]>
Commit | Line | Data |
---|---|---|
263b4a30 RF |
1 | /* |
2 | * FDT related Helper functions used by the EFI stub on multiple | |
3 | * architectures. This should be #included by the EFI stub | |
4 | * implementation files. | |
5 | * | |
6 | * Copyright 2013 Linaro Limited; author Roy Franz | |
7 | * | |
8 | * This file is part of the Linux kernel, and is made available | |
9 | * under the terms of the GNU General Public License version 2. | |
10 | * | |
11 | */ | |
12 | ||
bd669475 AB |
13 | #include <linux/efi.h> |
14 | #include <linux/libfdt.h> | |
15 | #include <asm/efi.h> | |
16 | ||
f3cdfd23 AB |
17 | #include "efistub.h" |
18 | ||
bd669475 AB |
19 | efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt, |
20 | unsigned long orig_fdt_size, | |
21 | void *fdt, int new_fdt_size, char *cmdline_ptr, | |
22 | u64 initrd_addr, u64 initrd_size, | |
23 | efi_memory_desc_t *memory_map, | |
24 | unsigned long map_size, unsigned long desc_size, | |
25 | u32 desc_ver) | |
263b4a30 | 26 | { |
500899c2 | 27 | int node, num_rsv; |
263b4a30 RF |
28 | int status; |
29 | u32 fdt_val32; | |
30 | u64 fdt_val64; | |
31 | ||
263b4a30 RF |
32 | /* Do some checks on provided FDT, if it exists*/ |
33 | if (orig_fdt) { | |
34 | if (fdt_check_header(orig_fdt)) { | |
35 | pr_efi_err(sys_table, "Device Tree header not valid!\n"); | |
36 | return EFI_LOAD_ERROR; | |
37 | } | |
38 | /* | |
39 | * We don't get the size of the FDT if we get if from a | |
40 | * configuration table. | |
41 | */ | |
42 | if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) { | |
43 | pr_efi_err(sys_table, "Truncated device tree! foo!\n"); | |
44 | return EFI_LOAD_ERROR; | |
45 | } | |
46 | } | |
47 | ||
48 | if (orig_fdt) | |
49 | status = fdt_open_into(orig_fdt, fdt, new_fdt_size); | |
50 | else | |
51 | status = fdt_create_empty_tree(fdt, new_fdt_size); | |
52 | ||
53 | if (status != 0) | |
54 | goto fdt_set_fail; | |
55 | ||
0ceac9e0 MS |
56 | /* |
57 | * Delete all memory reserve map entries. When booting via UEFI, | |
58 | * kernel will use the UEFI memory map to find reserved regions. | |
59 | */ | |
60 | num_rsv = fdt_num_mem_rsv(fdt); | |
61 | while (num_rsv-- > 0) | |
62 | fdt_del_mem_rsv(fdt, num_rsv); | |
63 | ||
263b4a30 RF |
64 | node = fdt_subnode_offset(fdt, 0, "chosen"); |
65 | if (node < 0) { | |
66 | node = fdt_add_subnode(fdt, 0, "chosen"); | |
67 | if (node < 0) { | |
68 | status = node; /* node is error code when negative */ | |
69 | goto fdt_set_fail; | |
70 | } | |
71 | } | |
72 | ||
73 | if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) { | |
74 | status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr, | |
75 | strlen(cmdline_ptr) + 1); | |
76 | if (status) | |
77 | goto fdt_set_fail; | |
78 | } | |
79 | ||
80 | /* Set initrd address/end in device tree, if present */ | |
81 | if (initrd_size != 0) { | |
82 | u64 initrd_image_end; | |
83 | u64 initrd_image_start = cpu_to_fdt64(initrd_addr); | |
84 | ||
85 | status = fdt_setprop(fdt, node, "linux,initrd-start", | |
86 | &initrd_image_start, sizeof(u64)); | |
87 | if (status) | |
88 | goto fdt_set_fail; | |
89 | initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size); | |
90 | status = fdt_setprop(fdt, node, "linux,initrd-end", | |
91 | &initrd_image_end, sizeof(u64)); | |
92 | if (status) | |
93 | goto fdt_set_fail; | |
94 | } | |
95 | ||
96 | /* Add FDT entries for EFI runtime services in chosen node. */ | |
97 | node = fdt_subnode_offset(fdt, 0, "chosen"); | |
98 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table); | |
99 | status = fdt_setprop(fdt, node, "linux,uefi-system-table", | |
100 | &fdt_val64, sizeof(fdt_val64)); | |
101 | if (status) | |
102 | goto fdt_set_fail; | |
103 | ||
104 | fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map); | |
105 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-start", | |
106 | &fdt_val64, sizeof(fdt_val64)); | |
107 | if (status) | |
108 | goto fdt_set_fail; | |
109 | ||
110 | fdt_val32 = cpu_to_fdt32(map_size); | |
111 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-size", | |
112 | &fdt_val32, sizeof(fdt_val32)); | |
113 | if (status) | |
114 | goto fdt_set_fail; | |
115 | ||
116 | fdt_val32 = cpu_to_fdt32(desc_size); | |
117 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size", | |
118 | &fdt_val32, sizeof(fdt_val32)); | |
119 | if (status) | |
120 | goto fdt_set_fail; | |
121 | ||
122 | fdt_val32 = cpu_to_fdt32(desc_ver); | |
123 | status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver", | |
124 | &fdt_val32, sizeof(fdt_val32)); | |
125 | if (status) | |
126 | goto fdt_set_fail; | |
127 | ||
2b5fe07a AB |
128 | if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { |
129 | efi_status_t efi_status; | |
130 | ||
131 | efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64), | |
132 | (u8 *)&fdt_val64); | |
133 | if (efi_status == EFI_SUCCESS) { | |
134 | status = fdt_setprop(fdt, node, "kaslr-seed", | |
135 | &fdt_val64, sizeof(fdt_val64)); | |
136 | if (status) | |
137 | goto fdt_set_fail; | |
138 | } else if (efi_status != EFI_NOT_FOUND) { | |
139 | return efi_status; | |
140 | } | |
141 | } | |
263b4a30 RF |
142 | return EFI_SUCCESS; |
143 | ||
144 | fdt_set_fail: | |
145 | if (status == -FDT_ERR_NOSPACE) | |
146 | return EFI_BUFFER_TOO_SMALL; | |
147 | ||
148 | return EFI_LOAD_ERROR; | |
149 | } | |
150 | ||
151 | #ifndef EFI_FDT_ALIGN | |
152 | #define EFI_FDT_ALIGN EFI_PAGE_SIZE | |
153 | #endif | |
154 | ||
ed9cc156 JH |
155 | struct exit_boot_struct { |
156 | efi_memory_desc_t *runtime_map; | |
157 | int *runtime_entry_count; | |
158 | }; | |
159 | ||
160 | static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, | |
161 | struct efi_boot_memmap *map, | |
162 | void *priv) | |
163 | { | |
164 | struct exit_boot_struct *p = priv; | |
165 | /* | |
166 | * Update the memory map with virtual addresses. The function will also | |
167 | * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME | |
168 | * entries so that we can pass it straight to SetVirtualAddressMap() | |
169 | */ | |
170 | efi_get_virtmap(*map->map, *map->map_size, *map->desc_size, | |
171 | p->runtime_map, p->runtime_entry_count); | |
172 | ||
173 | return EFI_SUCCESS; | |
174 | } | |
175 | ||
263b4a30 RF |
176 | /* |
177 | * Allocate memory for a new FDT, then add EFI, commandline, and | |
178 | * initrd related fields to the FDT. This routine increases the | |
179 | * FDT allocation size until the allocated memory is large | |
180 | * enough. EFI allocations are in EFI_PAGE_SIZE granules, | |
181 | * which are fixed at 4K bytes, so in most cases the first | |
182 | * allocation should succeed. | |
183 | * EFI boot services are exited at the end of this function. | |
184 | * There must be no allocations between the get_memory_map() | |
185 | * call and the exit_boot_services() call, so the exiting of | |
186 | * boot services is very tightly tied to the creation of the FDT | |
187 | * with the final memory map in it. | |
188 | */ | |
189 | ||
190 | efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table, | |
191 | void *handle, | |
192 | unsigned long *new_fdt_addr, | |
193 | unsigned long max_addr, | |
194 | u64 initrd_addr, u64 initrd_size, | |
195 | char *cmdline_ptr, | |
196 | unsigned long fdt_addr, | |
197 | unsigned long fdt_size) | |
198 | { | |
dadb57ab | 199 | unsigned long map_size, desc_size, buff_size; |
263b4a30 RF |
200 | u32 desc_ver; |
201 | unsigned long mmap_key; | |
f3cdfd23 | 202 | efi_memory_desc_t *memory_map, *runtime_map; |
263b4a30 RF |
203 | unsigned long new_fdt_size; |
204 | efi_status_t status; | |
f3cdfd23 | 205 | int runtime_entry_count = 0; |
dadb57ab | 206 | struct efi_boot_memmap map; |
ed9cc156 | 207 | struct exit_boot_struct priv; |
dadb57ab JH |
208 | |
209 | map.map = &runtime_map; | |
210 | map.map_size = &map_size; | |
211 | map.desc_size = &desc_size; | |
212 | map.desc_ver = &desc_ver; | |
213 | map.key_ptr = &mmap_key; | |
214 | map.buff_size = &buff_size; | |
f3cdfd23 AB |
215 | |
216 | /* | |
217 | * Get a copy of the current memory map that we will use to prepare | |
218 | * the input for SetVirtualAddressMap(). We don't have to worry about | |
219 | * subsequent allocations adding entries, since they could not affect | |
220 | * the number of EFI_MEMORY_RUNTIME regions. | |
221 | */ | |
dadb57ab | 222 | status = efi_get_memory_map(sys_table, &map); |
f3cdfd23 AB |
223 | if (status != EFI_SUCCESS) { |
224 | pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n"); | |
225 | return status; | |
226 | } | |
227 | ||
228 | pr_efi(sys_table, | |
229 | "Exiting boot services and installing virtual address map...\n"); | |
263b4a30 | 230 | |
dadb57ab | 231 | map.map = &memory_map; |
263b4a30 RF |
232 | /* |
233 | * Estimate size of new FDT, and allocate memory for it. We | |
234 | * will allocate a bigger buffer if this ends up being too | |
235 | * small, so a rough guess is OK here. | |
236 | */ | |
237 | new_fdt_size = fdt_size + EFI_PAGE_SIZE; | |
238 | while (1) { | |
239 | status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN, | |
240 | new_fdt_addr, max_addr); | |
241 | if (status != EFI_SUCCESS) { | |
242 | pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n"); | |
243 | goto fail; | |
244 | } | |
245 | ||
246 | /* | |
247 | * Now that we have done our final memory allocation (and free) | |
248 | * we can get the memory map key needed for | |
249 | * exit_boot_services(). | |
250 | */ | |
dadb57ab | 251 | status = efi_get_memory_map(sys_table, &map); |
263b4a30 RF |
252 | if (status != EFI_SUCCESS) |
253 | goto fail_free_new_fdt; | |
254 | ||
255 | status = update_fdt(sys_table, | |
256 | (void *)fdt_addr, fdt_size, | |
257 | (void *)*new_fdt_addr, new_fdt_size, | |
258 | cmdline_ptr, initrd_addr, initrd_size, | |
259 | memory_map, map_size, desc_size, desc_ver); | |
260 | ||
261 | /* Succeeding the first time is the expected case. */ | |
262 | if (status == EFI_SUCCESS) | |
263 | break; | |
264 | ||
265 | if (status == EFI_BUFFER_TOO_SMALL) { | |
266 | /* | |
267 | * We need to allocate more space for the new | |
268 | * device tree, so free existing buffer that is | |
269 | * too small. Also free memory map, as we will need | |
270 | * to get new one that reflects the free/alloc we do | |
271 | * on the device tree buffer. | |
272 | */ | |
273 | efi_free(sys_table, new_fdt_size, *new_fdt_addr); | |
274 | sys_table->boottime->free_pool(memory_map); | |
275 | new_fdt_size += EFI_PAGE_SIZE; | |
276 | } else { | |
e3d132d1 | 277 | pr_efi_err(sys_table, "Unable to construct new device tree.\n"); |
263b4a30 RF |
278 | goto fail_free_mmap; |
279 | } | |
280 | } | |
281 | ||
ed9cc156 JH |
282 | sys_table->boottime->free_pool(memory_map); |
283 | priv.runtime_map = runtime_map; | |
284 | priv.runtime_entry_count = &runtime_entry_count; | |
285 | status = efi_exit_boot_services(sys_table, handle, &map, &priv, | |
286 | exit_boot_func); | |
263b4a30 | 287 | |
f3cdfd23 AB |
288 | if (status == EFI_SUCCESS) { |
289 | efi_set_virtual_address_map_t *svam; | |
263b4a30 | 290 | |
f3cdfd23 AB |
291 | /* Install the new virtual address map */ |
292 | svam = sys_table->runtime->set_virtual_address_map; | |
293 | status = svam(runtime_entry_count * desc_size, desc_size, | |
294 | desc_ver, runtime_map); | |
295 | ||
296 | /* | |
297 | * We are beyond the point of no return here, so if the call to | |
298 | * SetVirtualAddressMap() failed, we need to signal that to the | |
299 | * incoming kernel but proceed normally otherwise. | |
300 | */ | |
301 | if (status != EFI_SUCCESS) { | |
302 | int l; | |
303 | ||
304 | /* | |
305 | * Set the virtual address field of all | |
306 | * EFI_MEMORY_RUNTIME entries to 0. This will signal | |
307 | * the incoming kernel that no virtual translation has | |
308 | * been installed. | |
309 | */ | |
310 | for (l = 0; l < map_size; l += desc_size) { | |
311 | efi_memory_desc_t *p = (void *)memory_map + l; | |
312 | ||
313 | if (p->attribute & EFI_MEMORY_RUNTIME) | |
314 | p->virt_addr = 0; | |
315 | } | |
316 | } | |
317 | return EFI_SUCCESS; | |
318 | } | |
263b4a30 RF |
319 | |
320 | pr_efi_err(sys_table, "Exit boot services failed.\n"); | |
321 | ||
322 | fail_free_mmap: | |
323 | sys_table->boottime->free_pool(memory_map); | |
324 | ||
325 | fail_free_new_fdt: | |
326 | efi_free(sys_table, new_fdt_size, *new_fdt_addr); | |
327 | ||
328 | fail: | |
f3cdfd23 | 329 | sys_table->boottime->free_pool(runtime_map); |
263b4a30 RF |
330 | return EFI_LOAD_ERROR; |
331 | } | |
332 | ||
a643375f | 333 | void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size) |
263b4a30 RF |
334 | { |
335 | efi_guid_t fdt_guid = DEVICE_TREE_GUID; | |
336 | efi_config_table_t *tables; | |
337 | void *fdt; | |
338 | int i; | |
339 | ||
340 | tables = (efi_config_table_t *) sys_table->tables; | |
341 | fdt = NULL; | |
342 | ||
343 | for (i = 0; i < sys_table->nr_tables; i++) | |
344 | if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) { | |
345 | fdt = (void *) tables[i].table; | |
a643375f AB |
346 | if (fdt_check_header(fdt) != 0) { |
347 | pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n"); | |
348 | return NULL; | |
349 | } | |
350 | *fdt_size = fdt_totalsize(fdt); | |
263b4a30 RF |
351 | break; |
352 | } | |
353 | ||
354 | return fdt; | |
355 | } |