]>
Commit | Line | Data |
---|---|---|
f8af4da3 | 1 | /* |
31dbd01f IE |
2 | * Memory merging support. |
3 | * | |
4 | * This code enables dynamic sharing of identical pages found in different | |
5 | * memory areas, even if they are not shared by fork() | |
6 | * | |
36b2528d | 7 | * Copyright (C) 2008-2009 Red Hat, Inc. |
31dbd01f IE |
8 | * Authors: |
9 | * Izik Eidus | |
10 | * Andrea Arcangeli | |
11 | * Chris Wright | |
36b2528d | 12 | * Hugh Dickins |
31dbd01f IE |
13 | * |
14 | * This work is licensed under the terms of the GNU GPL, version 2. | |
f8af4da3 HD |
15 | */ |
16 | ||
17 | #include <linux/errno.h> | |
31dbd01f IE |
18 | #include <linux/mm.h> |
19 | #include <linux/fs.h> | |
f8af4da3 | 20 | #include <linux/mman.h> |
31dbd01f IE |
21 | #include <linux/sched.h> |
22 | #include <linux/rwsem.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/rmap.h> | |
25 | #include <linux/spinlock.h> | |
26 | #include <linux/jhash.h> | |
27 | #include <linux/delay.h> | |
28 | #include <linux/kthread.h> | |
29 | #include <linux/wait.h> | |
30 | #include <linux/slab.h> | |
31 | #include <linux/rbtree.h> | |
62b61f61 | 32 | #include <linux/memory.h> |
31dbd01f | 33 | #include <linux/mmu_notifier.h> |
2c6854fd | 34 | #include <linux/swap.h> |
f8af4da3 HD |
35 | #include <linux/ksm.h> |
36 | ||
31dbd01f | 37 | #include <asm/tlbflush.h> |
73848b46 | 38 | #include "internal.h" |
31dbd01f IE |
39 | |
40 | /* | |
41 | * A few notes about the KSM scanning process, | |
42 | * to make it easier to understand the data structures below: | |
43 | * | |
44 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | |
45 | * contents into a data structure that holds pointers to the pages' locations. | |
46 | * | |
47 | * Since the contents of the pages may change at any moment, KSM cannot just | |
48 | * insert the pages into a normal sorted tree and expect it to find anything. | |
49 | * Therefore KSM uses two data structures - the stable and the unstable tree. | |
50 | * | |
51 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | |
52 | * by their contents. Because each such page is write-protected, searching on | |
53 | * this tree is fully assured to be working (except when pages are unmapped), | |
54 | * and therefore this tree is called the stable tree. | |
55 | * | |
56 | * In addition to the stable tree, KSM uses a second data structure called the | |
57 | * unstable tree: this tree holds pointers to pages which have been found to | |
58 | * be "unchanged for a period of time". The unstable tree sorts these pages | |
59 | * by their contents, but since they are not write-protected, KSM cannot rely | |
60 | * upon the unstable tree to work correctly - the unstable tree is liable to | |
61 | * be corrupted as its contents are modified, and so it is called unstable. | |
62 | * | |
63 | * KSM solves this problem by several techniques: | |
64 | * | |
65 | * 1) The unstable tree is flushed every time KSM completes scanning all | |
66 | * memory areas, and then the tree is rebuilt again from the beginning. | |
67 | * 2) KSM will only insert into the unstable tree, pages whose hash value | |
68 | * has not changed since the previous scan of all memory areas. | |
69 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | |
70 | * colors of the nodes and not on their contents, assuring that even when | |
71 | * the tree gets "corrupted" it won't get out of balance, so scanning time | |
72 | * remains the same (also, searching and inserting nodes in an rbtree uses | |
73 | * the same algorithm, so we have no overhead when we flush and rebuild). | |
74 | * 4) KSM never flushes the stable tree, which means that even if it were to | |
75 | * take 10 attempts to find a page in the unstable tree, once it is found, | |
76 | * it is secured in the stable tree. (When we scan a new page, we first | |
77 | * compare it against the stable tree, and then against the unstable tree.) | |
78 | */ | |
79 | ||
80 | /** | |
81 | * struct mm_slot - ksm information per mm that is being scanned | |
82 | * @link: link to the mm_slots hash list | |
83 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | |
6514d511 | 84 | * @rmap_list: head for this mm_slot's singly-linked list of rmap_items |
31dbd01f IE |
85 | * @mm: the mm that this information is valid for |
86 | */ | |
87 | struct mm_slot { | |
88 | struct hlist_node link; | |
89 | struct list_head mm_list; | |
6514d511 | 90 | struct rmap_item *rmap_list; |
31dbd01f IE |
91 | struct mm_struct *mm; |
92 | }; | |
93 | ||
94 | /** | |
95 | * struct ksm_scan - cursor for scanning | |
96 | * @mm_slot: the current mm_slot we are scanning | |
97 | * @address: the next address inside that to be scanned | |
6514d511 | 98 | * @rmap_list: link to the next rmap to be scanned in the rmap_list |
31dbd01f IE |
99 | * @seqnr: count of completed full scans (needed when removing unstable node) |
100 | * | |
101 | * There is only the one ksm_scan instance of this cursor structure. | |
102 | */ | |
103 | struct ksm_scan { | |
104 | struct mm_slot *mm_slot; | |
105 | unsigned long address; | |
6514d511 | 106 | struct rmap_item **rmap_list; |
31dbd01f IE |
107 | unsigned long seqnr; |
108 | }; | |
109 | ||
7b6ba2c7 HD |
110 | /** |
111 | * struct stable_node - node of the stable rbtree | |
112 | * @node: rb node of this ksm page in the stable tree | |
113 | * @hlist: hlist head of rmap_items using this ksm page | |
62b61f61 | 114 | * @kpfn: page frame number of this ksm page |
7b6ba2c7 HD |
115 | */ |
116 | struct stable_node { | |
117 | struct rb_node node; | |
118 | struct hlist_head hlist; | |
62b61f61 | 119 | unsigned long kpfn; |
7b6ba2c7 HD |
120 | }; |
121 | ||
31dbd01f IE |
122 | /** |
123 | * struct rmap_item - reverse mapping item for virtual addresses | |
6514d511 | 124 | * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list |
db114b83 | 125 | * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree |
31dbd01f IE |
126 | * @mm: the memory structure this rmap_item is pointing into |
127 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | |
128 | * @oldchecksum: previous checksum of the page at that virtual address | |
7b6ba2c7 HD |
129 | * @node: rb node of this rmap_item in the unstable tree |
130 | * @head: pointer to stable_node heading this list in the stable tree | |
131 | * @hlist: link into hlist of rmap_items hanging off that stable_node | |
31dbd01f IE |
132 | */ |
133 | struct rmap_item { | |
6514d511 | 134 | struct rmap_item *rmap_list; |
db114b83 | 135 | struct anon_vma *anon_vma; /* when stable */ |
31dbd01f IE |
136 | struct mm_struct *mm; |
137 | unsigned long address; /* + low bits used for flags below */ | |
7b6ba2c7 | 138 | unsigned int oldchecksum; /* when unstable */ |
31dbd01f | 139 | union { |
7b6ba2c7 HD |
140 | struct rb_node node; /* when node of unstable tree */ |
141 | struct { /* when listed from stable tree */ | |
142 | struct stable_node *head; | |
143 | struct hlist_node hlist; | |
144 | }; | |
31dbd01f IE |
145 | }; |
146 | }; | |
147 | ||
148 | #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ | |
7b6ba2c7 HD |
149 | #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ |
150 | #define STABLE_FLAG 0x200 /* is listed from the stable tree */ | |
31dbd01f IE |
151 | |
152 | /* The stable and unstable tree heads */ | |
153 | static struct rb_root root_stable_tree = RB_ROOT; | |
154 | static struct rb_root root_unstable_tree = RB_ROOT; | |
155 | ||
156 | #define MM_SLOTS_HASH_HEADS 1024 | |
157 | static struct hlist_head *mm_slots_hash; | |
158 | ||
159 | static struct mm_slot ksm_mm_head = { | |
160 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | |
161 | }; | |
162 | static struct ksm_scan ksm_scan = { | |
163 | .mm_slot = &ksm_mm_head, | |
164 | }; | |
165 | ||
166 | static struct kmem_cache *rmap_item_cache; | |
7b6ba2c7 | 167 | static struct kmem_cache *stable_node_cache; |
31dbd01f IE |
168 | static struct kmem_cache *mm_slot_cache; |
169 | ||
170 | /* The number of nodes in the stable tree */ | |
b4028260 | 171 | static unsigned long ksm_pages_shared; |
31dbd01f | 172 | |
e178dfde | 173 | /* The number of page slots additionally sharing those nodes */ |
b4028260 | 174 | static unsigned long ksm_pages_sharing; |
31dbd01f | 175 | |
473b0ce4 HD |
176 | /* The number of nodes in the unstable tree */ |
177 | static unsigned long ksm_pages_unshared; | |
178 | ||
179 | /* The number of rmap_items in use: to calculate pages_volatile */ | |
180 | static unsigned long ksm_rmap_items; | |
181 | ||
31dbd01f | 182 | /* Number of pages ksmd should scan in one batch */ |
2c6854fd | 183 | static unsigned int ksm_thread_pages_to_scan = 100; |
31dbd01f IE |
184 | |
185 | /* Milliseconds ksmd should sleep between batches */ | |
2ffd8679 | 186 | static unsigned int ksm_thread_sleep_millisecs = 20; |
31dbd01f IE |
187 | |
188 | #define KSM_RUN_STOP 0 | |
189 | #define KSM_RUN_MERGE 1 | |
190 | #define KSM_RUN_UNMERGE 2 | |
2c6854fd | 191 | static unsigned int ksm_run = KSM_RUN_STOP; |
31dbd01f IE |
192 | |
193 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | |
194 | static DEFINE_MUTEX(ksm_thread_mutex); | |
195 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | |
196 | ||
197 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | |
198 | sizeof(struct __struct), __alignof__(struct __struct),\ | |
199 | (__flags), NULL) | |
200 | ||
201 | static int __init ksm_slab_init(void) | |
202 | { | |
203 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | |
204 | if (!rmap_item_cache) | |
205 | goto out; | |
206 | ||
7b6ba2c7 HD |
207 | stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); |
208 | if (!stable_node_cache) | |
209 | goto out_free1; | |
210 | ||
31dbd01f IE |
211 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); |
212 | if (!mm_slot_cache) | |
7b6ba2c7 | 213 | goto out_free2; |
31dbd01f IE |
214 | |
215 | return 0; | |
216 | ||
7b6ba2c7 HD |
217 | out_free2: |
218 | kmem_cache_destroy(stable_node_cache); | |
219 | out_free1: | |
31dbd01f IE |
220 | kmem_cache_destroy(rmap_item_cache); |
221 | out: | |
222 | return -ENOMEM; | |
223 | } | |
224 | ||
225 | static void __init ksm_slab_free(void) | |
226 | { | |
227 | kmem_cache_destroy(mm_slot_cache); | |
7b6ba2c7 | 228 | kmem_cache_destroy(stable_node_cache); |
31dbd01f IE |
229 | kmem_cache_destroy(rmap_item_cache); |
230 | mm_slot_cache = NULL; | |
231 | } | |
232 | ||
233 | static inline struct rmap_item *alloc_rmap_item(void) | |
234 | { | |
473b0ce4 HD |
235 | struct rmap_item *rmap_item; |
236 | ||
237 | rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL); | |
238 | if (rmap_item) | |
239 | ksm_rmap_items++; | |
240 | return rmap_item; | |
31dbd01f IE |
241 | } |
242 | ||
243 | static inline void free_rmap_item(struct rmap_item *rmap_item) | |
244 | { | |
473b0ce4 | 245 | ksm_rmap_items--; |
31dbd01f IE |
246 | rmap_item->mm = NULL; /* debug safety */ |
247 | kmem_cache_free(rmap_item_cache, rmap_item); | |
248 | } | |
249 | ||
7b6ba2c7 HD |
250 | static inline struct stable_node *alloc_stable_node(void) |
251 | { | |
252 | return kmem_cache_alloc(stable_node_cache, GFP_KERNEL); | |
253 | } | |
254 | ||
255 | static inline void free_stable_node(struct stable_node *stable_node) | |
256 | { | |
257 | kmem_cache_free(stable_node_cache, stable_node); | |
258 | } | |
259 | ||
31dbd01f IE |
260 | static inline struct mm_slot *alloc_mm_slot(void) |
261 | { | |
262 | if (!mm_slot_cache) /* initialization failed */ | |
263 | return NULL; | |
264 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | |
265 | } | |
266 | ||
267 | static inline void free_mm_slot(struct mm_slot *mm_slot) | |
268 | { | |
269 | kmem_cache_free(mm_slot_cache, mm_slot); | |
270 | } | |
271 | ||
272 | static int __init mm_slots_hash_init(void) | |
273 | { | |
274 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | |
275 | GFP_KERNEL); | |
276 | if (!mm_slots_hash) | |
277 | return -ENOMEM; | |
278 | return 0; | |
279 | } | |
280 | ||
281 | static void __init mm_slots_hash_free(void) | |
282 | { | |
283 | kfree(mm_slots_hash); | |
284 | } | |
285 | ||
286 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | |
287 | { | |
288 | struct mm_slot *mm_slot; | |
289 | struct hlist_head *bucket; | |
290 | struct hlist_node *node; | |
291 | ||
292 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | |
293 | % MM_SLOTS_HASH_HEADS]; | |
294 | hlist_for_each_entry(mm_slot, node, bucket, link) { | |
295 | if (mm == mm_slot->mm) | |
296 | return mm_slot; | |
297 | } | |
298 | return NULL; | |
299 | } | |
300 | ||
301 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | |
302 | struct mm_slot *mm_slot) | |
303 | { | |
304 | struct hlist_head *bucket; | |
305 | ||
306 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | |
307 | % MM_SLOTS_HASH_HEADS]; | |
308 | mm_slot->mm = mm; | |
31dbd01f IE |
309 | hlist_add_head(&mm_slot->link, bucket); |
310 | } | |
311 | ||
312 | static inline int in_stable_tree(struct rmap_item *rmap_item) | |
313 | { | |
314 | return rmap_item->address & STABLE_FLAG; | |
315 | } | |
316 | ||
db114b83 HD |
317 | static void hold_anon_vma(struct rmap_item *rmap_item, |
318 | struct anon_vma *anon_vma) | |
319 | { | |
320 | rmap_item->anon_vma = anon_vma; | |
321 | atomic_inc(&anon_vma->ksm_refcount); | |
322 | } | |
323 | ||
324 | static void drop_anon_vma(struct rmap_item *rmap_item) | |
325 | { | |
326 | struct anon_vma *anon_vma = rmap_item->anon_vma; | |
327 | ||
328 | if (atomic_dec_and_lock(&anon_vma->ksm_refcount, &anon_vma->lock)) { | |
329 | int empty = list_empty(&anon_vma->head); | |
330 | spin_unlock(&anon_vma->lock); | |
331 | if (empty) | |
332 | anon_vma_free(anon_vma); | |
333 | } | |
334 | } | |
335 | ||
a913e182 HD |
336 | /* |
337 | * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | |
338 | * page tables after it has passed through ksm_exit() - which, if necessary, | |
339 | * takes mmap_sem briefly to serialize against them. ksm_exit() does not set | |
340 | * a special flag: they can just back out as soon as mm_users goes to zero. | |
341 | * ksm_test_exit() is used throughout to make this test for exit: in some | |
342 | * places for correctness, in some places just to avoid unnecessary work. | |
343 | */ | |
344 | static inline bool ksm_test_exit(struct mm_struct *mm) | |
345 | { | |
346 | return atomic_read(&mm->mm_users) == 0; | |
347 | } | |
348 | ||
31dbd01f IE |
349 | /* |
350 | * We use break_ksm to break COW on a ksm page: it's a stripped down | |
351 | * | |
352 | * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1) | |
353 | * put_page(page); | |
354 | * | |
355 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | |
356 | * in case the application has unmapped and remapped mm,addr meanwhile. | |
357 | * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP | |
358 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | |
359 | */ | |
d952b791 | 360 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr) |
31dbd01f IE |
361 | { |
362 | struct page *page; | |
d952b791 | 363 | int ret = 0; |
31dbd01f IE |
364 | |
365 | do { | |
366 | cond_resched(); | |
367 | page = follow_page(vma, addr, FOLL_GET); | |
368 | if (!page) | |
369 | break; | |
370 | if (PageKsm(page)) | |
371 | ret = handle_mm_fault(vma->vm_mm, vma, addr, | |
372 | FAULT_FLAG_WRITE); | |
373 | else | |
374 | ret = VM_FAULT_WRITE; | |
375 | put_page(page); | |
d952b791 HD |
376 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM))); |
377 | /* | |
378 | * We must loop because handle_mm_fault() may back out if there's | |
379 | * any difficulty e.g. if pte accessed bit gets updated concurrently. | |
380 | * | |
381 | * VM_FAULT_WRITE is what we have been hoping for: it indicates that | |
382 | * COW has been broken, even if the vma does not permit VM_WRITE; | |
383 | * but note that a concurrent fault might break PageKsm for us. | |
384 | * | |
385 | * VM_FAULT_SIGBUS could occur if we race with truncation of the | |
386 | * backing file, which also invalidates anonymous pages: that's | |
387 | * okay, that truncation will have unmapped the PageKsm for us. | |
388 | * | |
389 | * VM_FAULT_OOM: at the time of writing (late July 2009), setting | |
390 | * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | |
391 | * current task has TIF_MEMDIE set, and will be OOM killed on return | |
392 | * to user; and ksmd, having no mm, would never be chosen for that. | |
393 | * | |
394 | * But if the mm is in a limited mem_cgroup, then the fault may fail | |
395 | * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | |
396 | * even ksmd can fail in this way - though it's usually breaking ksm | |
397 | * just to undo a merge it made a moment before, so unlikely to oom. | |
398 | * | |
399 | * That's a pity: we might therefore have more kernel pages allocated | |
400 | * than we're counting as nodes in the stable tree; but ksm_do_scan | |
401 | * will retry to break_cow on each pass, so should recover the page | |
402 | * in due course. The important thing is to not let VM_MERGEABLE | |
403 | * be cleared while any such pages might remain in the area. | |
404 | */ | |
405 | return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | |
31dbd01f IE |
406 | } |
407 | ||
8dd3557a | 408 | static void break_cow(struct rmap_item *rmap_item) |
31dbd01f | 409 | { |
8dd3557a HD |
410 | struct mm_struct *mm = rmap_item->mm; |
411 | unsigned long addr = rmap_item->address; | |
31dbd01f IE |
412 | struct vm_area_struct *vma; |
413 | ||
4035c07a HD |
414 | /* |
415 | * It is not an accident that whenever we want to break COW | |
416 | * to undo, we also need to drop a reference to the anon_vma. | |
417 | */ | |
418 | drop_anon_vma(rmap_item); | |
419 | ||
81464e30 | 420 | down_read(&mm->mmap_sem); |
9ba69294 HD |
421 | if (ksm_test_exit(mm)) |
422 | goto out; | |
31dbd01f IE |
423 | vma = find_vma(mm, addr); |
424 | if (!vma || vma->vm_start > addr) | |
81464e30 | 425 | goto out; |
31dbd01f | 426 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
81464e30 | 427 | goto out; |
31dbd01f | 428 | break_ksm(vma, addr); |
81464e30 | 429 | out: |
31dbd01f IE |
430 | up_read(&mm->mmap_sem); |
431 | } | |
432 | ||
433 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | |
434 | { | |
435 | struct mm_struct *mm = rmap_item->mm; | |
436 | unsigned long addr = rmap_item->address; | |
437 | struct vm_area_struct *vma; | |
438 | struct page *page; | |
439 | ||
440 | down_read(&mm->mmap_sem); | |
9ba69294 HD |
441 | if (ksm_test_exit(mm)) |
442 | goto out; | |
31dbd01f IE |
443 | vma = find_vma(mm, addr); |
444 | if (!vma || vma->vm_start > addr) | |
445 | goto out; | |
446 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | |
447 | goto out; | |
448 | ||
449 | page = follow_page(vma, addr, FOLL_GET); | |
450 | if (!page) | |
451 | goto out; | |
452 | if (PageAnon(page)) { | |
453 | flush_anon_page(vma, page, addr); | |
454 | flush_dcache_page(page); | |
455 | } else { | |
456 | put_page(page); | |
457 | out: page = NULL; | |
458 | } | |
459 | up_read(&mm->mmap_sem); | |
460 | return page; | |
461 | } | |
462 | ||
4035c07a HD |
463 | static void remove_node_from_stable_tree(struct stable_node *stable_node) |
464 | { | |
465 | struct rmap_item *rmap_item; | |
466 | struct hlist_node *hlist; | |
467 | ||
468 | hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { | |
469 | if (rmap_item->hlist.next) | |
470 | ksm_pages_sharing--; | |
471 | else | |
472 | ksm_pages_shared--; | |
473 | drop_anon_vma(rmap_item); | |
474 | rmap_item->address &= PAGE_MASK; | |
475 | cond_resched(); | |
476 | } | |
477 | ||
478 | rb_erase(&stable_node->node, &root_stable_tree); | |
479 | free_stable_node(stable_node); | |
480 | } | |
481 | ||
482 | /* | |
483 | * get_ksm_page: checks if the page indicated by the stable node | |
484 | * is still its ksm page, despite having held no reference to it. | |
485 | * In which case we can trust the content of the page, and it | |
486 | * returns the gotten page; but if the page has now been zapped, | |
487 | * remove the stale node from the stable tree and return NULL. | |
488 | * | |
489 | * You would expect the stable_node to hold a reference to the ksm page. | |
490 | * But if it increments the page's count, swapping out has to wait for | |
491 | * ksmd to come around again before it can free the page, which may take | |
492 | * seconds or even minutes: much too unresponsive. So instead we use a | |
493 | * "keyhole reference": access to the ksm page from the stable node peeps | |
494 | * out through its keyhole to see if that page still holds the right key, | |
495 | * pointing back to this stable node. This relies on freeing a PageAnon | |
496 | * page to reset its page->mapping to NULL, and relies on no other use of | |
497 | * a page to put something that might look like our key in page->mapping. | |
498 | * | |
499 | * include/linux/pagemap.h page_cache_get_speculative() is a good reference, | |
500 | * but this is different - made simpler by ksm_thread_mutex being held, but | |
501 | * interesting for assuming that no other use of the struct page could ever | |
502 | * put our expected_mapping into page->mapping (or a field of the union which | |
503 | * coincides with page->mapping). The RCU calls are not for KSM at all, but | |
504 | * to keep the page_count protocol described with page_cache_get_speculative. | |
505 | * | |
506 | * Note: it is possible that get_ksm_page() will return NULL one moment, | |
507 | * then page the next, if the page is in between page_freeze_refs() and | |
508 | * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page | |
509 | * is on its way to being freed; but it is an anomaly to bear in mind. | |
510 | */ | |
511 | static struct page *get_ksm_page(struct stable_node *stable_node) | |
512 | { | |
513 | struct page *page; | |
514 | void *expected_mapping; | |
515 | ||
62b61f61 | 516 | page = pfn_to_page(stable_node->kpfn); |
4035c07a HD |
517 | expected_mapping = (void *)stable_node + |
518 | (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); | |
519 | rcu_read_lock(); | |
520 | if (page->mapping != expected_mapping) | |
521 | goto stale; | |
522 | if (!get_page_unless_zero(page)) | |
523 | goto stale; | |
524 | if (page->mapping != expected_mapping) { | |
525 | put_page(page); | |
526 | goto stale; | |
527 | } | |
528 | rcu_read_unlock(); | |
529 | return page; | |
530 | stale: | |
531 | rcu_read_unlock(); | |
532 | remove_node_from_stable_tree(stable_node); | |
533 | return NULL; | |
534 | } | |
535 | ||
31dbd01f IE |
536 | /* |
537 | * Removing rmap_item from stable or unstable tree. | |
538 | * This function will clean the information from the stable/unstable tree. | |
539 | */ | |
540 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | |
541 | { | |
7b6ba2c7 HD |
542 | if (rmap_item->address & STABLE_FLAG) { |
543 | struct stable_node *stable_node; | |
5ad64688 | 544 | struct page *page; |
31dbd01f | 545 | |
7b6ba2c7 | 546 | stable_node = rmap_item->head; |
4035c07a HD |
547 | page = get_ksm_page(stable_node); |
548 | if (!page) | |
549 | goto out; | |
5ad64688 | 550 | |
4035c07a | 551 | lock_page(page); |
7b6ba2c7 | 552 | hlist_del(&rmap_item->hlist); |
4035c07a HD |
553 | unlock_page(page); |
554 | put_page(page); | |
08beca44 | 555 | |
4035c07a HD |
556 | if (stable_node->hlist.first) |
557 | ksm_pages_sharing--; | |
558 | else | |
7b6ba2c7 | 559 | ksm_pages_shared--; |
31dbd01f | 560 | |
db114b83 | 561 | drop_anon_vma(rmap_item); |
93d17715 | 562 | rmap_item->address &= PAGE_MASK; |
31dbd01f | 563 | |
7b6ba2c7 | 564 | } else if (rmap_item->address & UNSTABLE_FLAG) { |
31dbd01f IE |
565 | unsigned char age; |
566 | /* | |
9ba69294 | 567 | * Usually ksmd can and must skip the rb_erase, because |
31dbd01f | 568 | * root_unstable_tree was already reset to RB_ROOT. |
9ba69294 HD |
569 | * But be careful when an mm is exiting: do the rb_erase |
570 | * if this rmap_item was inserted by this scan, rather | |
571 | * than left over from before. | |
31dbd01f IE |
572 | */ |
573 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | |
cd551f97 | 574 | BUG_ON(age > 1); |
31dbd01f IE |
575 | if (!age) |
576 | rb_erase(&rmap_item->node, &root_unstable_tree); | |
93d17715 | 577 | |
473b0ce4 | 578 | ksm_pages_unshared--; |
93d17715 | 579 | rmap_item->address &= PAGE_MASK; |
31dbd01f | 580 | } |
4035c07a | 581 | out: |
31dbd01f IE |
582 | cond_resched(); /* we're called from many long loops */ |
583 | } | |
584 | ||
31dbd01f | 585 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, |
6514d511 | 586 | struct rmap_item **rmap_list) |
31dbd01f | 587 | { |
6514d511 HD |
588 | while (*rmap_list) { |
589 | struct rmap_item *rmap_item = *rmap_list; | |
590 | *rmap_list = rmap_item->rmap_list; | |
31dbd01f | 591 | remove_rmap_item_from_tree(rmap_item); |
31dbd01f IE |
592 | free_rmap_item(rmap_item); |
593 | } | |
594 | } | |
595 | ||
596 | /* | |
597 | * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather | |
598 | * than check every pte of a given vma, the locking doesn't quite work for | |
599 | * that - an rmap_item is assigned to the stable tree after inserting ksm | |
600 | * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing | |
601 | * rmap_items from parent to child at fork time (so as not to waste time | |
602 | * if exit comes before the next scan reaches it). | |
81464e30 HD |
603 | * |
604 | * Similarly, although we'd like to remove rmap_items (so updating counts | |
605 | * and freeing memory) when unmerging an area, it's easier to leave that | |
606 | * to the next pass of ksmd - consider, for example, how ksmd might be | |
607 | * in cmp_and_merge_page on one of the rmap_items we would be removing. | |
31dbd01f | 608 | */ |
d952b791 HD |
609 | static int unmerge_ksm_pages(struct vm_area_struct *vma, |
610 | unsigned long start, unsigned long end) | |
31dbd01f IE |
611 | { |
612 | unsigned long addr; | |
d952b791 | 613 | int err = 0; |
31dbd01f | 614 | |
d952b791 | 615 | for (addr = start; addr < end && !err; addr += PAGE_SIZE) { |
9ba69294 HD |
616 | if (ksm_test_exit(vma->vm_mm)) |
617 | break; | |
d952b791 HD |
618 | if (signal_pending(current)) |
619 | err = -ERESTARTSYS; | |
620 | else | |
621 | err = break_ksm(vma, addr); | |
622 | } | |
623 | return err; | |
31dbd01f IE |
624 | } |
625 | ||
2ffd8679 HD |
626 | #ifdef CONFIG_SYSFS |
627 | /* | |
628 | * Only called through the sysfs control interface: | |
629 | */ | |
d952b791 | 630 | static int unmerge_and_remove_all_rmap_items(void) |
31dbd01f IE |
631 | { |
632 | struct mm_slot *mm_slot; | |
633 | struct mm_struct *mm; | |
634 | struct vm_area_struct *vma; | |
d952b791 HD |
635 | int err = 0; |
636 | ||
637 | spin_lock(&ksm_mmlist_lock); | |
9ba69294 | 638 | ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, |
d952b791 HD |
639 | struct mm_slot, mm_list); |
640 | spin_unlock(&ksm_mmlist_lock); | |
31dbd01f | 641 | |
9ba69294 HD |
642 | for (mm_slot = ksm_scan.mm_slot; |
643 | mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { | |
31dbd01f IE |
644 | mm = mm_slot->mm; |
645 | down_read(&mm->mmap_sem); | |
646 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | |
9ba69294 HD |
647 | if (ksm_test_exit(mm)) |
648 | break; | |
31dbd01f IE |
649 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) |
650 | continue; | |
d952b791 HD |
651 | err = unmerge_ksm_pages(vma, |
652 | vma->vm_start, vma->vm_end); | |
9ba69294 HD |
653 | if (err) |
654 | goto error; | |
31dbd01f | 655 | } |
9ba69294 | 656 | |
6514d511 | 657 | remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); |
d952b791 HD |
658 | |
659 | spin_lock(&ksm_mmlist_lock); | |
9ba69294 | 660 | ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, |
d952b791 | 661 | struct mm_slot, mm_list); |
9ba69294 HD |
662 | if (ksm_test_exit(mm)) { |
663 | hlist_del(&mm_slot->link); | |
664 | list_del(&mm_slot->mm_list); | |
665 | spin_unlock(&ksm_mmlist_lock); | |
666 | ||
667 | free_mm_slot(mm_slot); | |
668 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
669 | up_read(&mm->mmap_sem); | |
670 | mmdrop(mm); | |
671 | } else { | |
672 | spin_unlock(&ksm_mmlist_lock); | |
673 | up_read(&mm->mmap_sem); | |
674 | } | |
31dbd01f IE |
675 | } |
676 | ||
d952b791 | 677 | ksm_scan.seqnr = 0; |
9ba69294 HD |
678 | return 0; |
679 | ||
680 | error: | |
681 | up_read(&mm->mmap_sem); | |
31dbd01f | 682 | spin_lock(&ksm_mmlist_lock); |
d952b791 | 683 | ksm_scan.mm_slot = &ksm_mm_head; |
31dbd01f | 684 | spin_unlock(&ksm_mmlist_lock); |
d952b791 | 685 | return err; |
31dbd01f | 686 | } |
2ffd8679 | 687 | #endif /* CONFIG_SYSFS */ |
31dbd01f | 688 | |
31dbd01f IE |
689 | static u32 calc_checksum(struct page *page) |
690 | { | |
691 | u32 checksum; | |
692 | void *addr = kmap_atomic(page, KM_USER0); | |
693 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); | |
694 | kunmap_atomic(addr, KM_USER0); | |
695 | return checksum; | |
696 | } | |
697 | ||
698 | static int memcmp_pages(struct page *page1, struct page *page2) | |
699 | { | |
700 | char *addr1, *addr2; | |
701 | int ret; | |
702 | ||
703 | addr1 = kmap_atomic(page1, KM_USER0); | |
704 | addr2 = kmap_atomic(page2, KM_USER1); | |
705 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
706 | kunmap_atomic(addr2, KM_USER1); | |
707 | kunmap_atomic(addr1, KM_USER0); | |
708 | return ret; | |
709 | } | |
710 | ||
711 | static inline int pages_identical(struct page *page1, struct page *page2) | |
712 | { | |
713 | return !memcmp_pages(page1, page2); | |
714 | } | |
715 | ||
716 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | |
717 | pte_t *orig_pte) | |
718 | { | |
719 | struct mm_struct *mm = vma->vm_mm; | |
720 | unsigned long addr; | |
721 | pte_t *ptep; | |
722 | spinlock_t *ptl; | |
723 | int swapped; | |
724 | int err = -EFAULT; | |
725 | ||
726 | addr = page_address_in_vma(page, vma); | |
727 | if (addr == -EFAULT) | |
728 | goto out; | |
729 | ||
730 | ptep = page_check_address(page, mm, addr, &ptl, 0); | |
731 | if (!ptep) | |
732 | goto out; | |
733 | ||
734 | if (pte_write(*ptep)) { | |
735 | pte_t entry; | |
736 | ||
737 | swapped = PageSwapCache(page); | |
738 | flush_cache_page(vma, addr, page_to_pfn(page)); | |
739 | /* | |
740 | * Ok this is tricky, when get_user_pages_fast() run it doesnt | |
741 | * take any lock, therefore the check that we are going to make | |
742 | * with the pagecount against the mapcount is racey and | |
743 | * O_DIRECT can happen right after the check. | |
744 | * So we clear the pte and flush the tlb before the check | |
745 | * this assure us that no O_DIRECT can happen after the check | |
746 | * or in the middle of the check. | |
747 | */ | |
748 | entry = ptep_clear_flush(vma, addr, ptep); | |
749 | /* | |
750 | * Check that no O_DIRECT or similar I/O is in progress on the | |
751 | * page | |
752 | */ | |
31e855ea | 753 | if (page_mapcount(page) + 1 + swapped != page_count(page)) { |
31dbd01f IE |
754 | set_pte_at_notify(mm, addr, ptep, entry); |
755 | goto out_unlock; | |
756 | } | |
757 | entry = pte_wrprotect(entry); | |
758 | set_pte_at_notify(mm, addr, ptep, entry); | |
759 | } | |
760 | *orig_pte = *ptep; | |
761 | err = 0; | |
762 | ||
763 | out_unlock: | |
764 | pte_unmap_unlock(ptep, ptl); | |
765 | out: | |
766 | return err; | |
767 | } | |
768 | ||
769 | /** | |
770 | * replace_page - replace page in vma by new ksm page | |
8dd3557a HD |
771 | * @vma: vma that holds the pte pointing to page |
772 | * @page: the page we are replacing by kpage | |
773 | * @kpage: the ksm page we replace page by | |
31dbd01f IE |
774 | * @orig_pte: the original value of the pte |
775 | * | |
776 | * Returns 0 on success, -EFAULT on failure. | |
777 | */ | |
8dd3557a HD |
778 | static int replace_page(struct vm_area_struct *vma, struct page *page, |
779 | struct page *kpage, pte_t orig_pte) | |
31dbd01f IE |
780 | { |
781 | struct mm_struct *mm = vma->vm_mm; | |
782 | pgd_t *pgd; | |
783 | pud_t *pud; | |
784 | pmd_t *pmd; | |
785 | pte_t *ptep; | |
786 | spinlock_t *ptl; | |
787 | unsigned long addr; | |
31dbd01f IE |
788 | int err = -EFAULT; |
789 | ||
8dd3557a | 790 | addr = page_address_in_vma(page, vma); |
31dbd01f IE |
791 | if (addr == -EFAULT) |
792 | goto out; | |
793 | ||
794 | pgd = pgd_offset(mm, addr); | |
795 | if (!pgd_present(*pgd)) | |
796 | goto out; | |
797 | ||
798 | pud = pud_offset(pgd, addr); | |
799 | if (!pud_present(*pud)) | |
800 | goto out; | |
801 | ||
802 | pmd = pmd_offset(pud, addr); | |
803 | if (!pmd_present(*pmd)) | |
804 | goto out; | |
805 | ||
806 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | |
807 | if (!pte_same(*ptep, orig_pte)) { | |
808 | pte_unmap_unlock(ptep, ptl); | |
809 | goto out; | |
810 | } | |
811 | ||
8dd3557a | 812 | get_page(kpage); |
5ad64688 | 813 | page_add_anon_rmap(kpage, vma, addr); |
31dbd01f IE |
814 | |
815 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | |
816 | ptep_clear_flush(vma, addr, ptep); | |
8dd3557a | 817 | set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot)); |
31dbd01f | 818 | |
8dd3557a HD |
819 | page_remove_rmap(page); |
820 | put_page(page); | |
31dbd01f IE |
821 | |
822 | pte_unmap_unlock(ptep, ptl); | |
823 | err = 0; | |
824 | out: | |
825 | return err; | |
826 | } | |
827 | ||
828 | /* | |
829 | * try_to_merge_one_page - take two pages and merge them into one | |
8dd3557a HD |
830 | * @vma: the vma that holds the pte pointing to page |
831 | * @page: the PageAnon page that we want to replace with kpage | |
80e14822 HD |
832 | * @kpage: the PageKsm page that we want to map instead of page, |
833 | * or NULL the first time when we want to use page as kpage. | |
31dbd01f IE |
834 | * |
835 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
836 | */ | |
837 | static int try_to_merge_one_page(struct vm_area_struct *vma, | |
8dd3557a | 838 | struct page *page, struct page *kpage) |
31dbd01f IE |
839 | { |
840 | pte_t orig_pte = __pte(0); | |
841 | int err = -EFAULT; | |
842 | ||
db114b83 HD |
843 | if (page == kpage) /* ksm page forked */ |
844 | return 0; | |
845 | ||
31dbd01f IE |
846 | if (!(vma->vm_flags & VM_MERGEABLE)) |
847 | goto out; | |
8dd3557a | 848 | if (!PageAnon(page)) |
31dbd01f IE |
849 | goto out; |
850 | ||
31dbd01f IE |
851 | /* |
852 | * We need the page lock to read a stable PageSwapCache in | |
853 | * write_protect_page(). We use trylock_page() instead of | |
854 | * lock_page() because we don't want to wait here - we | |
855 | * prefer to continue scanning and merging different pages, | |
856 | * then come back to this page when it is unlocked. | |
857 | */ | |
8dd3557a | 858 | if (!trylock_page(page)) |
31e855ea | 859 | goto out; |
31dbd01f IE |
860 | /* |
861 | * If this anonymous page is mapped only here, its pte may need | |
862 | * to be write-protected. If it's mapped elsewhere, all of its | |
863 | * ptes are necessarily already write-protected. But in either | |
864 | * case, we need to lock and check page_count is not raised. | |
865 | */ | |
80e14822 HD |
866 | if (write_protect_page(vma, page, &orig_pte) == 0) { |
867 | if (!kpage) { | |
868 | /* | |
869 | * While we hold page lock, upgrade page from | |
870 | * PageAnon+anon_vma to PageKsm+NULL stable_node: | |
871 | * stable_tree_insert() will update stable_node. | |
872 | */ | |
873 | set_page_stable_node(page, NULL); | |
874 | mark_page_accessed(page); | |
875 | err = 0; | |
876 | } else if (pages_identical(page, kpage)) | |
877 | err = replace_page(vma, page, kpage, orig_pte); | |
878 | } | |
31dbd01f | 879 | |
80e14822 | 880 | if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { |
73848b46 | 881 | munlock_vma_page(page); |
5ad64688 HD |
882 | if (!PageMlocked(kpage)) { |
883 | unlock_page(page); | |
5ad64688 HD |
884 | lock_page(kpage); |
885 | mlock_vma_page(kpage); | |
886 | page = kpage; /* for final unlock */ | |
887 | } | |
888 | } | |
73848b46 | 889 | |
8dd3557a | 890 | unlock_page(page); |
31dbd01f IE |
891 | out: |
892 | return err; | |
893 | } | |
894 | ||
81464e30 HD |
895 | /* |
896 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | |
897 | * but no new kernel page is allocated: kpage must already be a ksm page. | |
8dd3557a HD |
898 | * |
899 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | |
81464e30 | 900 | */ |
8dd3557a HD |
901 | static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, |
902 | struct page *page, struct page *kpage) | |
81464e30 | 903 | { |
8dd3557a | 904 | struct mm_struct *mm = rmap_item->mm; |
81464e30 HD |
905 | struct vm_area_struct *vma; |
906 | int err = -EFAULT; | |
907 | ||
8dd3557a HD |
908 | down_read(&mm->mmap_sem); |
909 | if (ksm_test_exit(mm)) | |
9ba69294 | 910 | goto out; |
8dd3557a HD |
911 | vma = find_vma(mm, rmap_item->address); |
912 | if (!vma || vma->vm_start > rmap_item->address) | |
81464e30 HD |
913 | goto out; |
914 | ||
8dd3557a | 915 | err = try_to_merge_one_page(vma, page, kpage); |
db114b83 HD |
916 | if (err) |
917 | goto out; | |
918 | ||
919 | /* Must get reference to anon_vma while still holding mmap_sem */ | |
920 | hold_anon_vma(rmap_item, vma->anon_vma); | |
81464e30 | 921 | out: |
8dd3557a | 922 | up_read(&mm->mmap_sem); |
81464e30 HD |
923 | return err; |
924 | } | |
925 | ||
31dbd01f IE |
926 | /* |
927 | * try_to_merge_two_pages - take two identical pages and prepare them | |
928 | * to be merged into one page. | |
929 | * | |
8dd3557a HD |
930 | * This function returns the kpage if we successfully merged two identical |
931 | * pages into one ksm page, NULL otherwise. | |
31dbd01f | 932 | * |
80e14822 | 933 | * Note that this function upgrades page to ksm page: if one of the pages |
31dbd01f IE |
934 | * is already a ksm page, try_to_merge_with_ksm_page should be used. |
935 | */ | |
8dd3557a HD |
936 | static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, |
937 | struct page *page, | |
938 | struct rmap_item *tree_rmap_item, | |
939 | struct page *tree_page) | |
31dbd01f | 940 | { |
80e14822 | 941 | int err; |
31dbd01f | 942 | |
80e14822 | 943 | err = try_to_merge_with_ksm_page(rmap_item, page, NULL); |
31dbd01f | 944 | if (!err) { |
8dd3557a | 945 | err = try_to_merge_with_ksm_page(tree_rmap_item, |
80e14822 | 946 | tree_page, page); |
31dbd01f | 947 | /* |
81464e30 HD |
948 | * If that fails, we have a ksm page with only one pte |
949 | * pointing to it: so break it. | |
31dbd01f | 950 | */ |
4035c07a | 951 | if (err) |
8dd3557a | 952 | break_cow(rmap_item); |
31dbd01f | 953 | } |
80e14822 | 954 | return err ? NULL : page; |
31dbd01f IE |
955 | } |
956 | ||
31dbd01f | 957 | /* |
8dd3557a | 958 | * stable_tree_search - search for page inside the stable tree |
31dbd01f IE |
959 | * |
960 | * This function checks if there is a page inside the stable tree | |
961 | * with identical content to the page that we are scanning right now. | |
962 | * | |
7b6ba2c7 | 963 | * This function returns the stable tree node of identical content if found, |
31dbd01f IE |
964 | * NULL otherwise. |
965 | */ | |
62b61f61 | 966 | static struct page *stable_tree_search(struct page *page) |
31dbd01f IE |
967 | { |
968 | struct rb_node *node = root_stable_tree.rb_node; | |
7b6ba2c7 | 969 | struct stable_node *stable_node; |
31dbd01f | 970 | |
08beca44 HD |
971 | stable_node = page_stable_node(page); |
972 | if (stable_node) { /* ksm page forked */ | |
973 | get_page(page); | |
62b61f61 | 974 | return page; |
08beca44 HD |
975 | } |
976 | ||
31dbd01f | 977 | while (node) { |
4035c07a | 978 | struct page *tree_page; |
31dbd01f IE |
979 | int ret; |
980 | ||
08beca44 | 981 | cond_resched(); |
7b6ba2c7 | 982 | stable_node = rb_entry(node, struct stable_node, node); |
4035c07a HD |
983 | tree_page = get_ksm_page(stable_node); |
984 | if (!tree_page) | |
985 | return NULL; | |
31dbd01f | 986 | |
4035c07a | 987 | ret = memcmp_pages(page, tree_page); |
31dbd01f | 988 | |
4035c07a HD |
989 | if (ret < 0) { |
990 | put_page(tree_page); | |
31dbd01f | 991 | node = node->rb_left; |
4035c07a HD |
992 | } else if (ret > 0) { |
993 | put_page(tree_page); | |
31dbd01f | 994 | node = node->rb_right; |
4035c07a | 995 | } else |
62b61f61 | 996 | return tree_page; |
31dbd01f IE |
997 | } |
998 | ||
999 | return NULL; | |
1000 | } | |
1001 | ||
1002 | /* | |
1003 | * stable_tree_insert - insert rmap_item pointing to new ksm page | |
1004 | * into the stable tree. | |
1005 | * | |
7b6ba2c7 HD |
1006 | * This function returns the stable tree node just allocated on success, |
1007 | * NULL otherwise. | |
31dbd01f | 1008 | */ |
7b6ba2c7 | 1009 | static struct stable_node *stable_tree_insert(struct page *kpage) |
31dbd01f IE |
1010 | { |
1011 | struct rb_node **new = &root_stable_tree.rb_node; | |
1012 | struct rb_node *parent = NULL; | |
7b6ba2c7 | 1013 | struct stable_node *stable_node; |
31dbd01f IE |
1014 | |
1015 | while (*new) { | |
4035c07a | 1016 | struct page *tree_page; |
31dbd01f IE |
1017 | int ret; |
1018 | ||
08beca44 | 1019 | cond_resched(); |
7b6ba2c7 | 1020 | stable_node = rb_entry(*new, struct stable_node, node); |
4035c07a HD |
1021 | tree_page = get_ksm_page(stable_node); |
1022 | if (!tree_page) | |
1023 | return NULL; | |
31dbd01f | 1024 | |
4035c07a HD |
1025 | ret = memcmp_pages(kpage, tree_page); |
1026 | put_page(tree_page); | |
31dbd01f IE |
1027 | |
1028 | parent = *new; | |
1029 | if (ret < 0) | |
1030 | new = &parent->rb_left; | |
1031 | else if (ret > 0) | |
1032 | new = &parent->rb_right; | |
1033 | else { | |
1034 | /* | |
1035 | * It is not a bug that stable_tree_search() didn't | |
1036 | * find this node: because at that time our page was | |
1037 | * not yet write-protected, so may have changed since. | |
1038 | */ | |
1039 | return NULL; | |
1040 | } | |
1041 | } | |
1042 | ||
7b6ba2c7 HD |
1043 | stable_node = alloc_stable_node(); |
1044 | if (!stable_node) | |
1045 | return NULL; | |
31dbd01f | 1046 | |
7b6ba2c7 HD |
1047 | rb_link_node(&stable_node->node, parent, new); |
1048 | rb_insert_color(&stable_node->node, &root_stable_tree); | |
1049 | ||
1050 | INIT_HLIST_HEAD(&stable_node->hlist); | |
1051 | ||
62b61f61 | 1052 | stable_node->kpfn = page_to_pfn(kpage); |
08beca44 HD |
1053 | set_page_stable_node(kpage, stable_node); |
1054 | ||
7b6ba2c7 | 1055 | return stable_node; |
31dbd01f IE |
1056 | } |
1057 | ||
1058 | /* | |
8dd3557a HD |
1059 | * unstable_tree_search_insert - search for identical page, |
1060 | * else insert rmap_item into the unstable tree. | |
31dbd01f IE |
1061 | * |
1062 | * This function searches for a page in the unstable tree identical to the | |
1063 | * page currently being scanned; and if no identical page is found in the | |
1064 | * tree, we insert rmap_item as a new object into the unstable tree. | |
1065 | * | |
1066 | * This function returns pointer to rmap_item found to be identical | |
1067 | * to the currently scanned page, NULL otherwise. | |
1068 | * | |
1069 | * This function does both searching and inserting, because they share | |
1070 | * the same walking algorithm in an rbtree. | |
1071 | */ | |
8dd3557a HD |
1072 | static |
1073 | struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, | |
1074 | struct page *page, | |
1075 | struct page **tree_pagep) | |
1076 | ||
31dbd01f IE |
1077 | { |
1078 | struct rb_node **new = &root_unstable_tree.rb_node; | |
1079 | struct rb_node *parent = NULL; | |
1080 | ||
1081 | while (*new) { | |
1082 | struct rmap_item *tree_rmap_item; | |
8dd3557a | 1083 | struct page *tree_page; |
31dbd01f IE |
1084 | int ret; |
1085 | ||
d178f27f | 1086 | cond_resched(); |
31dbd01f | 1087 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); |
8dd3557a HD |
1088 | tree_page = get_mergeable_page(tree_rmap_item); |
1089 | if (!tree_page) | |
31dbd01f IE |
1090 | return NULL; |
1091 | ||
1092 | /* | |
8dd3557a | 1093 | * Don't substitute a ksm page for a forked page. |
31dbd01f | 1094 | */ |
8dd3557a HD |
1095 | if (page == tree_page) { |
1096 | put_page(tree_page); | |
31dbd01f IE |
1097 | return NULL; |
1098 | } | |
1099 | ||
8dd3557a | 1100 | ret = memcmp_pages(page, tree_page); |
31dbd01f IE |
1101 | |
1102 | parent = *new; | |
1103 | if (ret < 0) { | |
8dd3557a | 1104 | put_page(tree_page); |
31dbd01f IE |
1105 | new = &parent->rb_left; |
1106 | } else if (ret > 0) { | |
8dd3557a | 1107 | put_page(tree_page); |
31dbd01f IE |
1108 | new = &parent->rb_right; |
1109 | } else { | |
8dd3557a | 1110 | *tree_pagep = tree_page; |
31dbd01f IE |
1111 | return tree_rmap_item; |
1112 | } | |
1113 | } | |
1114 | ||
7b6ba2c7 | 1115 | rmap_item->address |= UNSTABLE_FLAG; |
31dbd01f IE |
1116 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); |
1117 | rb_link_node(&rmap_item->node, parent, new); | |
1118 | rb_insert_color(&rmap_item->node, &root_unstable_tree); | |
1119 | ||
473b0ce4 | 1120 | ksm_pages_unshared++; |
31dbd01f IE |
1121 | return NULL; |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * stable_tree_append - add another rmap_item to the linked list of | |
1126 | * rmap_items hanging off a given node of the stable tree, all sharing | |
1127 | * the same ksm page. | |
1128 | */ | |
1129 | static void stable_tree_append(struct rmap_item *rmap_item, | |
7b6ba2c7 | 1130 | struct stable_node *stable_node) |
31dbd01f | 1131 | { |
7b6ba2c7 | 1132 | rmap_item->head = stable_node; |
31dbd01f | 1133 | rmap_item->address |= STABLE_FLAG; |
7b6ba2c7 | 1134 | hlist_add_head(&rmap_item->hlist, &stable_node->hlist); |
e178dfde | 1135 | |
7b6ba2c7 HD |
1136 | if (rmap_item->hlist.next) |
1137 | ksm_pages_sharing++; | |
1138 | else | |
1139 | ksm_pages_shared++; | |
31dbd01f IE |
1140 | } |
1141 | ||
1142 | /* | |
81464e30 HD |
1143 | * cmp_and_merge_page - first see if page can be merged into the stable tree; |
1144 | * if not, compare checksum to previous and if it's the same, see if page can | |
1145 | * be inserted into the unstable tree, or merged with a page already there and | |
1146 | * both transferred to the stable tree. | |
31dbd01f IE |
1147 | * |
1148 | * @page: the page that we are searching identical page to. | |
1149 | * @rmap_item: the reverse mapping into the virtual address of this page | |
1150 | */ | |
1151 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | |
1152 | { | |
31dbd01f | 1153 | struct rmap_item *tree_rmap_item; |
8dd3557a | 1154 | struct page *tree_page = NULL; |
7b6ba2c7 | 1155 | struct stable_node *stable_node; |
8dd3557a | 1156 | struct page *kpage; |
31dbd01f IE |
1157 | unsigned int checksum; |
1158 | int err; | |
1159 | ||
93d17715 | 1160 | remove_rmap_item_from_tree(rmap_item); |
31dbd01f IE |
1161 | |
1162 | /* We first start with searching the page inside the stable tree */ | |
62b61f61 HD |
1163 | kpage = stable_tree_search(page); |
1164 | if (kpage) { | |
08beca44 | 1165 | err = try_to_merge_with_ksm_page(rmap_item, page, kpage); |
31dbd01f IE |
1166 | if (!err) { |
1167 | /* | |
1168 | * The page was successfully merged: | |
1169 | * add its rmap_item to the stable tree. | |
1170 | */ | |
5ad64688 | 1171 | lock_page(kpage); |
62b61f61 | 1172 | stable_tree_append(rmap_item, page_stable_node(kpage)); |
5ad64688 | 1173 | unlock_page(kpage); |
31dbd01f | 1174 | } |
8dd3557a | 1175 | put_page(kpage); |
31dbd01f IE |
1176 | return; |
1177 | } | |
1178 | ||
1179 | /* | |
4035c07a HD |
1180 | * If the hash value of the page has changed from the last time |
1181 | * we calculated it, this page is changing frequently: therefore we | |
1182 | * don't want to insert it in the unstable tree, and we don't want | |
1183 | * to waste our time searching for something identical to it there. | |
31dbd01f IE |
1184 | */ |
1185 | checksum = calc_checksum(page); | |
1186 | if (rmap_item->oldchecksum != checksum) { | |
1187 | rmap_item->oldchecksum = checksum; | |
1188 | return; | |
1189 | } | |
1190 | ||
8dd3557a HD |
1191 | tree_rmap_item = |
1192 | unstable_tree_search_insert(rmap_item, page, &tree_page); | |
31dbd01f | 1193 | if (tree_rmap_item) { |
8dd3557a HD |
1194 | kpage = try_to_merge_two_pages(rmap_item, page, |
1195 | tree_rmap_item, tree_page); | |
1196 | put_page(tree_page); | |
31dbd01f IE |
1197 | /* |
1198 | * As soon as we merge this page, we want to remove the | |
1199 | * rmap_item of the page we have merged with from the unstable | |
1200 | * tree, and insert it instead as new node in the stable tree. | |
1201 | */ | |
8dd3557a | 1202 | if (kpage) { |
93d17715 | 1203 | remove_rmap_item_from_tree(tree_rmap_item); |
473b0ce4 | 1204 | |
5ad64688 | 1205 | lock_page(kpage); |
7b6ba2c7 HD |
1206 | stable_node = stable_tree_insert(kpage); |
1207 | if (stable_node) { | |
1208 | stable_tree_append(tree_rmap_item, stable_node); | |
1209 | stable_tree_append(rmap_item, stable_node); | |
1210 | } | |
5ad64688 | 1211 | unlock_page(kpage); |
7b6ba2c7 | 1212 | |
31dbd01f IE |
1213 | /* |
1214 | * If we fail to insert the page into the stable tree, | |
1215 | * we will have 2 virtual addresses that are pointing | |
1216 | * to a ksm page left outside the stable tree, | |
1217 | * in which case we need to break_cow on both. | |
1218 | */ | |
7b6ba2c7 | 1219 | if (!stable_node) { |
8dd3557a HD |
1220 | break_cow(tree_rmap_item); |
1221 | break_cow(rmap_item); | |
31dbd01f IE |
1222 | } |
1223 | } | |
31dbd01f IE |
1224 | } |
1225 | } | |
1226 | ||
1227 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | |
6514d511 | 1228 | struct rmap_item **rmap_list, |
31dbd01f IE |
1229 | unsigned long addr) |
1230 | { | |
1231 | struct rmap_item *rmap_item; | |
1232 | ||
6514d511 HD |
1233 | while (*rmap_list) { |
1234 | rmap_item = *rmap_list; | |
93d17715 | 1235 | if ((rmap_item->address & PAGE_MASK) == addr) |
31dbd01f | 1236 | return rmap_item; |
31dbd01f IE |
1237 | if (rmap_item->address > addr) |
1238 | break; | |
6514d511 | 1239 | *rmap_list = rmap_item->rmap_list; |
31dbd01f | 1240 | remove_rmap_item_from_tree(rmap_item); |
31dbd01f IE |
1241 | free_rmap_item(rmap_item); |
1242 | } | |
1243 | ||
1244 | rmap_item = alloc_rmap_item(); | |
1245 | if (rmap_item) { | |
1246 | /* It has already been zeroed */ | |
1247 | rmap_item->mm = mm_slot->mm; | |
1248 | rmap_item->address = addr; | |
6514d511 HD |
1249 | rmap_item->rmap_list = *rmap_list; |
1250 | *rmap_list = rmap_item; | |
31dbd01f IE |
1251 | } |
1252 | return rmap_item; | |
1253 | } | |
1254 | ||
1255 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | |
1256 | { | |
1257 | struct mm_struct *mm; | |
1258 | struct mm_slot *slot; | |
1259 | struct vm_area_struct *vma; | |
1260 | struct rmap_item *rmap_item; | |
1261 | ||
1262 | if (list_empty(&ksm_mm_head.mm_list)) | |
1263 | return NULL; | |
1264 | ||
1265 | slot = ksm_scan.mm_slot; | |
1266 | if (slot == &ksm_mm_head) { | |
1267 | root_unstable_tree = RB_ROOT; | |
1268 | ||
1269 | spin_lock(&ksm_mmlist_lock); | |
1270 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | |
1271 | ksm_scan.mm_slot = slot; | |
1272 | spin_unlock(&ksm_mmlist_lock); | |
1273 | next_mm: | |
1274 | ksm_scan.address = 0; | |
6514d511 | 1275 | ksm_scan.rmap_list = &slot->rmap_list; |
31dbd01f IE |
1276 | } |
1277 | ||
1278 | mm = slot->mm; | |
1279 | down_read(&mm->mmap_sem); | |
9ba69294 HD |
1280 | if (ksm_test_exit(mm)) |
1281 | vma = NULL; | |
1282 | else | |
1283 | vma = find_vma(mm, ksm_scan.address); | |
1284 | ||
1285 | for (; vma; vma = vma->vm_next) { | |
31dbd01f IE |
1286 | if (!(vma->vm_flags & VM_MERGEABLE)) |
1287 | continue; | |
1288 | if (ksm_scan.address < vma->vm_start) | |
1289 | ksm_scan.address = vma->vm_start; | |
1290 | if (!vma->anon_vma) | |
1291 | ksm_scan.address = vma->vm_end; | |
1292 | ||
1293 | while (ksm_scan.address < vma->vm_end) { | |
9ba69294 HD |
1294 | if (ksm_test_exit(mm)) |
1295 | break; | |
31dbd01f IE |
1296 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); |
1297 | if (*page && PageAnon(*page)) { | |
1298 | flush_anon_page(vma, *page, ksm_scan.address); | |
1299 | flush_dcache_page(*page); | |
1300 | rmap_item = get_next_rmap_item(slot, | |
6514d511 | 1301 | ksm_scan.rmap_list, ksm_scan.address); |
31dbd01f | 1302 | if (rmap_item) { |
6514d511 HD |
1303 | ksm_scan.rmap_list = |
1304 | &rmap_item->rmap_list; | |
31dbd01f IE |
1305 | ksm_scan.address += PAGE_SIZE; |
1306 | } else | |
1307 | put_page(*page); | |
1308 | up_read(&mm->mmap_sem); | |
1309 | return rmap_item; | |
1310 | } | |
1311 | if (*page) | |
1312 | put_page(*page); | |
1313 | ksm_scan.address += PAGE_SIZE; | |
1314 | cond_resched(); | |
1315 | } | |
1316 | } | |
1317 | ||
9ba69294 HD |
1318 | if (ksm_test_exit(mm)) { |
1319 | ksm_scan.address = 0; | |
6514d511 | 1320 | ksm_scan.rmap_list = &slot->rmap_list; |
9ba69294 | 1321 | } |
31dbd01f IE |
1322 | /* |
1323 | * Nuke all the rmap_items that are above this current rmap: | |
1324 | * because there were no VM_MERGEABLE vmas with such addresses. | |
1325 | */ | |
6514d511 | 1326 | remove_trailing_rmap_items(slot, ksm_scan.rmap_list); |
31dbd01f IE |
1327 | |
1328 | spin_lock(&ksm_mmlist_lock); | |
cd551f97 HD |
1329 | ksm_scan.mm_slot = list_entry(slot->mm_list.next, |
1330 | struct mm_slot, mm_list); | |
1331 | if (ksm_scan.address == 0) { | |
1332 | /* | |
1333 | * We've completed a full scan of all vmas, holding mmap_sem | |
1334 | * throughout, and found no VM_MERGEABLE: so do the same as | |
1335 | * __ksm_exit does to remove this mm from all our lists now. | |
9ba69294 HD |
1336 | * This applies either when cleaning up after __ksm_exit |
1337 | * (but beware: we can reach here even before __ksm_exit), | |
1338 | * or when all VM_MERGEABLE areas have been unmapped (and | |
1339 | * mmap_sem then protects against race with MADV_MERGEABLE). | |
cd551f97 HD |
1340 | */ |
1341 | hlist_del(&slot->link); | |
1342 | list_del(&slot->mm_list); | |
9ba69294 HD |
1343 | spin_unlock(&ksm_mmlist_lock); |
1344 | ||
cd551f97 HD |
1345 | free_mm_slot(slot); |
1346 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
9ba69294 HD |
1347 | up_read(&mm->mmap_sem); |
1348 | mmdrop(mm); | |
1349 | } else { | |
1350 | spin_unlock(&ksm_mmlist_lock); | |
1351 | up_read(&mm->mmap_sem); | |
cd551f97 | 1352 | } |
31dbd01f IE |
1353 | |
1354 | /* Repeat until we've completed scanning the whole list */ | |
cd551f97 | 1355 | slot = ksm_scan.mm_slot; |
31dbd01f IE |
1356 | if (slot != &ksm_mm_head) |
1357 | goto next_mm; | |
1358 | ||
31dbd01f IE |
1359 | ksm_scan.seqnr++; |
1360 | return NULL; | |
1361 | } | |
1362 | ||
1363 | /** | |
1364 | * ksm_do_scan - the ksm scanner main worker function. | |
1365 | * @scan_npages - number of pages we want to scan before we return. | |
1366 | */ | |
1367 | static void ksm_do_scan(unsigned int scan_npages) | |
1368 | { | |
1369 | struct rmap_item *rmap_item; | |
1370 | struct page *page; | |
1371 | ||
1372 | while (scan_npages--) { | |
1373 | cond_resched(); | |
1374 | rmap_item = scan_get_next_rmap_item(&page); | |
1375 | if (!rmap_item) | |
1376 | return; | |
1377 | if (!PageKsm(page) || !in_stable_tree(rmap_item)) | |
1378 | cmp_and_merge_page(page, rmap_item); | |
1379 | put_page(page); | |
1380 | } | |
1381 | } | |
1382 | ||
6e158384 HD |
1383 | static int ksmd_should_run(void) |
1384 | { | |
1385 | return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); | |
1386 | } | |
1387 | ||
31dbd01f IE |
1388 | static int ksm_scan_thread(void *nothing) |
1389 | { | |
339aa624 | 1390 | set_user_nice(current, 5); |
31dbd01f IE |
1391 | |
1392 | while (!kthread_should_stop()) { | |
6e158384 HD |
1393 | mutex_lock(&ksm_thread_mutex); |
1394 | if (ksmd_should_run()) | |
31dbd01f | 1395 | ksm_do_scan(ksm_thread_pages_to_scan); |
6e158384 HD |
1396 | mutex_unlock(&ksm_thread_mutex); |
1397 | ||
1398 | if (ksmd_should_run()) { | |
31dbd01f IE |
1399 | schedule_timeout_interruptible( |
1400 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | |
1401 | } else { | |
1402 | wait_event_interruptible(ksm_thread_wait, | |
6e158384 | 1403 | ksmd_should_run() || kthread_should_stop()); |
31dbd01f IE |
1404 | } |
1405 | } | |
1406 | return 0; | |
1407 | } | |
1408 | ||
f8af4da3 HD |
1409 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, |
1410 | unsigned long end, int advice, unsigned long *vm_flags) | |
1411 | { | |
1412 | struct mm_struct *mm = vma->vm_mm; | |
d952b791 | 1413 | int err; |
f8af4da3 HD |
1414 | |
1415 | switch (advice) { | |
1416 | case MADV_MERGEABLE: | |
1417 | /* | |
1418 | * Be somewhat over-protective for now! | |
1419 | */ | |
1420 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | | |
1421 | VM_PFNMAP | VM_IO | VM_DONTEXPAND | | |
1422 | VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE | | |
5ad64688 | 1423 | VM_NONLINEAR | VM_MIXEDMAP | VM_SAO)) |
f8af4da3 HD |
1424 | return 0; /* just ignore the advice */ |
1425 | ||
d952b791 HD |
1426 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { |
1427 | err = __ksm_enter(mm); | |
1428 | if (err) | |
1429 | return err; | |
1430 | } | |
f8af4da3 HD |
1431 | |
1432 | *vm_flags |= VM_MERGEABLE; | |
1433 | break; | |
1434 | ||
1435 | case MADV_UNMERGEABLE: | |
1436 | if (!(*vm_flags & VM_MERGEABLE)) | |
1437 | return 0; /* just ignore the advice */ | |
1438 | ||
d952b791 HD |
1439 | if (vma->anon_vma) { |
1440 | err = unmerge_ksm_pages(vma, start, end); | |
1441 | if (err) | |
1442 | return err; | |
1443 | } | |
f8af4da3 HD |
1444 | |
1445 | *vm_flags &= ~VM_MERGEABLE; | |
1446 | break; | |
1447 | } | |
1448 | ||
1449 | return 0; | |
1450 | } | |
1451 | ||
1452 | int __ksm_enter(struct mm_struct *mm) | |
1453 | { | |
6e158384 HD |
1454 | struct mm_slot *mm_slot; |
1455 | int needs_wakeup; | |
1456 | ||
1457 | mm_slot = alloc_mm_slot(); | |
31dbd01f IE |
1458 | if (!mm_slot) |
1459 | return -ENOMEM; | |
1460 | ||
6e158384 HD |
1461 | /* Check ksm_run too? Would need tighter locking */ |
1462 | needs_wakeup = list_empty(&ksm_mm_head.mm_list); | |
1463 | ||
31dbd01f IE |
1464 | spin_lock(&ksm_mmlist_lock); |
1465 | insert_to_mm_slots_hash(mm, mm_slot); | |
1466 | /* | |
1467 | * Insert just behind the scanning cursor, to let the area settle | |
1468 | * down a little; when fork is followed by immediate exec, we don't | |
1469 | * want ksmd to waste time setting up and tearing down an rmap_list. | |
1470 | */ | |
1471 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | |
1472 | spin_unlock(&ksm_mmlist_lock); | |
1473 | ||
f8af4da3 | 1474 | set_bit(MMF_VM_MERGEABLE, &mm->flags); |
9ba69294 | 1475 | atomic_inc(&mm->mm_count); |
6e158384 HD |
1476 | |
1477 | if (needs_wakeup) | |
1478 | wake_up_interruptible(&ksm_thread_wait); | |
1479 | ||
f8af4da3 HD |
1480 | return 0; |
1481 | } | |
1482 | ||
1c2fb7a4 | 1483 | void __ksm_exit(struct mm_struct *mm) |
f8af4da3 | 1484 | { |
cd551f97 | 1485 | struct mm_slot *mm_slot; |
9ba69294 | 1486 | int easy_to_free = 0; |
cd551f97 | 1487 | |
31dbd01f | 1488 | /* |
9ba69294 HD |
1489 | * This process is exiting: if it's straightforward (as is the |
1490 | * case when ksmd was never running), free mm_slot immediately. | |
1491 | * But if it's at the cursor or has rmap_items linked to it, use | |
1492 | * mmap_sem to synchronize with any break_cows before pagetables | |
1493 | * are freed, and leave the mm_slot on the list for ksmd to free. | |
1494 | * Beware: ksm may already have noticed it exiting and freed the slot. | |
31dbd01f | 1495 | */ |
9ba69294 | 1496 | |
cd551f97 HD |
1497 | spin_lock(&ksm_mmlist_lock); |
1498 | mm_slot = get_mm_slot(mm); | |
9ba69294 | 1499 | if (mm_slot && ksm_scan.mm_slot != mm_slot) { |
6514d511 | 1500 | if (!mm_slot->rmap_list) { |
9ba69294 HD |
1501 | hlist_del(&mm_slot->link); |
1502 | list_del(&mm_slot->mm_list); | |
1503 | easy_to_free = 1; | |
1504 | } else { | |
1505 | list_move(&mm_slot->mm_list, | |
1506 | &ksm_scan.mm_slot->mm_list); | |
1507 | } | |
cd551f97 | 1508 | } |
cd551f97 HD |
1509 | spin_unlock(&ksm_mmlist_lock); |
1510 | ||
9ba69294 HD |
1511 | if (easy_to_free) { |
1512 | free_mm_slot(mm_slot); | |
1513 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | |
1514 | mmdrop(mm); | |
1515 | } else if (mm_slot) { | |
9ba69294 HD |
1516 | down_write(&mm->mmap_sem); |
1517 | up_write(&mm->mmap_sem); | |
9ba69294 | 1518 | } |
31dbd01f IE |
1519 | } |
1520 | ||
5ad64688 HD |
1521 | struct page *ksm_does_need_to_copy(struct page *page, |
1522 | struct vm_area_struct *vma, unsigned long address) | |
1523 | { | |
1524 | struct page *new_page; | |
1525 | ||
1526 | unlock_page(page); /* any racers will COW it, not modify it */ | |
1527 | ||
1528 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
1529 | if (new_page) { | |
1530 | copy_user_highpage(new_page, page, address, vma); | |
1531 | ||
1532 | SetPageDirty(new_page); | |
1533 | __SetPageUptodate(new_page); | |
1534 | SetPageSwapBacked(new_page); | |
1535 | __set_page_locked(new_page); | |
1536 | ||
1537 | if (page_evictable(new_page, vma)) | |
1538 | lru_cache_add_lru(new_page, LRU_ACTIVE_ANON); | |
1539 | else | |
1540 | add_page_to_unevictable_list(new_page); | |
1541 | } | |
1542 | ||
1543 | page_cache_release(page); | |
1544 | return new_page; | |
1545 | } | |
1546 | ||
1547 | int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg, | |
1548 | unsigned long *vm_flags) | |
1549 | { | |
1550 | struct stable_node *stable_node; | |
1551 | struct rmap_item *rmap_item; | |
1552 | struct hlist_node *hlist; | |
1553 | unsigned int mapcount = page_mapcount(page); | |
1554 | int referenced = 0; | |
db114b83 | 1555 | int search_new_forks = 0; |
5ad64688 HD |
1556 | |
1557 | VM_BUG_ON(!PageKsm(page)); | |
1558 | VM_BUG_ON(!PageLocked(page)); | |
1559 | ||
1560 | stable_node = page_stable_node(page); | |
1561 | if (!stable_node) | |
1562 | return 0; | |
db114b83 | 1563 | again: |
5ad64688 | 1564 | hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { |
db114b83 HD |
1565 | struct anon_vma *anon_vma = rmap_item->anon_vma; |
1566 | struct vm_area_struct *vma; | |
5ad64688 | 1567 | |
db114b83 HD |
1568 | spin_lock(&anon_vma->lock); |
1569 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1570 | if (rmap_item->address < vma->vm_start || | |
1571 | rmap_item->address >= vma->vm_end) | |
1572 | continue; | |
1573 | /* | |
1574 | * Initially we examine only the vma which covers this | |
1575 | * rmap_item; but later, if there is still work to do, | |
1576 | * we examine covering vmas in other mms: in case they | |
1577 | * were forked from the original since ksmd passed. | |
1578 | */ | |
1579 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | |
1580 | continue; | |
1581 | ||
1582 | if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) | |
1583 | continue; | |
5ad64688 | 1584 | |
db114b83 | 1585 | referenced += page_referenced_one(page, vma, |
5ad64688 | 1586 | rmap_item->address, &mapcount, vm_flags); |
db114b83 HD |
1587 | if (!search_new_forks || !mapcount) |
1588 | break; | |
1589 | } | |
1590 | spin_unlock(&anon_vma->lock); | |
5ad64688 HD |
1591 | if (!mapcount) |
1592 | goto out; | |
1593 | } | |
db114b83 HD |
1594 | if (!search_new_forks++) |
1595 | goto again; | |
5ad64688 | 1596 | out: |
5ad64688 HD |
1597 | return referenced; |
1598 | } | |
1599 | ||
1600 | int try_to_unmap_ksm(struct page *page, enum ttu_flags flags) | |
1601 | { | |
1602 | struct stable_node *stable_node; | |
1603 | struct hlist_node *hlist; | |
1604 | struct rmap_item *rmap_item; | |
1605 | int ret = SWAP_AGAIN; | |
db114b83 | 1606 | int search_new_forks = 0; |
5ad64688 HD |
1607 | |
1608 | VM_BUG_ON(!PageKsm(page)); | |
1609 | VM_BUG_ON(!PageLocked(page)); | |
1610 | ||
1611 | stable_node = page_stable_node(page); | |
1612 | if (!stable_node) | |
1613 | return SWAP_FAIL; | |
db114b83 | 1614 | again: |
5ad64688 | 1615 | hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { |
db114b83 HD |
1616 | struct anon_vma *anon_vma = rmap_item->anon_vma; |
1617 | struct vm_area_struct *vma; | |
5ad64688 | 1618 | |
db114b83 HD |
1619 | spin_lock(&anon_vma->lock); |
1620 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1621 | if (rmap_item->address < vma->vm_start || | |
1622 | rmap_item->address >= vma->vm_end) | |
1623 | continue; | |
1624 | /* | |
1625 | * Initially we examine only the vma which covers this | |
1626 | * rmap_item; but later, if there is still work to do, | |
1627 | * we examine covering vmas in other mms: in case they | |
1628 | * were forked from the original since ksmd passed. | |
1629 | */ | |
1630 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | |
1631 | continue; | |
1632 | ||
1633 | ret = try_to_unmap_one(page, vma, | |
1634 | rmap_item->address, flags); | |
1635 | if (ret != SWAP_AGAIN || !page_mapped(page)) { | |
1636 | spin_unlock(&anon_vma->lock); | |
1637 | goto out; | |
1638 | } | |
1639 | } | |
1640 | spin_unlock(&anon_vma->lock); | |
5ad64688 | 1641 | } |
db114b83 HD |
1642 | if (!search_new_forks++) |
1643 | goto again; | |
5ad64688 | 1644 | out: |
5ad64688 HD |
1645 | return ret; |
1646 | } | |
1647 | ||
e9995ef9 HD |
1648 | #ifdef CONFIG_MIGRATION |
1649 | int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *, | |
1650 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1651 | { | |
1652 | struct stable_node *stable_node; | |
1653 | struct hlist_node *hlist; | |
1654 | struct rmap_item *rmap_item; | |
1655 | int ret = SWAP_AGAIN; | |
1656 | int search_new_forks = 0; | |
1657 | ||
1658 | VM_BUG_ON(!PageKsm(page)); | |
1659 | VM_BUG_ON(!PageLocked(page)); | |
1660 | ||
1661 | stable_node = page_stable_node(page); | |
1662 | if (!stable_node) | |
1663 | return ret; | |
1664 | again: | |
1665 | hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) { | |
1666 | struct anon_vma *anon_vma = rmap_item->anon_vma; | |
1667 | struct vm_area_struct *vma; | |
1668 | ||
1669 | spin_lock(&anon_vma->lock); | |
1670 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
1671 | if (rmap_item->address < vma->vm_start || | |
1672 | rmap_item->address >= vma->vm_end) | |
1673 | continue; | |
1674 | /* | |
1675 | * Initially we examine only the vma which covers this | |
1676 | * rmap_item; but later, if there is still work to do, | |
1677 | * we examine covering vmas in other mms: in case they | |
1678 | * were forked from the original since ksmd passed. | |
1679 | */ | |
1680 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | |
1681 | continue; | |
1682 | ||
1683 | ret = rmap_one(page, vma, rmap_item->address, arg); | |
1684 | if (ret != SWAP_AGAIN) { | |
1685 | spin_unlock(&anon_vma->lock); | |
1686 | goto out; | |
1687 | } | |
1688 | } | |
1689 | spin_unlock(&anon_vma->lock); | |
1690 | } | |
1691 | if (!search_new_forks++) | |
1692 | goto again; | |
1693 | out: | |
1694 | return ret; | |
1695 | } | |
1696 | ||
1697 | void ksm_migrate_page(struct page *newpage, struct page *oldpage) | |
1698 | { | |
1699 | struct stable_node *stable_node; | |
1700 | ||
1701 | VM_BUG_ON(!PageLocked(oldpage)); | |
1702 | VM_BUG_ON(!PageLocked(newpage)); | |
1703 | VM_BUG_ON(newpage->mapping != oldpage->mapping); | |
1704 | ||
1705 | stable_node = page_stable_node(newpage); | |
1706 | if (stable_node) { | |
62b61f61 HD |
1707 | VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage)); |
1708 | stable_node->kpfn = page_to_pfn(newpage); | |
e9995ef9 HD |
1709 | } |
1710 | } | |
1711 | #endif /* CONFIG_MIGRATION */ | |
1712 | ||
62b61f61 HD |
1713 | #ifdef CONFIG_MEMORY_HOTREMOVE |
1714 | static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn, | |
1715 | unsigned long end_pfn) | |
1716 | { | |
1717 | struct rb_node *node; | |
1718 | ||
1719 | for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) { | |
1720 | struct stable_node *stable_node; | |
1721 | ||
1722 | stable_node = rb_entry(node, struct stable_node, node); | |
1723 | if (stable_node->kpfn >= start_pfn && | |
1724 | stable_node->kpfn < end_pfn) | |
1725 | return stable_node; | |
1726 | } | |
1727 | return NULL; | |
1728 | } | |
1729 | ||
1730 | static int ksm_memory_callback(struct notifier_block *self, | |
1731 | unsigned long action, void *arg) | |
1732 | { | |
1733 | struct memory_notify *mn = arg; | |
1734 | struct stable_node *stable_node; | |
1735 | ||
1736 | switch (action) { | |
1737 | case MEM_GOING_OFFLINE: | |
1738 | /* | |
1739 | * Keep it very simple for now: just lock out ksmd and | |
1740 | * MADV_UNMERGEABLE while any memory is going offline. | |
1741 | */ | |
1742 | mutex_lock(&ksm_thread_mutex); | |
1743 | break; | |
1744 | ||
1745 | case MEM_OFFLINE: | |
1746 | /* | |
1747 | * Most of the work is done by page migration; but there might | |
1748 | * be a few stable_nodes left over, still pointing to struct | |
1749 | * pages which have been offlined: prune those from the tree. | |
1750 | */ | |
1751 | while ((stable_node = ksm_check_stable_tree(mn->start_pfn, | |
1752 | mn->start_pfn + mn->nr_pages)) != NULL) | |
1753 | remove_node_from_stable_tree(stable_node); | |
1754 | /* fallthrough */ | |
1755 | ||
1756 | case MEM_CANCEL_OFFLINE: | |
1757 | mutex_unlock(&ksm_thread_mutex); | |
1758 | break; | |
1759 | } | |
1760 | return NOTIFY_OK; | |
1761 | } | |
1762 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | |
1763 | ||
2ffd8679 HD |
1764 | #ifdef CONFIG_SYSFS |
1765 | /* | |
1766 | * This all compiles without CONFIG_SYSFS, but is a waste of space. | |
1767 | */ | |
1768 | ||
31dbd01f IE |
1769 | #define KSM_ATTR_RO(_name) \ |
1770 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1771 | #define KSM_ATTR(_name) \ | |
1772 | static struct kobj_attribute _name##_attr = \ | |
1773 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1774 | ||
1775 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | |
1776 | struct kobj_attribute *attr, char *buf) | |
1777 | { | |
1778 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | |
1779 | } | |
1780 | ||
1781 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | |
1782 | struct kobj_attribute *attr, | |
1783 | const char *buf, size_t count) | |
1784 | { | |
1785 | unsigned long msecs; | |
1786 | int err; | |
1787 | ||
1788 | err = strict_strtoul(buf, 10, &msecs); | |
1789 | if (err || msecs > UINT_MAX) | |
1790 | return -EINVAL; | |
1791 | ||
1792 | ksm_thread_sleep_millisecs = msecs; | |
1793 | ||
1794 | return count; | |
1795 | } | |
1796 | KSM_ATTR(sleep_millisecs); | |
1797 | ||
1798 | static ssize_t pages_to_scan_show(struct kobject *kobj, | |
1799 | struct kobj_attribute *attr, char *buf) | |
1800 | { | |
1801 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | |
1802 | } | |
1803 | ||
1804 | static ssize_t pages_to_scan_store(struct kobject *kobj, | |
1805 | struct kobj_attribute *attr, | |
1806 | const char *buf, size_t count) | |
1807 | { | |
1808 | int err; | |
1809 | unsigned long nr_pages; | |
1810 | ||
1811 | err = strict_strtoul(buf, 10, &nr_pages); | |
1812 | if (err || nr_pages > UINT_MAX) | |
1813 | return -EINVAL; | |
1814 | ||
1815 | ksm_thread_pages_to_scan = nr_pages; | |
1816 | ||
1817 | return count; | |
1818 | } | |
1819 | KSM_ATTR(pages_to_scan); | |
1820 | ||
1821 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | |
1822 | char *buf) | |
1823 | { | |
1824 | return sprintf(buf, "%u\n", ksm_run); | |
1825 | } | |
1826 | ||
1827 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | |
1828 | const char *buf, size_t count) | |
1829 | { | |
1830 | int err; | |
1831 | unsigned long flags; | |
1832 | ||
1833 | err = strict_strtoul(buf, 10, &flags); | |
1834 | if (err || flags > UINT_MAX) | |
1835 | return -EINVAL; | |
1836 | if (flags > KSM_RUN_UNMERGE) | |
1837 | return -EINVAL; | |
1838 | ||
1839 | /* | |
1840 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | |
1841 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | |
d0f209f6 HD |
1842 | * breaking COW to free the pages_shared (but leaves mm_slots |
1843 | * on the list for when ksmd may be set running again). | |
31dbd01f IE |
1844 | */ |
1845 | ||
1846 | mutex_lock(&ksm_thread_mutex); | |
1847 | if (ksm_run != flags) { | |
1848 | ksm_run = flags; | |
d952b791 | 1849 | if (flags & KSM_RUN_UNMERGE) { |
35451bee | 1850 | current->flags |= PF_OOM_ORIGIN; |
d952b791 | 1851 | err = unmerge_and_remove_all_rmap_items(); |
35451bee | 1852 | current->flags &= ~PF_OOM_ORIGIN; |
d952b791 HD |
1853 | if (err) { |
1854 | ksm_run = KSM_RUN_STOP; | |
1855 | count = err; | |
1856 | } | |
1857 | } | |
31dbd01f IE |
1858 | } |
1859 | mutex_unlock(&ksm_thread_mutex); | |
1860 | ||
1861 | if (flags & KSM_RUN_MERGE) | |
1862 | wake_up_interruptible(&ksm_thread_wait); | |
1863 | ||
1864 | return count; | |
1865 | } | |
1866 | KSM_ATTR(run); | |
1867 | ||
b4028260 HD |
1868 | static ssize_t pages_shared_show(struct kobject *kobj, |
1869 | struct kobj_attribute *attr, char *buf) | |
1870 | { | |
1871 | return sprintf(buf, "%lu\n", ksm_pages_shared); | |
1872 | } | |
1873 | KSM_ATTR_RO(pages_shared); | |
1874 | ||
1875 | static ssize_t pages_sharing_show(struct kobject *kobj, | |
1876 | struct kobj_attribute *attr, char *buf) | |
1877 | { | |
e178dfde | 1878 | return sprintf(buf, "%lu\n", ksm_pages_sharing); |
b4028260 HD |
1879 | } |
1880 | KSM_ATTR_RO(pages_sharing); | |
1881 | ||
473b0ce4 HD |
1882 | static ssize_t pages_unshared_show(struct kobject *kobj, |
1883 | struct kobj_attribute *attr, char *buf) | |
1884 | { | |
1885 | return sprintf(buf, "%lu\n", ksm_pages_unshared); | |
1886 | } | |
1887 | KSM_ATTR_RO(pages_unshared); | |
1888 | ||
1889 | static ssize_t pages_volatile_show(struct kobject *kobj, | |
1890 | struct kobj_attribute *attr, char *buf) | |
1891 | { | |
1892 | long ksm_pages_volatile; | |
1893 | ||
1894 | ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | |
1895 | - ksm_pages_sharing - ksm_pages_unshared; | |
1896 | /* | |
1897 | * It was not worth any locking to calculate that statistic, | |
1898 | * but it might therefore sometimes be negative: conceal that. | |
1899 | */ | |
1900 | if (ksm_pages_volatile < 0) | |
1901 | ksm_pages_volatile = 0; | |
1902 | return sprintf(buf, "%ld\n", ksm_pages_volatile); | |
1903 | } | |
1904 | KSM_ATTR_RO(pages_volatile); | |
1905 | ||
1906 | static ssize_t full_scans_show(struct kobject *kobj, | |
1907 | struct kobj_attribute *attr, char *buf) | |
1908 | { | |
1909 | return sprintf(buf, "%lu\n", ksm_scan.seqnr); | |
1910 | } | |
1911 | KSM_ATTR_RO(full_scans); | |
1912 | ||
31dbd01f IE |
1913 | static struct attribute *ksm_attrs[] = { |
1914 | &sleep_millisecs_attr.attr, | |
1915 | &pages_to_scan_attr.attr, | |
1916 | &run_attr.attr, | |
b4028260 HD |
1917 | &pages_shared_attr.attr, |
1918 | &pages_sharing_attr.attr, | |
473b0ce4 HD |
1919 | &pages_unshared_attr.attr, |
1920 | &pages_volatile_attr.attr, | |
1921 | &full_scans_attr.attr, | |
31dbd01f IE |
1922 | NULL, |
1923 | }; | |
1924 | ||
1925 | static struct attribute_group ksm_attr_group = { | |
1926 | .attrs = ksm_attrs, | |
1927 | .name = "ksm", | |
1928 | }; | |
2ffd8679 | 1929 | #endif /* CONFIG_SYSFS */ |
31dbd01f IE |
1930 | |
1931 | static int __init ksm_init(void) | |
1932 | { | |
1933 | struct task_struct *ksm_thread; | |
1934 | int err; | |
1935 | ||
1936 | err = ksm_slab_init(); | |
1937 | if (err) | |
1938 | goto out; | |
1939 | ||
1940 | err = mm_slots_hash_init(); | |
1941 | if (err) | |
1942 | goto out_free1; | |
1943 | ||
1944 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | |
1945 | if (IS_ERR(ksm_thread)) { | |
1946 | printk(KERN_ERR "ksm: creating kthread failed\n"); | |
1947 | err = PTR_ERR(ksm_thread); | |
1948 | goto out_free2; | |
1949 | } | |
1950 | ||
2ffd8679 | 1951 | #ifdef CONFIG_SYSFS |
31dbd01f IE |
1952 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); |
1953 | if (err) { | |
1954 | printk(KERN_ERR "ksm: register sysfs failed\n"); | |
2ffd8679 HD |
1955 | kthread_stop(ksm_thread); |
1956 | goto out_free2; | |
31dbd01f | 1957 | } |
c73602ad HD |
1958 | #else |
1959 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ | |
1960 | ||
2ffd8679 | 1961 | #endif /* CONFIG_SYSFS */ |
31dbd01f | 1962 | |
62b61f61 HD |
1963 | #ifdef CONFIG_MEMORY_HOTREMOVE |
1964 | /* | |
1965 | * Choose a high priority since the callback takes ksm_thread_mutex: | |
1966 | * later callbacks could only be taking locks which nest within that. | |
1967 | */ | |
1968 | hotplug_memory_notifier(ksm_memory_callback, 100); | |
1969 | #endif | |
31dbd01f IE |
1970 | return 0; |
1971 | ||
31dbd01f IE |
1972 | out_free2: |
1973 | mm_slots_hash_free(); | |
1974 | out_free1: | |
1975 | ksm_slab_free(); | |
1976 | out: | |
1977 | return err; | |
f8af4da3 | 1978 | } |
31dbd01f | 1979 | module_init(ksm_init) |