 | #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) | |
211 | #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size))) | |
212 | #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size)) | |
213 | ||
d99cf715 | 214 | static inline int verify_area(int type, const void * addr, unsigned long size) |
9a8fd558 CZ |
215 | { |
216 | return access_ok(type,addr,size) ? 0 : -EFAULT; | |
217 | } | |
218 | ||
219 | /* | |
220 | * These are the main single-value transfer routines. They | |
221 | * automatically use the right size if we just have the right pointer | |
222 | * type. | |
223 | * | |
224 | * This gets kind of ugly. We want to return _two_ values in | |
225 | * "get_user()" and yet we don't want to do any pointers, because that | |
226 | * is too much of a performance impact. Thus we have a few rather ugly | |
227 | * macros here, and hide all the uglyness from the user. | |
228 | * | |
229 | * Careful to not | |
230 | * (a) re-use the arguments for side effects (sizeof is ok) | |
231 | * (b) require any knowledge of processes at this stage | |
232 | */ | |
233 | #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) | |
234 | #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) | |
235 | ||
236 | /* | |
237 | * The "__xxx" versions of the user access functions are versions that | |
238 | * do not verify the address space, that must have been done previously | |
239 | * with a separate "access_ok()" call (this is used when we do multiple | |
240 | * accesses to the same area of user memory). | |
241 | */ | |
242 | #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr))) | |
243 | #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) | |
244 | ||
245 | ||
246 | extern long __put_user_bad(void); | |
247 | ||
248 | #define __put_user_nocheck(x,ptr,size) \ | |
249 | ({ \ | |
250 | long __pu_err; \ | |
251 | __put_user_size((x),(ptr),(size),__pu_err); \ | |
252 | __pu_err; \ | |
253 | }) | |
254 | ||
255 | #define __put_user_check(x,ptr,size) \ | |
256 | ({ \ | |
257 | long __pu_err = -EFAULT; \ | |
258 | __typeof__(*(ptr)) *__pu_addr = (ptr); \ | |
259 | if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ | |
260 | __put_user_size((x),__pu_addr,(size),__pu_err); \ | |
261 | __pu_err; \ | |
262 | }) | |
263 | ||
264 | #define __put_user_size(x,ptr,size,retval) \ | |
265 | do { \ | |
266 | retval = 0; \ | |
267 | switch (size) { \ | |
268 | case 1: __put_user_asm(x,ptr,retval,1,"s8i"); break; \ | |
269 | case 2: __put_user_asm(x,ptr,retval,2,"s16i"); break; \ | |
270 | case 4: __put_user_asm(x,ptr,retval,4,"s32i"); break; \ | |
271 | case 8: { \ | |
272 | __typeof__(*ptr) __v64 = x; \ | |
273 | retval = __copy_to_user(ptr,&__v64,8); \ | |
274 | break; \ | |
275 | } \ | |
276 | default: __put_user_bad(); \ | |
277 | } \ | |
278 | } while (0) | |
279 | ||
280 | ||
281 | /* | |
282 | * Consider a case of a user single load/store would cause both an | |
283 | * unaligned exception and an MMU-related exception (unaligned | |
284 | * exceptions happen first): | |
285 | * | |
286 | * User code passes a bad variable ptr to a system call. | |
287 | * Kernel tries to access the variable. | |
288 | * Unaligned exception occurs. | |
289 | * Unaligned exception handler tries to make aligned accesses. | |
290 | * Double exception occurs for MMU-related cause (e.g., page not mapped). | |
291 | * do_page_fault() thinks the fault address belongs to the kernel, not the | |
292 | * user, and panics. | |
293 | * | |
294 | * The kernel currently prohibits user unaligned accesses. We use the | |
295 | * __check_align_* macros to check for unaligned addresses before | |
296 | * accessing user space so we don't crash the kernel. Both | |
297 | * __put_user_asm and __get_user_asm use these alignment macros, so | |
298 | * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in | |
299 | * sync. | |
300 | */ | |
301 | ||
302 | #define __check_align_1 "" | |
303 | ||
304 | #define __check_align_2 \ | |
305 | " _bbci.l %2, 0, 1f \n" \ | |
306 | " movi %0, %3 \n" \ | |
307 | " _j 2f \n" | |
308 | ||
309 | #define __check_align_4 \ | |
310 | " _bbsi.l %2, 0, 0f \n" \ | |
311 | " _bbci.l %2, 1, 1f \n" \ | |
312 | "0: movi %0, %3 \n" \ | |
313 | " _j 2f \n" | |
314 | ||
315 | ||
316 | /* | |
317 | * We don't tell gcc that we are accessing memory, but this is OK | |
318 | * because we do not write to any memory gcc knows about, so there | |
319 | * are no aliasing issues. | |
320 | * | |
321 | * WARNING: If you modify this macro at all, verify that the | |
322 | * __check_align_* macros still work. | |
323 | */ | |
324 | #define __put_user_asm(x, addr, err, align, insn) \ | |
325 | __asm__ __volatile__( \ | |
326 | __check_align_##align \ | |
327 | "1: "insn" %1, %2, 0 \n" \ | |
328 | "2: \n" \ | |
329 | " .section .fixup,\"ax\" \n" \ | |
330 | " .align 4 \n" \ | |
331 | "4: \n" \ | |
332 | " .long 2b \n" \ | |
333 | "5: \n" \ | |
334 | " l32r %2, 4b \n" \ | |
335 | " movi %0, %3 \n" \ | |
336 | " jx %2 \n" \ | |
337 | " .previous \n" \ | |
338 | " .section __ex_table,\"a\" \n" \ | |
339 | " .long 1b, 5b \n" \ | |
340 | " .previous" \ | |
341 | :"=r" (err) \ | |
342 | :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err)) | |
343 | ||
344 | #define __get_user_nocheck(x,ptr,size) \ | |
345 | ({ \ | |
346 | long __gu_err, __gu_val; \ | |
347 | __get_user_size(__gu_val,(ptr),(size),__gu_err); \ | |
348 | (x) = (__typeof__(*(ptr)))__gu_val; \ | |
349 | __gu_err; \ | |
350 | }) | |
351 | ||
352 | #define __get_user_check(x,ptr,size) \ | |
353 | ({ \ | |
354 | long __gu_err = -EFAULT, __gu_val = 0; \ | |
355 | const __typeof__(*(ptr)) *__gu_addr = (ptr); \ | |
356 | if (access_ok(VERIFY_READ,__gu_addr,size)) \ | |
357 | __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \ | |
358 | (x) = (__typeof__(*(ptr)))__gu_val; \ | |
359 | __gu_err; \ | |
360 | }) | |
361 | ||
362 | extern long __get_user_bad(void); | |
363 | ||
364 | #define __get_user_size(x,ptr,size,retval) \ | |
365 | do { \ | |
366 | retval = 0; \ | |
367 | switch (size) { \ | |
368 | case 1: __get_user_asm(x,ptr,retval,1,"l8ui"); break; \ | |
369 | case 2: __get_user_asm(x,ptr,retval,2,"l16ui"); break; \ | |
370 | case 4: __get_user_asm(x,ptr,retval,4,"l32i"); break; \ | |
371 | case 8: retval = __copy_from_user(&x,ptr,8); break; \ | |
372 | default: (x) = __get_user_bad(); \ | |
373 | } \ | |
374 | } while (0) | |
375 | ||
376 | ||
377 | /* | |
378 | * WARNING: If you modify this macro at all, verify that the | |
379 | * __check_align_* macros still work. | |
380 | */ | |
381 | #define __get_user_asm(x, addr, err, align, insn) \ | |
382 | __asm__ __volatile__( \ | |
383 | __check_align_##align \ | |
384 | "1: "insn" %1, %2, 0 \n" \ | |
385 | "2: \n" \ | |
386 | " .section .fixup,\"ax\" \n" \ | |
387 | " .align 4 \n" \ | |
388 | "4: \n" \ | |
389 | " .long 2b \n" \ | |
390 | "5: \n" \ | |
391 | " l32r %2, 4b \n" \ | |
392 | " movi %1, 0 \n" \ | |
393 | " movi %0, %3 \n" \ | |
394 | " jx %2 \n" \ | |
395 | " .previous \n" \ | |
396 | " .section __ex_table,\"a\" \n" \ | |
397 | " .long 1b, 5b \n" \ | |
398 | " .previous" \ | |
399 | :"=r" (err), "=r" (x) \ | |
400 | :"r" (addr), "i" (-EFAULT), "0" (err)) | |
401 | ||
402 | ||
403 | /* | |
404 | * Copy to/from user space | |
405 | */ | |
406 | ||
407 | /* | |
408 | * We use a generic, arbitrary-sized copy subroutine. The Xtensa | |
409 | * architecture would cause heavy code bloat if we tried to inline | |
410 | * these functions and provide __constant_copy_* equivalents like the | |
411 | * i386 versions. __xtensa_copy_user is quite efficient. See the | |
412 | * .fixup section of __xtensa_copy_user for a discussion on the | |
413 | * X_zeroing equivalents for Xtensa. | |
414 | */ | |
415 | ||
416 | extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n); | |
417 | #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size) | |
418 | ||
419 | ||
420 | static inline unsigned long | |
421 | __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) | |
422 | { | |
423 | return __copy_user(to,from,n); | |
424 | } | |
425 | ||
426 | static inline unsigned long | |
427 | __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) | |
428 | { | |
429 | return __copy_user(to,from,n); | |
430 | } | |
431 | ||
432 | static inline unsigned long | |
433 | __generic_copy_to_user(void *to, const void *from, unsigned long n) | |
434 | { | |
435 | prefetch(from); | |
436 | if (access_ok(VERIFY_WRITE, to, n)) | |
437 | return __copy_user(to,from,n); | |
438 | return n; | |
439 | } | |
440 | ||
441 | static inline unsigned long | |
442 | __generic_copy_from_user(void *to, const void *from, unsigned long n) | |
443 | { | |
444 | prefetchw(to); | |
445 | if (access_ok(VERIFY_READ, from, n)) | |
446 | return __copy_user(to,from,n); | |
447 | else | |
448 | memset(to, 0, n); | |
449 | return n; | |
450 | } | |
451 | ||
452 | #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n)) | |
453 | #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n)) | |
454 | #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n)) | |
455 | #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n)) | |
456 | #define __copy_to_user_inatomic __copy_to_user | |
457 | #define __copy_from_user_inatomic __copy_from_user | |
458 | ||
459 | ||
460 | /* | |
461 | * We need to return the number of bytes not cleared. Our memset() | |
462 | * returns zero if a problem occurs while accessing user-space memory. | |
463 | * In that event, return no memory cleared. Otherwise, zero for | |
464 | * success. | |
465 | */ | |
466 | ||
d99cf715 | 467 | static inline unsigned long |
9a8fd558 CZ |
468 | __xtensa_clear_user(void *addr, unsigned long size) |
469 | { | |
470 | if ( ! memset(addr, 0, size) ) | |
471 | return size; | |
472 | return 0; | |
473 | } | |
474 | ||
d99cf715 | 475 | static inline unsigned long |
9a8fd558 CZ |
476 | clear_user(void *addr, unsigned long size) |
477 | { | |
478 | if (access_ok(VERIFY_WRITE, addr, size)) | |
479 | return __xtensa_clear_user(addr, size); | |
480 | return size ? -EFAULT : 0; | |
481 | } | |
482 | ||
483 | #define __clear_user __xtensa_clear_user | |
484 | ||
485 | ||
486 | extern long __strncpy_user(char *, const char *, long); | |
487 | #define __strncpy_from_user __strncpy_user | |
488 | ||
d99cf715 | 489 | static inline long |
9a8fd558 CZ |
490 | strncpy_from_user(char *dst, const char *src, long count) |
491 | { | |
492 | if (access_ok(VERIFY_READ, src, 1)) | |
493 | return __strncpy_from_user(dst, src, count); | |
494 | return -EFAULT; | |
495 | } | |
496 | ||
497 | ||
498 | #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1) | |
499 | ||
500 | /* | |
501 | * Return the size of a string (including the ending 0!) | |
502 | */ | |
503 | extern long __strnlen_user(const char *, long); | |
504 | ||
d99cf715 | 505 | static inline long strnlen_user(const char *str, long len) |
9a8fd558 CZ |
506 | { |
507 | unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1; | |
508 | ||
509 | if ((unsigned long)str > top) | |
510 | return 0; | |
511 | return __strnlen_user(str, len); | |
512 | } | |
513 | ||
514 | ||
515 | struct exception_table_entry | |
516 | { | |
517 | unsigned long insn, fixup; | |
518 | }; | |
519 | ||
520 | /* Returns 0 if exception not found and fixup.unit otherwise. */ | |
521 | ||
522 | extern unsigned long search_exception_table(unsigned long addr); | |
523 | extern void sort_exception_table(void); | |
524 | ||
525 | /* Returns the new pc */ | |
526 | #define fixup_exception(map_reg, fixup_unit, pc) \ | |
527 | ({ \ | |
528 | fixup_unit; \ | |
529 | }) | |
530 | ||
531 | #endif /* __ASSEMBLY__ */ | |
532 | #endif /* _XTENSA_UACCESS_H */ |