]>
Commit | Line | Data |
---|---|---|
c0a31329 TG |
1 | /* |
2 | * linux/kernel/hrtimer.c | |
3 | * | |
3c8aa39d | 4 | * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> |
79bf2bb3 | 5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
54cdfdb4 | 6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
c0a31329 TG |
7 | * |
8 | * High-resolution kernel timers | |
9 | * | |
10 | * In contrast to the low-resolution timeout API implemented in | |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy | |
12 | * depending on system configuration and capabilities. | |
13 | * | |
14 | * These timers are currently used for: | |
15 | * - itimers | |
16 | * - POSIX timers | |
17 | * - nanosleep | |
18 | * - precise in-kernel timing | |
19 | * | |
20 | * Started by: Thomas Gleixner and Ingo Molnar | |
21 | * | |
22 | * Credits: | |
23 | * based on kernel/timer.c | |
24 | * | |
66188fae TG |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: | |
27 | * | |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | |
29 | * et. al. | |
30 | * | |
c0a31329 TG |
31 | * For licencing details see kernel-base/COPYING |
32 | */ | |
33 | ||
34 | #include <linux/cpu.h> | |
9984de1a | 35 | #include <linux/export.h> |
c0a31329 TG |
36 | #include <linux/percpu.h> |
37 | #include <linux/hrtimer.h> | |
38 | #include <linux/notifier.h> | |
39 | #include <linux/syscalls.h> | |
54cdfdb4 | 40 | #include <linux/kallsyms.h> |
c0a31329 | 41 | #include <linux/interrupt.h> |
79bf2bb3 | 42 | #include <linux/tick.h> |
54cdfdb4 TG |
43 | #include <linux/seq_file.h> |
44 | #include <linux/err.h> | |
237fc6e7 | 45 | #include <linux/debugobjects.h> |
eea08f32 AB |
46 | #include <linux/sched.h> |
47 | #include <linux/timer.h> | |
c0a31329 TG |
48 | |
49 | #include <asm/uaccess.h> | |
50 | ||
c6a2a177 XG |
51 | #include <trace/events/timer.h> |
52 | ||
c0a31329 TG |
53 | /* |
54 | * The timer bases: | |
7978672c | 55 | * |
e06383db JS |
56 | * There are more clockids then hrtimer bases. Thus, we index |
57 | * into the timer bases by the hrtimer_base_type enum. When trying | |
58 | * to reach a base using a clockid, hrtimer_clockid_to_base() | |
59 | * is used to convert from clockid to the proper hrtimer_base_type. | |
c0a31329 | 60 | */ |
54cdfdb4 | 61 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
c0a31329 | 62 | { |
3c8aa39d TG |
63 | |
64 | .clock_base = | |
c0a31329 | 65 | { |
3c8aa39d | 66 | { |
ab8177bc TG |
67 | .index = HRTIMER_BASE_MONOTONIC, |
68 | .clockid = CLOCK_MONOTONIC, | |
3c8aa39d | 69 | .get_time = &ktime_get, |
54cdfdb4 | 70 | .resolution = KTIME_LOW_RES, |
3c8aa39d | 71 | }, |
68fa61c0 TG |
72 | { |
73 | .index = HRTIMER_BASE_REALTIME, | |
74 | .clockid = CLOCK_REALTIME, | |
75 | .get_time = &ktime_get_real, | |
76 | .resolution = KTIME_LOW_RES, | |
77 | }, | |
70a08cca | 78 | { |
ab8177bc TG |
79 | .index = HRTIMER_BASE_BOOTTIME, |
80 | .clockid = CLOCK_BOOTTIME, | |
70a08cca JS |
81 | .get_time = &ktime_get_boottime, |
82 | .resolution = KTIME_LOW_RES, | |
83 | }, | |
3c8aa39d | 84 | } |
c0a31329 TG |
85 | }; |
86 | ||
942c3c5c | 87 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
ce31332d TG |
88 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
89 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, | |
90 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, | |
91 | }; | |
e06383db JS |
92 | |
93 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) | |
94 | { | |
95 | return hrtimer_clock_to_base_table[clock_id]; | |
96 | } | |
97 | ||
98 | ||
92127c7a TG |
99 | /* |
100 | * Get the coarse grained time at the softirq based on xtime and | |
101 | * wall_to_monotonic. | |
102 | */ | |
3c8aa39d | 103 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
92127c7a | 104 | { |
70a08cca | 105 | ktime_t xtim, mono, boot; |
314ac371 | 106 | struct timespec xts, tom, slp; |
92127c7a | 107 | |
314ac371 | 108 | get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); |
92127c7a | 109 | |
f4304ab2 | 110 | xtim = timespec_to_ktime(xts); |
70a08cca JS |
111 | mono = ktime_add(xtim, timespec_to_ktime(tom)); |
112 | boot = ktime_add(mono, timespec_to_ktime(slp)); | |
e06383db | 113 | base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; |
70a08cca JS |
114 | base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; |
115 | base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; | |
92127c7a TG |
116 | } |
117 | ||
c0a31329 TG |
118 | /* |
119 | * Functions and macros which are different for UP/SMP systems are kept in a | |
120 | * single place | |
121 | */ | |
122 | #ifdef CONFIG_SMP | |
123 | ||
c0a31329 TG |
124 | /* |
125 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | |
126 | * means that all timers which are tied to this base via timer->base are | |
127 | * locked, and the base itself is locked too. | |
128 | * | |
129 | * So __run_timers/migrate_timers can safely modify all timers which could | |
130 | * be found on the lists/queues. | |
131 | * | |
132 | * When the timer's base is locked, and the timer removed from list, it is | |
133 | * possible to set timer->base = NULL and drop the lock: the timer remains | |
134 | * locked. | |
135 | */ | |
3c8aa39d TG |
136 | static |
137 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | |
138 | unsigned long *flags) | |
c0a31329 | 139 | { |
3c8aa39d | 140 | struct hrtimer_clock_base *base; |
c0a31329 TG |
141 | |
142 | for (;;) { | |
143 | base = timer->base; | |
144 | if (likely(base != NULL)) { | |
ecb49d1a | 145 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
146 | if (likely(base == timer->base)) |
147 | return base; | |
148 | /* The timer has migrated to another CPU: */ | |
ecb49d1a | 149 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
c0a31329 TG |
150 | } |
151 | cpu_relax(); | |
152 | } | |
153 | } | |
154 | ||
6ff7041d TG |
155 | |
156 | /* | |
157 | * Get the preferred target CPU for NOHZ | |
158 | */ | |
159 | static int hrtimer_get_target(int this_cpu, int pinned) | |
160 | { | |
161 | #ifdef CONFIG_NO_HZ | |
83cd4fe2 VP |
162 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) |
163 | return get_nohz_timer_target(); | |
6ff7041d TG |
164 | #endif |
165 | return this_cpu; | |
166 | } | |
167 | ||
168 | /* | |
169 | * With HIGHRES=y we do not migrate the timer when it is expiring | |
170 | * before the next event on the target cpu because we cannot reprogram | |
171 | * the target cpu hardware and we would cause it to fire late. | |
172 | * | |
173 | * Called with cpu_base->lock of target cpu held. | |
174 | */ | |
175 | static int | |
176 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) | |
177 | { | |
178 | #ifdef CONFIG_HIGH_RES_TIMERS | |
179 | ktime_t expires; | |
180 | ||
181 | if (!new_base->cpu_base->hres_active) | |
182 | return 0; | |
183 | ||
184 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); | |
185 | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; | |
186 | #else | |
187 | return 0; | |
188 | #endif | |
189 | } | |
190 | ||
c0a31329 TG |
191 | /* |
192 | * Switch the timer base to the current CPU when possible. | |
193 | */ | |
3c8aa39d | 194 | static inline struct hrtimer_clock_base * |
597d0275 AB |
195 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
196 | int pinned) | |
c0a31329 | 197 | { |
3c8aa39d TG |
198 | struct hrtimer_clock_base *new_base; |
199 | struct hrtimer_cpu_base *new_cpu_base; | |
6ff7041d TG |
200 | int this_cpu = smp_processor_id(); |
201 | int cpu = hrtimer_get_target(this_cpu, pinned); | |
ab8177bc | 202 | int basenum = base->index; |
c0a31329 | 203 | |
eea08f32 AB |
204 | again: |
205 | new_cpu_base = &per_cpu(hrtimer_bases, cpu); | |
e06383db | 206 | new_base = &new_cpu_base->clock_base[basenum]; |
c0a31329 TG |
207 | |
208 | if (base != new_base) { | |
209 | /* | |
6ff7041d | 210 | * We are trying to move timer to new_base. |
c0a31329 TG |
211 | * However we can't change timer's base while it is running, |
212 | * so we keep it on the same CPU. No hassle vs. reprogramming | |
213 | * the event source in the high resolution case. The softirq | |
214 | * code will take care of this when the timer function has | |
215 | * completed. There is no conflict as we hold the lock until | |
216 | * the timer is enqueued. | |
217 | */ | |
54cdfdb4 | 218 | if (unlikely(hrtimer_callback_running(timer))) |
c0a31329 TG |
219 | return base; |
220 | ||
221 | /* See the comment in lock_timer_base() */ | |
222 | timer->base = NULL; | |
ecb49d1a TG |
223 | raw_spin_unlock(&base->cpu_base->lock); |
224 | raw_spin_lock(&new_base->cpu_base->lock); | |
eea08f32 | 225 | |
6ff7041d TG |
226 | if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { |
227 | cpu = this_cpu; | |
ecb49d1a TG |
228 | raw_spin_unlock(&new_base->cpu_base->lock); |
229 | raw_spin_lock(&base->cpu_base->lock); | |
6ff7041d TG |
230 | timer->base = base; |
231 | goto again; | |
eea08f32 | 232 | } |
c0a31329 TG |
233 | timer->base = new_base; |
234 | } | |
235 | return new_base; | |
236 | } | |
237 | ||
238 | #else /* CONFIG_SMP */ | |
239 | ||
3c8aa39d | 240 | static inline struct hrtimer_clock_base * |
c0a31329 TG |
241 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
242 | { | |
3c8aa39d | 243 | struct hrtimer_clock_base *base = timer->base; |
c0a31329 | 244 | |
ecb49d1a | 245 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
c0a31329 TG |
246 | |
247 | return base; | |
248 | } | |
249 | ||
eea08f32 | 250 | # define switch_hrtimer_base(t, b, p) (b) |
c0a31329 TG |
251 | |
252 | #endif /* !CONFIG_SMP */ | |
253 | ||
254 | /* | |
255 | * Functions for the union type storage format of ktime_t which are | |
256 | * too large for inlining: | |
257 | */ | |
258 | #if BITS_PER_LONG < 64 | |
259 | # ifndef CONFIG_KTIME_SCALAR | |
260 | /** | |
261 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | |
c0a31329 TG |
262 | * @kt: addend |
263 | * @nsec: the scalar nsec value to add | |
264 | * | |
265 | * Returns the sum of kt and nsec in ktime_t format | |
266 | */ | |
267 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | |
268 | { | |
269 | ktime_t tmp; | |
270 | ||
271 | if (likely(nsec < NSEC_PER_SEC)) { | |
272 | tmp.tv64 = nsec; | |
273 | } else { | |
274 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
275 | ||
276 | tmp = ktime_set((long)nsec, rem); | |
277 | } | |
278 | ||
279 | return ktime_add(kt, tmp); | |
280 | } | |
b8b8fd2d DH |
281 | |
282 | EXPORT_SYMBOL_GPL(ktime_add_ns); | |
a272378d ACM |
283 | |
284 | /** | |
285 | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | |
286 | * @kt: minuend | |
287 | * @nsec: the scalar nsec value to subtract | |
288 | * | |
289 | * Returns the subtraction of @nsec from @kt in ktime_t format | |
290 | */ | |
291 | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | |
292 | { | |
293 | ktime_t tmp; | |
294 | ||
295 | if (likely(nsec < NSEC_PER_SEC)) { | |
296 | tmp.tv64 = nsec; | |
297 | } else { | |
298 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); | |
299 | ||
300 | tmp = ktime_set((long)nsec, rem); | |
301 | } | |
302 | ||
303 | return ktime_sub(kt, tmp); | |
304 | } | |
305 | ||
306 | EXPORT_SYMBOL_GPL(ktime_sub_ns); | |
c0a31329 TG |
307 | # endif /* !CONFIG_KTIME_SCALAR */ |
308 | ||
309 | /* | |
310 | * Divide a ktime value by a nanosecond value | |
311 | */ | |
4d672e7a | 312 | u64 ktime_divns(const ktime_t kt, s64 div) |
c0a31329 | 313 | { |
900cfa46 | 314 | u64 dclc; |
c0a31329 TG |
315 | int sft = 0; |
316 | ||
900cfa46 | 317 | dclc = ktime_to_ns(kt); |
c0a31329 TG |
318 | /* Make sure the divisor is less than 2^32: */ |
319 | while (div >> 32) { | |
320 | sft++; | |
321 | div >>= 1; | |
322 | } | |
323 | dclc >>= sft; | |
324 | do_div(dclc, (unsigned long) div); | |
325 | ||
4d672e7a | 326 | return dclc; |
c0a31329 | 327 | } |
c0a31329 TG |
328 | #endif /* BITS_PER_LONG >= 64 */ |
329 | ||
5a7780e7 TG |
330 | /* |
331 | * Add two ktime values and do a safety check for overflow: | |
332 | */ | |
333 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | |
334 | { | |
335 | ktime_t res = ktime_add(lhs, rhs); | |
336 | ||
337 | /* | |
338 | * We use KTIME_SEC_MAX here, the maximum timeout which we can | |
339 | * return to user space in a timespec: | |
340 | */ | |
341 | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | |
342 | res = ktime_set(KTIME_SEC_MAX, 0); | |
343 | ||
344 | return res; | |
345 | } | |
346 | ||
8daa21e6 AB |
347 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
348 | ||
237fc6e7 TG |
349 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
350 | ||
351 | static struct debug_obj_descr hrtimer_debug_descr; | |
352 | ||
99777288 SG |
353 | static void *hrtimer_debug_hint(void *addr) |
354 | { | |
355 | return ((struct hrtimer *) addr)->function; | |
356 | } | |
357 | ||
237fc6e7 TG |
358 | /* |
359 | * fixup_init is called when: | |
360 | * - an active object is initialized | |
361 | */ | |
362 | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) | |
363 | { | |
364 | struct hrtimer *timer = addr; | |
365 | ||
366 | switch (state) { | |
367 | case ODEBUG_STATE_ACTIVE: | |
368 | hrtimer_cancel(timer); | |
369 | debug_object_init(timer, &hrtimer_debug_descr); | |
370 | return 1; | |
371 | default: | |
372 | return 0; | |
373 | } | |
374 | } | |
375 | ||
376 | /* | |
377 | * fixup_activate is called when: | |
378 | * - an active object is activated | |
379 | * - an unknown object is activated (might be a statically initialized object) | |
380 | */ | |
381 | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) | |
382 | { | |
383 | switch (state) { | |
384 | ||
385 | case ODEBUG_STATE_NOTAVAILABLE: | |
386 | WARN_ON_ONCE(1); | |
387 | return 0; | |
388 | ||
389 | case ODEBUG_STATE_ACTIVE: | |
390 | WARN_ON(1); | |
391 | ||
392 | default: | |
393 | return 0; | |
394 | } | |
395 | } | |
396 | ||
397 | /* | |
398 | * fixup_free is called when: | |
399 | * - an active object is freed | |
400 | */ | |
401 | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) | |
402 | { | |
403 | struct hrtimer *timer = addr; | |
404 | ||
405 | switch (state) { | |
406 | case ODEBUG_STATE_ACTIVE: | |
407 | hrtimer_cancel(timer); | |
408 | debug_object_free(timer, &hrtimer_debug_descr); | |
409 | return 1; | |
410 | default: | |
411 | return 0; | |
412 | } | |
413 | } | |
414 | ||
415 | static struct debug_obj_descr hrtimer_debug_descr = { | |
416 | .name = "hrtimer", | |
99777288 | 417 | .debug_hint = hrtimer_debug_hint, |
237fc6e7 TG |
418 | .fixup_init = hrtimer_fixup_init, |
419 | .fixup_activate = hrtimer_fixup_activate, | |
420 | .fixup_free = hrtimer_fixup_free, | |
421 | }; | |
422 | ||
423 | static inline void debug_hrtimer_init(struct hrtimer *timer) | |
424 | { | |
425 | debug_object_init(timer, &hrtimer_debug_descr); | |
426 | } | |
427 | ||
428 | static inline void debug_hrtimer_activate(struct hrtimer *timer) | |
429 | { | |
430 | debug_object_activate(timer, &hrtimer_debug_descr); | |
431 | } | |
432 | ||
433 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | |
434 | { | |
435 | debug_object_deactivate(timer, &hrtimer_debug_descr); | |
436 | } | |
437 | ||
438 | static inline void debug_hrtimer_free(struct hrtimer *timer) | |
439 | { | |
440 | debug_object_free(timer, &hrtimer_debug_descr); | |
441 | } | |
442 | ||
443 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
444 | enum hrtimer_mode mode); | |
445 | ||
446 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | |
447 | enum hrtimer_mode mode) | |
448 | { | |
449 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); | |
450 | __hrtimer_init(timer, clock_id, mode); | |
451 | } | |
2bc481cf | 452 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
237fc6e7 TG |
453 | |
454 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | |
455 | { | |
456 | debug_object_free(timer, &hrtimer_debug_descr); | |
457 | } | |
458 | ||
459 | #else | |
460 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | |
461 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |
462 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | |
463 | #endif | |
464 | ||
c6a2a177 XG |
465 | static inline void |
466 | debug_init(struct hrtimer *timer, clockid_t clockid, | |
467 | enum hrtimer_mode mode) | |
468 | { | |
469 | debug_hrtimer_init(timer); | |
470 | trace_hrtimer_init(timer, clockid, mode); | |
471 | } | |
472 | ||
473 | static inline void debug_activate(struct hrtimer *timer) | |
474 | { | |
475 | debug_hrtimer_activate(timer); | |
476 | trace_hrtimer_start(timer); | |
477 | } | |
478 | ||
479 | static inline void debug_deactivate(struct hrtimer *timer) | |
480 | { | |
481 | debug_hrtimer_deactivate(timer); | |
482 | trace_hrtimer_cancel(timer); | |
483 | } | |
484 | ||
54cdfdb4 TG |
485 | /* High resolution timer related functions */ |
486 | #ifdef CONFIG_HIGH_RES_TIMERS | |
487 | ||
488 | /* | |
489 | * High resolution timer enabled ? | |
490 | */ | |
491 | static int hrtimer_hres_enabled __read_mostly = 1; | |
492 | ||
493 | /* | |
494 | * Enable / Disable high resolution mode | |
495 | */ | |
496 | static int __init setup_hrtimer_hres(char *str) | |
497 | { | |
498 | if (!strcmp(str, "off")) | |
499 | hrtimer_hres_enabled = 0; | |
500 | else if (!strcmp(str, "on")) | |
501 | hrtimer_hres_enabled = 1; | |
502 | else | |
503 | return 0; | |
504 | return 1; | |
505 | } | |
506 | ||
507 | __setup("highres=", setup_hrtimer_hres); | |
508 | ||
509 | /* | |
510 | * hrtimer_high_res_enabled - query, if the highres mode is enabled | |
511 | */ | |
512 | static inline int hrtimer_is_hres_enabled(void) | |
513 | { | |
514 | return hrtimer_hres_enabled; | |
515 | } | |
516 | ||
517 | /* | |
518 | * Is the high resolution mode active ? | |
519 | */ | |
520 | static inline int hrtimer_hres_active(void) | |
521 | { | |
909ea964 | 522 | return __this_cpu_read(hrtimer_bases.hres_active); |
54cdfdb4 TG |
523 | } |
524 | ||
525 | /* | |
526 | * Reprogram the event source with checking both queues for the | |
527 | * next event | |
528 | * Called with interrupts disabled and base->lock held | |
529 | */ | |
7403f41f AC |
530 | static void |
531 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | |
54cdfdb4 TG |
532 | { |
533 | int i; | |
534 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
7403f41f | 535 | ktime_t expires, expires_next; |
54cdfdb4 | 536 | |
7403f41f | 537 | expires_next.tv64 = KTIME_MAX; |
54cdfdb4 TG |
538 | |
539 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
540 | struct hrtimer *timer; | |
998adc3d | 541 | struct timerqueue_node *next; |
54cdfdb4 | 542 | |
998adc3d JS |
543 | next = timerqueue_getnext(&base->active); |
544 | if (!next) | |
54cdfdb4 | 545 | continue; |
998adc3d JS |
546 | timer = container_of(next, struct hrtimer, node); |
547 | ||
cc584b21 | 548 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
b0a9b511 TG |
549 | /* |
550 | * clock_was_set() has changed base->offset so the | |
551 | * result might be negative. Fix it up to prevent a | |
552 | * false positive in clockevents_program_event() | |
553 | */ | |
554 | if (expires.tv64 < 0) | |
555 | expires.tv64 = 0; | |
7403f41f AC |
556 | if (expires.tv64 < expires_next.tv64) |
557 | expires_next = expires; | |
54cdfdb4 TG |
558 | } |
559 | ||
7403f41f AC |
560 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) |
561 | return; | |
562 | ||
563 | cpu_base->expires_next.tv64 = expires_next.tv64; | |
564 | ||
54cdfdb4 TG |
565 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
566 | tick_program_event(cpu_base->expires_next, 1); | |
567 | } | |
568 | ||
569 | /* | |
570 | * Shared reprogramming for clock_realtime and clock_monotonic | |
571 | * | |
572 | * When a timer is enqueued and expires earlier than the already enqueued | |
573 | * timers, we have to check, whether it expires earlier than the timer for | |
574 | * which the clock event device was armed. | |
575 | * | |
576 | * Called with interrupts disabled and base->cpu_base.lock held | |
577 | */ | |
578 | static int hrtimer_reprogram(struct hrtimer *timer, | |
579 | struct hrtimer_clock_base *base) | |
580 | { | |
41d2e494 | 581 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
cc584b21 | 582 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
54cdfdb4 TG |
583 | int res; |
584 | ||
cc584b21 | 585 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
63070a79 | 586 | |
54cdfdb4 TG |
587 | /* |
588 | * When the callback is running, we do not reprogram the clock event | |
589 | * device. The timer callback is either running on a different CPU or | |
3a4fa0a2 | 590 | * the callback is executed in the hrtimer_interrupt context. The |
54cdfdb4 TG |
591 | * reprogramming is handled either by the softirq, which called the |
592 | * callback or at the end of the hrtimer_interrupt. | |
593 | */ | |
594 | if (hrtimer_callback_running(timer)) | |
595 | return 0; | |
596 | ||
63070a79 TG |
597 | /* |
598 | * CLOCK_REALTIME timer might be requested with an absolute | |
599 | * expiry time which is less than base->offset. Nothing wrong | |
600 | * about that, just avoid to call into the tick code, which | |
601 | * has now objections against negative expiry values. | |
602 | */ | |
603 | if (expires.tv64 < 0) | |
604 | return -ETIME; | |
605 | ||
41d2e494 TG |
606 | if (expires.tv64 >= cpu_base->expires_next.tv64) |
607 | return 0; | |
608 | ||
609 | /* | |
610 | * If a hang was detected in the last timer interrupt then we | |
611 | * do not schedule a timer which is earlier than the expiry | |
612 | * which we enforced in the hang detection. We want the system | |
613 | * to make progress. | |
614 | */ | |
615 | if (cpu_base->hang_detected) | |
54cdfdb4 TG |
616 | return 0; |
617 | ||
618 | /* | |
619 | * Clockevents returns -ETIME, when the event was in the past. | |
620 | */ | |
621 | res = tick_program_event(expires, 0); | |
622 | if (!IS_ERR_VALUE(res)) | |
41d2e494 | 623 | cpu_base->expires_next = expires; |
54cdfdb4 TG |
624 | return res; |
625 | } | |
626 | ||
54cdfdb4 TG |
627 | /* |
628 | * Initialize the high resolution related parts of cpu_base | |
629 | */ | |
630 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | |
631 | { | |
632 | base->expires_next.tv64 = KTIME_MAX; | |
633 | base->hres_active = 0; | |
54cdfdb4 TG |
634 | } |
635 | ||
54cdfdb4 TG |
636 | /* |
637 | * When High resolution timers are active, try to reprogram. Note, that in case | |
638 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | |
639 | * check happens. The timer gets enqueued into the rbtree. The reprogramming | |
640 | * and expiry check is done in the hrtimer_interrupt or in the softirq. | |
641 | */ | |
642 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | |
7f1e2ca9 PZ |
643 | struct hrtimer_clock_base *base, |
644 | int wakeup) | |
54cdfdb4 TG |
645 | { |
646 | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | |
7f1e2ca9 | 647 | if (wakeup) { |
ecb49d1a | 648 | raw_spin_unlock(&base->cpu_base->lock); |
7f1e2ca9 | 649 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
ecb49d1a | 650 | raw_spin_lock(&base->cpu_base->lock); |
7f1e2ca9 PZ |
651 | } else |
652 | __raise_softirq_irqoff(HRTIMER_SOFTIRQ); | |
653 | ||
ca109491 | 654 | return 1; |
54cdfdb4 | 655 | } |
7f1e2ca9 | 656 | |
54cdfdb4 TG |
657 | return 0; |
658 | } | |
659 | ||
9ec26907 TG |
660 | /* |
661 | * Retrigger next event is called after clock was set | |
662 | * | |
663 | * Called with interrupts disabled via on_each_cpu() | |
664 | */ | |
665 | static void retrigger_next_event(void *arg) | |
666 | { | |
667 | struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); | |
668 | struct timespec realtime_offset, xtim, wtm, sleep; | |
669 | ||
670 | if (!hrtimer_hres_active()) | |
671 | return; | |
672 | ||
673 | /* Optimized out for !HIGH_RES */ | |
674 | get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep); | |
675 | set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec); | |
676 | ||
677 | /* Adjust CLOCK_REALTIME offset */ | |
678 | raw_spin_lock(&base->lock); | |
679 | base->clock_base[HRTIMER_BASE_REALTIME].offset = | |
680 | timespec_to_ktime(realtime_offset); | |
681 | base->clock_base[HRTIMER_BASE_BOOTTIME].offset = | |
682 | timespec_to_ktime(sleep); | |
683 | ||
684 | hrtimer_force_reprogram(base, 0); | |
685 | raw_spin_unlock(&base->lock); | |
686 | } | |
b12a03ce | 687 | |
54cdfdb4 TG |
688 | /* |
689 | * Switch to high resolution mode | |
690 | */ | |
f8953856 | 691 | static int hrtimer_switch_to_hres(void) |
54cdfdb4 | 692 | { |
b12a03ce | 693 | int i, cpu = smp_processor_id(); |
820de5c3 | 694 | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); |
54cdfdb4 TG |
695 | unsigned long flags; |
696 | ||
697 | if (base->hres_active) | |
f8953856 | 698 | return 1; |
54cdfdb4 TG |
699 | |
700 | local_irq_save(flags); | |
701 | ||
702 | if (tick_init_highres()) { | |
703 | local_irq_restore(flags); | |
820de5c3 IM |
704 | printk(KERN_WARNING "Could not switch to high resolution " |
705 | "mode on CPU %d\n", cpu); | |
f8953856 | 706 | return 0; |
54cdfdb4 TG |
707 | } |
708 | base->hres_active = 1; | |
b12a03ce TG |
709 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) |
710 | base->clock_base[i].resolution = KTIME_HIGH_RES; | |
54cdfdb4 TG |
711 | |
712 | tick_setup_sched_timer(); | |
713 | ||
714 | /* "Retrigger" the interrupt to get things going */ | |
715 | retrigger_next_event(NULL); | |
716 | local_irq_restore(flags); | |
f8953856 | 717 | return 1; |
54cdfdb4 TG |
718 | } |
719 | ||
720 | #else | |
721 | ||
722 | static inline int hrtimer_hres_active(void) { return 0; } | |
723 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | |
f8953856 | 724 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
7403f41f AC |
725 | static inline void |
726 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | |
54cdfdb4 | 727 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
7f1e2ca9 PZ |
728 | struct hrtimer_clock_base *base, |
729 | int wakeup) | |
54cdfdb4 TG |
730 | { |
731 | return 0; | |
732 | } | |
54cdfdb4 | 733 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
9ec26907 | 734 | static inline void retrigger_next_event(void *arg) { } |
54cdfdb4 TG |
735 | |
736 | #endif /* CONFIG_HIGH_RES_TIMERS */ | |
737 | ||
b12a03ce TG |
738 | /* |
739 | * Clock realtime was set | |
740 | * | |
741 | * Change the offset of the realtime clock vs. the monotonic | |
742 | * clock. | |
743 | * | |
744 | * We might have to reprogram the high resolution timer interrupt. On | |
745 | * SMP we call the architecture specific code to retrigger _all_ high | |
746 | * resolution timer interrupts. On UP we just disable interrupts and | |
747 | * call the high resolution interrupt code. | |
748 | */ | |
749 | void clock_was_set(void) | |
750 | { | |
90ff1f30 | 751 | #ifdef CONFIG_HIGH_RES_TIMERS |
b12a03ce TG |
752 | /* Retrigger the CPU local events everywhere */ |
753 | on_each_cpu(retrigger_next_event, NULL, 1); | |
9ec26907 TG |
754 | #endif |
755 | timerfd_clock_was_set(); | |
b12a03ce TG |
756 | } |
757 | ||
758 | /* | |
759 | * During resume we might have to reprogram the high resolution timer | |
760 | * interrupt (on the local CPU): | |
761 | */ | |
762 | void hrtimers_resume(void) | |
763 | { | |
764 | WARN_ONCE(!irqs_disabled(), | |
765 | KERN_INFO "hrtimers_resume() called with IRQs enabled!"); | |
766 | ||
767 | retrigger_next_event(NULL); | |
9ec26907 | 768 | timerfd_clock_was_set(); |
b12a03ce TG |
769 | } |
770 | ||
5f201907 | 771 | static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) |
82f67cd9 | 772 | { |
5f201907 | 773 | #ifdef CONFIG_TIMER_STATS |
82f67cd9 IM |
774 | if (timer->start_site) |
775 | return; | |
5f201907 | 776 | timer->start_site = __builtin_return_address(0); |
82f67cd9 IM |
777 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); |
778 | timer->start_pid = current->pid; | |
5f201907 HC |
779 | #endif |
780 | } | |
781 | ||
782 | static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) | |
783 | { | |
784 | #ifdef CONFIG_TIMER_STATS | |
785 | timer->start_site = NULL; | |
786 | #endif | |
82f67cd9 | 787 | } |
5f201907 HC |
788 | |
789 | static inline void timer_stats_account_hrtimer(struct hrtimer *timer) | |
790 | { | |
791 | #ifdef CONFIG_TIMER_STATS | |
792 | if (likely(!timer_stats_active)) | |
793 | return; | |
794 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, | |
795 | timer->function, timer->start_comm, 0); | |
82f67cd9 | 796 | #endif |
5f201907 | 797 | } |
82f67cd9 | 798 | |
c0a31329 | 799 | /* |
6506f2aa | 800 | * Counterpart to lock_hrtimer_base above: |
c0a31329 TG |
801 | */ |
802 | static inline | |
803 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | |
804 | { | |
ecb49d1a | 805 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
c0a31329 TG |
806 | } |
807 | ||
808 | /** | |
809 | * hrtimer_forward - forward the timer expiry | |
c0a31329 | 810 | * @timer: hrtimer to forward |
44f21475 | 811 | * @now: forward past this time |
c0a31329 TG |
812 | * @interval: the interval to forward |
813 | * | |
814 | * Forward the timer expiry so it will expire in the future. | |
8dca6f33 | 815 | * Returns the number of overruns. |
c0a31329 | 816 | */ |
4d672e7a | 817 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
c0a31329 | 818 | { |
4d672e7a | 819 | u64 orun = 1; |
44f21475 | 820 | ktime_t delta; |
c0a31329 | 821 | |
cc584b21 | 822 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
c0a31329 TG |
823 | |
824 | if (delta.tv64 < 0) | |
825 | return 0; | |
826 | ||
c9db4fa1 TG |
827 | if (interval.tv64 < timer->base->resolution.tv64) |
828 | interval.tv64 = timer->base->resolution.tv64; | |
829 | ||
c0a31329 | 830 | if (unlikely(delta.tv64 >= interval.tv64)) { |
df869b63 | 831 | s64 incr = ktime_to_ns(interval); |
c0a31329 TG |
832 | |
833 | orun = ktime_divns(delta, incr); | |
cc584b21 AV |
834 | hrtimer_add_expires_ns(timer, incr * orun); |
835 | if (hrtimer_get_expires_tv64(timer) > now.tv64) | |
c0a31329 TG |
836 | return orun; |
837 | /* | |
838 | * This (and the ktime_add() below) is the | |
839 | * correction for exact: | |
840 | */ | |
841 | orun++; | |
842 | } | |
cc584b21 | 843 | hrtimer_add_expires(timer, interval); |
c0a31329 TG |
844 | |
845 | return orun; | |
846 | } | |
6bdb6b62 | 847 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
c0a31329 TG |
848 | |
849 | /* | |
850 | * enqueue_hrtimer - internal function to (re)start a timer | |
851 | * | |
852 | * The timer is inserted in expiry order. Insertion into the | |
853 | * red black tree is O(log(n)). Must hold the base lock. | |
a6037b61 PZ |
854 | * |
855 | * Returns 1 when the new timer is the leftmost timer in the tree. | |
c0a31329 | 856 | */ |
a6037b61 PZ |
857 | static int enqueue_hrtimer(struct hrtimer *timer, |
858 | struct hrtimer_clock_base *base) | |
c0a31329 | 859 | { |
c6a2a177 | 860 | debug_activate(timer); |
237fc6e7 | 861 | |
998adc3d | 862 | timerqueue_add(&base->active, &timer->node); |
ab8177bc | 863 | base->cpu_base->active_bases |= 1 << base->index; |
54cdfdb4 | 864 | |
303e967f TG |
865 | /* |
866 | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | |
867 | * state of a possibly running callback. | |
868 | */ | |
869 | timer->state |= HRTIMER_STATE_ENQUEUED; | |
a6037b61 | 870 | |
998adc3d | 871 | return (&timer->node == base->active.next); |
288867ec | 872 | } |
c0a31329 TG |
873 | |
874 | /* | |
875 | * __remove_hrtimer - internal function to remove a timer | |
876 | * | |
877 | * Caller must hold the base lock. | |
54cdfdb4 TG |
878 | * |
879 | * High resolution timer mode reprograms the clock event device when the | |
880 | * timer is the one which expires next. The caller can disable this by setting | |
881 | * reprogram to zero. This is useful, when the context does a reprogramming | |
882 | * anyway (e.g. timer interrupt) | |
c0a31329 | 883 | */ |
3c8aa39d | 884 | static void __remove_hrtimer(struct hrtimer *timer, |
303e967f | 885 | struct hrtimer_clock_base *base, |
54cdfdb4 | 886 | unsigned long newstate, int reprogram) |
c0a31329 | 887 | { |
27c9cd7e | 888 | struct timerqueue_node *next_timer; |
7403f41f AC |
889 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
890 | goto out; | |
891 | ||
27c9cd7e JO |
892 | next_timer = timerqueue_getnext(&base->active); |
893 | timerqueue_del(&base->active, &timer->node); | |
894 | if (&timer->node == next_timer) { | |
7403f41f AC |
895 | #ifdef CONFIG_HIGH_RES_TIMERS |
896 | /* Reprogram the clock event device. if enabled */ | |
897 | if (reprogram && hrtimer_hres_active()) { | |
898 | ktime_t expires; | |
899 | ||
900 | expires = ktime_sub(hrtimer_get_expires(timer), | |
901 | base->offset); | |
902 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | |
903 | hrtimer_force_reprogram(base->cpu_base, 1); | |
54cdfdb4 | 904 | } |
7403f41f | 905 | #endif |
54cdfdb4 | 906 | } |
ab8177bc TG |
907 | if (!timerqueue_getnext(&base->active)) |
908 | base->cpu_base->active_bases &= ~(1 << base->index); | |
7403f41f | 909 | out: |
303e967f | 910 | timer->state = newstate; |
c0a31329 TG |
911 | } |
912 | ||
913 | /* | |
914 | * remove hrtimer, called with base lock held | |
915 | */ | |
916 | static inline int | |
3c8aa39d | 917 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
c0a31329 | 918 | { |
303e967f | 919 | if (hrtimer_is_queued(timer)) { |
f13d4f97 | 920 | unsigned long state; |
54cdfdb4 TG |
921 | int reprogram; |
922 | ||
923 | /* | |
924 | * Remove the timer and force reprogramming when high | |
925 | * resolution mode is active and the timer is on the current | |
926 | * CPU. If we remove a timer on another CPU, reprogramming is | |
927 | * skipped. The interrupt event on this CPU is fired and | |
928 | * reprogramming happens in the interrupt handler. This is a | |
929 | * rare case and less expensive than a smp call. | |
930 | */ | |
c6a2a177 | 931 | debug_deactivate(timer); |
82f67cd9 | 932 | timer_stats_hrtimer_clear_start_info(timer); |
54cdfdb4 | 933 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
f13d4f97 SQ |
934 | /* |
935 | * We must preserve the CALLBACK state flag here, | |
936 | * otherwise we could move the timer base in | |
937 | * switch_hrtimer_base. | |
938 | */ | |
939 | state = timer->state & HRTIMER_STATE_CALLBACK; | |
940 | __remove_hrtimer(timer, base, state, reprogram); | |
c0a31329 TG |
941 | return 1; |
942 | } | |
943 | return 0; | |
944 | } | |
945 | ||
7f1e2ca9 PZ |
946 | int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
947 | unsigned long delta_ns, const enum hrtimer_mode mode, | |
948 | int wakeup) | |
c0a31329 | 949 | { |
3c8aa39d | 950 | struct hrtimer_clock_base *base, *new_base; |
c0a31329 | 951 | unsigned long flags; |
a6037b61 | 952 | int ret, leftmost; |
c0a31329 TG |
953 | |
954 | base = lock_hrtimer_base(timer, &flags); | |
955 | ||
956 | /* Remove an active timer from the queue: */ | |
957 | ret = remove_hrtimer(timer, base); | |
958 | ||
959 | /* Switch the timer base, if necessary: */ | |
597d0275 | 960 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
c0a31329 | 961 | |
597d0275 | 962 | if (mode & HRTIMER_MODE_REL) { |
5a7780e7 | 963 | tim = ktime_add_safe(tim, new_base->get_time()); |
06027bdd IM |
964 | /* |
965 | * CONFIG_TIME_LOW_RES is a temporary way for architectures | |
966 | * to signal that they simply return xtime in | |
967 | * do_gettimeoffset(). In this case we want to round up by | |
968 | * resolution when starting a relative timer, to avoid short | |
969 | * timeouts. This will go away with the GTOD framework. | |
970 | */ | |
971 | #ifdef CONFIG_TIME_LOW_RES | |
5a7780e7 | 972 | tim = ktime_add_safe(tim, base->resolution); |
06027bdd IM |
973 | #endif |
974 | } | |
237fc6e7 | 975 | |
da8f2e17 | 976 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
c0a31329 | 977 | |
82f67cd9 IM |
978 | timer_stats_hrtimer_set_start_info(timer); |
979 | ||
a6037b61 PZ |
980 | leftmost = enqueue_hrtimer(timer, new_base); |
981 | ||
935c631d IM |
982 | /* |
983 | * Only allow reprogramming if the new base is on this CPU. | |
984 | * (it might still be on another CPU if the timer was pending) | |
a6037b61 PZ |
985 | * |
986 | * XXX send_remote_softirq() ? | |
935c631d | 987 | */ |
a6037b61 | 988 | if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) |
7f1e2ca9 | 989 | hrtimer_enqueue_reprogram(timer, new_base, wakeup); |
c0a31329 TG |
990 | |
991 | unlock_hrtimer_base(timer, &flags); | |
992 | ||
993 | return ret; | |
994 | } | |
7f1e2ca9 PZ |
995 | |
996 | /** | |
997 | * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU | |
998 | * @timer: the timer to be added | |
999 | * @tim: expiry time | |
1000 | * @delta_ns: "slack" range for the timer | |
1001 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | |
1002 | * | |
1003 | * Returns: | |
1004 | * 0 on success | |
1005 | * 1 when the timer was active | |
1006 | */ | |
1007 | int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, | |
1008 | unsigned long delta_ns, const enum hrtimer_mode mode) | |
1009 | { | |
1010 | return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); | |
1011 | } | |
da8f2e17 AV |
1012 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1013 | ||
1014 | /** | |
e1dd7bc5 | 1015 | * hrtimer_start - (re)start an hrtimer on the current CPU |
da8f2e17 AV |
1016 | * @timer: the timer to be added |
1017 | * @tim: expiry time | |
1018 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | |
1019 | * | |
1020 | * Returns: | |
1021 | * 0 on success | |
1022 | * 1 when the timer was active | |
1023 | */ | |
1024 | int | |
1025 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | |
1026 | { | |
7f1e2ca9 | 1027 | return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); |
da8f2e17 | 1028 | } |
8d16b764 | 1029 | EXPORT_SYMBOL_GPL(hrtimer_start); |
c0a31329 | 1030 | |
da8f2e17 | 1031 | |
c0a31329 TG |
1032 | /** |
1033 | * hrtimer_try_to_cancel - try to deactivate a timer | |
c0a31329 TG |
1034 | * @timer: hrtimer to stop |
1035 | * | |
1036 | * Returns: | |
1037 | * 0 when the timer was not active | |
1038 | * 1 when the timer was active | |
1039 | * -1 when the timer is currently excuting the callback function and | |
fa9799e3 | 1040 | * cannot be stopped |
c0a31329 TG |
1041 | */ |
1042 | int hrtimer_try_to_cancel(struct hrtimer *timer) | |
1043 | { | |
3c8aa39d | 1044 | struct hrtimer_clock_base *base; |
c0a31329 TG |
1045 | unsigned long flags; |
1046 | int ret = -1; | |
1047 | ||
1048 | base = lock_hrtimer_base(timer, &flags); | |
1049 | ||
303e967f | 1050 | if (!hrtimer_callback_running(timer)) |
c0a31329 TG |
1051 | ret = remove_hrtimer(timer, base); |
1052 | ||
1053 | unlock_hrtimer_base(timer, &flags); | |
1054 | ||
1055 | return ret; | |
1056 | ||
1057 | } | |
8d16b764 | 1058 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
c0a31329 TG |
1059 | |
1060 | /** | |
1061 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. | |
c0a31329 TG |
1062 | * @timer: the timer to be cancelled |
1063 | * | |
1064 | * Returns: | |
1065 | * 0 when the timer was not active | |
1066 | * 1 when the timer was active | |
1067 | */ | |
1068 | int hrtimer_cancel(struct hrtimer *timer) | |
1069 | { | |
1070 | for (;;) { | |
1071 | int ret = hrtimer_try_to_cancel(timer); | |
1072 | ||
1073 | if (ret >= 0) | |
1074 | return ret; | |
5ef37b19 | 1075 | cpu_relax(); |
c0a31329 TG |
1076 | } |
1077 | } | |
8d16b764 | 1078 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
c0a31329 TG |
1079 | |
1080 | /** | |
1081 | * hrtimer_get_remaining - get remaining time for the timer | |
c0a31329 TG |
1082 | * @timer: the timer to read |
1083 | */ | |
1084 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | |
1085 | { | |
c0a31329 TG |
1086 | unsigned long flags; |
1087 | ktime_t rem; | |
1088 | ||
b3bd3de6 | 1089 | lock_hrtimer_base(timer, &flags); |
cc584b21 | 1090 | rem = hrtimer_expires_remaining(timer); |
c0a31329 TG |
1091 | unlock_hrtimer_base(timer, &flags); |
1092 | ||
1093 | return rem; | |
1094 | } | |
8d16b764 | 1095 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
c0a31329 | 1096 | |
ee9c5785 | 1097 | #ifdef CONFIG_NO_HZ |
69239749 TL |
1098 | /** |
1099 | * hrtimer_get_next_event - get the time until next expiry event | |
1100 | * | |
1101 | * Returns the delta to the next expiry event or KTIME_MAX if no timer | |
1102 | * is pending. | |
1103 | */ | |
1104 | ktime_t hrtimer_get_next_event(void) | |
1105 | { | |
3c8aa39d TG |
1106 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1107 | struct hrtimer_clock_base *base = cpu_base->clock_base; | |
69239749 TL |
1108 | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
1109 | unsigned long flags; | |
1110 | int i; | |
1111 | ||
ecb49d1a | 1112 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
3c8aa39d | 1113 | |
54cdfdb4 TG |
1114 | if (!hrtimer_hres_active()) { |
1115 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | |
1116 | struct hrtimer *timer; | |
998adc3d | 1117 | struct timerqueue_node *next; |
69239749 | 1118 | |
998adc3d JS |
1119 | next = timerqueue_getnext(&base->active); |
1120 | if (!next) | |
54cdfdb4 | 1121 | continue; |
3c8aa39d | 1122 | |
998adc3d | 1123 | timer = container_of(next, struct hrtimer, node); |
cc584b21 | 1124 | delta.tv64 = hrtimer_get_expires_tv64(timer); |
54cdfdb4 TG |
1125 | delta = ktime_sub(delta, base->get_time()); |
1126 | if (delta.tv64 < mindelta.tv64) | |
1127 | mindelta.tv64 = delta.tv64; | |
1128 | } | |
69239749 | 1129 | } |
3c8aa39d | 1130 | |
ecb49d1a | 1131 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
3c8aa39d | 1132 | |
69239749 TL |
1133 | if (mindelta.tv64 < 0) |
1134 | mindelta.tv64 = 0; | |
1135 | return mindelta; | |
1136 | } | |
1137 | #endif | |
1138 | ||
237fc6e7 TG |
1139 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1140 | enum hrtimer_mode mode) | |
c0a31329 | 1141 | { |
3c8aa39d | 1142 | struct hrtimer_cpu_base *cpu_base; |
e06383db | 1143 | int base; |
c0a31329 | 1144 | |
7978672c GA |
1145 | memset(timer, 0, sizeof(struct hrtimer)); |
1146 | ||
3c8aa39d | 1147 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
c0a31329 | 1148 | |
c9cb2e3d | 1149 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
7978672c GA |
1150 | clock_id = CLOCK_MONOTONIC; |
1151 | ||
e06383db JS |
1152 | base = hrtimer_clockid_to_base(clock_id); |
1153 | timer->base = &cpu_base->clock_base[base]; | |
998adc3d | 1154 | timerqueue_init(&timer->node); |
82f67cd9 IM |
1155 | |
1156 | #ifdef CONFIG_TIMER_STATS | |
1157 | timer->start_site = NULL; | |
1158 | timer->start_pid = -1; | |
1159 | memset(timer->start_comm, 0, TASK_COMM_LEN); | |
1160 | #endif | |
c0a31329 | 1161 | } |
237fc6e7 TG |
1162 | |
1163 | /** | |
1164 | * hrtimer_init - initialize a timer to the given clock | |
1165 | * @timer: the timer to be initialized | |
1166 | * @clock_id: the clock to be used | |
1167 | * @mode: timer mode abs/rel | |
1168 | */ | |
1169 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |
1170 | enum hrtimer_mode mode) | |
1171 | { | |
c6a2a177 | 1172 | debug_init(timer, clock_id, mode); |
237fc6e7 TG |
1173 | __hrtimer_init(timer, clock_id, mode); |
1174 | } | |
8d16b764 | 1175 | EXPORT_SYMBOL_GPL(hrtimer_init); |
c0a31329 TG |
1176 | |
1177 | /** | |
1178 | * hrtimer_get_res - get the timer resolution for a clock | |
c0a31329 TG |
1179 | * @which_clock: which clock to query |
1180 | * @tp: pointer to timespec variable to store the resolution | |
1181 | * | |
72fd4a35 RD |
1182 | * Store the resolution of the clock selected by @which_clock in the |
1183 | * variable pointed to by @tp. | |
c0a31329 TG |
1184 | */ |
1185 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |
1186 | { | |
3c8aa39d | 1187 | struct hrtimer_cpu_base *cpu_base; |
e06383db | 1188 | int base = hrtimer_clockid_to_base(which_clock); |
c0a31329 | 1189 | |
3c8aa39d | 1190 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
e06383db | 1191 | *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); |
c0a31329 TG |
1192 | |
1193 | return 0; | |
1194 | } | |
8d16b764 | 1195 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
c0a31329 | 1196 | |
c6a2a177 | 1197 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
d3d74453 PZ |
1198 | { |
1199 | struct hrtimer_clock_base *base = timer->base; | |
1200 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | |
1201 | enum hrtimer_restart (*fn)(struct hrtimer *); | |
1202 | int restart; | |
1203 | ||
ca109491 PZ |
1204 | WARN_ON(!irqs_disabled()); |
1205 | ||
c6a2a177 | 1206 | debug_deactivate(timer); |
d3d74453 PZ |
1207 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1208 | timer_stats_account_hrtimer(timer); | |
d3d74453 | 1209 | fn = timer->function; |
ca109491 PZ |
1210 | |
1211 | /* | |
1212 | * Because we run timers from hardirq context, there is no chance | |
1213 | * they get migrated to another cpu, therefore its safe to unlock | |
1214 | * the timer base. | |
1215 | */ | |
ecb49d1a | 1216 | raw_spin_unlock(&cpu_base->lock); |
c6a2a177 | 1217 | trace_hrtimer_expire_entry(timer, now); |
ca109491 | 1218 | restart = fn(timer); |
c6a2a177 | 1219 | trace_hrtimer_expire_exit(timer); |
ecb49d1a | 1220 | raw_spin_lock(&cpu_base->lock); |
d3d74453 PZ |
1221 | |
1222 | /* | |
e3f1d883 TG |
1223 | * Note: We clear the CALLBACK bit after enqueue_hrtimer and |
1224 | * we do not reprogramm the event hardware. Happens either in | |
1225 | * hrtimer_start_range_ns() or in hrtimer_interrupt() | |
d3d74453 PZ |
1226 | */ |
1227 | if (restart != HRTIMER_NORESTART) { | |
1228 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | |
a6037b61 | 1229 | enqueue_hrtimer(timer, base); |
d3d74453 | 1230 | } |
f13d4f97 SQ |
1231 | |
1232 | WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); | |
1233 | ||
d3d74453 PZ |
1234 | timer->state &= ~HRTIMER_STATE_CALLBACK; |
1235 | } | |
1236 | ||
54cdfdb4 TG |
1237 | #ifdef CONFIG_HIGH_RES_TIMERS |
1238 | ||
1239 | /* | |
1240 | * High resolution timer interrupt | |
1241 | * Called with interrupts disabled | |
1242 | */ | |
1243 | void hrtimer_interrupt(struct clock_event_device *dev) | |
1244 | { | |
1245 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | |
41d2e494 TG |
1246 | ktime_t expires_next, now, entry_time, delta; |
1247 | int i, retries = 0; | |
54cdfdb4 TG |
1248 | |
1249 | BUG_ON(!cpu_base->hres_active); | |
1250 | cpu_base->nr_events++; | |
1251 | dev->next_event.tv64 = KTIME_MAX; | |
1252 | ||
41d2e494 TG |
1253 | entry_time = now = ktime_get(); |
1254 | retry: | |
54cdfdb4 TG |
1255 | expires_next.tv64 = KTIME_MAX; |
1256 | ||
ecb49d1a | 1257 | raw_spin_lock(&cpu_base->lock); |
6ff7041d TG |
1258 | /* |
1259 | * We set expires_next to KTIME_MAX here with cpu_base->lock | |
1260 | * held to prevent that a timer is enqueued in our queue via | |
1261 | * the migration code. This does not affect enqueueing of | |
1262 | * timers which run their callback and need to be requeued on | |
1263 | * this CPU. | |
1264 | */ | |
1265 | cpu_base->expires_next.tv64 = KTIME_MAX; | |
1266 | ||
54cdfdb4 | 1267 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ab8177bc | 1268 | struct hrtimer_clock_base *base; |
998adc3d | 1269 | struct timerqueue_node *node; |
ab8177bc TG |
1270 | ktime_t basenow; |
1271 | ||
1272 | if (!(cpu_base->active_bases & (1 << i))) | |
1273 | continue; | |
54cdfdb4 | 1274 | |
ab8177bc | 1275 | base = cpu_base->clock_base + i; |
54cdfdb4 TG |
1276 | basenow = ktime_add(now, base->offset); |
1277 | ||
998adc3d | 1278 | while ((node = timerqueue_getnext(&base->active))) { |
54cdfdb4 TG |
1279 | struct hrtimer *timer; |
1280 | ||
998adc3d | 1281 | timer = container_of(node, struct hrtimer, node); |
54cdfdb4 | 1282 | |
654c8e0b AV |
1283 | /* |
1284 | * The immediate goal for using the softexpires is | |
1285 | * minimizing wakeups, not running timers at the | |
1286 | * earliest interrupt after their soft expiration. | |
1287 | * This allows us to avoid using a Priority Search | |
1288 | * Tree, which can answer a stabbing querry for | |
1289 | * overlapping intervals and instead use the simple | |
1290 | * BST we already have. | |
1291 | * We don't add extra wakeups by delaying timers that | |
1292 | * are right-of a not yet expired timer, because that | |
1293 | * timer will have to trigger a wakeup anyway. | |
1294 | */ | |
1295 | ||
1296 | if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { | |
54cdfdb4 TG |
1297 | ktime_t expires; |
1298 | ||
cc584b21 | 1299 | expires = ktime_sub(hrtimer_get_expires(timer), |
54cdfdb4 TG |
1300 | base->offset); |
1301 | if (expires.tv64 < expires_next.tv64) | |
1302 | expires_next = expires; | |
1303 | break; | |
1304 | } | |
1305 | ||
c6a2a177 | 1306 | __run_hrtimer(timer, &basenow); |
54cdfdb4 | 1307 | } |
54cdfdb4 TG |
1308 | } |
1309 | ||
6ff7041d TG |
1310 | /* |
1311 | * Store the new expiry value so the migration code can verify | |
1312 | * against it. | |
1313 | */ | |
54cdfdb4 | 1314 | cpu_base->expires_next = expires_next; |
ecb49d1a | 1315 | raw_spin_unlock(&cpu_base->lock); |
54cdfdb4 TG |
1316 | |
1317 | /* Reprogramming necessary ? */ | |
41d2e494 TG |
1318 | if (expires_next.tv64 == KTIME_MAX || |
1319 | !tick_program_event(expires_next, 0)) { | |
1320 | cpu_base->hang_detected = 0; | |
1321 | return; | |
54cdfdb4 | 1322 | } |
41d2e494 TG |
1323 | |
1324 | /* | |
1325 | * The next timer was already expired due to: | |
1326 | * - tracing | |
1327 | * - long lasting callbacks | |
1328 | * - being scheduled away when running in a VM | |
1329 | * | |
1330 | * We need to prevent that we loop forever in the hrtimer | |
1331 | * interrupt routine. We give it 3 attempts to avoid | |
1332 | * overreacting on some spurious event. | |
1333 | */ | |
1334 | now = ktime_get(); | |
1335 | cpu_base->nr_retries++; | |
1336 | if (++retries < 3) | |
1337 | goto retry; | |
1338 | /* | |
1339 | * Give the system a chance to do something else than looping | |
1340 | * here. We stored the entry time, so we know exactly how long | |
1341 | * we spent here. We schedule the next event this amount of | |
1342 | * time away. | |
1343 | */ | |
1344 | cpu_base->nr_hangs++; | |
1345 | cpu_base->hang_detected = 1; | |
1346 | delta = ktime_sub(now, entry_time); | |
1347 | if (delta.tv64 > cpu_base->max_hang_time.tv64) | |
1348 | cpu_base->max_hang_time = delta; | |
1349 | /* | |
1350 | * Limit it to a sensible value as we enforce a longer | |
1351 | * delay. Give the CPU at least 100ms to catch up. | |
1352 | */ | |
1353 | if (delta.tv64 > 100 * NSEC_PER_MSEC) | |
1354 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); | |
1355 | else | |
1356 | expires_next = ktime_add(now, delta); | |
1357 | tick_program_event(expires_next, 1); | |
1358 | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", | |
1359 | ktime_to_ns(delta)); | |
54cdfdb4 TG |
1360 | } |
1361 | ||
8bdec955 TG |
1362 | /* |
1363 | * local version of hrtimer_peek_ahead_timers() called with interrupts | |
1364 | * disabled. | |
1365 | */ | |
1366 | static void __hrtimer_peek_ahead_timers(void) | |
1367 | { | |
1368 | struct tick_device *td; | |
1369 | ||
1370 | if (!hrtimer_hres_active()) | |
1371 | return; | |
1372 | ||
1373 | td = &__get_cpu_var(tick_cpu_device); | |
1374 | if (td && td->evtdev) | |
1375 | hrtimer_interrupt(td->evtdev); | |
1376 | } | |
1377 | ||
2e94d1f7 AV |
1378 | /** |
1379 | * hrtimer_peek_ahead_timers -- run soft-expired timers now | |
1380 | * | |
1381 | * hrtimer_peek_ahead_timers will peek at the timer queue of | |
1382 | * the current cpu and check if there are any timers for which | |
1383 | * the soft expires time has passed. If any such timers exist, | |
1384 | * they are run immediately and then removed from the timer queue. | |
1385 | * | |
1386 | */ | |
1387 | void hrtimer_peek_ahead_timers(void) | |
1388 | { | |
643bdf68 | 1389 | unsigned long flags; |
dc4304f7 | 1390 | |
2e94d1f7 | 1391 | local_irq_save(flags); |
8bdec955 | 1392 | __hrtimer_peek_ahead_timers(); |
2e94d1f7 AV |
1393 | local_irq_restore(flags); |
1394 | } | |
1395 | ||
a6037b61 PZ |
1396 | static void run_hrtimer_softirq(struct softirq_action *h) |
1397 | { | |
1398 | hrtimer_peek_ahead_timers(); | |
1399 | } | |
1400 | ||
82c5b7b5 IM |
1401 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1402 | ||
1403 | static inline void __hrtimer_peek_ahead_timers(void) { } | |
1404 | ||
1405 | #endif /* !CONFIG_HIGH_RES_TIMERS */ | |
82f67cd9 | 1406 | |
d3d74453 PZ |
1407 | /* |
1408 | * Called from timer softirq every jiffy, expire hrtimers: | |
1409 | * | |
1410 | * For HRT its the fall back code to run the softirq in the timer | |
1411 | * softirq context in case the hrtimer initialization failed or has | |
1412 | * not been done yet. | |
1413 | */ | |
1414 | void hrtimer_run_pending(void) | |
1415 | { | |
d3d74453 PZ |
1416 | if (hrtimer_hres_active()) |
1417 | return; | |
54cdfdb4 | 1418 | |
d3d74453 PZ |
1419 | /* |
1420 | * This _is_ ugly: We have to check in the softirq context, | |
1421 | * whether we can switch to highres and / or nohz mode. The | |
1422 | * clocksource switch happens in the timer interrupt with | |
1423 | * xtime_lock held. Notification from there only sets the | |
1424 | * check bit in the tick_oneshot code, otherwise we might | |
1425 | * deadlock vs. xtime_lock. | |
1426 | */ | |
1427 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | |
1428 | hrtimer_switch_to_hres(); | |
54cdfdb4 TG |
1429 | } |
1430 | ||
c0a31329 | 1431 | /* |
d3d74453 | 1432 | * Called from hardirq context every jiffy |
c0a31329 | 1433 | */ |
833883d9 | 1434 | void hrtimer_run_queues(void) |
c0a31329 | 1435 | { |
998adc3d | 1436 | struct timerqueue_node *node; |
833883d9 DS |
1437 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1438 | struct hrtimer_clock_base *base; | |
1439 | int index, gettime = 1; | |
c0a31329 | 1440 | |
833883d9 | 1441 | if (hrtimer_hres_active()) |
3055adda DS |
1442 | return; |
1443 | ||
833883d9 DS |
1444 | for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { |
1445 | base = &cpu_base->clock_base[index]; | |
b007c389 | 1446 | if (!timerqueue_getnext(&base->active)) |
d3d74453 | 1447 | continue; |
833883d9 | 1448 | |
d7cfb60c | 1449 | if (gettime) { |
833883d9 DS |
1450 | hrtimer_get_softirq_time(cpu_base); |
1451 | gettime = 0; | |
b75f7a51 | 1452 | } |
d3d74453 | 1453 | |
ecb49d1a | 1454 | raw_spin_lock(&cpu_base->lock); |
c0a31329 | 1455 | |
b007c389 | 1456 | while ((node = timerqueue_getnext(&base->active))) { |
833883d9 | 1457 | struct hrtimer *timer; |
54cdfdb4 | 1458 | |
998adc3d | 1459 | timer = container_of(node, struct hrtimer, node); |
cc584b21 AV |
1460 | if (base->softirq_time.tv64 <= |
1461 | hrtimer_get_expires_tv64(timer)) | |
833883d9 DS |
1462 | break; |
1463 | ||
c6a2a177 | 1464 | __run_hrtimer(timer, &base->softirq_time); |
833883d9 | 1465 | } |
ecb49d1a | 1466 | raw_spin_unlock(&cpu_base->lock); |
833883d9 | 1467 | } |
c0a31329 TG |
1468 | } |
1469 | ||
10c94ec1 TG |
1470 | /* |
1471 | * Sleep related functions: | |
1472 | */ | |
c9cb2e3d | 1473 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
00362e33 TG |
1474 | { |
1475 | struct hrtimer_sleeper *t = | |
1476 | container_of(timer, struct hrtimer_sleeper, timer); | |
1477 | struct task_struct *task = t->task; | |
1478 | ||
1479 | t->task = NULL; | |
1480 | if (task) | |
1481 | wake_up_process(task); | |
1482 | ||
1483 | return HRTIMER_NORESTART; | |
1484 | } | |
1485 | ||
36c8b586 | 1486 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
00362e33 TG |
1487 | { |
1488 | sl->timer.function = hrtimer_wakeup; | |
1489 | sl->task = task; | |
1490 | } | |
2bc481cf | 1491 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
00362e33 | 1492 | |
669d7868 | 1493 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
432569bb | 1494 | { |
669d7868 | 1495 | hrtimer_init_sleeper(t, current); |
10c94ec1 | 1496 | |
432569bb RZ |
1497 | do { |
1498 | set_current_state(TASK_INTERRUPTIBLE); | |
cc584b21 | 1499 | hrtimer_start_expires(&t->timer, mode); |
37bb6cb4 PZ |
1500 | if (!hrtimer_active(&t->timer)) |
1501 | t->task = NULL; | |
432569bb | 1502 | |
54cdfdb4 TG |
1503 | if (likely(t->task)) |
1504 | schedule(); | |
432569bb | 1505 | |
669d7868 | 1506 | hrtimer_cancel(&t->timer); |
c9cb2e3d | 1507 | mode = HRTIMER_MODE_ABS; |
669d7868 TG |
1508 | |
1509 | } while (t->task && !signal_pending(current)); | |
432569bb | 1510 | |
3588a085 PZ |
1511 | __set_current_state(TASK_RUNNING); |
1512 | ||
669d7868 | 1513 | return t->task == NULL; |
10c94ec1 TG |
1514 | } |
1515 | ||
080344b9 ON |
1516 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) |
1517 | { | |
1518 | struct timespec rmt; | |
1519 | ktime_t rem; | |
1520 | ||
cc584b21 | 1521 | rem = hrtimer_expires_remaining(timer); |
080344b9 ON |
1522 | if (rem.tv64 <= 0) |
1523 | return 0; | |
1524 | rmt = ktime_to_timespec(rem); | |
1525 | ||
1526 | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | |
1527 | return -EFAULT; | |
1528 | ||
1529 | return 1; | |
1530 | } | |
1531 | ||
1711ef38 | 1532 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
10c94ec1 | 1533 | { |
669d7868 | 1534 | struct hrtimer_sleeper t; |
080344b9 | 1535 | struct timespec __user *rmtp; |
237fc6e7 | 1536 | int ret = 0; |
10c94ec1 | 1537 | |
ab8177bc | 1538 | hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, |
237fc6e7 | 1539 | HRTIMER_MODE_ABS); |
cc584b21 | 1540 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
10c94ec1 | 1541 | |
c9cb2e3d | 1542 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
237fc6e7 | 1543 | goto out; |
10c94ec1 | 1544 | |
029a07e0 | 1545 | rmtp = restart->nanosleep.rmtp; |
432569bb | 1546 | if (rmtp) { |
237fc6e7 | 1547 | ret = update_rmtp(&t.timer, rmtp); |
080344b9 | 1548 | if (ret <= 0) |
237fc6e7 | 1549 | goto out; |
432569bb | 1550 | } |
10c94ec1 | 1551 | |
10c94ec1 | 1552 | /* The other values in restart are already filled in */ |
237fc6e7 TG |
1553 | ret = -ERESTART_RESTARTBLOCK; |
1554 | out: | |
1555 | destroy_hrtimer_on_stack(&t.timer); | |
1556 | return ret; | |
10c94ec1 TG |
1557 | } |
1558 | ||
080344b9 | 1559 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
10c94ec1 TG |
1560 | const enum hrtimer_mode mode, const clockid_t clockid) |
1561 | { | |
1562 | struct restart_block *restart; | |
669d7868 | 1563 | struct hrtimer_sleeper t; |
237fc6e7 | 1564 | int ret = 0; |
3bd01206 AV |
1565 | unsigned long slack; |
1566 | ||
1567 | slack = current->timer_slack_ns; | |
1568 | if (rt_task(current)) | |
1569 | slack = 0; | |
10c94ec1 | 1570 | |
237fc6e7 | 1571 | hrtimer_init_on_stack(&t.timer, clockid, mode); |
3bd01206 | 1572 | hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); |
432569bb | 1573 | if (do_nanosleep(&t, mode)) |
237fc6e7 | 1574 | goto out; |
10c94ec1 | 1575 | |
7978672c | 1576 | /* Absolute timers do not update the rmtp value and restart: */ |
237fc6e7 TG |
1577 | if (mode == HRTIMER_MODE_ABS) { |
1578 | ret = -ERESTARTNOHAND; | |
1579 | goto out; | |
1580 | } | |
10c94ec1 | 1581 | |
432569bb | 1582 | if (rmtp) { |
237fc6e7 | 1583 | ret = update_rmtp(&t.timer, rmtp); |
080344b9 | 1584 | if (ret <= 0) |
237fc6e7 | 1585 | goto out; |
432569bb | 1586 | } |
10c94ec1 TG |
1587 | |
1588 | restart = ¤t_thread_info()->restart_block; | |
1711ef38 | 1589 | restart->fn = hrtimer_nanosleep_restart; |
ab8177bc | 1590 | restart->nanosleep.clockid = t.timer.base->clockid; |
029a07e0 | 1591 | restart->nanosleep.rmtp = rmtp; |
cc584b21 | 1592 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
10c94ec1 | 1593 | |
237fc6e7 TG |
1594 | ret = -ERESTART_RESTARTBLOCK; |
1595 | out: | |
1596 | destroy_hrtimer_on_stack(&t.timer); | |
1597 | return ret; | |
10c94ec1 TG |
1598 | } |
1599 | ||
58fd3aa2 HC |
1600 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, |
1601 | struct timespec __user *, rmtp) | |
6ba1b912 | 1602 | { |
080344b9 | 1603 | struct timespec tu; |
6ba1b912 TG |
1604 | |
1605 | if (copy_from_user(&tu, rqtp, sizeof(tu))) | |
1606 | return -EFAULT; | |
1607 | ||
1608 | if (!timespec_valid(&tu)) | |
1609 | return -EINVAL; | |
1610 | ||
080344b9 | 1611 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
6ba1b912 TG |
1612 | } |
1613 | ||
c0a31329 TG |
1614 | /* |
1615 | * Functions related to boot-time initialization: | |
1616 | */ | |
0ec160dd | 1617 | static void __cpuinit init_hrtimers_cpu(int cpu) |
c0a31329 | 1618 | { |
3c8aa39d | 1619 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
c0a31329 TG |
1620 | int i; |
1621 | ||
ecb49d1a | 1622 | raw_spin_lock_init(&cpu_base->lock); |
3c8aa39d | 1623 | |
998adc3d | 1624 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
3c8aa39d | 1625 | cpu_base->clock_base[i].cpu_base = cpu_base; |
998adc3d JS |
1626 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
1627 | } | |
3c8aa39d | 1628 | |
54cdfdb4 | 1629 | hrtimer_init_hres(cpu_base); |
c0a31329 TG |
1630 | } |
1631 | ||
1632 | #ifdef CONFIG_HOTPLUG_CPU | |
1633 | ||
ca109491 | 1634 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
37810659 | 1635 | struct hrtimer_clock_base *new_base) |
c0a31329 TG |
1636 | { |
1637 | struct hrtimer *timer; | |
998adc3d | 1638 | struct timerqueue_node *node; |
c0a31329 | 1639 | |
998adc3d JS |
1640 | while ((node = timerqueue_getnext(&old_base->active))) { |
1641 | timer = container_of(node, struct hrtimer, node); | |
54cdfdb4 | 1642 | BUG_ON(hrtimer_callback_running(timer)); |
c6a2a177 | 1643 | debug_deactivate(timer); |
b00c1a99 TG |
1644 | |
1645 | /* | |
1646 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | |
1647 | * timer could be seen as !active and just vanish away | |
1648 | * under us on another CPU | |
1649 | */ | |
1650 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); | |
c0a31329 | 1651 | timer->base = new_base; |
54cdfdb4 | 1652 | /* |
e3f1d883 TG |
1653 | * Enqueue the timers on the new cpu. This does not |
1654 | * reprogram the event device in case the timer | |
1655 | * expires before the earliest on this CPU, but we run | |
1656 | * hrtimer_interrupt after we migrated everything to | |
1657 | * sort out already expired timers and reprogram the | |
1658 | * event device. | |
54cdfdb4 | 1659 | */ |
a6037b61 | 1660 | enqueue_hrtimer(timer, new_base); |
41e1022e | 1661 | |
b00c1a99 TG |
1662 | /* Clear the migration state bit */ |
1663 | timer->state &= ~HRTIMER_STATE_MIGRATE; | |
c0a31329 TG |
1664 | } |
1665 | } | |
1666 | ||
d5fd43c4 | 1667 | static void migrate_hrtimers(int scpu) |
c0a31329 | 1668 | { |
3c8aa39d | 1669 | struct hrtimer_cpu_base *old_base, *new_base; |
731a55ba | 1670 | int i; |
c0a31329 | 1671 | |
37810659 | 1672 | BUG_ON(cpu_online(scpu)); |
37810659 | 1673 | tick_cancel_sched_timer(scpu); |
731a55ba TG |
1674 | |
1675 | local_irq_disable(); | |
1676 | old_base = &per_cpu(hrtimer_bases, scpu); | |
1677 | new_base = &__get_cpu_var(hrtimer_bases); | |
d82f0b0f ON |
1678 | /* |
1679 | * The caller is globally serialized and nobody else | |
1680 | * takes two locks at once, deadlock is not possible. | |
1681 | */ | |
ecb49d1a TG |
1682 | raw_spin_lock(&new_base->lock); |
1683 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | |
c0a31329 | 1684 | |
3c8aa39d | 1685 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
ca109491 | 1686 | migrate_hrtimer_list(&old_base->clock_base[i], |
37810659 | 1687 | &new_base->clock_base[i]); |
c0a31329 TG |
1688 | } |
1689 | ||
ecb49d1a TG |
1690 | raw_spin_unlock(&old_base->lock); |
1691 | raw_spin_unlock(&new_base->lock); | |
37810659 | 1692 | |
731a55ba TG |
1693 | /* Check, if we got expired work to do */ |
1694 | __hrtimer_peek_ahead_timers(); | |
1695 | local_irq_enable(); | |
c0a31329 | 1696 | } |
37810659 | 1697 | |
c0a31329 TG |
1698 | #endif /* CONFIG_HOTPLUG_CPU */ |
1699 | ||
8c78f307 | 1700 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
c0a31329 TG |
1701 | unsigned long action, void *hcpu) |
1702 | { | |
b2e3c0ad | 1703 | int scpu = (long)hcpu; |
c0a31329 TG |
1704 | |
1705 | switch (action) { | |
1706 | ||
1707 | case CPU_UP_PREPARE: | |
8bb78442 | 1708 | case CPU_UP_PREPARE_FROZEN: |
37810659 | 1709 | init_hrtimers_cpu(scpu); |
c0a31329 TG |
1710 | break; |
1711 | ||
1712 | #ifdef CONFIG_HOTPLUG_CPU | |
94df7de0 SD |
1713 | case CPU_DYING: |
1714 | case CPU_DYING_FROZEN: | |
1715 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); | |
1716 | break; | |
c0a31329 | 1717 | case CPU_DEAD: |
8bb78442 | 1718 | case CPU_DEAD_FROZEN: |
b2e3c0ad | 1719 | { |
37810659 | 1720 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); |
d5fd43c4 | 1721 | migrate_hrtimers(scpu); |
c0a31329 | 1722 | break; |
b2e3c0ad | 1723 | } |
c0a31329 TG |
1724 | #endif |
1725 | ||
1726 | default: | |
1727 | break; | |
1728 | } | |
1729 | ||
1730 | return NOTIFY_OK; | |
1731 | } | |
1732 | ||
8c78f307 | 1733 | static struct notifier_block __cpuinitdata hrtimers_nb = { |
c0a31329 TG |
1734 | .notifier_call = hrtimer_cpu_notify, |
1735 | }; | |
1736 | ||
1737 | void __init hrtimers_init(void) | |
1738 | { | |
1739 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | |
1740 | (void *)(long)smp_processor_id()); | |
1741 | register_cpu_notifier(&hrtimers_nb); | |
a6037b61 PZ |
1742 | #ifdef CONFIG_HIGH_RES_TIMERS |
1743 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); | |
1744 | #endif | |
c0a31329 TG |
1745 | } |
1746 | ||
7bb67439 | 1747 | /** |
351b3f7a | 1748 | * schedule_hrtimeout_range_clock - sleep until timeout |
7bb67439 | 1749 | * @expires: timeout value (ktime_t) |
654c8e0b | 1750 | * @delta: slack in expires timeout (ktime_t) |
7bb67439 | 1751 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
351b3f7a | 1752 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
7bb67439 | 1753 | */ |
351b3f7a CE |
1754 | int __sched |
1755 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, | |
1756 | const enum hrtimer_mode mode, int clock) | |
7bb67439 AV |
1757 | { |
1758 | struct hrtimer_sleeper t; | |
1759 | ||
1760 | /* | |
1761 | * Optimize when a zero timeout value is given. It does not | |
1762 | * matter whether this is an absolute or a relative time. | |
1763 | */ | |
1764 | if (expires && !expires->tv64) { | |
1765 | __set_current_state(TASK_RUNNING); | |
1766 | return 0; | |
1767 | } | |
1768 | ||
1769 | /* | |
43b21013 | 1770 | * A NULL parameter means "infinite" |
7bb67439 AV |
1771 | */ |
1772 | if (!expires) { | |
1773 | schedule(); | |
1774 | __set_current_state(TASK_RUNNING); | |
1775 | return -EINTR; | |
1776 | } | |
1777 | ||
351b3f7a | 1778 | hrtimer_init_on_stack(&t.timer, clock, mode); |
654c8e0b | 1779 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
7bb67439 AV |
1780 | |
1781 | hrtimer_init_sleeper(&t, current); | |
1782 | ||
cc584b21 | 1783 | hrtimer_start_expires(&t.timer, mode); |
7bb67439 AV |
1784 | if (!hrtimer_active(&t.timer)) |
1785 | t.task = NULL; | |
1786 | ||
1787 | if (likely(t.task)) | |
1788 | schedule(); | |
1789 | ||
1790 | hrtimer_cancel(&t.timer); | |
1791 | destroy_hrtimer_on_stack(&t.timer); | |
1792 | ||
1793 | __set_current_state(TASK_RUNNING); | |
1794 | ||
1795 | return !t.task ? 0 : -EINTR; | |
1796 | } | |
351b3f7a CE |
1797 | |
1798 | /** | |
1799 | * schedule_hrtimeout_range - sleep until timeout | |
1800 | * @expires: timeout value (ktime_t) | |
1801 | * @delta: slack in expires timeout (ktime_t) | |
1802 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | |
1803 | * | |
1804 | * Make the current task sleep until the given expiry time has | |
1805 | * elapsed. The routine will return immediately unless | |
1806 | * the current task state has been set (see set_current_state()). | |
1807 | * | |
1808 | * The @delta argument gives the kernel the freedom to schedule the | |
1809 | * actual wakeup to a time that is both power and performance friendly. | |
1810 | * The kernel give the normal best effort behavior for "@expires+@delta", | |
1811 | * but may decide to fire the timer earlier, but no earlier than @expires. | |
1812 | * | |
1813 | * You can set the task state as follows - | |
1814 | * | |
1815 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
1816 | * pass before the routine returns. | |
1817 | * | |
1818 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1819 | * delivered to the current task. | |
1820 | * | |
1821 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1822 | * routine returns. | |
1823 | * | |
1824 | * Returns 0 when the timer has expired otherwise -EINTR | |
1825 | */ | |
1826 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | |
1827 | const enum hrtimer_mode mode) | |
1828 | { | |
1829 | return schedule_hrtimeout_range_clock(expires, delta, mode, | |
1830 | CLOCK_MONOTONIC); | |
1831 | } | |
654c8e0b AV |
1832 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1833 | ||
1834 | /** | |
1835 | * schedule_hrtimeout - sleep until timeout | |
1836 | * @expires: timeout value (ktime_t) | |
1837 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | |
1838 | * | |
1839 | * Make the current task sleep until the given expiry time has | |
1840 | * elapsed. The routine will return immediately unless | |
1841 | * the current task state has been set (see set_current_state()). | |
1842 | * | |
1843 | * You can set the task state as follows - | |
1844 | * | |
1845 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | |
1846 | * pass before the routine returns. | |
1847 | * | |
1848 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | |
1849 | * delivered to the current task. | |
1850 | * | |
1851 | * The current task state is guaranteed to be TASK_RUNNING when this | |
1852 | * routine returns. | |
1853 | * | |
1854 | * Returns 0 when the timer has expired otherwise -EINTR | |
1855 | */ | |
1856 | int __sched schedule_hrtimeout(ktime_t *expires, | |
1857 | const enum hrtimer_mode mode) | |
1858 | { | |
1859 | return schedule_hrtimeout_range(expires, 0, mode); | |
1860 | } | |
7bb67439 | 1861 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |