]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * 2002-10-18 written by Jim Houston [email protected] | |
3 | * Copyright (C) 2002 by Concurrent Computer Corporation | |
4 | * Distributed under the GNU GPL license version 2. | |
5 | * | |
6 | * Modified by George Anzinger to reuse immediately and to use | |
7 | * find bit instructions. Also removed _irq on spinlocks. | |
8 | * | |
e15ae2dd | 9 | * Small id to pointer translation service. |
1da177e4 | 10 | * |
e15ae2dd | 11 | * It uses a radix tree like structure as a sparse array indexed |
1da177e4 | 12 | * by the id to obtain the pointer. The bitmap makes allocating |
e15ae2dd | 13 | * a new id quick. |
1da177e4 LT |
14 | * |
15 | * You call it to allocate an id (an int) an associate with that id a | |
16 | * pointer or what ever, we treat it as a (void *). You can pass this | |
17 | * id to a user for him to pass back at a later time. You then pass | |
18 | * that id to this code and it returns your pointer. | |
19 | ||
e15ae2dd | 20 | * You can release ids at any time. When all ids are released, most of |
1da177e4 | 21 | * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we |
e15ae2dd | 22 | * don't need to go to the memory "store" during an id allocate, just |
1da177e4 LT |
23 | * so you don't need to be too concerned about locking and conflicts |
24 | * with the slab allocator. | |
25 | */ | |
26 | ||
27 | #ifndef TEST // to test in user space... | |
28 | #include <linux/slab.h> | |
29 | #include <linux/init.h> | |
30 | #include <linux/module.h> | |
31 | #endif | |
5806f07c | 32 | #include <linux/err.h> |
1da177e4 LT |
33 | #include <linux/string.h> |
34 | #include <linux/idr.h> | |
35 | ||
e18b890b | 36 | static struct kmem_cache *idr_layer_cache; |
1da177e4 LT |
37 | |
38 | static struct idr_layer *alloc_layer(struct idr *idp) | |
39 | { | |
40 | struct idr_layer *p; | |
c259cc28 | 41 | unsigned long flags; |
1da177e4 | 42 | |
c259cc28 | 43 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
44 | if ((p = idp->id_free)) { |
45 | idp->id_free = p->ary[0]; | |
46 | idp->id_free_cnt--; | |
47 | p->ary[0] = NULL; | |
48 | } | |
c259cc28 | 49 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
50 | return(p); |
51 | } | |
52 | ||
1eec0056 SR |
53 | /* only called when idp->lock is held */ |
54 | static void __free_layer(struct idr *idp, struct idr_layer *p) | |
55 | { | |
56 | p->ary[0] = idp->id_free; | |
57 | idp->id_free = p; | |
58 | idp->id_free_cnt++; | |
59 | } | |
60 | ||
1da177e4 LT |
61 | static void free_layer(struct idr *idp, struct idr_layer *p) |
62 | { | |
c259cc28 RD |
63 | unsigned long flags; |
64 | ||
1da177e4 LT |
65 | /* |
66 | * Depends on the return element being zeroed. | |
67 | */ | |
c259cc28 | 68 | spin_lock_irqsave(&idp->lock, flags); |
1eec0056 | 69 | __free_layer(idp, p); |
c259cc28 | 70 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
71 | } |
72 | ||
e33ac8bd TH |
73 | static void idr_mark_full(struct idr_layer **pa, int id) |
74 | { | |
75 | struct idr_layer *p = pa[0]; | |
76 | int l = 0; | |
77 | ||
78 | __set_bit(id & IDR_MASK, &p->bitmap); | |
79 | /* | |
80 | * If this layer is full mark the bit in the layer above to | |
81 | * show that this part of the radix tree is full. This may | |
82 | * complete the layer above and require walking up the radix | |
83 | * tree. | |
84 | */ | |
85 | while (p->bitmap == IDR_FULL) { | |
86 | if (!(p = pa[++l])) | |
87 | break; | |
88 | id = id >> IDR_BITS; | |
89 | __set_bit((id & IDR_MASK), &p->bitmap); | |
90 | } | |
91 | } | |
92 | ||
1da177e4 LT |
93 | /** |
94 | * idr_pre_get - reserver resources for idr allocation | |
95 | * @idp: idr handle | |
96 | * @gfp_mask: memory allocation flags | |
97 | * | |
98 | * This function should be called prior to locking and calling the | |
99 | * following function. It preallocates enough memory to satisfy | |
100 | * the worst possible allocation. | |
101 | * | |
102 | * If the system is REALLY out of memory this function returns 0, | |
103 | * otherwise 1. | |
104 | */ | |
fd4f2df2 | 105 | int idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
1da177e4 LT |
106 | { |
107 | while (idp->id_free_cnt < IDR_FREE_MAX) { | |
108 | struct idr_layer *new; | |
109 | new = kmem_cache_alloc(idr_layer_cache, gfp_mask); | |
e15ae2dd | 110 | if (new == NULL) |
1da177e4 LT |
111 | return (0); |
112 | free_layer(idp, new); | |
113 | } | |
114 | return 1; | |
115 | } | |
116 | EXPORT_SYMBOL(idr_pre_get); | |
117 | ||
e33ac8bd | 118 | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa) |
1da177e4 LT |
119 | { |
120 | int n, m, sh; | |
121 | struct idr_layer *p, *new; | |
7aae6dd8 | 122 | int l, id, oid; |
5ba25331 | 123 | unsigned long bm; |
1da177e4 LT |
124 | |
125 | id = *starting_id; | |
7aae6dd8 | 126 | restart: |
1da177e4 LT |
127 | p = idp->top; |
128 | l = idp->layers; | |
129 | pa[l--] = NULL; | |
130 | while (1) { | |
131 | /* | |
132 | * We run around this while until we reach the leaf node... | |
133 | */ | |
134 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | |
135 | bm = ~p->bitmap; | |
136 | m = find_next_bit(&bm, IDR_SIZE, n); | |
137 | if (m == IDR_SIZE) { | |
138 | /* no space available go back to previous layer. */ | |
139 | l++; | |
7aae6dd8 | 140 | oid = id; |
e15ae2dd | 141 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
7aae6dd8 TH |
142 | |
143 | /* if already at the top layer, we need to grow */ | |
1da177e4 LT |
144 | if (!(p = pa[l])) { |
145 | *starting_id = id; | |
146 | return -2; | |
147 | } | |
7aae6dd8 TH |
148 | |
149 | /* If we need to go up one layer, continue the | |
150 | * loop; otherwise, restart from the top. | |
151 | */ | |
152 | sh = IDR_BITS * (l + 1); | |
153 | if (oid >> sh == id >> sh) | |
154 | continue; | |
155 | else | |
156 | goto restart; | |
1da177e4 LT |
157 | } |
158 | if (m != n) { | |
159 | sh = IDR_BITS*l; | |
160 | id = ((id >> sh) ^ n ^ m) << sh; | |
161 | } | |
162 | if ((id >= MAX_ID_BIT) || (id < 0)) | |
163 | return -3; | |
164 | if (l == 0) | |
165 | break; | |
166 | /* | |
167 | * Create the layer below if it is missing. | |
168 | */ | |
169 | if (!p->ary[m]) { | |
170 | if (!(new = alloc_layer(idp))) | |
171 | return -1; | |
172 | p->ary[m] = new; | |
173 | p->count++; | |
174 | } | |
175 | pa[l--] = p; | |
176 | p = p->ary[m]; | |
177 | } | |
e33ac8bd TH |
178 | |
179 | pa[l] = p; | |
180 | return id; | |
1da177e4 LT |
181 | } |
182 | ||
e33ac8bd TH |
183 | static int idr_get_empty_slot(struct idr *idp, int starting_id, |
184 | struct idr_layer **pa) | |
1da177e4 LT |
185 | { |
186 | struct idr_layer *p, *new; | |
187 | int layers, v, id; | |
c259cc28 | 188 | unsigned long flags; |
e15ae2dd | 189 | |
1da177e4 LT |
190 | id = starting_id; |
191 | build_up: | |
192 | p = idp->top; | |
193 | layers = idp->layers; | |
194 | if (unlikely(!p)) { | |
195 | if (!(p = alloc_layer(idp))) | |
196 | return -1; | |
197 | layers = 1; | |
198 | } | |
199 | /* | |
200 | * Add a new layer to the top of the tree if the requested | |
201 | * id is larger than the currently allocated space. | |
202 | */ | |
589777ea | 203 | while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) { |
1da177e4 LT |
204 | layers++; |
205 | if (!p->count) | |
206 | continue; | |
207 | if (!(new = alloc_layer(idp))) { | |
208 | /* | |
209 | * The allocation failed. If we built part of | |
210 | * the structure tear it down. | |
211 | */ | |
c259cc28 | 212 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
213 | for (new = p; p && p != idp->top; new = p) { |
214 | p = p->ary[0]; | |
215 | new->ary[0] = NULL; | |
216 | new->bitmap = new->count = 0; | |
1eec0056 | 217 | __free_layer(idp, new); |
1da177e4 | 218 | } |
c259cc28 | 219 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
220 | return -1; |
221 | } | |
222 | new->ary[0] = p; | |
223 | new->count = 1; | |
224 | if (p->bitmap == IDR_FULL) | |
225 | __set_bit(0, &new->bitmap); | |
226 | p = new; | |
227 | } | |
228 | idp->top = p; | |
229 | idp->layers = layers; | |
e33ac8bd | 230 | v = sub_alloc(idp, &id, pa); |
1da177e4 LT |
231 | if (v == -2) |
232 | goto build_up; | |
233 | return(v); | |
234 | } | |
235 | ||
e33ac8bd TH |
236 | static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) |
237 | { | |
238 | struct idr_layer *pa[MAX_LEVEL]; | |
239 | int id; | |
240 | ||
241 | id = idr_get_empty_slot(idp, starting_id, pa); | |
242 | if (id >= 0) { | |
243 | /* | |
244 | * Successfully found an empty slot. Install the user | |
245 | * pointer and mark the slot full. | |
246 | */ | |
247 | pa[0]->ary[id & IDR_MASK] = (struct idr_layer *)ptr; | |
248 | pa[0]->count++; | |
249 | idr_mark_full(pa, id); | |
250 | } | |
251 | ||
252 | return id; | |
253 | } | |
254 | ||
1da177e4 | 255 | /** |
7c657f2f | 256 | * idr_get_new_above - allocate new idr entry above or equal to a start id |
1da177e4 LT |
257 | * @idp: idr handle |
258 | * @ptr: pointer you want associated with the ide | |
259 | * @start_id: id to start search at | |
260 | * @id: pointer to the allocated handle | |
261 | * | |
262 | * This is the allocate id function. It should be called with any | |
263 | * required locks. | |
264 | * | |
265 | * If memory is required, it will return -EAGAIN, you should unlock | |
266 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
267 | * return -ENOSPC. | |
268 | * | |
269 | * @id returns a value in the range 0 ... 0x7fffffff | |
270 | */ | |
271 | int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) | |
272 | { | |
273 | int rv; | |
e15ae2dd | 274 | |
1da177e4 LT |
275 | rv = idr_get_new_above_int(idp, ptr, starting_id); |
276 | /* | |
277 | * This is a cheap hack until the IDR code can be fixed to | |
278 | * return proper error values. | |
279 | */ | |
280 | if (rv < 0) { | |
281 | if (rv == -1) | |
282 | return -EAGAIN; | |
283 | else /* Will be -3 */ | |
284 | return -ENOSPC; | |
285 | } | |
286 | *id = rv; | |
287 | return 0; | |
288 | } | |
289 | EXPORT_SYMBOL(idr_get_new_above); | |
290 | ||
291 | /** | |
292 | * idr_get_new - allocate new idr entry | |
293 | * @idp: idr handle | |
294 | * @ptr: pointer you want associated with the ide | |
295 | * @id: pointer to the allocated handle | |
296 | * | |
297 | * This is the allocate id function. It should be called with any | |
298 | * required locks. | |
299 | * | |
300 | * If memory is required, it will return -EAGAIN, you should unlock | |
301 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
302 | * return -ENOSPC. | |
303 | * | |
304 | * @id returns a value in the range 0 ... 0x7fffffff | |
305 | */ | |
306 | int idr_get_new(struct idr *idp, void *ptr, int *id) | |
307 | { | |
308 | int rv; | |
e15ae2dd | 309 | |
1da177e4 LT |
310 | rv = idr_get_new_above_int(idp, ptr, 0); |
311 | /* | |
312 | * This is a cheap hack until the IDR code can be fixed to | |
313 | * return proper error values. | |
314 | */ | |
315 | if (rv < 0) { | |
316 | if (rv == -1) | |
317 | return -EAGAIN; | |
318 | else /* Will be -3 */ | |
319 | return -ENOSPC; | |
320 | } | |
321 | *id = rv; | |
322 | return 0; | |
323 | } | |
324 | EXPORT_SYMBOL(idr_get_new); | |
325 | ||
326 | static void idr_remove_warning(int id) | |
327 | { | |
328 | printk("idr_remove called for id=%d which is not allocated.\n", id); | |
329 | dump_stack(); | |
330 | } | |
331 | ||
332 | static void sub_remove(struct idr *idp, int shift, int id) | |
333 | { | |
334 | struct idr_layer *p = idp->top; | |
335 | struct idr_layer **pa[MAX_LEVEL]; | |
336 | struct idr_layer ***paa = &pa[0]; | |
337 | int n; | |
338 | ||
339 | *paa = NULL; | |
340 | *++paa = &idp->top; | |
341 | ||
342 | while ((shift > 0) && p) { | |
343 | n = (id >> shift) & IDR_MASK; | |
344 | __clear_bit(n, &p->bitmap); | |
345 | *++paa = &p->ary[n]; | |
346 | p = p->ary[n]; | |
347 | shift -= IDR_BITS; | |
348 | } | |
349 | n = id & IDR_MASK; | |
350 | if (likely(p != NULL && test_bit(n, &p->bitmap))){ | |
351 | __clear_bit(n, &p->bitmap); | |
352 | p->ary[n] = NULL; | |
353 | while(*paa && ! --((**paa)->count)){ | |
354 | free_layer(idp, **paa); | |
355 | **paa-- = NULL; | |
356 | } | |
e15ae2dd | 357 | if (!*paa) |
1da177e4 | 358 | idp->layers = 0; |
e15ae2dd | 359 | } else |
1da177e4 | 360 | idr_remove_warning(id); |
1da177e4 LT |
361 | } |
362 | ||
363 | /** | |
364 | * idr_remove - remove the given id and free it's slot | |
72fd4a35 RD |
365 | * @idp: idr handle |
366 | * @id: unique key | |
1da177e4 LT |
367 | */ |
368 | void idr_remove(struct idr *idp, int id) | |
369 | { | |
370 | struct idr_layer *p; | |
371 | ||
372 | /* Mask off upper bits we don't use for the search. */ | |
373 | id &= MAX_ID_MASK; | |
374 | ||
375 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); | |
e15ae2dd JJ |
376 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
377 | idp->top->ary[0]) { // We can drop a layer | |
1da177e4 LT |
378 | |
379 | p = idp->top->ary[0]; | |
380 | idp->top->bitmap = idp->top->count = 0; | |
381 | free_layer(idp, idp->top); | |
382 | idp->top = p; | |
383 | --idp->layers; | |
384 | } | |
385 | while (idp->id_free_cnt >= IDR_FREE_MAX) { | |
1da177e4 LT |
386 | p = alloc_layer(idp); |
387 | kmem_cache_free(idr_layer_cache, p); | |
1da177e4 | 388 | } |
af8e2a4c | 389 | return; |
1da177e4 LT |
390 | } |
391 | EXPORT_SYMBOL(idr_remove); | |
392 | ||
23936cc0 KH |
393 | /** |
394 | * idr_remove_all - remove all ids from the given idr tree | |
395 | * @idp: idr handle | |
396 | * | |
397 | * idr_destroy() only frees up unused, cached idp_layers, but this | |
398 | * function will remove all id mappings and leave all idp_layers | |
399 | * unused. | |
400 | * | |
401 | * A typical clean-up sequence for objects stored in an idr tree, will | |
402 | * use idr_for_each() to free all objects, if necessay, then | |
403 | * idr_remove_all() to remove all ids, and idr_destroy() to free | |
404 | * up the cached idr_layers. | |
405 | */ | |
406 | void idr_remove_all(struct idr *idp) | |
407 | { | |
6ace06dc | 408 | int n, id, max; |
23936cc0 KH |
409 | struct idr_layer *p; |
410 | struct idr_layer *pa[MAX_LEVEL]; | |
411 | struct idr_layer **paa = &pa[0]; | |
412 | ||
413 | n = idp->layers * IDR_BITS; | |
414 | p = idp->top; | |
415 | max = 1 << n; | |
416 | ||
417 | id = 0; | |
6ace06dc | 418 | while (id < max) { |
23936cc0 KH |
419 | while (n > IDR_BITS && p) { |
420 | n -= IDR_BITS; | |
421 | *paa++ = p; | |
422 | p = p->ary[(id >> n) & IDR_MASK]; | |
423 | } | |
424 | ||
425 | id += 1 << n; | |
426 | while (n < fls(id)) { | |
427 | if (p) { | |
428 | memset(p, 0, sizeof *p); | |
429 | free_layer(idp, p); | |
430 | } | |
431 | n += IDR_BITS; | |
432 | p = *--paa; | |
433 | } | |
434 | } | |
435 | idp->top = NULL; | |
436 | idp->layers = 0; | |
437 | } | |
438 | EXPORT_SYMBOL(idr_remove_all); | |
439 | ||
8d3b3591 AM |
440 | /** |
441 | * idr_destroy - release all cached layers within an idr tree | |
442 | * idp: idr handle | |
443 | */ | |
444 | void idr_destroy(struct idr *idp) | |
445 | { | |
446 | while (idp->id_free_cnt) { | |
447 | struct idr_layer *p = alloc_layer(idp); | |
448 | kmem_cache_free(idr_layer_cache, p); | |
449 | } | |
450 | } | |
451 | EXPORT_SYMBOL(idr_destroy); | |
452 | ||
1da177e4 LT |
453 | /** |
454 | * idr_find - return pointer for given id | |
455 | * @idp: idr handle | |
456 | * @id: lookup key | |
457 | * | |
458 | * Return the pointer given the id it has been registered with. A %NULL | |
459 | * return indicates that @id is not valid or you passed %NULL in | |
460 | * idr_get_new(). | |
461 | * | |
462 | * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). | |
463 | */ | |
464 | void *idr_find(struct idr *idp, int id) | |
465 | { | |
466 | int n; | |
467 | struct idr_layer *p; | |
468 | ||
469 | n = idp->layers * IDR_BITS; | |
470 | p = idp->top; | |
471 | ||
472 | /* Mask off upper bits we don't use for the search. */ | |
473 | id &= MAX_ID_MASK; | |
474 | ||
475 | if (id >= (1 << n)) | |
476 | return NULL; | |
477 | ||
478 | while (n > 0 && p) { | |
479 | n -= IDR_BITS; | |
480 | p = p->ary[(id >> n) & IDR_MASK]; | |
481 | } | |
482 | return((void *)p); | |
483 | } | |
484 | EXPORT_SYMBOL(idr_find); | |
485 | ||
96d7fa42 KH |
486 | /** |
487 | * idr_for_each - iterate through all stored pointers | |
488 | * @idp: idr handle | |
489 | * @fn: function to be called for each pointer | |
490 | * @data: data passed back to callback function | |
491 | * | |
492 | * Iterate over the pointers registered with the given idr. The | |
493 | * callback function will be called for each pointer currently | |
494 | * registered, passing the id, the pointer and the data pointer passed | |
495 | * to this function. It is not safe to modify the idr tree while in | |
496 | * the callback, so functions such as idr_get_new and idr_remove are | |
497 | * not allowed. | |
498 | * | |
499 | * We check the return of @fn each time. If it returns anything other | |
500 | * than 0, we break out and return that value. | |
501 | * | |
502 | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | |
503 | */ | |
504 | int idr_for_each(struct idr *idp, | |
505 | int (*fn)(int id, void *p, void *data), void *data) | |
506 | { | |
507 | int n, id, max, error = 0; | |
508 | struct idr_layer *p; | |
509 | struct idr_layer *pa[MAX_LEVEL]; | |
510 | struct idr_layer **paa = &pa[0]; | |
511 | ||
512 | n = idp->layers * IDR_BITS; | |
513 | p = idp->top; | |
514 | max = 1 << n; | |
515 | ||
516 | id = 0; | |
517 | while (id < max) { | |
518 | while (n > 0 && p) { | |
519 | n -= IDR_BITS; | |
520 | *paa++ = p; | |
521 | p = p->ary[(id >> n) & IDR_MASK]; | |
522 | } | |
523 | ||
524 | if (p) { | |
525 | error = fn(id, (void *)p, data); | |
526 | if (error) | |
527 | break; | |
528 | } | |
529 | ||
530 | id += 1 << n; | |
531 | while (n < fls(id)) { | |
532 | n += IDR_BITS; | |
533 | p = *--paa; | |
534 | } | |
535 | } | |
536 | ||
537 | return error; | |
538 | } | |
539 | EXPORT_SYMBOL(idr_for_each); | |
540 | ||
5806f07c JM |
541 | /** |
542 | * idr_replace - replace pointer for given id | |
543 | * @idp: idr handle | |
544 | * @ptr: pointer you want associated with the id | |
545 | * @id: lookup key | |
546 | * | |
547 | * Replace the pointer registered with an id and return the old value. | |
548 | * A -ENOENT return indicates that @id was not found. | |
549 | * A -EINVAL return indicates that @id was not within valid constraints. | |
550 | * | |
551 | * The caller must serialize vs idr_find(), idr_get_new(), and idr_remove(). | |
552 | */ | |
553 | void *idr_replace(struct idr *idp, void *ptr, int id) | |
554 | { | |
555 | int n; | |
556 | struct idr_layer *p, *old_p; | |
557 | ||
558 | n = idp->layers * IDR_BITS; | |
559 | p = idp->top; | |
560 | ||
561 | id &= MAX_ID_MASK; | |
562 | ||
563 | if (id >= (1 << n)) | |
564 | return ERR_PTR(-EINVAL); | |
565 | ||
566 | n -= IDR_BITS; | |
567 | while ((n > 0) && p) { | |
568 | p = p->ary[(id >> n) & IDR_MASK]; | |
569 | n -= IDR_BITS; | |
570 | } | |
571 | ||
572 | n = id & IDR_MASK; | |
573 | if (unlikely(p == NULL || !test_bit(n, &p->bitmap))) | |
574 | return ERR_PTR(-ENOENT); | |
575 | ||
576 | old_p = p->ary[n]; | |
577 | p->ary[n] = ptr; | |
578 | ||
579 | return old_p; | |
580 | } | |
581 | EXPORT_SYMBOL(idr_replace); | |
582 | ||
4ba9b9d0 | 583 | static void idr_cache_ctor(struct kmem_cache *idr_layer_cache, void *idr_layer) |
1da177e4 LT |
584 | { |
585 | memset(idr_layer, 0, sizeof(struct idr_layer)); | |
586 | } | |
587 | ||
199f0ca5 | 588 | void __init idr_init_cache(void) |
1da177e4 | 589 | { |
199f0ca5 AM |
590 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
591 | sizeof(struct idr_layer), 0, SLAB_PANIC, | |
592 | idr_cache_ctor); | |
1da177e4 LT |
593 | } |
594 | ||
595 | /** | |
596 | * idr_init - initialize idr handle | |
597 | * @idp: idr handle | |
598 | * | |
599 | * This function is use to set up the handle (@idp) that you will pass | |
600 | * to the rest of the functions. | |
601 | */ | |
602 | void idr_init(struct idr *idp) | |
603 | { | |
1da177e4 LT |
604 | memset(idp, 0, sizeof(struct idr)); |
605 | spin_lock_init(&idp->lock); | |
606 | } | |
607 | EXPORT_SYMBOL(idr_init); | |
72dba584 TH |
608 | |
609 | ||
610 | /* | |
611 | * IDA - IDR based ID allocator | |
612 | * | |
613 | * this is id allocator without id -> pointer translation. Memory | |
614 | * usage is much lower than full blown idr because each id only | |
615 | * occupies a bit. ida uses a custom leaf node which contains | |
616 | * IDA_BITMAP_BITS slots. | |
617 | * | |
618 | * 2007-04-25 written by Tejun Heo <[email protected]> | |
619 | */ | |
620 | ||
621 | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | |
622 | { | |
623 | unsigned long flags; | |
624 | ||
625 | if (!ida->free_bitmap) { | |
626 | spin_lock_irqsave(&ida->idr.lock, flags); | |
627 | if (!ida->free_bitmap) { | |
628 | ida->free_bitmap = bitmap; | |
629 | bitmap = NULL; | |
630 | } | |
631 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
632 | } | |
633 | ||
634 | kfree(bitmap); | |
635 | } | |
636 | ||
637 | /** | |
638 | * ida_pre_get - reserve resources for ida allocation | |
639 | * @ida: ida handle | |
640 | * @gfp_mask: memory allocation flag | |
641 | * | |
642 | * This function should be called prior to locking and calling the | |
643 | * following function. It preallocates enough memory to satisfy the | |
644 | * worst possible allocation. | |
645 | * | |
646 | * If the system is REALLY out of memory this function returns 0, | |
647 | * otherwise 1. | |
648 | */ | |
649 | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | |
650 | { | |
651 | /* allocate idr_layers */ | |
652 | if (!idr_pre_get(&ida->idr, gfp_mask)) | |
653 | return 0; | |
654 | ||
655 | /* allocate free_bitmap */ | |
656 | if (!ida->free_bitmap) { | |
657 | struct ida_bitmap *bitmap; | |
658 | ||
659 | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | |
660 | if (!bitmap) | |
661 | return 0; | |
662 | ||
663 | free_bitmap(ida, bitmap); | |
664 | } | |
665 | ||
666 | return 1; | |
667 | } | |
668 | EXPORT_SYMBOL(ida_pre_get); | |
669 | ||
670 | /** | |
671 | * ida_get_new_above - allocate new ID above or equal to a start id | |
672 | * @ida: ida handle | |
673 | * @staring_id: id to start search at | |
674 | * @p_id: pointer to the allocated handle | |
675 | * | |
676 | * Allocate new ID above or equal to @ida. It should be called with | |
677 | * any required locks. | |
678 | * | |
679 | * If memory is required, it will return -EAGAIN, you should unlock | |
680 | * and go back to the ida_pre_get() call. If the ida is full, it will | |
681 | * return -ENOSPC. | |
682 | * | |
683 | * @p_id returns a value in the range 0 ... 0x7fffffff. | |
684 | */ | |
685 | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | |
686 | { | |
687 | struct idr_layer *pa[MAX_LEVEL]; | |
688 | struct ida_bitmap *bitmap; | |
689 | unsigned long flags; | |
690 | int idr_id = starting_id / IDA_BITMAP_BITS; | |
691 | int offset = starting_id % IDA_BITMAP_BITS; | |
692 | int t, id; | |
693 | ||
694 | restart: | |
695 | /* get vacant slot */ | |
696 | t = idr_get_empty_slot(&ida->idr, idr_id, pa); | |
697 | if (t < 0) { | |
698 | if (t == -1) | |
699 | return -EAGAIN; | |
700 | else /* will be -3 */ | |
701 | return -ENOSPC; | |
702 | } | |
703 | ||
704 | if (t * IDA_BITMAP_BITS >= MAX_ID_BIT) | |
705 | return -ENOSPC; | |
706 | ||
707 | if (t != idr_id) | |
708 | offset = 0; | |
709 | idr_id = t; | |
710 | ||
711 | /* if bitmap isn't there, create a new one */ | |
712 | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | |
713 | if (!bitmap) { | |
714 | spin_lock_irqsave(&ida->idr.lock, flags); | |
715 | bitmap = ida->free_bitmap; | |
716 | ida->free_bitmap = NULL; | |
717 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
718 | ||
719 | if (!bitmap) | |
720 | return -EAGAIN; | |
721 | ||
722 | memset(bitmap, 0, sizeof(struct ida_bitmap)); | |
723 | pa[0]->ary[idr_id & IDR_MASK] = (void *)bitmap; | |
724 | pa[0]->count++; | |
725 | } | |
726 | ||
727 | /* lookup for empty slot */ | |
728 | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | |
729 | if (t == IDA_BITMAP_BITS) { | |
730 | /* no empty slot after offset, continue to the next chunk */ | |
731 | idr_id++; | |
732 | offset = 0; | |
733 | goto restart; | |
734 | } | |
735 | ||
736 | id = idr_id * IDA_BITMAP_BITS + t; | |
737 | if (id >= MAX_ID_BIT) | |
738 | return -ENOSPC; | |
739 | ||
740 | __set_bit(t, bitmap->bitmap); | |
741 | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | |
742 | idr_mark_full(pa, idr_id); | |
743 | ||
744 | *p_id = id; | |
745 | ||
746 | /* Each leaf node can handle nearly a thousand slots and the | |
747 | * whole idea of ida is to have small memory foot print. | |
748 | * Throw away extra resources one by one after each successful | |
749 | * allocation. | |
750 | */ | |
751 | if (ida->idr.id_free_cnt || ida->free_bitmap) { | |
752 | struct idr_layer *p = alloc_layer(&ida->idr); | |
753 | if (p) | |
754 | kmem_cache_free(idr_layer_cache, p); | |
755 | } | |
756 | ||
757 | return 0; | |
758 | } | |
759 | EXPORT_SYMBOL(ida_get_new_above); | |
760 | ||
761 | /** | |
762 | * ida_get_new - allocate new ID | |
763 | * @ida: idr handle | |
764 | * @p_id: pointer to the allocated handle | |
765 | * | |
766 | * Allocate new ID. It should be called with any required locks. | |
767 | * | |
768 | * If memory is required, it will return -EAGAIN, you should unlock | |
769 | * and go back to the idr_pre_get() call. If the idr is full, it will | |
770 | * return -ENOSPC. | |
771 | * | |
772 | * @id returns a value in the range 0 ... 0x7fffffff. | |
773 | */ | |
774 | int ida_get_new(struct ida *ida, int *p_id) | |
775 | { | |
776 | return ida_get_new_above(ida, 0, p_id); | |
777 | } | |
778 | EXPORT_SYMBOL(ida_get_new); | |
779 | ||
780 | /** | |
781 | * ida_remove - remove the given ID | |
782 | * @ida: ida handle | |
783 | * @id: ID to free | |
784 | */ | |
785 | void ida_remove(struct ida *ida, int id) | |
786 | { | |
787 | struct idr_layer *p = ida->idr.top; | |
788 | int shift = (ida->idr.layers - 1) * IDR_BITS; | |
789 | int idr_id = id / IDA_BITMAP_BITS; | |
790 | int offset = id % IDA_BITMAP_BITS; | |
791 | int n; | |
792 | struct ida_bitmap *bitmap; | |
793 | ||
794 | /* clear full bits while looking up the leaf idr_layer */ | |
795 | while ((shift > 0) && p) { | |
796 | n = (idr_id >> shift) & IDR_MASK; | |
797 | __clear_bit(n, &p->bitmap); | |
798 | p = p->ary[n]; | |
799 | shift -= IDR_BITS; | |
800 | } | |
801 | ||
802 | if (p == NULL) | |
803 | goto err; | |
804 | ||
805 | n = idr_id & IDR_MASK; | |
806 | __clear_bit(n, &p->bitmap); | |
807 | ||
808 | bitmap = (void *)p->ary[n]; | |
809 | if (!test_bit(offset, bitmap->bitmap)) | |
810 | goto err; | |
811 | ||
812 | /* update bitmap and remove it if empty */ | |
813 | __clear_bit(offset, bitmap->bitmap); | |
814 | if (--bitmap->nr_busy == 0) { | |
815 | __set_bit(n, &p->bitmap); /* to please idr_remove() */ | |
816 | idr_remove(&ida->idr, idr_id); | |
817 | free_bitmap(ida, bitmap); | |
818 | } | |
819 | ||
820 | return; | |
821 | ||
822 | err: | |
823 | printk(KERN_WARNING | |
824 | "ida_remove called for id=%d which is not allocated.\n", id); | |
825 | } | |
826 | EXPORT_SYMBOL(ida_remove); | |
827 | ||
828 | /** | |
829 | * ida_destroy - release all cached layers within an ida tree | |
830 | * ida: ida handle | |
831 | */ | |
832 | void ida_destroy(struct ida *ida) | |
833 | { | |
834 | idr_destroy(&ida->idr); | |
835 | kfree(ida->free_bitmap); | |
836 | } | |
837 | EXPORT_SYMBOL(ida_destroy); | |
838 | ||
839 | /** | |
840 | * ida_init - initialize ida handle | |
841 | * @ida: ida handle | |
842 | * | |
843 | * This function is use to set up the handle (@ida) that you will pass | |
844 | * to the rest of the functions. | |
845 | */ | |
846 | void ida_init(struct ida *ida) | |
847 | { | |
848 | memset(ida, 0, sizeof(struct ida)); | |
849 | idr_init(&ida->idr); | |
850 | ||
851 | } | |
852 | EXPORT_SYMBOL(ida_init); |