]>
Commit | Line | Data |
---|---|---|
2025cf9e | 1 | // SPDX-License-Identifier: GPL-2.0-only |
d475c634 MW |
2 | /* |
3 | * fs/dax.c - Direct Access filesystem code | |
4 | * Copyright (c) 2013-2014 Intel Corporation | |
5 | * Author: Matthew Wilcox <[email protected]> | |
6 | * Author: Ross Zwisler <[email protected]> | |
d475c634 MW |
7 | */ |
8 | ||
9 | #include <linux/atomic.h> | |
10 | #include <linux/blkdev.h> | |
11 | #include <linux/buffer_head.h> | |
d77e92e2 | 12 | #include <linux/dax.h> |
d475c634 MW |
13 | #include <linux/fs.h> |
14 | #include <linux/genhd.h> | |
f7ca90b1 MW |
15 | #include <linux/highmem.h> |
16 | #include <linux/memcontrol.h> | |
17 | #include <linux/mm.h> | |
d475c634 | 18 | #include <linux/mutex.h> |
9973c98e | 19 | #include <linux/pagevec.h> |
289c6aed | 20 | #include <linux/sched.h> |
f361bf4a | 21 | #include <linux/sched/signal.h> |
d475c634 | 22 | #include <linux/uio.h> |
f7ca90b1 | 23 | #include <linux/vmstat.h> |
34c0fd54 | 24 | #include <linux/pfn_t.h> |
0e749e54 | 25 | #include <linux/sizes.h> |
4b4bb46d | 26 | #include <linux/mmu_notifier.h> |
a254e568 | 27 | #include <linux/iomap.h> |
11cf9d86 | 28 | #include <asm/pgalloc.h> |
d475c634 | 29 | |
282a8e03 RZ |
30 | #define CREATE_TRACE_POINTS |
31 | #include <trace/events/fs_dax.h> | |
32 | ||
cfc93c6c MW |
33 | static inline unsigned int pe_order(enum page_entry_size pe_size) |
34 | { | |
35 | if (pe_size == PE_SIZE_PTE) | |
36 | return PAGE_SHIFT - PAGE_SHIFT; | |
37 | if (pe_size == PE_SIZE_PMD) | |
38 | return PMD_SHIFT - PAGE_SHIFT; | |
39 | if (pe_size == PE_SIZE_PUD) | |
40 | return PUD_SHIFT - PAGE_SHIFT; | |
41 | return ~0; | |
42 | } | |
43 | ||
ac401cc7 JK |
44 | /* We choose 4096 entries - same as per-zone page wait tables */ |
45 | #define DAX_WAIT_TABLE_BITS 12 | |
46 | #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) | |
47 | ||
917f3452 RZ |
48 | /* The 'colour' (ie low bits) within a PMD of a page offset. */ |
49 | #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) | |
977fbdcd | 50 | #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) |
917f3452 | 51 | |
cfc93c6c MW |
52 | /* The order of a PMD entry */ |
53 | #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) | |
54 | ||
ce95ab0f | 55 | static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; |
ac401cc7 JK |
56 | |
57 | static int __init init_dax_wait_table(void) | |
58 | { | |
59 | int i; | |
60 | ||
61 | for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) | |
62 | init_waitqueue_head(wait_table + i); | |
63 | return 0; | |
64 | } | |
65 | fs_initcall(init_dax_wait_table); | |
66 | ||
527b19d0 | 67 | /* |
3159f943 MW |
68 | * DAX pagecache entries use XArray value entries so they can't be mistaken |
69 | * for pages. We use one bit for locking, one bit for the entry size (PMD) | |
70 | * and two more to tell us if the entry is a zero page or an empty entry that | |
71 | * is just used for locking. In total four special bits. | |
527b19d0 RZ |
72 | * |
73 | * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE | |
74 | * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem | |
75 | * block allocation. | |
76 | */ | |
3159f943 MW |
77 | #define DAX_SHIFT (4) |
78 | #define DAX_LOCKED (1UL << 0) | |
79 | #define DAX_PMD (1UL << 1) | |
80 | #define DAX_ZERO_PAGE (1UL << 2) | |
81 | #define DAX_EMPTY (1UL << 3) | |
527b19d0 | 82 | |
a77d19f4 | 83 | static unsigned long dax_to_pfn(void *entry) |
527b19d0 | 84 | { |
3159f943 | 85 | return xa_to_value(entry) >> DAX_SHIFT; |
527b19d0 RZ |
86 | } |
87 | ||
9f32d221 MW |
88 | static void *dax_make_entry(pfn_t pfn, unsigned long flags) |
89 | { | |
90 | return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); | |
91 | } | |
92 | ||
cfc93c6c MW |
93 | static bool dax_is_locked(void *entry) |
94 | { | |
95 | return xa_to_value(entry) & DAX_LOCKED; | |
96 | } | |
97 | ||
a77d19f4 | 98 | static unsigned int dax_entry_order(void *entry) |
527b19d0 | 99 | { |
3159f943 | 100 | if (xa_to_value(entry) & DAX_PMD) |
cfc93c6c | 101 | return PMD_ORDER; |
527b19d0 RZ |
102 | return 0; |
103 | } | |
104 | ||
fda490d3 | 105 | static unsigned long dax_is_pmd_entry(void *entry) |
d1a5f2b4 | 106 | { |
3159f943 | 107 | return xa_to_value(entry) & DAX_PMD; |
d1a5f2b4 DW |
108 | } |
109 | ||
fda490d3 | 110 | static bool dax_is_pte_entry(void *entry) |
d475c634 | 111 | { |
3159f943 | 112 | return !(xa_to_value(entry) & DAX_PMD); |
d475c634 MW |
113 | } |
114 | ||
642261ac | 115 | static int dax_is_zero_entry(void *entry) |
d475c634 | 116 | { |
3159f943 | 117 | return xa_to_value(entry) & DAX_ZERO_PAGE; |
d475c634 MW |
118 | } |
119 | ||
642261ac | 120 | static int dax_is_empty_entry(void *entry) |
b2e0d162 | 121 | { |
3159f943 | 122 | return xa_to_value(entry) & DAX_EMPTY; |
b2e0d162 DW |
123 | } |
124 | ||
23c84eb7 MWO |
125 | /* |
126 | * true if the entry that was found is of a smaller order than the entry | |
127 | * we were looking for | |
128 | */ | |
129 | static bool dax_is_conflict(void *entry) | |
130 | { | |
131 | return entry == XA_RETRY_ENTRY; | |
132 | } | |
133 | ||
ac401cc7 | 134 | /* |
a77d19f4 | 135 | * DAX page cache entry locking |
ac401cc7 JK |
136 | */ |
137 | struct exceptional_entry_key { | |
ec4907ff | 138 | struct xarray *xa; |
63e95b5c | 139 | pgoff_t entry_start; |
ac401cc7 JK |
140 | }; |
141 | ||
142 | struct wait_exceptional_entry_queue { | |
ac6424b9 | 143 | wait_queue_entry_t wait; |
ac401cc7 JK |
144 | struct exceptional_entry_key key; |
145 | }; | |
146 | ||
698ab77a VG |
147 | /** |
148 | * enum dax_wake_mode: waitqueue wakeup behaviour | |
149 | * @WAKE_ALL: wake all waiters in the waitqueue | |
150 | * @WAKE_NEXT: wake only the first waiter in the waitqueue | |
151 | */ | |
152 | enum dax_wake_mode { | |
153 | WAKE_ALL, | |
154 | WAKE_NEXT, | |
155 | }; | |
156 | ||
b15cd800 MW |
157 | static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, |
158 | void *entry, struct exceptional_entry_key *key) | |
63e95b5c RZ |
159 | { |
160 | unsigned long hash; | |
b15cd800 | 161 | unsigned long index = xas->xa_index; |
63e95b5c RZ |
162 | |
163 | /* | |
164 | * If 'entry' is a PMD, align the 'index' that we use for the wait | |
165 | * queue to the start of that PMD. This ensures that all offsets in | |
166 | * the range covered by the PMD map to the same bit lock. | |
167 | */ | |
642261ac | 168 | if (dax_is_pmd_entry(entry)) |
917f3452 | 169 | index &= ~PG_PMD_COLOUR; |
b15cd800 | 170 | key->xa = xas->xa; |
63e95b5c RZ |
171 | key->entry_start = index; |
172 | ||
b15cd800 | 173 | hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); |
63e95b5c RZ |
174 | return wait_table + hash; |
175 | } | |
176 | ||
ec4907ff MW |
177 | static int wake_exceptional_entry_func(wait_queue_entry_t *wait, |
178 | unsigned int mode, int sync, void *keyp) | |
ac401cc7 JK |
179 | { |
180 | struct exceptional_entry_key *key = keyp; | |
181 | struct wait_exceptional_entry_queue *ewait = | |
182 | container_of(wait, struct wait_exceptional_entry_queue, wait); | |
183 | ||
ec4907ff | 184 | if (key->xa != ewait->key.xa || |
63e95b5c | 185 | key->entry_start != ewait->key.entry_start) |
ac401cc7 JK |
186 | return 0; |
187 | return autoremove_wake_function(wait, mode, sync, NULL); | |
188 | } | |
189 | ||
e30331ff | 190 | /* |
b93b0163 MW |
191 | * @entry may no longer be the entry at the index in the mapping. |
192 | * The important information it's conveying is whether the entry at | |
193 | * this index used to be a PMD entry. | |
e30331ff | 194 | */ |
698ab77a VG |
195 | static void dax_wake_entry(struct xa_state *xas, void *entry, |
196 | enum dax_wake_mode mode) | |
e30331ff RZ |
197 | { |
198 | struct exceptional_entry_key key; | |
199 | wait_queue_head_t *wq; | |
200 | ||
b15cd800 | 201 | wq = dax_entry_waitqueue(xas, entry, &key); |
e30331ff RZ |
202 | |
203 | /* | |
204 | * Checking for locked entry and prepare_to_wait_exclusive() happens | |
b93b0163 | 205 | * under the i_pages lock, ditto for entry handling in our callers. |
e30331ff RZ |
206 | * So at this point all tasks that could have seen our entry locked |
207 | * must be in the waitqueue and the following check will see them. | |
208 | */ | |
209 | if (waitqueue_active(wq)) | |
698ab77a | 210 | __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); |
e30331ff RZ |
211 | } |
212 | ||
cfc93c6c MW |
213 | /* |
214 | * Look up entry in page cache, wait for it to become unlocked if it | |
215 | * is a DAX entry and return it. The caller must subsequently call | |
216 | * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() | |
23c84eb7 MWO |
217 | * if it did. The entry returned may have a larger order than @order. |
218 | * If @order is larger than the order of the entry found in i_pages, this | |
219 | * function returns a dax_is_conflict entry. | |
cfc93c6c MW |
220 | * |
221 | * Must be called with the i_pages lock held. | |
222 | */ | |
23c84eb7 | 223 | static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) |
cfc93c6c MW |
224 | { |
225 | void *entry; | |
226 | struct wait_exceptional_entry_queue ewait; | |
227 | wait_queue_head_t *wq; | |
228 | ||
229 | init_wait(&ewait.wait); | |
230 | ewait.wait.func = wake_exceptional_entry_func; | |
231 | ||
232 | for (;;) { | |
0e40de03 | 233 | entry = xas_find_conflict(xas); |
6370740e DW |
234 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) |
235 | return entry; | |
23c84eb7 MWO |
236 | if (dax_entry_order(entry) < order) |
237 | return XA_RETRY_ENTRY; | |
6370740e | 238 | if (!dax_is_locked(entry)) |
cfc93c6c MW |
239 | return entry; |
240 | ||
b15cd800 | 241 | wq = dax_entry_waitqueue(xas, entry, &ewait.key); |
cfc93c6c MW |
242 | prepare_to_wait_exclusive(wq, &ewait.wait, |
243 | TASK_UNINTERRUPTIBLE); | |
244 | xas_unlock_irq(xas); | |
245 | xas_reset(xas); | |
246 | schedule(); | |
247 | finish_wait(wq, &ewait.wait); | |
248 | xas_lock_irq(xas); | |
249 | } | |
250 | } | |
251 | ||
55e56f06 MW |
252 | /* |
253 | * The only thing keeping the address space around is the i_pages lock | |
254 | * (it's cycled in clear_inode() after removing the entries from i_pages) | |
255 | * After we call xas_unlock_irq(), we cannot touch xas->xa. | |
256 | */ | |
257 | static void wait_entry_unlocked(struct xa_state *xas, void *entry) | |
258 | { | |
259 | struct wait_exceptional_entry_queue ewait; | |
260 | wait_queue_head_t *wq; | |
261 | ||
262 | init_wait(&ewait.wait); | |
263 | ewait.wait.func = wake_exceptional_entry_func; | |
264 | ||
265 | wq = dax_entry_waitqueue(xas, entry, &ewait.key); | |
d8a70641 DW |
266 | /* |
267 | * Unlike get_unlocked_entry() there is no guarantee that this | |
268 | * path ever successfully retrieves an unlocked entry before an | |
269 | * inode dies. Perform a non-exclusive wait in case this path | |
270 | * never successfully performs its own wake up. | |
271 | */ | |
272 | prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); | |
55e56f06 MW |
273 | xas_unlock_irq(xas); |
274 | schedule(); | |
275 | finish_wait(wq, &ewait.wait); | |
55e56f06 MW |
276 | } |
277 | ||
4c3d043d VG |
278 | static void put_unlocked_entry(struct xa_state *xas, void *entry, |
279 | enum dax_wake_mode mode) | |
cfc93c6c | 280 | { |
61c30c98 | 281 | if (entry && !dax_is_conflict(entry)) |
4c3d043d | 282 | dax_wake_entry(xas, entry, mode); |
cfc93c6c MW |
283 | } |
284 | ||
285 | /* | |
286 | * We used the xa_state to get the entry, but then we locked the entry and | |
287 | * dropped the xa_lock, so we know the xa_state is stale and must be reset | |
288 | * before use. | |
289 | */ | |
290 | static void dax_unlock_entry(struct xa_state *xas, void *entry) | |
291 | { | |
292 | void *old; | |
293 | ||
7ae2ea7d | 294 | BUG_ON(dax_is_locked(entry)); |
cfc93c6c MW |
295 | xas_reset(xas); |
296 | xas_lock_irq(xas); | |
297 | old = xas_store(xas, entry); | |
298 | xas_unlock_irq(xas); | |
299 | BUG_ON(!dax_is_locked(old)); | |
698ab77a | 300 | dax_wake_entry(xas, entry, WAKE_NEXT); |
cfc93c6c MW |
301 | } |
302 | ||
303 | /* | |
304 | * Return: The entry stored at this location before it was locked. | |
305 | */ | |
306 | static void *dax_lock_entry(struct xa_state *xas, void *entry) | |
307 | { | |
308 | unsigned long v = xa_to_value(entry); | |
309 | return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); | |
310 | } | |
311 | ||
d2c997c0 DW |
312 | static unsigned long dax_entry_size(void *entry) |
313 | { | |
314 | if (dax_is_zero_entry(entry)) | |
315 | return 0; | |
316 | else if (dax_is_empty_entry(entry)) | |
317 | return 0; | |
318 | else if (dax_is_pmd_entry(entry)) | |
319 | return PMD_SIZE; | |
320 | else | |
321 | return PAGE_SIZE; | |
322 | } | |
323 | ||
a77d19f4 | 324 | static unsigned long dax_end_pfn(void *entry) |
d2c997c0 | 325 | { |
a77d19f4 | 326 | return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; |
d2c997c0 DW |
327 | } |
328 | ||
329 | /* | |
330 | * Iterate through all mapped pfns represented by an entry, i.e. skip | |
331 | * 'empty' and 'zero' entries. | |
332 | */ | |
333 | #define for_each_mapped_pfn(entry, pfn) \ | |
a77d19f4 MW |
334 | for (pfn = dax_to_pfn(entry); \ |
335 | pfn < dax_end_pfn(entry); pfn++) | |
d2c997c0 | 336 | |
73449daf DW |
337 | /* |
338 | * TODO: for reflink+dax we need a way to associate a single page with | |
339 | * multiple address_space instances at different linear_page_index() | |
340 | * offsets. | |
341 | */ | |
342 | static void dax_associate_entry(void *entry, struct address_space *mapping, | |
343 | struct vm_area_struct *vma, unsigned long address) | |
d2c997c0 | 344 | { |
73449daf DW |
345 | unsigned long size = dax_entry_size(entry), pfn, index; |
346 | int i = 0; | |
d2c997c0 DW |
347 | |
348 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
349 | return; | |
350 | ||
73449daf | 351 | index = linear_page_index(vma, address & ~(size - 1)); |
d2c997c0 DW |
352 | for_each_mapped_pfn(entry, pfn) { |
353 | struct page *page = pfn_to_page(pfn); | |
354 | ||
355 | WARN_ON_ONCE(page->mapping); | |
356 | page->mapping = mapping; | |
73449daf | 357 | page->index = index + i++; |
d2c997c0 DW |
358 | } |
359 | } | |
360 | ||
361 | static void dax_disassociate_entry(void *entry, struct address_space *mapping, | |
362 | bool trunc) | |
363 | { | |
364 | unsigned long pfn; | |
365 | ||
366 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
367 | return; | |
368 | ||
369 | for_each_mapped_pfn(entry, pfn) { | |
370 | struct page *page = pfn_to_page(pfn); | |
371 | ||
372 | WARN_ON_ONCE(trunc && page_ref_count(page) > 1); | |
373 | WARN_ON_ONCE(page->mapping && page->mapping != mapping); | |
374 | page->mapping = NULL; | |
73449daf | 375 | page->index = 0; |
d2c997c0 DW |
376 | } |
377 | } | |
378 | ||
5fac7408 DW |
379 | static struct page *dax_busy_page(void *entry) |
380 | { | |
381 | unsigned long pfn; | |
382 | ||
383 | for_each_mapped_pfn(entry, pfn) { | |
384 | struct page *page = pfn_to_page(pfn); | |
385 | ||
386 | if (page_ref_count(page) > 1) | |
387 | return page; | |
388 | } | |
389 | return NULL; | |
390 | } | |
391 | ||
c5bbd451 MW |
392 | /* |
393 | * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page | |
394 | * @page: The page whose entry we want to lock | |
395 | * | |
396 | * Context: Process context. | |
27359fd6 MW |
397 | * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could |
398 | * not be locked. | |
c5bbd451 | 399 | */ |
27359fd6 | 400 | dax_entry_t dax_lock_page(struct page *page) |
c2a7d2a1 | 401 | { |
9f32d221 MW |
402 | XA_STATE(xas, NULL, 0); |
403 | void *entry; | |
c2a7d2a1 | 404 | |
c5bbd451 MW |
405 | /* Ensure page->mapping isn't freed while we look at it */ |
406 | rcu_read_lock(); | |
c2a7d2a1 | 407 | for (;;) { |
9f32d221 | 408 | struct address_space *mapping = READ_ONCE(page->mapping); |
c2a7d2a1 | 409 | |
27359fd6 | 410 | entry = NULL; |
c93db7bb | 411 | if (!mapping || !dax_mapping(mapping)) |
c5bbd451 | 412 | break; |
c2a7d2a1 DW |
413 | |
414 | /* | |
415 | * In the device-dax case there's no need to lock, a | |
416 | * struct dev_pagemap pin is sufficient to keep the | |
417 | * inode alive, and we assume we have dev_pagemap pin | |
418 | * otherwise we would not have a valid pfn_to_page() | |
419 | * translation. | |
420 | */ | |
27359fd6 | 421 | entry = (void *)~0UL; |
9f32d221 | 422 | if (S_ISCHR(mapping->host->i_mode)) |
c5bbd451 | 423 | break; |
c2a7d2a1 | 424 | |
9f32d221 MW |
425 | xas.xa = &mapping->i_pages; |
426 | xas_lock_irq(&xas); | |
c2a7d2a1 | 427 | if (mapping != page->mapping) { |
9f32d221 | 428 | xas_unlock_irq(&xas); |
c2a7d2a1 DW |
429 | continue; |
430 | } | |
9f32d221 MW |
431 | xas_set(&xas, page->index); |
432 | entry = xas_load(&xas); | |
433 | if (dax_is_locked(entry)) { | |
c5bbd451 | 434 | rcu_read_unlock(); |
55e56f06 | 435 | wait_entry_unlocked(&xas, entry); |
c5bbd451 | 436 | rcu_read_lock(); |
6d7cd8c1 | 437 | continue; |
c2a7d2a1 | 438 | } |
9f32d221 MW |
439 | dax_lock_entry(&xas, entry); |
440 | xas_unlock_irq(&xas); | |
c5bbd451 | 441 | break; |
c2a7d2a1 | 442 | } |
c5bbd451 | 443 | rcu_read_unlock(); |
27359fd6 | 444 | return (dax_entry_t)entry; |
c2a7d2a1 DW |
445 | } |
446 | ||
27359fd6 | 447 | void dax_unlock_page(struct page *page, dax_entry_t cookie) |
c2a7d2a1 DW |
448 | { |
449 | struct address_space *mapping = page->mapping; | |
9f32d221 | 450 | XA_STATE(xas, &mapping->i_pages, page->index); |
c2a7d2a1 | 451 | |
9f32d221 | 452 | if (S_ISCHR(mapping->host->i_mode)) |
c2a7d2a1 DW |
453 | return; |
454 | ||
27359fd6 | 455 | dax_unlock_entry(&xas, (void *)cookie); |
c2a7d2a1 DW |
456 | } |
457 | ||
ac401cc7 | 458 | /* |
a77d19f4 MW |
459 | * Find page cache entry at given index. If it is a DAX entry, return it |
460 | * with the entry locked. If the page cache doesn't contain an entry at | |
461 | * that index, add a locked empty entry. | |
ac401cc7 | 462 | * |
3159f943 | 463 | * When requesting an entry with size DAX_PMD, grab_mapping_entry() will |
b15cd800 MW |
464 | * either return that locked entry or will return VM_FAULT_FALLBACK. |
465 | * This will happen if there are any PTE entries within the PMD range | |
466 | * that we are requesting. | |
642261ac | 467 | * |
b15cd800 MW |
468 | * We always favor PTE entries over PMD entries. There isn't a flow where we |
469 | * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD | |
470 | * insertion will fail if it finds any PTE entries already in the tree, and a | |
471 | * PTE insertion will cause an existing PMD entry to be unmapped and | |
472 | * downgraded to PTE entries. This happens for both PMD zero pages as | |
473 | * well as PMD empty entries. | |
642261ac | 474 | * |
b15cd800 MW |
475 | * The exception to this downgrade path is for PMD entries that have |
476 | * real storage backing them. We will leave these real PMD entries in | |
477 | * the tree, and PTE writes will simply dirty the entire PMD entry. | |
642261ac | 478 | * |
ac401cc7 JK |
479 | * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For |
480 | * persistent memory the benefit is doubtful. We can add that later if we can | |
481 | * show it helps. | |
b15cd800 MW |
482 | * |
483 | * On error, this function does not return an ERR_PTR. Instead it returns | |
484 | * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values | |
485 | * overlap with xarray value entries. | |
ac401cc7 | 486 | */ |
b15cd800 | 487 | static void *grab_mapping_entry(struct xa_state *xas, |
23c84eb7 | 488 | struct address_space *mapping, unsigned int order) |
ac401cc7 | 489 | { |
b15cd800 MW |
490 | unsigned long index = xas->xa_index; |
491 | bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ | |
492 | void *entry; | |
642261ac | 493 | |
b15cd800 MW |
494 | retry: |
495 | xas_lock_irq(xas); | |
23c84eb7 | 496 | entry = get_unlocked_entry(xas, order); |
91d25ba8 | 497 | |
642261ac | 498 | if (entry) { |
23c84eb7 MWO |
499 | if (dax_is_conflict(entry)) |
500 | goto fallback; | |
0e40de03 | 501 | if (!xa_is_value(entry)) { |
49688e65 | 502 | xas_set_err(xas, -EIO); |
b15cd800 MW |
503 | goto out_unlock; |
504 | } | |
505 | ||
23c84eb7 | 506 | if (order == 0) { |
91d25ba8 | 507 | if (dax_is_pmd_entry(entry) && |
642261ac RZ |
508 | (dax_is_zero_entry(entry) || |
509 | dax_is_empty_entry(entry))) { | |
510 | pmd_downgrade = true; | |
511 | } | |
512 | } | |
513 | } | |
514 | ||
b15cd800 MW |
515 | if (pmd_downgrade) { |
516 | /* | |
517 | * Make sure 'entry' remains valid while we drop | |
518 | * the i_pages lock. | |
519 | */ | |
520 | dax_lock_entry(xas, entry); | |
642261ac | 521 | |
642261ac RZ |
522 | /* |
523 | * Besides huge zero pages the only other thing that gets | |
524 | * downgraded are empty entries which don't need to be | |
525 | * unmapped. | |
526 | */ | |
b15cd800 MW |
527 | if (dax_is_zero_entry(entry)) { |
528 | xas_unlock_irq(xas); | |
529 | unmap_mapping_pages(mapping, | |
530 | xas->xa_index & ~PG_PMD_COLOUR, | |
531 | PG_PMD_NR, false); | |
532 | xas_reset(xas); | |
533 | xas_lock_irq(xas); | |
e11f8b7b RZ |
534 | } |
535 | ||
b15cd800 MW |
536 | dax_disassociate_entry(entry, mapping, false); |
537 | xas_store(xas, NULL); /* undo the PMD join */ | |
698ab77a | 538 | dax_wake_entry(xas, entry, WAKE_ALL); |
7f0e07fb | 539 | mapping->nrpages -= PG_PMD_NR; |
b15cd800 MW |
540 | entry = NULL; |
541 | xas_set(xas, index); | |
542 | } | |
642261ac | 543 | |
b15cd800 MW |
544 | if (entry) { |
545 | dax_lock_entry(xas, entry); | |
546 | } else { | |
23c84eb7 MWO |
547 | unsigned long flags = DAX_EMPTY; |
548 | ||
549 | if (order > 0) | |
550 | flags |= DAX_PMD; | |
551 | entry = dax_make_entry(pfn_to_pfn_t(0), flags); | |
b15cd800 MW |
552 | dax_lock_entry(xas, entry); |
553 | if (xas_error(xas)) | |
554 | goto out_unlock; | |
7f0e07fb | 555 | mapping->nrpages += 1UL << order; |
ac401cc7 | 556 | } |
b15cd800 MW |
557 | |
558 | out_unlock: | |
559 | xas_unlock_irq(xas); | |
560 | if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) | |
561 | goto retry; | |
562 | if (xas->xa_node == XA_ERROR(-ENOMEM)) | |
563 | return xa_mk_internal(VM_FAULT_OOM); | |
564 | if (xas_error(xas)) | |
565 | return xa_mk_internal(VM_FAULT_SIGBUS); | |
e3ad61c6 | 566 | return entry; |
b15cd800 MW |
567 | fallback: |
568 | xas_unlock_irq(xas); | |
569 | return xa_mk_internal(VM_FAULT_FALLBACK); | |
ac401cc7 JK |
570 | } |
571 | ||
5fac7408 | 572 | /** |
6bbdd563 | 573 | * dax_layout_busy_page_range - find first pinned page in @mapping |
5fac7408 | 574 | * @mapping: address space to scan for a page with ref count > 1 |
6bbdd563 VG |
575 | * @start: Starting offset. Page containing 'start' is included. |
576 | * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, | |
577 | * pages from 'start' till the end of file are included. | |
5fac7408 DW |
578 | * |
579 | * DAX requires ZONE_DEVICE mapped pages. These pages are never | |
580 | * 'onlined' to the page allocator so they are considered idle when | |
581 | * page->count == 1. A filesystem uses this interface to determine if | |
582 | * any page in the mapping is busy, i.e. for DMA, or other | |
583 | * get_user_pages() usages. | |
584 | * | |
585 | * It is expected that the filesystem is holding locks to block the | |
586 | * establishment of new mappings in this address_space. I.e. it expects | |
587 | * to be able to run unmap_mapping_range() and subsequently not race | |
588 | * mapping_mapped() becoming true. | |
589 | */ | |
6bbdd563 VG |
590 | struct page *dax_layout_busy_page_range(struct address_space *mapping, |
591 | loff_t start, loff_t end) | |
5fac7408 | 592 | { |
084a8990 MW |
593 | void *entry; |
594 | unsigned int scanned = 0; | |
5fac7408 | 595 | struct page *page = NULL; |
6bbdd563 VG |
596 | pgoff_t start_idx = start >> PAGE_SHIFT; |
597 | pgoff_t end_idx; | |
598 | XA_STATE(xas, &mapping->i_pages, start_idx); | |
5fac7408 DW |
599 | |
600 | /* | |
601 | * In the 'limited' case get_user_pages() for dax is disabled. | |
602 | */ | |
603 | if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) | |
604 | return NULL; | |
605 | ||
606 | if (!dax_mapping(mapping) || !mapping_mapped(mapping)) | |
607 | return NULL; | |
608 | ||
6bbdd563 VG |
609 | /* If end == LLONG_MAX, all pages from start to till end of file */ |
610 | if (end == LLONG_MAX) | |
611 | end_idx = ULONG_MAX; | |
612 | else | |
613 | end_idx = end >> PAGE_SHIFT; | |
5fac7408 DW |
614 | /* |
615 | * If we race get_user_pages_fast() here either we'll see the | |
084a8990 | 616 | * elevated page count in the iteration and wait, or |
5fac7408 DW |
617 | * get_user_pages_fast() will see that the page it took a reference |
618 | * against is no longer mapped in the page tables and bail to the | |
619 | * get_user_pages() slow path. The slow path is protected by | |
620 | * pte_lock() and pmd_lock(). New references are not taken without | |
6bbdd563 | 621 | * holding those locks, and unmap_mapping_pages() will not zero the |
5fac7408 DW |
622 | * pte or pmd without holding the respective lock, so we are |
623 | * guaranteed to either see new references or prevent new | |
624 | * references from being established. | |
625 | */ | |
6bbdd563 | 626 | unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); |
5fac7408 | 627 | |
084a8990 | 628 | xas_lock_irq(&xas); |
6bbdd563 | 629 | xas_for_each(&xas, entry, end_idx) { |
084a8990 MW |
630 | if (WARN_ON_ONCE(!xa_is_value(entry))) |
631 | continue; | |
632 | if (unlikely(dax_is_locked(entry))) | |
23c84eb7 | 633 | entry = get_unlocked_entry(&xas, 0); |
084a8990 MW |
634 | if (entry) |
635 | page = dax_busy_page(entry); | |
4c3d043d | 636 | put_unlocked_entry(&xas, entry, WAKE_NEXT); |
5fac7408 DW |
637 | if (page) |
638 | break; | |
084a8990 MW |
639 | if (++scanned % XA_CHECK_SCHED) |
640 | continue; | |
641 | ||
642 | xas_pause(&xas); | |
643 | xas_unlock_irq(&xas); | |
644 | cond_resched(); | |
645 | xas_lock_irq(&xas); | |
5fac7408 | 646 | } |
084a8990 | 647 | xas_unlock_irq(&xas); |
5fac7408 DW |
648 | return page; |
649 | } | |
6bbdd563 VG |
650 | EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); |
651 | ||
652 | struct page *dax_layout_busy_page(struct address_space *mapping) | |
653 | { | |
654 | return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); | |
655 | } | |
5fac7408 DW |
656 | EXPORT_SYMBOL_GPL(dax_layout_busy_page); |
657 | ||
a77d19f4 | 658 | static int __dax_invalidate_entry(struct address_space *mapping, |
c6dcf52c JK |
659 | pgoff_t index, bool trunc) |
660 | { | |
07f2d89c | 661 | XA_STATE(xas, &mapping->i_pages, index); |
c6dcf52c JK |
662 | int ret = 0; |
663 | void *entry; | |
c6dcf52c | 664 | |
07f2d89c | 665 | xas_lock_irq(&xas); |
23c84eb7 | 666 | entry = get_unlocked_entry(&xas, 0); |
3159f943 | 667 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) |
c6dcf52c JK |
668 | goto out; |
669 | if (!trunc && | |
07f2d89c MW |
670 | (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || |
671 | xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) | |
c6dcf52c | 672 | goto out; |
d2c997c0 | 673 | dax_disassociate_entry(entry, mapping, trunc); |
07f2d89c | 674 | xas_store(&xas, NULL); |
7f0e07fb | 675 | mapping->nrpages -= 1UL << dax_entry_order(entry); |
c6dcf52c JK |
676 | ret = 1; |
677 | out: | |
23738832 | 678 | put_unlocked_entry(&xas, entry, WAKE_ALL); |
07f2d89c | 679 | xas_unlock_irq(&xas); |
c6dcf52c JK |
680 | return ret; |
681 | } | |
07f2d89c | 682 | |
ac401cc7 | 683 | /* |
3159f943 MW |
684 | * Delete DAX entry at @index from @mapping. Wait for it |
685 | * to be unlocked before deleting it. | |
ac401cc7 JK |
686 | */ |
687 | int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) | |
688 | { | |
a77d19f4 | 689 | int ret = __dax_invalidate_entry(mapping, index, true); |
ac401cc7 | 690 | |
ac401cc7 JK |
691 | /* |
692 | * This gets called from truncate / punch_hole path. As such, the caller | |
693 | * must hold locks protecting against concurrent modifications of the | |
a77d19f4 | 694 | * page cache (usually fs-private i_mmap_sem for writing). Since the |
3159f943 | 695 | * caller has seen a DAX entry for this index, we better find it |
ac401cc7 JK |
696 | * at that index as well... |
697 | */ | |
c6dcf52c JK |
698 | WARN_ON_ONCE(!ret); |
699 | return ret; | |
700 | } | |
701 | ||
c6dcf52c | 702 | /* |
3159f943 | 703 | * Invalidate DAX entry if it is clean. |
c6dcf52c JK |
704 | */ |
705 | int dax_invalidate_mapping_entry_sync(struct address_space *mapping, | |
706 | pgoff_t index) | |
707 | { | |
a77d19f4 | 708 | return __dax_invalidate_entry(mapping, index, false); |
ac401cc7 JK |
709 | } |
710 | ||
c7fe193f IW |
711 | static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev, |
712 | sector_t sector, struct page *to, unsigned long vaddr) | |
f7ca90b1 | 713 | { |
cccbce67 DW |
714 | void *vto, *kaddr; |
715 | pgoff_t pgoff; | |
cccbce67 DW |
716 | long rc; |
717 | int id; | |
718 | ||
c7fe193f | 719 | rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); |
cccbce67 DW |
720 | if (rc) |
721 | return rc; | |
722 | ||
723 | id = dax_read_lock(); | |
c7fe193f | 724 | rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL); |
cccbce67 DW |
725 | if (rc < 0) { |
726 | dax_read_unlock(id); | |
727 | return rc; | |
728 | } | |
f7ca90b1 | 729 | vto = kmap_atomic(to); |
cccbce67 | 730 | copy_user_page(vto, (void __force *)kaddr, vaddr, to); |
f7ca90b1 | 731 | kunmap_atomic(vto); |
cccbce67 | 732 | dax_read_unlock(id); |
f7ca90b1 MW |
733 | return 0; |
734 | } | |
735 | ||
642261ac RZ |
736 | /* |
737 | * By this point grab_mapping_entry() has ensured that we have a locked entry | |
738 | * of the appropriate size so we don't have to worry about downgrading PMDs to | |
739 | * PTEs. If we happen to be trying to insert a PTE and there is a PMD | |
740 | * already in the tree, we will skip the insertion and just dirty the PMD as | |
741 | * appropriate. | |
742 | */ | |
b15cd800 MW |
743 | static void *dax_insert_entry(struct xa_state *xas, |
744 | struct address_space *mapping, struct vm_fault *vmf, | |
745 | void *entry, pfn_t pfn, unsigned long flags, bool dirty) | |
9973c98e | 746 | { |
b15cd800 | 747 | void *new_entry = dax_make_entry(pfn, flags); |
9973c98e | 748 | |
f5b7b748 | 749 | if (dirty) |
d2b2a28e | 750 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
9973c98e | 751 | |
3159f943 | 752 | if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { |
b15cd800 | 753 | unsigned long index = xas->xa_index; |
91d25ba8 RZ |
754 | /* we are replacing a zero page with block mapping */ |
755 | if (dax_is_pmd_entry(entry)) | |
977fbdcd | 756 | unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, |
b15cd800 | 757 | PG_PMD_NR, false); |
91d25ba8 | 758 | else /* pte entry */ |
b15cd800 | 759 | unmap_mapping_pages(mapping, index, 1, false); |
9973c98e RZ |
760 | } |
761 | ||
b15cd800 MW |
762 | xas_reset(xas); |
763 | xas_lock_irq(xas); | |
1571c029 JK |
764 | if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { |
765 | void *old; | |
766 | ||
d2c997c0 | 767 | dax_disassociate_entry(entry, mapping, false); |
73449daf | 768 | dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); |
642261ac | 769 | /* |
a77d19f4 | 770 | * Only swap our new entry into the page cache if the current |
642261ac | 771 | * entry is a zero page or an empty entry. If a normal PTE or |
a77d19f4 | 772 | * PMD entry is already in the cache, we leave it alone. This |
642261ac RZ |
773 | * means that if we are trying to insert a PTE and the |
774 | * existing entry is a PMD, we will just leave the PMD in the | |
775 | * tree and dirty it if necessary. | |
776 | */ | |
1571c029 | 777 | old = dax_lock_entry(xas, new_entry); |
b15cd800 MW |
778 | WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | |
779 | DAX_LOCKED)); | |
91d25ba8 | 780 | entry = new_entry; |
b15cd800 MW |
781 | } else { |
782 | xas_load(xas); /* Walk the xa_state */ | |
9973c98e | 783 | } |
91d25ba8 | 784 | |
f5b7b748 | 785 | if (dirty) |
b15cd800 | 786 | xas_set_mark(xas, PAGECACHE_TAG_DIRTY); |
91d25ba8 | 787 | |
b15cd800 | 788 | xas_unlock_irq(xas); |
91d25ba8 | 789 | return entry; |
9973c98e RZ |
790 | } |
791 | ||
a77d19f4 MW |
792 | static inline |
793 | unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) | |
4b4bb46d JK |
794 | { |
795 | unsigned long address; | |
796 | ||
797 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
798 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); | |
799 | return address; | |
800 | } | |
801 | ||
802 | /* Walk all mappings of a given index of a file and writeprotect them */ | |
a77d19f4 MW |
803 | static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, |
804 | unsigned long pfn) | |
4b4bb46d JK |
805 | { |
806 | struct vm_area_struct *vma; | |
f729c8c9 RZ |
807 | pte_t pte, *ptep = NULL; |
808 | pmd_t *pmdp = NULL; | |
4b4bb46d | 809 | spinlock_t *ptl; |
4b4bb46d JK |
810 | |
811 | i_mmap_lock_read(mapping); | |
812 | vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { | |
ac46d4f3 JG |
813 | struct mmu_notifier_range range; |
814 | unsigned long address; | |
4b4bb46d JK |
815 | |
816 | cond_resched(); | |
817 | ||
818 | if (!(vma->vm_flags & VM_SHARED)) | |
819 | continue; | |
820 | ||
821 | address = pgoff_address(index, vma); | |
a4d1a885 JG |
822 | |
823 | /* | |
9fd6dad1 | 824 | * follow_invalidate_pte() will use the range to call |
ff5c19ed CH |
825 | * mmu_notifier_invalidate_range_start() on our behalf before |
826 | * taking any lock. | |
a4d1a885 | 827 | */ |
9fd6dad1 PB |
828 | if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep, |
829 | &pmdp, &ptl)) | |
4b4bb46d | 830 | continue; |
4b4bb46d | 831 | |
0f10851e JG |
832 | /* |
833 | * No need to call mmu_notifier_invalidate_range() as we are | |
834 | * downgrading page table protection not changing it to point | |
835 | * to a new page. | |
836 | * | |
ad56b738 | 837 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 838 | */ |
f729c8c9 RZ |
839 | if (pmdp) { |
840 | #ifdef CONFIG_FS_DAX_PMD | |
841 | pmd_t pmd; | |
842 | ||
843 | if (pfn != pmd_pfn(*pmdp)) | |
844 | goto unlock_pmd; | |
f6f37321 | 845 | if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) |
f729c8c9 RZ |
846 | goto unlock_pmd; |
847 | ||
848 | flush_cache_page(vma, address, pfn); | |
024eee0e | 849 | pmd = pmdp_invalidate(vma, address, pmdp); |
f729c8c9 RZ |
850 | pmd = pmd_wrprotect(pmd); |
851 | pmd = pmd_mkclean(pmd); | |
852 | set_pmd_at(vma->vm_mm, address, pmdp, pmd); | |
f729c8c9 | 853 | unlock_pmd: |
f729c8c9 | 854 | #endif |
ee190ca6 | 855 | spin_unlock(ptl); |
f729c8c9 RZ |
856 | } else { |
857 | if (pfn != pte_pfn(*ptep)) | |
858 | goto unlock_pte; | |
859 | if (!pte_dirty(*ptep) && !pte_write(*ptep)) | |
860 | goto unlock_pte; | |
861 | ||
862 | flush_cache_page(vma, address, pfn); | |
863 | pte = ptep_clear_flush(vma, address, ptep); | |
864 | pte = pte_wrprotect(pte); | |
865 | pte = pte_mkclean(pte); | |
866 | set_pte_at(vma->vm_mm, address, ptep, pte); | |
f729c8c9 RZ |
867 | unlock_pte: |
868 | pte_unmap_unlock(ptep, ptl); | |
869 | } | |
4b4bb46d | 870 | |
ac46d4f3 | 871 | mmu_notifier_invalidate_range_end(&range); |
4b4bb46d JK |
872 | } |
873 | i_mmap_unlock_read(mapping); | |
874 | } | |
875 | ||
9fc747f6 MW |
876 | static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, |
877 | struct address_space *mapping, void *entry) | |
9973c98e | 878 | { |
e4b3448b | 879 | unsigned long pfn, index, count; |
3fe0791c | 880 | long ret = 0; |
9973c98e | 881 | |
9973c98e | 882 | /* |
a6abc2c0 JK |
883 | * A page got tagged dirty in DAX mapping? Something is seriously |
884 | * wrong. | |
9973c98e | 885 | */ |
3159f943 | 886 | if (WARN_ON(!xa_is_value(entry))) |
a6abc2c0 | 887 | return -EIO; |
9973c98e | 888 | |
9fc747f6 MW |
889 | if (unlikely(dax_is_locked(entry))) { |
890 | void *old_entry = entry; | |
891 | ||
23c84eb7 | 892 | entry = get_unlocked_entry(xas, 0); |
9fc747f6 MW |
893 | |
894 | /* Entry got punched out / reallocated? */ | |
895 | if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) | |
896 | goto put_unlocked; | |
897 | /* | |
898 | * Entry got reallocated elsewhere? No need to writeback. | |
899 | * We have to compare pfns as we must not bail out due to | |
900 | * difference in lockbit or entry type. | |
901 | */ | |
902 | if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) | |
903 | goto put_unlocked; | |
904 | if (WARN_ON_ONCE(dax_is_empty_entry(entry) || | |
905 | dax_is_zero_entry(entry))) { | |
906 | ret = -EIO; | |
907 | goto put_unlocked; | |
908 | } | |
909 | ||
910 | /* Another fsync thread may have already done this entry */ | |
911 | if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) | |
912 | goto put_unlocked; | |
9973c98e RZ |
913 | } |
914 | ||
a6abc2c0 | 915 | /* Lock the entry to serialize with page faults */ |
9fc747f6 MW |
916 | dax_lock_entry(xas, entry); |
917 | ||
a6abc2c0 JK |
918 | /* |
919 | * We can clear the tag now but we have to be careful so that concurrent | |
920 | * dax_writeback_one() calls for the same index cannot finish before we | |
921 | * actually flush the caches. This is achieved as the calls will look | |
b93b0163 MW |
922 | * at the entry only under the i_pages lock and once they do that |
923 | * they will see the entry locked and wait for it to unlock. | |
a6abc2c0 | 924 | */ |
9fc747f6 MW |
925 | xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); |
926 | xas_unlock_irq(xas); | |
a6abc2c0 | 927 | |
642261ac | 928 | /* |
e4b3448b MW |
929 | * If dax_writeback_mapping_range() was given a wbc->range_start |
930 | * in the middle of a PMD, the 'index' we use needs to be | |
931 | * aligned to the start of the PMD. | |
3fe0791c DW |
932 | * This allows us to flush for PMD_SIZE and not have to worry about |
933 | * partial PMD writebacks. | |
642261ac | 934 | */ |
a77d19f4 | 935 | pfn = dax_to_pfn(entry); |
e4b3448b MW |
936 | count = 1UL << dax_entry_order(entry); |
937 | index = xas->xa_index & ~(count - 1); | |
cccbce67 | 938 | |
e4b3448b MW |
939 | dax_entry_mkclean(mapping, index, pfn); |
940 | dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); | |
4b4bb46d JK |
941 | /* |
942 | * After we have flushed the cache, we can clear the dirty tag. There | |
943 | * cannot be new dirty data in the pfn after the flush has completed as | |
944 | * the pfn mappings are writeprotected and fault waits for mapping | |
945 | * entry lock. | |
946 | */ | |
9fc747f6 MW |
947 | xas_reset(xas); |
948 | xas_lock_irq(xas); | |
949 | xas_store(xas, entry); | |
950 | xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); | |
698ab77a | 951 | dax_wake_entry(xas, entry, WAKE_NEXT); |
9fc747f6 | 952 | |
e4b3448b | 953 | trace_dax_writeback_one(mapping->host, index, count); |
9973c98e RZ |
954 | return ret; |
955 | ||
a6abc2c0 | 956 | put_unlocked: |
4c3d043d | 957 | put_unlocked_entry(xas, entry, WAKE_NEXT); |
9973c98e RZ |
958 | return ret; |
959 | } | |
960 | ||
961 | /* | |
962 | * Flush the mapping to the persistent domain within the byte range of [start, | |
963 | * end]. This is required by data integrity operations to ensure file data is | |
964 | * on persistent storage prior to completion of the operation. | |
965 | */ | |
7f6d5b52 | 966 | int dax_writeback_mapping_range(struct address_space *mapping, |
3f666c56 | 967 | struct dax_device *dax_dev, struct writeback_control *wbc) |
9973c98e | 968 | { |
9fc747f6 | 969 | XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); |
9973c98e | 970 | struct inode *inode = mapping->host; |
9fc747f6 | 971 | pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; |
9fc747f6 MW |
972 | void *entry; |
973 | int ret = 0; | |
974 | unsigned int scanned = 0; | |
9973c98e RZ |
975 | |
976 | if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) | |
977 | return -EIO; | |
978 | ||
7716506a | 979 | if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) |
7f6d5b52 RZ |
980 | return 0; |
981 | ||
9fc747f6 | 982 | trace_dax_writeback_range(inode, xas.xa_index, end_index); |
9973c98e | 983 | |
9fc747f6 | 984 | tag_pages_for_writeback(mapping, xas.xa_index, end_index); |
9973c98e | 985 | |
9fc747f6 MW |
986 | xas_lock_irq(&xas); |
987 | xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { | |
988 | ret = dax_writeback_one(&xas, dax_dev, mapping, entry); | |
989 | if (ret < 0) { | |
990 | mapping_set_error(mapping, ret); | |
9973c98e | 991 | break; |
9973c98e | 992 | } |
9fc747f6 MW |
993 | if (++scanned % XA_CHECK_SCHED) |
994 | continue; | |
995 | ||
996 | xas_pause(&xas); | |
997 | xas_unlock_irq(&xas); | |
998 | cond_resched(); | |
999 | xas_lock_irq(&xas); | |
9973c98e | 1000 | } |
9fc747f6 | 1001 | xas_unlock_irq(&xas); |
9fc747f6 MW |
1002 | trace_dax_writeback_range_done(inode, xas.xa_index, end_index); |
1003 | return ret; | |
9973c98e RZ |
1004 | } |
1005 | EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); | |
1006 | ||
31a6f1a6 | 1007 | static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) |
f7ca90b1 | 1008 | { |
a3841f94 | 1009 | return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; |
31a6f1a6 JK |
1010 | } |
1011 | ||
5e161e40 JK |
1012 | static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, |
1013 | pfn_t *pfnp) | |
f7ca90b1 | 1014 | { |
31a6f1a6 | 1015 | const sector_t sector = dax_iomap_sector(iomap, pos); |
cccbce67 DW |
1016 | pgoff_t pgoff; |
1017 | int id, rc; | |
5e161e40 | 1018 | long length; |
f7ca90b1 | 1019 | |
5e161e40 | 1020 | rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); |
cccbce67 DW |
1021 | if (rc) |
1022 | return rc; | |
cccbce67 | 1023 | id = dax_read_lock(); |
5e161e40 | 1024 | length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), |
86ed913b | 1025 | NULL, pfnp); |
5e161e40 JK |
1026 | if (length < 0) { |
1027 | rc = length; | |
1028 | goto out; | |
cccbce67 | 1029 | } |
5e161e40 JK |
1030 | rc = -EINVAL; |
1031 | if (PFN_PHYS(length) < size) | |
1032 | goto out; | |
1033 | if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) | |
1034 | goto out; | |
1035 | /* For larger pages we need devmap */ | |
1036 | if (length > 1 && !pfn_t_devmap(*pfnp)) | |
1037 | goto out; | |
1038 | rc = 0; | |
1039 | out: | |
cccbce67 | 1040 | dax_read_unlock(id); |
5e161e40 | 1041 | return rc; |
0e3b210c | 1042 | } |
0e3b210c | 1043 | |
e30331ff | 1044 | /* |
91d25ba8 RZ |
1045 | * The user has performed a load from a hole in the file. Allocating a new |
1046 | * page in the file would cause excessive storage usage for workloads with | |
1047 | * sparse files. Instead we insert a read-only mapping of the 4k zero page. | |
1048 | * If this page is ever written to we will re-fault and change the mapping to | |
1049 | * point to real DAX storage instead. | |
e30331ff | 1050 | */ |
b15cd800 MW |
1051 | static vm_fault_t dax_load_hole(struct xa_state *xas, |
1052 | struct address_space *mapping, void **entry, | |
1053 | struct vm_fault *vmf) | |
e30331ff RZ |
1054 | { |
1055 | struct inode *inode = mapping->host; | |
91d25ba8 | 1056 | unsigned long vaddr = vmf->address; |
b90ca5cc MW |
1057 | pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); |
1058 | vm_fault_t ret; | |
e30331ff | 1059 | |
b15cd800 | 1060 | *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, |
3159f943 MW |
1061 | DAX_ZERO_PAGE, false); |
1062 | ||
ab77dab4 | 1063 | ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); |
e30331ff RZ |
1064 | trace_dax_load_hole(inode, vmf, ret); |
1065 | return ret; | |
1066 | } | |
1067 | ||
81ee8e52 | 1068 | s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap) |
679c8bd3 | 1069 | { |
4f3b4f16 | 1070 | sector_t sector = iomap_sector(iomap, pos & PAGE_MASK); |
0a23f9ff VG |
1071 | pgoff_t pgoff; |
1072 | long rc, id; | |
1073 | void *kaddr; | |
1074 | bool page_aligned = false; | |
81ee8e52 MWO |
1075 | unsigned offset = offset_in_page(pos); |
1076 | unsigned size = min_t(u64, PAGE_SIZE - offset, length); | |
cccbce67 | 1077 | |
0a23f9ff | 1078 | if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) && |
81ee8e52 | 1079 | (size == PAGE_SIZE)) |
0a23f9ff | 1080 | page_aligned = true; |
cccbce67 | 1081 | |
4f3b4f16 | 1082 | rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff); |
0a23f9ff VG |
1083 | if (rc) |
1084 | return rc; | |
1085 | ||
1086 | id = dax_read_lock(); | |
1087 | ||
1088 | if (page_aligned) | |
81ee8e52 | 1089 | rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); |
0a23f9ff | 1090 | else |
4f3b4f16 | 1091 | rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL); |
0a23f9ff VG |
1092 | if (rc < 0) { |
1093 | dax_read_unlock(id); | |
1094 | return rc; | |
1095 | } | |
1096 | ||
1097 | if (!page_aligned) { | |
81f55870 | 1098 | memset(kaddr + offset, 0, size); |
4f3b4f16 | 1099 | dax_flush(iomap->dax_dev, kaddr + offset, size); |
4b0228fa | 1100 | } |
0a23f9ff | 1101 | dax_read_unlock(id); |
81ee8e52 | 1102 | return size; |
679c8bd3 | 1103 | } |
679c8bd3 | 1104 | |
a254e568 | 1105 | static loff_t |
11c59c92 | 1106 | dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, |
c039b997 | 1107 | struct iomap *iomap, struct iomap *srcmap) |
a254e568 | 1108 | { |
cccbce67 DW |
1109 | struct block_device *bdev = iomap->bdev; |
1110 | struct dax_device *dax_dev = iomap->dax_dev; | |
a254e568 CH |
1111 | struct iov_iter *iter = data; |
1112 | loff_t end = pos + length, done = 0; | |
1113 | ssize_t ret = 0; | |
a77d4786 | 1114 | size_t xfer; |
cccbce67 | 1115 | int id; |
a254e568 CH |
1116 | |
1117 | if (iov_iter_rw(iter) == READ) { | |
1118 | end = min(end, i_size_read(inode)); | |
1119 | if (pos >= end) | |
1120 | return 0; | |
1121 | ||
1122 | if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) | |
1123 | return iov_iter_zero(min(length, end - pos), iter); | |
1124 | } | |
1125 | ||
1126 | if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) | |
1127 | return -EIO; | |
1128 | ||
e3fce68c JK |
1129 | /* |
1130 | * Write can allocate block for an area which has a hole page mapped | |
1131 | * into page tables. We have to tear down these mappings so that data | |
1132 | * written by write(2) is visible in mmap. | |
1133 | */ | |
cd656375 | 1134 | if (iomap->flags & IOMAP_F_NEW) { |
e3fce68c JK |
1135 | invalidate_inode_pages2_range(inode->i_mapping, |
1136 | pos >> PAGE_SHIFT, | |
1137 | (end - 1) >> PAGE_SHIFT); | |
1138 | } | |
1139 | ||
cccbce67 | 1140 | id = dax_read_lock(); |
a254e568 CH |
1141 | while (pos < end) { |
1142 | unsigned offset = pos & (PAGE_SIZE - 1); | |
cccbce67 DW |
1143 | const size_t size = ALIGN(length + offset, PAGE_SIZE); |
1144 | const sector_t sector = dax_iomap_sector(iomap, pos); | |
a254e568 | 1145 | ssize_t map_len; |
cccbce67 DW |
1146 | pgoff_t pgoff; |
1147 | void *kaddr; | |
a254e568 | 1148 | |
d1908f52 MH |
1149 | if (fatal_signal_pending(current)) { |
1150 | ret = -EINTR; | |
1151 | break; | |
1152 | } | |
1153 | ||
cccbce67 DW |
1154 | ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); |
1155 | if (ret) | |
1156 | break; | |
1157 | ||
1158 | map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), | |
86ed913b | 1159 | &kaddr, NULL); |
a254e568 CH |
1160 | if (map_len < 0) { |
1161 | ret = map_len; | |
1162 | break; | |
1163 | } | |
1164 | ||
cccbce67 DW |
1165 | map_len = PFN_PHYS(map_len); |
1166 | kaddr += offset; | |
a254e568 CH |
1167 | map_len -= offset; |
1168 | if (map_len > end - pos) | |
1169 | map_len = end - pos; | |
1170 | ||
a2e050f5 RZ |
1171 | /* |
1172 | * The userspace address for the memory copy has already been | |
1173 | * validated via access_ok() in either vfs_read() or | |
1174 | * vfs_write(), depending on which operation we are doing. | |
1175 | */ | |
a254e568 | 1176 | if (iov_iter_rw(iter) == WRITE) |
a77d4786 | 1177 | xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, |
fec53774 | 1178 | map_len, iter); |
a254e568 | 1179 | else |
a77d4786 | 1180 | xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, |
b3a9a0c3 | 1181 | map_len, iter); |
a254e568 | 1182 | |
a77d4786 DW |
1183 | pos += xfer; |
1184 | length -= xfer; | |
1185 | done += xfer; | |
1186 | ||
1187 | if (xfer == 0) | |
1188 | ret = -EFAULT; | |
1189 | if (xfer < map_len) | |
1190 | break; | |
a254e568 | 1191 | } |
cccbce67 | 1192 | dax_read_unlock(id); |
a254e568 CH |
1193 | |
1194 | return done ? done : ret; | |
1195 | } | |
1196 | ||
1197 | /** | |
11c59c92 | 1198 | * dax_iomap_rw - Perform I/O to a DAX file |
a254e568 CH |
1199 | * @iocb: The control block for this I/O |
1200 | * @iter: The addresses to do I/O from or to | |
1201 | * @ops: iomap ops passed from the file system | |
1202 | * | |
1203 | * This function performs read and write operations to directly mapped | |
1204 | * persistent memory. The callers needs to take care of read/write exclusion | |
1205 | * and evicting any page cache pages in the region under I/O. | |
1206 | */ | |
1207 | ssize_t | |
11c59c92 | 1208 | dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, |
8ff6daa1 | 1209 | const struct iomap_ops *ops) |
a254e568 CH |
1210 | { |
1211 | struct address_space *mapping = iocb->ki_filp->f_mapping; | |
1212 | struct inode *inode = mapping->host; | |
1213 | loff_t pos = iocb->ki_pos, ret = 0, done = 0; | |
1214 | unsigned flags = 0; | |
1215 | ||
168316db | 1216 | if (iov_iter_rw(iter) == WRITE) { |
9ffbe8ac | 1217 | lockdep_assert_held_write(&inode->i_rwsem); |
a254e568 | 1218 | flags |= IOMAP_WRITE; |
168316db CH |
1219 | } else { |
1220 | lockdep_assert_held(&inode->i_rwsem); | |
1221 | } | |
a254e568 | 1222 | |
96222d53 JM |
1223 | if (iocb->ki_flags & IOCB_NOWAIT) |
1224 | flags |= IOMAP_NOWAIT; | |
1225 | ||
a254e568 CH |
1226 | while (iov_iter_count(iter)) { |
1227 | ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, | |
11c59c92 | 1228 | iter, dax_iomap_actor); |
a254e568 CH |
1229 | if (ret <= 0) |
1230 | break; | |
1231 | pos += ret; | |
1232 | done += ret; | |
1233 | } | |
1234 | ||
1235 | iocb->ki_pos += done; | |
1236 | return done ? done : ret; | |
1237 | } | |
11c59c92 | 1238 | EXPORT_SYMBOL_GPL(dax_iomap_rw); |
a7d73fe6 | 1239 | |
ab77dab4 | 1240 | static vm_fault_t dax_fault_return(int error) |
9f141d6e JK |
1241 | { |
1242 | if (error == 0) | |
1243 | return VM_FAULT_NOPAGE; | |
c9aed74e | 1244 | return vmf_error(error); |
9f141d6e JK |
1245 | } |
1246 | ||
aaa422c4 DW |
1247 | /* |
1248 | * MAP_SYNC on a dax mapping guarantees dirty metadata is | |
1249 | * flushed on write-faults (non-cow), but not read-faults. | |
1250 | */ | |
1251 | static bool dax_fault_is_synchronous(unsigned long flags, | |
1252 | struct vm_area_struct *vma, struct iomap *iomap) | |
1253 | { | |
1254 | return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) | |
1255 | && (iomap->flags & IOMAP_F_DIRTY); | |
1256 | } | |
1257 | ||
ab77dab4 | 1258 | static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, |
c0b24625 | 1259 | int *iomap_errp, const struct iomap_ops *ops) |
a7d73fe6 | 1260 | { |
a0987ad5 JK |
1261 | struct vm_area_struct *vma = vmf->vma; |
1262 | struct address_space *mapping = vma->vm_file->f_mapping; | |
b15cd800 | 1263 | XA_STATE(xas, &mapping->i_pages, vmf->pgoff); |
a7d73fe6 | 1264 | struct inode *inode = mapping->host; |
1a29d85e | 1265 | unsigned long vaddr = vmf->address; |
a7d73fe6 | 1266 | loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; |
c039b997 GR |
1267 | struct iomap iomap = { .type = IOMAP_HOLE }; |
1268 | struct iomap srcmap = { .type = IOMAP_HOLE }; | |
9484ab1b | 1269 | unsigned flags = IOMAP_FAULT; |
a7d73fe6 | 1270 | int error, major = 0; |
d2c43ef1 | 1271 | bool write = vmf->flags & FAULT_FLAG_WRITE; |
caa51d26 | 1272 | bool sync; |
ab77dab4 | 1273 | vm_fault_t ret = 0; |
a7d73fe6 | 1274 | void *entry; |
1b5a1cb2 | 1275 | pfn_t pfn; |
a7d73fe6 | 1276 | |
ab77dab4 | 1277 | trace_dax_pte_fault(inode, vmf, ret); |
a7d73fe6 CH |
1278 | /* |
1279 | * Check whether offset isn't beyond end of file now. Caller is supposed | |
1280 | * to hold locks serializing us with truncate / punch hole so this is | |
1281 | * a reliable test. | |
1282 | */ | |
a9c42b33 | 1283 | if (pos >= i_size_read(inode)) { |
ab77dab4 | 1284 | ret = VM_FAULT_SIGBUS; |
a9c42b33 RZ |
1285 | goto out; |
1286 | } | |
a7d73fe6 | 1287 | |
d2c43ef1 | 1288 | if (write && !vmf->cow_page) |
a7d73fe6 CH |
1289 | flags |= IOMAP_WRITE; |
1290 | ||
b15cd800 MW |
1291 | entry = grab_mapping_entry(&xas, mapping, 0); |
1292 | if (xa_is_internal(entry)) { | |
1293 | ret = xa_to_internal(entry); | |
13e451fd JK |
1294 | goto out; |
1295 | } | |
1296 | ||
e2093926 RZ |
1297 | /* |
1298 | * It is possible, particularly with mixed reads & writes to private | |
1299 | * mappings, that we have raced with a PMD fault that overlaps with | |
1300 | * the PTE we need to set up. If so just return and the fault will be | |
1301 | * retried. | |
1302 | */ | |
1303 | if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { | |
ab77dab4 | 1304 | ret = VM_FAULT_NOPAGE; |
e2093926 RZ |
1305 | goto unlock_entry; |
1306 | } | |
1307 | ||
a7d73fe6 CH |
1308 | /* |
1309 | * Note that we don't bother to use iomap_apply here: DAX required | |
1310 | * the file system block size to be equal the page size, which means | |
1311 | * that we never have to deal with more than a single extent here. | |
1312 | */ | |
c039b997 | 1313 | error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap); |
c0b24625 JK |
1314 | if (iomap_errp) |
1315 | *iomap_errp = error; | |
a9c42b33 | 1316 | if (error) { |
ab77dab4 | 1317 | ret = dax_fault_return(error); |
13e451fd | 1318 | goto unlock_entry; |
a9c42b33 | 1319 | } |
a7d73fe6 | 1320 | if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { |
13e451fd JK |
1321 | error = -EIO; /* fs corruption? */ |
1322 | goto error_finish_iomap; | |
a7d73fe6 CH |
1323 | } |
1324 | ||
a7d73fe6 | 1325 | if (vmf->cow_page) { |
31a6f1a6 JK |
1326 | sector_t sector = dax_iomap_sector(&iomap, pos); |
1327 | ||
a7d73fe6 CH |
1328 | switch (iomap.type) { |
1329 | case IOMAP_HOLE: | |
1330 | case IOMAP_UNWRITTEN: | |
1331 | clear_user_highpage(vmf->cow_page, vaddr); | |
1332 | break; | |
1333 | case IOMAP_MAPPED: | |
c7fe193f IW |
1334 | error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev, |
1335 | sector, vmf->cow_page, vaddr); | |
a7d73fe6 CH |
1336 | break; |
1337 | default: | |
1338 | WARN_ON_ONCE(1); | |
1339 | error = -EIO; | |
1340 | break; | |
1341 | } | |
1342 | ||
1343 | if (error) | |
13e451fd | 1344 | goto error_finish_iomap; |
b1aa812b JK |
1345 | |
1346 | __SetPageUptodate(vmf->cow_page); | |
ab77dab4 SJ |
1347 | ret = finish_fault(vmf); |
1348 | if (!ret) | |
1349 | ret = VM_FAULT_DONE_COW; | |
13e451fd | 1350 | goto finish_iomap; |
a7d73fe6 CH |
1351 | } |
1352 | ||
aaa422c4 | 1353 | sync = dax_fault_is_synchronous(flags, vma, &iomap); |
caa51d26 | 1354 | |
a7d73fe6 CH |
1355 | switch (iomap.type) { |
1356 | case IOMAP_MAPPED: | |
1357 | if (iomap.flags & IOMAP_F_NEW) { | |
1358 | count_vm_event(PGMAJFAULT); | |
a0987ad5 | 1359 | count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); |
a7d73fe6 CH |
1360 | major = VM_FAULT_MAJOR; |
1361 | } | |
1b5a1cb2 JK |
1362 | error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); |
1363 | if (error < 0) | |
1364 | goto error_finish_iomap; | |
1365 | ||
b15cd800 | 1366 | entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, |
caa51d26 | 1367 | 0, write && !sync); |
1b5a1cb2 | 1368 | |
caa51d26 JK |
1369 | /* |
1370 | * If we are doing synchronous page fault and inode needs fsync, | |
1371 | * we can insert PTE into page tables only after that happens. | |
1372 | * Skip insertion for now and return the pfn so that caller can | |
1373 | * insert it after fsync is done. | |
1374 | */ | |
1375 | if (sync) { | |
1376 | if (WARN_ON_ONCE(!pfnp)) { | |
1377 | error = -EIO; | |
1378 | goto error_finish_iomap; | |
1379 | } | |
1380 | *pfnp = pfn; | |
ab77dab4 | 1381 | ret = VM_FAULT_NEEDDSYNC | major; |
caa51d26 JK |
1382 | goto finish_iomap; |
1383 | } | |
1b5a1cb2 JK |
1384 | trace_dax_insert_mapping(inode, vmf, entry); |
1385 | if (write) | |
ab77dab4 | 1386 | ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); |
1b5a1cb2 | 1387 | else |
ab77dab4 | 1388 | ret = vmf_insert_mixed(vma, vaddr, pfn); |
1b5a1cb2 | 1389 | |
ab77dab4 | 1390 | goto finish_iomap; |
a7d73fe6 CH |
1391 | case IOMAP_UNWRITTEN: |
1392 | case IOMAP_HOLE: | |
d2c43ef1 | 1393 | if (!write) { |
b15cd800 | 1394 | ret = dax_load_hole(&xas, mapping, &entry, vmf); |
13e451fd | 1395 | goto finish_iomap; |
1550290b | 1396 | } |
df561f66 | 1397 | fallthrough; |
a7d73fe6 CH |
1398 | default: |
1399 | WARN_ON_ONCE(1); | |
1400 | error = -EIO; | |
1401 | break; | |
1402 | } | |
1403 | ||
13e451fd | 1404 | error_finish_iomap: |
ab77dab4 | 1405 | ret = dax_fault_return(error); |
9f141d6e JK |
1406 | finish_iomap: |
1407 | if (ops->iomap_end) { | |
1408 | int copied = PAGE_SIZE; | |
1409 | ||
ab77dab4 | 1410 | if (ret & VM_FAULT_ERROR) |
9f141d6e JK |
1411 | copied = 0; |
1412 | /* | |
1413 | * The fault is done by now and there's no way back (other | |
1414 | * thread may be already happily using PTE we have installed). | |
1415 | * Just ignore error from ->iomap_end since we cannot do much | |
1416 | * with it. | |
1417 | */ | |
1418 | ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); | |
1550290b | 1419 | } |
13e451fd | 1420 | unlock_entry: |
b15cd800 | 1421 | dax_unlock_entry(&xas, entry); |
13e451fd | 1422 | out: |
ab77dab4 SJ |
1423 | trace_dax_pte_fault_done(inode, vmf, ret); |
1424 | return ret | major; | |
a7d73fe6 | 1425 | } |
642261ac RZ |
1426 | |
1427 | #ifdef CONFIG_FS_DAX_PMD | |
b15cd800 MW |
1428 | static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, |
1429 | struct iomap *iomap, void **entry) | |
642261ac | 1430 | { |
f4200391 DJ |
1431 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
1432 | unsigned long pmd_addr = vmf->address & PMD_MASK; | |
11cf9d86 | 1433 | struct vm_area_struct *vma = vmf->vma; |
653b2ea3 | 1434 | struct inode *inode = mapping->host; |
11cf9d86 | 1435 | pgtable_t pgtable = NULL; |
642261ac RZ |
1436 | struct page *zero_page; |
1437 | spinlock_t *ptl; | |
1438 | pmd_t pmd_entry; | |
3fe0791c | 1439 | pfn_t pfn; |
642261ac | 1440 | |
f4200391 | 1441 | zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); |
642261ac RZ |
1442 | |
1443 | if (unlikely(!zero_page)) | |
653b2ea3 | 1444 | goto fallback; |
642261ac | 1445 | |
3fe0791c | 1446 | pfn = page_to_pfn_t(zero_page); |
b15cd800 | 1447 | *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, |
3159f943 | 1448 | DAX_PMD | DAX_ZERO_PAGE, false); |
642261ac | 1449 | |
11cf9d86 AK |
1450 | if (arch_needs_pgtable_deposit()) { |
1451 | pgtable = pte_alloc_one(vma->vm_mm); | |
1452 | if (!pgtable) | |
1453 | return VM_FAULT_OOM; | |
1454 | } | |
1455 | ||
f4200391 DJ |
1456 | ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); |
1457 | if (!pmd_none(*(vmf->pmd))) { | |
642261ac | 1458 | spin_unlock(ptl); |
653b2ea3 | 1459 | goto fallback; |
642261ac RZ |
1460 | } |
1461 | ||
11cf9d86 AK |
1462 | if (pgtable) { |
1463 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); | |
1464 | mm_inc_nr_ptes(vma->vm_mm); | |
1465 | } | |
f4200391 | 1466 | pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); |
642261ac | 1467 | pmd_entry = pmd_mkhuge(pmd_entry); |
f4200391 | 1468 | set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); |
642261ac | 1469 | spin_unlock(ptl); |
b15cd800 | 1470 | trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); |
642261ac | 1471 | return VM_FAULT_NOPAGE; |
653b2ea3 RZ |
1472 | |
1473 | fallback: | |
11cf9d86 AK |
1474 | if (pgtable) |
1475 | pte_free(vma->vm_mm, pgtable); | |
b15cd800 | 1476 | trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); |
653b2ea3 | 1477 | return VM_FAULT_FALLBACK; |
642261ac RZ |
1478 | } |
1479 | ||
ab77dab4 | 1480 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
a2d58167 | 1481 | const struct iomap_ops *ops) |
642261ac | 1482 | { |
f4200391 | 1483 | struct vm_area_struct *vma = vmf->vma; |
642261ac | 1484 | struct address_space *mapping = vma->vm_file->f_mapping; |
b15cd800 | 1485 | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); |
d8a849e1 DJ |
1486 | unsigned long pmd_addr = vmf->address & PMD_MASK; |
1487 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
caa51d26 | 1488 | bool sync; |
9484ab1b | 1489 | unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; |
642261ac | 1490 | struct inode *inode = mapping->host; |
ab77dab4 | 1491 | vm_fault_t result = VM_FAULT_FALLBACK; |
c039b997 GR |
1492 | struct iomap iomap = { .type = IOMAP_HOLE }; |
1493 | struct iomap srcmap = { .type = IOMAP_HOLE }; | |
b15cd800 | 1494 | pgoff_t max_pgoff; |
642261ac RZ |
1495 | void *entry; |
1496 | loff_t pos; | |
1497 | int error; | |
302a5e31 | 1498 | pfn_t pfn; |
642261ac | 1499 | |
282a8e03 RZ |
1500 | /* |
1501 | * Check whether offset isn't beyond end of file now. Caller is | |
1502 | * supposed to hold locks serializing us with truncate / punch hole so | |
1503 | * this is a reliable test. | |
1504 | */ | |
957ac8c4 | 1505 | max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
282a8e03 | 1506 | |
f4200391 | 1507 | trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); |
282a8e03 | 1508 | |
fffa281b RZ |
1509 | /* |
1510 | * Make sure that the faulting address's PMD offset (color) matches | |
1511 | * the PMD offset from the start of the file. This is necessary so | |
1512 | * that a PMD range in the page table overlaps exactly with a PMD | |
a77d19f4 | 1513 | * range in the page cache. |
fffa281b RZ |
1514 | */ |
1515 | if ((vmf->pgoff & PG_PMD_COLOUR) != | |
1516 | ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) | |
1517 | goto fallback; | |
1518 | ||
642261ac RZ |
1519 | /* Fall back to PTEs if we're going to COW */ |
1520 | if (write && !(vma->vm_flags & VM_SHARED)) | |
1521 | goto fallback; | |
1522 | ||
1523 | /* If the PMD would extend outside the VMA */ | |
1524 | if (pmd_addr < vma->vm_start) | |
1525 | goto fallback; | |
1526 | if ((pmd_addr + PMD_SIZE) > vma->vm_end) | |
1527 | goto fallback; | |
1528 | ||
b15cd800 | 1529 | if (xas.xa_index >= max_pgoff) { |
282a8e03 RZ |
1530 | result = VM_FAULT_SIGBUS; |
1531 | goto out; | |
1532 | } | |
642261ac RZ |
1533 | |
1534 | /* If the PMD would extend beyond the file size */ | |
b15cd800 | 1535 | if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) |
642261ac RZ |
1536 | goto fallback; |
1537 | ||
876f2946 | 1538 | /* |
b15cd800 MW |
1539 | * grab_mapping_entry() will make sure we get an empty PMD entry, |
1540 | * a zero PMD entry or a DAX PMD. If it can't (because a PTE | |
1541 | * entry is already in the array, for instance), it will return | |
1542 | * VM_FAULT_FALLBACK. | |
876f2946 | 1543 | */ |
23c84eb7 | 1544 | entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); |
b15cd800 MW |
1545 | if (xa_is_internal(entry)) { |
1546 | result = xa_to_internal(entry); | |
876f2946 | 1547 | goto fallback; |
b15cd800 | 1548 | } |
876f2946 | 1549 | |
e2093926 RZ |
1550 | /* |
1551 | * It is possible, particularly with mixed reads & writes to private | |
1552 | * mappings, that we have raced with a PTE fault that overlaps with | |
1553 | * the PMD we need to set up. If so just return and the fault will be | |
1554 | * retried. | |
1555 | */ | |
1556 | if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && | |
1557 | !pmd_devmap(*vmf->pmd)) { | |
1558 | result = 0; | |
1559 | goto unlock_entry; | |
1560 | } | |
1561 | ||
642261ac RZ |
1562 | /* |
1563 | * Note that we don't use iomap_apply here. We aren't doing I/O, only | |
1564 | * setting up a mapping, so really we're using iomap_begin() as a way | |
1565 | * to look up our filesystem block. | |
1566 | */ | |
b15cd800 | 1567 | pos = (loff_t)xas.xa_index << PAGE_SHIFT; |
c039b997 GR |
1568 | error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap, |
1569 | &srcmap); | |
642261ac | 1570 | if (error) |
876f2946 | 1571 | goto unlock_entry; |
9f141d6e | 1572 | |
642261ac RZ |
1573 | if (iomap.offset + iomap.length < pos + PMD_SIZE) |
1574 | goto finish_iomap; | |
1575 | ||
aaa422c4 | 1576 | sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); |
caa51d26 | 1577 | |
642261ac RZ |
1578 | switch (iomap.type) { |
1579 | case IOMAP_MAPPED: | |
302a5e31 JK |
1580 | error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); |
1581 | if (error < 0) | |
1582 | goto finish_iomap; | |
1583 | ||
b15cd800 | 1584 | entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, |
3159f943 | 1585 | DAX_PMD, write && !sync); |
302a5e31 | 1586 | |
caa51d26 JK |
1587 | /* |
1588 | * If we are doing synchronous page fault and inode needs fsync, | |
1589 | * we can insert PMD into page tables only after that happens. | |
1590 | * Skip insertion for now and return the pfn so that caller can | |
1591 | * insert it after fsync is done. | |
1592 | */ | |
1593 | if (sync) { | |
1594 | if (WARN_ON_ONCE(!pfnp)) | |
1595 | goto finish_iomap; | |
1596 | *pfnp = pfn; | |
1597 | result = VM_FAULT_NEEDDSYNC; | |
1598 | goto finish_iomap; | |
1599 | } | |
1600 | ||
302a5e31 | 1601 | trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); |
fce86ff5 | 1602 | result = vmf_insert_pfn_pmd(vmf, pfn, write); |
642261ac RZ |
1603 | break; |
1604 | case IOMAP_UNWRITTEN: | |
1605 | case IOMAP_HOLE: | |
1606 | if (WARN_ON_ONCE(write)) | |
876f2946 | 1607 | break; |
b15cd800 | 1608 | result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); |
642261ac RZ |
1609 | break; |
1610 | default: | |
1611 | WARN_ON_ONCE(1); | |
1612 | break; | |
1613 | } | |
1614 | ||
1615 | finish_iomap: | |
1616 | if (ops->iomap_end) { | |
9f141d6e JK |
1617 | int copied = PMD_SIZE; |
1618 | ||
1619 | if (result == VM_FAULT_FALLBACK) | |
1620 | copied = 0; | |
1621 | /* | |
1622 | * The fault is done by now and there's no way back (other | |
1623 | * thread may be already happily using PMD we have installed). | |
1624 | * Just ignore error from ->iomap_end since we cannot do much | |
1625 | * with it. | |
1626 | */ | |
1627 | ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, | |
1628 | &iomap); | |
642261ac | 1629 | } |
876f2946 | 1630 | unlock_entry: |
b15cd800 | 1631 | dax_unlock_entry(&xas, entry); |
642261ac RZ |
1632 | fallback: |
1633 | if (result == VM_FAULT_FALLBACK) { | |
d8a849e1 | 1634 | split_huge_pmd(vma, vmf->pmd, vmf->address); |
642261ac RZ |
1635 | count_vm_event(THP_FAULT_FALLBACK); |
1636 | } | |
282a8e03 | 1637 | out: |
f4200391 | 1638 | trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); |
642261ac RZ |
1639 | return result; |
1640 | } | |
a2d58167 | 1641 | #else |
ab77dab4 | 1642 | static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, |
01cddfe9 | 1643 | const struct iomap_ops *ops) |
a2d58167 DJ |
1644 | { |
1645 | return VM_FAULT_FALLBACK; | |
1646 | } | |
642261ac | 1647 | #endif /* CONFIG_FS_DAX_PMD */ |
a2d58167 DJ |
1648 | |
1649 | /** | |
1650 | * dax_iomap_fault - handle a page fault on a DAX file | |
1651 | * @vmf: The description of the fault | |
cec04e8c | 1652 | * @pe_size: Size of the page to fault in |
9a0dd422 | 1653 | * @pfnp: PFN to insert for synchronous faults if fsync is required |
c0b24625 | 1654 | * @iomap_errp: Storage for detailed error code in case of error |
cec04e8c | 1655 | * @ops: Iomap ops passed from the file system |
a2d58167 DJ |
1656 | * |
1657 | * When a page fault occurs, filesystems may call this helper in | |
1658 | * their fault handler for DAX files. dax_iomap_fault() assumes the caller | |
1659 | * has done all the necessary locking for page fault to proceed | |
1660 | * successfully. | |
1661 | */ | |
ab77dab4 | 1662 | vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, |
c0b24625 | 1663 | pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) |
a2d58167 | 1664 | { |
c791ace1 DJ |
1665 | switch (pe_size) { |
1666 | case PE_SIZE_PTE: | |
c0b24625 | 1667 | return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); |
c791ace1 | 1668 | case PE_SIZE_PMD: |
9a0dd422 | 1669 | return dax_iomap_pmd_fault(vmf, pfnp, ops); |
a2d58167 DJ |
1670 | default: |
1671 | return VM_FAULT_FALLBACK; | |
1672 | } | |
1673 | } | |
1674 | EXPORT_SYMBOL_GPL(dax_iomap_fault); | |
71eab6df | 1675 | |
a77d19f4 | 1676 | /* |
71eab6df JK |
1677 | * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables |
1678 | * @vmf: The description of the fault | |
71eab6df | 1679 | * @pfn: PFN to insert |
cfc93c6c | 1680 | * @order: Order of entry to insert. |
71eab6df | 1681 | * |
a77d19f4 MW |
1682 | * This function inserts a writeable PTE or PMD entry into the page tables |
1683 | * for an mmaped DAX file. It also marks the page cache entry as dirty. | |
71eab6df | 1684 | */ |
cfc93c6c MW |
1685 | static vm_fault_t |
1686 | dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) | |
71eab6df JK |
1687 | { |
1688 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; | |
cfc93c6c MW |
1689 | XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); |
1690 | void *entry; | |
ab77dab4 | 1691 | vm_fault_t ret; |
71eab6df | 1692 | |
cfc93c6c | 1693 | xas_lock_irq(&xas); |
23c84eb7 | 1694 | entry = get_unlocked_entry(&xas, order); |
71eab6df | 1695 | /* Did we race with someone splitting entry or so? */ |
23c84eb7 MWO |
1696 | if (!entry || dax_is_conflict(entry) || |
1697 | (order == 0 && !dax_is_pte_entry(entry))) { | |
4c3d043d | 1698 | put_unlocked_entry(&xas, entry, WAKE_NEXT); |
cfc93c6c | 1699 | xas_unlock_irq(&xas); |
71eab6df JK |
1700 | trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, |
1701 | VM_FAULT_NOPAGE); | |
1702 | return VM_FAULT_NOPAGE; | |
1703 | } | |
cfc93c6c MW |
1704 | xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); |
1705 | dax_lock_entry(&xas, entry); | |
1706 | xas_unlock_irq(&xas); | |
1707 | if (order == 0) | |
ab77dab4 | 1708 | ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); |
71eab6df | 1709 | #ifdef CONFIG_FS_DAX_PMD |
cfc93c6c | 1710 | else if (order == PMD_ORDER) |
fce86ff5 | 1711 | ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); |
71eab6df | 1712 | #endif |
cfc93c6c | 1713 | else |
ab77dab4 | 1714 | ret = VM_FAULT_FALLBACK; |
cfc93c6c | 1715 | dax_unlock_entry(&xas, entry); |
ab77dab4 SJ |
1716 | trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); |
1717 | return ret; | |
71eab6df JK |
1718 | } |
1719 | ||
1720 | /** | |
1721 | * dax_finish_sync_fault - finish synchronous page fault | |
1722 | * @vmf: The description of the fault | |
1723 | * @pe_size: Size of entry to be inserted | |
1724 | * @pfn: PFN to insert | |
1725 | * | |
1726 | * This function ensures that the file range touched by the page fault is | |
1727 | * stored persistently on the media and handles inserting of appropriate page | |
1728 | * table entry. | |
1729 | */ | |
ab77dab4 SJ |
1730 | vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, |
1731 | enum page_entry_size pe_size, pfn_t pfn) | |
71eab6df JK |
1732 | { |
1733 | int err; | |
1734 | loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; | |
cfc93c6c MW |
1735 | unsigned int order = pe_order(pe_size); |
1736 | size_t len = PAGE_SIZE << order; | |
71eab6df | 1737 | |
71eab6df JK |
1738 | err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); |
1739 | if (err) | |
1740 | return VM_FAULT_SIGBUS; | |
cfc93c6c | 1741 | return dax_insert_pfn_mkwrite(vmf, pfn, order); |
71eab6df JK |
1742 | } |
1743 | EXPORT_SYMBOL_GPL(dax_finish_sync_fault); |