]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic pidhash and scalable, time-bounded PID allocator | |
3 | * | |
4 | * (C) 2002-2003 William Irwin, IBM | |
5 | * (C) 2004 William Irwin, Oracle | |
6 | * (C) 2002-2004 Ingo Molnar, Red Hat | |
7 | * | |
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
9 | * against. There is very little to them aside from hashing them and | |
10 | * parking tasks using given ID's on a list. | |
11 | * | |
12 | * The hash is always changed with the tasklist_lock write-acquired, | |
13 | * and the hash is only accessed with the tasklist_lock at least | |
14 | * read-acquired, so there's no additional SMP locking needed here. | |
15 | * | |
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
18 | * allocation scenario when all but one out of 1 million PIDs possible are | |
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
30e49c26 PE |
21 | * |
22 | * Pid namespaces: | |
23 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
24 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
25 | * Many thanks to Oleg Nesterov for comments and help | |
26 | * | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/slab.h> | |
32 | #include <linux/init.h> | |
82524746 | 33 | #include <linux/rculist.h> |
1da177e4 LT |
34 | #include <linux/bootmem.h> |
35 | #include <linux/hash.h> | |
61a58c6c | 36 | #include <linux/pid_namespace.h> |
820e45db | 37 | #include <linux/init_task.h> |
3eb07c8c | 38 | #include <linux/syscalls.h> |
1da177e4 | 39 | |
8ef047aa PE |
40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | |
92476d7f | 42 | static struct hlist_head *pid_hash; |
1da177e4 | 43 | static int pidhash_shift; |
820e45db | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
1da177e4 LT |
45 | |
46 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
47 | |
48 | #define RESERVED_PIDS 300 | |
49 | ||
50 | int pid_max_min = RESERVED_PIDS + 1; | |
51 | int pid_max_max = PID_MAX_LIMIT; | |
52 | ||
1da177e4 LT |
53 | #define BITS_PER_PAGE (PAGE_SIZE*8) |
54 | #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) | |
3fbc9648 | 55 | |
61a58c6c SB |
56 | static inline int mk_pid(struct pid_namespace *pid_ns, |
57 | struct pidmap *map, int off) | |
3fbc9648 | 58 | { |
61a58c6c | 59 | return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; |
3fbc9648 SB |
60 | } |
61 | ||
1da177e4 LT |
62 | #define find_next_offset(map, off) \ |
63 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | |
64 | ||
65 | /* | |
66 | * PID-map pages start out as NULL, they get allocated upon | |
67 | * first use and are never deallocated. This way a low pid_max | |
68 | * value does not cause lots of bitmaps to be allocated, but | |
69 | * the scheme scales to up to 4 million PIDs, runtime. | |
70 | */ | |
61a58c6c | 71 | struct pid_namespace init_pid_ns = { |
9a575a92 CLG |
72 | .kref = { |
73 | .refcount = ATOMIC_INIT(2), | |
74 | }, | |
3fbc9648 SB |
75 | .pidmap = { |
76 | [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | |
77 | }, | |
84d73786 | 78 | .last_pid = 0, |
faacbfd3 PE |
79 | .level = 0, |
80 | .child_reaper = &init_task, | |
3fbc9648 | 81 | }; |
198fe21b | 82 | EXPORT_SYMBOL_GPL(init_pid_ns); |
1da177e4 | 83 | |
b461cc03 | 84 | int is_container_init(struct task_struct *tsk) |
b460cbc5 | 85 | { |
b461cc03 PE |
86 | int ret = 0; |
87 | struct pid *pid; | |
88 | ||
89 | rcu_read_lock(); | |
90 | pid = task_pid(tsk); | |
91 | if (pid != NULL && pid->numbers[pid->level].nr == 1) | |
92 | ret = 1; | |
93 | rcu_read_unlock(); | |
94 | ||
95 | return ret; | |
b460cbc5 | 96 | } |
b461cc03 | 97 | EXPORT_SYMBOL(is_container_init); |
b460cbc5 | 98 | |
92476d7f EB |
99 | /* |
100 | * Note: disable interrupts while the pidmap_lock is held as an | |
101 | * interrupt might come in and do read_lock(&tasklist_lock). | |
102 | * | |
103 | * If we don't disable interrupts there is a nasty deadlock between | |
104 | * detach_pid()->free_pid() and another cpu that does | |
105 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
106 | * read_lock(&tasklist_lock); | |
107 | * | |
108 | * After we clean up the tasklist_lock and know there are no | |
109 | * irq handlers that take it we can leave the interrupts enabled. | |
110 | * For now it is easier to be safe than to prove it can't happen. | |
111 | */ | |
3fbc9648 | 112 | |
1da177e4 LT |
113 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
114 | ||
b7127aa4 | 115 | static void free_pidmap(struct upid *upid) |
1da177e4 | 116 | { |
b7127aa4 ON |
117 | int nr = upid->nr; |
118 | struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; | |
119 | int offset = nr & BITS_PER_PAGE_MASK; | |
1da177e4 LT |
120 | |
121 | clear_bit(offset, map->page); | |
122 | atomic_inc(&map->nr_free); | |
123 | } | |
124 | ||
61a58c6c | 125 | static int alloc_pidmap(struct pid_namespace *pid_ns) |
1da177e4 | 126 | { |
61a58c6c | 127 | int i, offset, max_scan, pid, last = pid_ns->last_pid; |
6a1f3b84 | 128 | struct pidmap *map; |
1da177e4 LT |
129 | |
130 | pid = last + 1; | |
131 | if (pid >= pid_max) | |
132 | pid = RESERVED_PIDS; | |
133 | offset = pid & BITS_PER_PAGE_MASK; | |
61a58c6c | 134 | map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; |
1da177e4 LT |
135 | max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset; |
136 | for (i = 0; i <= max_scan; ++i) { | |
137 | if (unlikely(!map->page)) { | |
3fbc9648 | 138 | void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
1da177e4 LT |
139 | /* |
140 | * Free the page if someone raced with us | |
141 | * installing it: | |
142 | */ | |
92476d7f | 143 | spin_lock_irq(&pidmap_lock); |
1da177e4 | 144 | if (map->page) |
3fbc9648 | 145 | kfree(page); |
1da177e4 | 146 | else |
3fbc9648 | 147 | map->page = page; |
92476d7f | 148 | spin_unlock_irq(&pidmap_lock); |
1da177e4 LT |
149 | if (unlikely(!map->page)) |
150 | break; | |
151 | } | |
152 | if (likely(atomic_read(&map->nr_free))) { | |
153 | do { | |
154 | if (!test_and_set_bit(offset, map->page)) { | |
155 | atomic_dec(&map->nr_free); | |
61a58c6c | 156 | pid_ns->last_pid = pid; |
1da177e4 LT |
157 | return pid; |
158 | } | |
159 | offset = find_next_offset(map, offset); | |
61a58c6c | 160 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
161 | /* |
162 | * find_next_offset() found a bit, the pid from it | |
163 | * is in-bounds, and if we fell back to the last | |
164 | * bitmap block and the final block was the same | |
165 | * as the starting point, pid is before last_pid. | |
166 | */ | |
167 | } while (offset < BITS_PER_PAGE && pid < pid_max && | |
168 | (i != max_scan || pid < last || | |
169 | !((last+1) & BITS_PER_PAGE_MASK))); | |
170 | } | |
61a58c6c | 171 | if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { |
1da177e4 LT |
172 | ++map; |
173 | offset = 0; | |
174 | } else { | |
61a58c6c | 175 | map = &pid_ns->pidmap[0]; |
1da177e4 LT |
176 | offset = RESERVED_PIDS; |
177 | if (unlikely(last == offset)) | |
178 | break; | |
179 | } | |
61a58c6c | 180 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
181 | } |
182 | return -1; | |
183 | } | |
184 | ||
74bd59bb | 185 | int next_pidmap(struct pid_namespace *pid_ns, int last) |
0804ef4b EB |
186 | { |
187 | int offset; | |
f40f50d3 | 188 | struct pidmap *map, *end; |
0804ef4b EB |
189 | |
190 | offset = (last + 1) & BITS_PER_PAGE_MASK; | |
61a58c6c SB |
191 | map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; |
192 | end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | |
f40f50d3 | 193 | for (; map < end; map++, offset = 0) { |
0804ef4b EB |
194 | if (unlikely(!map->page)) |
195 | continue; | |
196 | offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | |
197 | if (offset < BITS_PER_PAGE) | |
61a58c6c | 198 | return mk_pid(pid_ns, map, offset); |
0804ef4b EB |
199 | } |
200 | return -1; | |
201 | } | |
202 | ||
7ad5b3a5 | 203 | void put_pid(struct pid *pid) |
92476d7f | 204 | { |
baf8f0f8 PE |
205 | struct pid_namespace *ns; |
206 | ||
92476d7f EB |
207 | if (!pid) |
208 | return; | |
baf8f0f8 | 209 | |
8ef047aa | 210 | ns = pid->numbers[pid->level].ns; |
92476d7f | 211 | if ((atomic_read(&pid->count) == 1) || |
8ef047aa | 212 | atomic_dec_and_test(&pid->count)) { |
baf8f0f8 | 213 | kmem_cache_free(ns->pid_cachep, pid); |
b461cc03 | 214 | put_pid_ns(ns); |
8ef047aa | 215 | } |
92476d7f | 216 | } |
bbf73147 | 217 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
218 | |
219 | static void delayed_put_pid(struct rcu_head *rhp) | |
220 | { | |
221 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
222 | put_pid(pid); | |
223 | } | |
224 | ||
7ad5b3a5 | 225 | void free_pid(struct pid *pid) |
92476d7f EB |
226 | { |
227 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
8ef047aa | 228 | int i; |
92476d7f EB |
229 | unsigned long flags; |
230 | ||
231 | spin_lock_irqsave(&pidmap_lock, flags); | |
198fe21b PE |
232 | for (i = 0; i <= pid->level; i++) |
233 | hlist_del_rcu(&pid->numbers[i].pid_chain); | |
92476d7f EB |
234 | spin_unlock_irqrestore(&pidmap_lock, flags); |
235 | ||
8ef047aa | 236 | for (i = 0; i <= pid->level; i++) |
b7127aa4 | 237 | free_pidmap(pid->numbers + i); |
8ef047aa | 238 | |
92476d7f EB |
239 | call_rcu(&pid->rcu, delayed_put_pid); |
240 | } | |
241 | ||
8ef047aa | 242 | struct pid *alloc_pid(struct pid_namespace *ns) |
92476d7f EB |
243 | { |
244 | struct pid *pid; | |
245 | enum pid_type type; | |
8ef047aa PE |
246 | int i, nr; |
247 | struct pid_namespace *tmp; | |
198fe21b | 248 | struct upid *upid; |
92476d7f | 249 | |
baf8f0f8 | 250 | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); |
92476d7f EB |
251 | if (!pid) |
252 | goto out; | |
253 | ||
8ef047aa PE |
254 | tmp = ns; |
255 | for (i = ns->level; i >= 0; i--) { | |
256 | nr = alloc_pidmap(tmp); | |
257 | if (nr < 0) | |
258 | goto out_free; | |
92476d7f | 259 | |
8ef047aa PE |
260 | pid->numbers[i].nr = nr; |
261 | pid->numbers[i].ns = tmp; | |
262 | tmp = tmp->parent; | |
263 | } | |
264 | ||
b461cc03 | 265 | get_pid_ns(ns); |
8ef047aa | 266 | pid->level = ns->level; |
92476d7f | 267 | atomic_set(&pid->count, 1); |
92476d7f EB |
268 | for (type = 0; type < PIDTYPE_MAX; ++type) |
269 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
270 | ||
271 | spin_lock_irq(&pidmap_lock); | |
198fe21b PE |
272 | for (i = ns->level; i >= 0; i--) { |
273 | upid = &pid->numbers[i]; | |
274 | hlist_add_head_rcu(&upid->pid_chain, | |
275 | &pid_hash[pid_hashfn(upid->nr, upid->ns)]); | |
276 | } | |
92476d7f EB |
277 | spin_unlock_irq(&pidmap_lock); |
278 | ||
279 | out: | |
280 | return pid; | |
281 | ||
282 | out_free: | |
b7127aa4 ON |
283 | while (++i <= ns->level) |
284 | free_pidmap(pid->numbers + i); | |
8ef047aa | 285 | |
baf8f0f8 | 286 | kmem_cache_free(ns->pid_cachep, pid); |
92476d7f EB |
287 | pid = NULL; |
288 | goto out; | |
289 | } | |
290 | ||
7ad5b3a5 | 291 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) |
1da177e4 LT |
292 | { |
293 | struct hlist_node *elem; | |
198fe21b PE |
294 | struct upid *pnr; |
295 | ||
296 | hlist_for_each_entry_rcu(pnr, elem, | |
297 | &pid_hash[pid_hashfn(nr, ns)], pid_chain) | |
298 | if (pnr->nr == nr && pnr->ns == ns) | |
299 | return container_of(pnr, struct pid, | |
300 | numbers[ns->level]); | |
1da177e4 | 301 | |
1da177e4 LT |
302 | return NULL; |
303 | } | |
198fe21b | 304 | EXPORT_SYMBOL_GPL(find_pid_ns); |
1da177e4 | 305 | |
8990571e PE |
306 | struct pid *find_vpid(int nr) |
307 | { | |
308 | return find_pid_ns(nr, current->nsproxy->pid_ns); | |
309 | } | |
310 | EXPORT_SYMBOL_GPL(find_vpid); | |
311 | ||
e713d0da SB |
312 | /* |
313 | * attach_pid() must be called with the tasklist_lock write-held. | |
314 | */ | |
24336eae | 315 | void attach_pid(struct task_struct *task, enum pid_type type, |
e713d0da | 316 | struct pid *pid) |
1da177e4 | 317 | { |
92476d7f | 318 | struct pid_link *link; |
92476d7f | 319 | |
92476d7f | 320 | link = &task->pids[type]; |
e713d0da | 321 | link->pid = pid; |
92476d7f | 322 | hlist_add_head_rcu(&link->node, &pid->tasks[type]); |
1da177e4 LT |
323 | } |
324 | ||
24336eae ON |
325 | static void __change_pid(struct task_struct *task, enum pid_type type, |
326 | struct pid *new) | |
1da177e4 | 327 | { |
92476d7f EB |
328 | struct pid_link *link; |
329 | struct pid *pid; | |
330 | int tmp; | |
1da177e4 | 331 | |
92476d7f EB |
332 | link = &task->pids[type]; |
333 | pid = link->pid; | |
1da177e4 | 334 | |
92476d7f | 335 | hlist_del_rcu(&link->node); |
24336eae | 336 | link->pid = new; |
1da177e4 | 337 | |
92476d7f EB |
338 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
339 | if (!hlist_empty(&pid->tasks[tmp])) | |
340 | return; | |
1da177e4 | 341 | |
92476d7f | 342 | free_pid(pid); |
1da177e4 LT |
343 | } |
344 | ||
24336eae ON |
345 | void detach_pid(struct task_struct *task, enum pid_type type) |
346 | { | |
347 | __change_pid(task, type, NULL); | |
348 | } | |
349 | ||
350 | void change_pid(struct task_struct *task, enum pid_type type, | |
351 | struct pid *pid) | |
352 | { | |
353 | __change_pid(task, type, pid); | |
354 | attach_pid(task, type, pid); | |
355 | } | |
356 | ||
c18258c6 | 357 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
7ad5b3a5 | 358 | void transfer_pid(struct task_struct *old, struct task_struct *new, |
c18258c6 EB |
359 | enum pid_type type) |
360 | { | |
361 | new->pids[type].pid = old->pids[type].pid; | |
362 | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | |
c18258c6 EB |
363 | } |
364 | ||
7ad5b3a5 | 365 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 366 | { |
92476d7f EB |
367 | struct task_struct *result = NULL; |
368 | if (pid) { | |
369 | struct hlist_node *first; | |
370 | first = rcu_dereference(pid->tasks[type].first); | |
371 | if (first) | |
372 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | |
373 | } | |
374 | return result; | |
375 | } | |
eccba068 | 376 | EXPORT_SYMBOL(pid_task); |
1da177e4 | 377 | |
92476d7f EB |
378 | /* |
379 | * Must be called under rcu_read_lock() or with tasklist_lock read-held. | |
380 | */ | |
198fe21b PE |
381 | struct task_struct *find_task_by_pid_type_ns(int type, int nr, |
382 | struct pid_namespace *ns) | |
92476d7f | 383 | { |
198fe21b | 384 | return pid_task(find_pid_ns(nr, ns), type); |
92476d7f | 385 | } |
1da177e4 | 386 | |
198fe21b | 387 | EXPORT_SYMBOL(find_task_by_pid_type_ns); |
1da177e4 | 388 | |
228ebcbe PE |
389 | struct task_struct *find_task_by_vpid(pid_t vnr) |
390 | { | |
391 | return find_task_by_pid_type_ns(PIDTYPE_PID, vnr, | |
392 | current->nsproxy->pid_ns); | |
393 | } | |
394 | EXPORT_SYMBOL(find_task_by_vpid); | |
395 | ||
396 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) | |
397 | { | |
398 | return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns); | |
399 | } | |
400 | EXPORT_SYMBOL(find_task_by_pid_ns); | |
401 | ||
1a657f78 ON |
402 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
403 | { | |
404 | struct pid *pid; | |
405 | rcu_read_lock(); | |
2ae448ef ON |
406 | if (type != PIDTYPE_PID) |
407 | task = task->group_leader; | |
1a657f78 ON |
408 | pid = get_pid(task->pids[type].pid); |
409 | rcu_read_unlock(); | |
410 | return pid; | |
411 | } | |
412 | ||
7ad5b3a5 | 413 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) |
92476d7f EB |
414 | { |
415 | struct task_struct *result; | |
416 | rcu_read_lock(); | |
417 | result = pid_task(pid, type); | |
418 | if (result) | |
419 | get_task_struct(result); | |
420 | rcu_read_unlock(); | |
421 | return result; | |
1da177e4 LT |
422 | } |
423 | ||
92476d7f | 424 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
425 | { |
426 | struct pid *pid; | |
427 | ||
92476d7f | 428 | rcu_read_lock(); |
198fe21b | 429 | pid = get_pid(find_vpid(nr)); |
92476d7f | 430 | rcu_read_unlock(); |
1da177e4 | 431 | |
92476d7f | 432 | return pid; |
1da177e4 | 433 | } |
339caf2a | 434 | EXPORT_SYMBOL_GPL(find_get_pid); |
1da177e4 | 435 | |
7af57294 PE |
436 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) |
437 | { | |
438 | struct upid *upid; | |
439 | pid_t nr = 0; | |
440 | ||
441 | if (pid && ns->level <= pid->level) { | |
442 | upid = &pid->numbers[ns->level]; | |
443 | if (upid->ns == ns) | |
444 | nr = upid->nr; | |
445 | } | |
446 | return nr; | |
447 | } | |
448 | ||
44c4e1b2 EB |
449 | pid_t pid_vnr(struct pid *pid) |
450 | { | |
451 | return pid_nr_ns(pid, current->nsproxy->pid_ns); | |
452 | } | |
453 | EXPORT_SYMBOL_GPL(pid_vnr); | |
454 | ||
52ee2dfd ON |
455 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
456 | struct pid_namespace *ns) | |
2f2a3a46 | 457 | { |
52ee2dfd ON |
458 | pid_t nr = 0; |
459 | ||
460 | rcu_read_lock(); | |
461 | if (!ns) | |
462 | ns = current->nsproxy->pid_ns; | |
463 | if (likely(pid_alive(task))) { | |
464 | if (type != PIDTYPE_PID) | |
465 | task = task->group_leader; | |
466 | nr = pid_nr_ns(task->pids[type].pid, ns); | |
467 | } | |
468 | rcu_read_unlock(); | |
469 | ||
470 | return nr; | |
2f2a3a46 | 471 | } |
52ee2dfd | 472 | EXPORT_SYMBOL(__task_pid_nr_ns); |
2f2a3a46 PE |
473 | |
474 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | |
475 | { | |
476 | return pid_nr_ns(task_tgid(tsk), ns); | |
477 | } | |
478 | EXPORT_SYMBOL(task_tgid_nr_ns); | |
479 | ||
61bce0f1 EB |
480 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
481 | { | |
482 | return ns_of_pid(task_pid(tsk)); | |
483 | } | |
484 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | |
485 | ||
0804ef4b | 486 | /* |
025dfdaf | 487 | * Used by proc to find the first pid that is greater than or equal to nr. |
0804ef4b | 488 | * |
e49859e7 | 489 | * If there is a pid at nr this function is exactly the same as find_pid_ns. |
0804ef4b | 490 | */ |
198fe21b | 491 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) |
0804ef4b EB |
492 | { |
493 | struct pid *pid; | |
494 | ||
495 | do { | |
198fe21b | 496 | pid = find_pid_ns(nr, ns); |
0804ef4b EB |
497 | if (pid) |
498 | break; | |
198fe21b | 499 | nr = next_pidmap(ns, nr); |
0804ef4b EB |
500 | } while (nr > 0); |
501 | ||
502 | return pid; | |
503 | } | |
504 | ||
1da177e4 LT |
505 | /* |
506 | * The pid hash table is scaled according to the amount of memory in the | |
507 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | |
508 | * more. | |
509 | */ | |
510 | void __init pidhash_init(void) | |
511 | { | |
92476d7f | 512 | int i, pidhash_size; |
1da177e4 LT |
513 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); |
514 | ||
515 | pidhash_shift = max(4, fls(megabytes * 4)); | |
516 | pidhash_shift = min(12, pidhash_shift); | |
517 | pidhash_size = 1 << pidhash_shift; | |
518 | ||
519 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | |
520 | pidhash_size, pidhash_shift, | |
92476d7f EB |
521 | pidhash_size * sizeof(struct hlist_head)); |
522 | ||
523 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | |
524 | if (!pid_hash) | |
525 | panic("Could not alloc pidhash!\n"); | |
526 | for (i = 0; i < pidhash_size; i++) | |
527 | INIT_HLIST_HEAD(&pid_hash[i]); | |
1da177e4 LT |
528 | } |
529 | ||
530 | void __init pidmap_init(void) | |
531 | { | |
61a58c6c | 532 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
73b9ebfe | 533 | /* Reserve PID 0. We never call free_pidmap(0) */ |
61a58c6c SB |
534 | set_bit(0, init_pid_ns.pidmap[0].page); |
535 | atomic_dec(&init_pid_ns.pidmap[0].nr_free); | |
92476d7f | 536 | |
74bd59bb PE |
537 | init_pid_ns.pid_cachep = KMEM_CACHE(pid, |
538 | SLAB_HWCACHE_ALIGN | SLAB_PANIC); | |
1da177e4 | 539 | } |