]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic pidhash and scalable, time-bounded PID allocator | |
3 | * | |
4 | * (C) 2002-2003 William Irwin, IBM | |
5 | * (C) 2004 William Irwin, Oracle | |
6 | * (C) 2002-2004 Ingo Molnar, Red Hat | |
7 | * | |
8 | * pid-structures are backing objects for tasks sharing a given ID to chain | |
9 | * against. There is very little to them aside from hashing them and | |
10 | * parking tasks using given ID's on a list. | |
11 | * | |
12 | * The hash is always changed with the tasklist_lock write-acquired, | |
13 | * and the hash is only accessed with the tasklist_lock at least | |
14 | * read-acquired, so there's no additional SMP locking needed here. | |
15 | * | |
16 | * We have a list of bitmap pages, which bitmaps represent the PID space. | |
17 | * Allocating and freeing PIDs is completely lockless. The worst-case | |
18 | * allocation scenario when all but one out of 1 million PIDs possible are | |
19 | * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | |
20 | * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | |
30e49c26 PE |
21 | * |
22 | * Pid namespaces: | |
23 | * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. | |
24 | * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM | |
25 | * Many thanks to Oleg Nesterov for comments and help | |
26 | * | |
1da177e4 LT |
27 | */ |
28 | ||
29 | #include <linux/mm.h> | |
30 | #include <linux/module.h> | |
31 | #include <linux/slab.h> | |
32 | #include <linux/init.h> | |
82524746 | 33 | #include <linux/rculist.h> |
1da177e4 LT |
34 | #include <linux/bootmem.h> |
35 | #include <linux/hash.h> | |
61a58c6c | 36 | #include <linux/pid_namespace.h> |
820e45db | 37 | #include <linux/init_task.h> |
3eb07c8c | 38 | #include <linux/syscalls.h> |
1da177e4 | 39 | |
8ef047aa PE |
40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | |
92476d7f | 42 | static struct hlist_head *pid_hash; |
2c85f51d | 43 | static unsigned int pidhash_shift = 4; |
820e45db | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
1da177e4 LT |
45 | |
46 | int pid_max = PID_MAX_DEFAULT; | |
1da177e4 LT |
47 | |
48 | #define RESERVED_PIDS 300 | |
49 | ||
50 | int pid_max_min = RESERVED_PIDS + 1; | |
51 | int pid_max_max = PID_MAX_LIMIT; | |
52 | ||
1da177e4 LT |
53 | #define BITS_PER_PAGE (PAGE_SIZE*8) |
54 | #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) | |
3fbc9648 | 55 | |
61a58c6c SB |
56 | static inline int mk_pid(struct pid_namespace *pid_ns, |
57 | struct pidmap *map, int off) | |
3fbc9648 | 58 | { |
61a58c6c | 59 | return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; |
3fbc9648 SB |
60 | } |
61 | ||
1da177e4 LT |
62 | #define find_next_offset(map, off) \ |
63 | find_next_zero_bit((map)->page, BITS_PER_PAGE, off) | |
64 | ||
65 | /* | |
66 | * PID-map pages start out as NULL, they get allocated upon | |
67 | * first use and are never deallocated. This way a low pid_max | |
68 | * value does not cause lots of bitmaps to be allocated, but | |
69 | * the scheme scales to up to 4 million PIDs, runtime. | |
70 | */ | |
61a58c6c | 71 | struct pid_namespace init_pid_ns = { |
9a575a92 CLG |
72 | .kref = { |
73 | .refcount = ATOMIC_INIT(2), | |
74 | }, | |
3fbc9648 SB |
75 | .pidmap = { |
76 | [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } | |
77 | }, | |
84d73786 | 78 | .last_pid = 0, |
faacbfd3 PE |
79 | .level = 0, |
80 | .child_reaper = &init_task, | |
3fbc9648 | 81 | }; |
198fe21b | 82 | EXPORT_SYMBOL_GPL(init_pid_ns); |
1da177e4 | 83 | |
b461cc03 | 84 | int is_container_init(struct task_struct *tsk) |
b460cbc5 | 85 | { |
b461cc03 PE |
86 | int ret = 0; |
87 | struct pid *pid; | |
88 | ||
89 | rcu_read_lock(); | |
90 | pid = task_pid(tsk); | |
91 | if (pid != NULL && pid->numbers[pid->level].nr == 1) | |
92 | ret = 1; | |
93 | rcu_read_unlock(); | |
94 | ||
95 | return ret; | |
b460cbc5 | 96 | } |
b461cc03 | 97 | EXPORT_SYMBOL(is_container_init); |
b460cbc5 | 98 | |
92476d7f EB |
99 | /* |
100 | * Note: disable interrupts while the pidmap_lock is held as an | |
101 | * interrupt might come in and do read_lock(&tasklist_lock). | |
102 | * | |
103 | * If we don't disable interrupts there is a nasty deadlock between | |
104 | * detach_pid()->free_pid() and another cpu that does | |
105 | * spin_lock(&pidmap_lock) followed by an interrupt routine that does | |
106 | * read_lock(&tasklist_lock); | |
107 | * | |
108 | * After we clean up the tasklist_lock and know there are no | |
109 | * irq handlers that take it we can leave the interrupts enabled. | |
110 | * For now it is easier to be safe than to prove it can't happen. | |
111 | */ | |
3fbc9648 | 112 | |
1da177e4 LT |
113 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); |
114 | ||
b7127aa4 | 115 | static void free_pidmap(struct upid *upid) |
1da177e4 | 116 | { |
b7127aa4 ON |
117 | int nr = upid->nr; |
118 | struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; | |
119 | int offset = nr & BITS_PER_PAGE_MASK; | |
1da177e4 LT |
120 | |
121 | clear_bit(offset, map->page); | |
122 | atomic_inc(&map->nr_free); | |
123 | } | |
124 | ||
5fdee8c4 S |
125 | /* |
126 | * If we started walking pids at 'base', is 'a' seen before 'b'? | |
127 | */ | |
128 | static int pid_before(int base, int a, int b) | |
129 | { | |
130 | /* | |
131 | * This is the same as saying | |
132 | * | |
133 | * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT | |
134 | * and that mapping orders 'a' and 'b' with respect to 'base'. | |
135 | */ | |
136 | return (unsigned)(a - base) < (unsigned)(b - base); | |
137 | } | |
138 | ||
139 | /* | |
140 | * We might be racing with someone else trying to set pid_ns->last_pid. | |
141 | * We want the winner to have the "later" value, because if the | |
142 | * "earlier" value prevails, then a pid may get reused immediately. | |
143 | * | |
144 | * Since pids rollover, it is not sufficient to just pick the bigger | |
145 | * value. We have to consider where we started counting from. | |
146 | * | |
147 | * 'base' is the value of pid_ns->last_pid that we observed when | |
148 | * we started looking for a pid. | |
149 | * | |
150 | * 'pid' is the pid that we eventually found. | |
151 | */ | |
152 | static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) | |
153 | { | |
154 | int prev; | |
155 | int last_write = base; | |
156 | do { | |
157 | prev = last_write; | |
158 | last_write = cmpxchg(&pid_ns->last_pid, prev, pid); | |
159 | } while ((prev != last_write) && (pid_before(base, last_write, pid))); | |
160 | } | |
161 | ||
61a58c6c | 162 | static int alloc_pidmap(struct pid_namespace *pid_ns) |
1da177e4 | 163 | { |
61a58c6c | 164 | int i, offset, max_scan, pid, last = pid_ns->last_pid; |
6a1f3b84 | 165 | struct pidmap *map; |
1da177e4 LT |
166 | |
167 | pid = last + 1; | |
168 | if (pid >= pid_max) | |
169 | pid = RESERVED_PIDS; | |
170 | offset = pid & BITS_PER_PAGE_MASK; | |
61a58c6c | 171 | map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; |
c52b0b91 ON |
172 | /* |
173 | * If last_pid points into the middle of the map->page we | |
174 | * want to scan this bitmap block twice, the second time | |
175 | * we start with offset == 0 (or RESERVED_PIDS). | |
176 | */ | |
177 | max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; | |
1da177e4 LT |
178 | for (i = 0; i <= max_scan; ++i) { |
179 | if (unlikely(!map->page)) { | |
3fbc9648 | 180 | void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
1da177e4 LT |
181 | /* |
182 | * Free the page if someone raced with us | |
183 | * installing it: | |
184 | */ | |
92476d7f | 185 | spin_lock_irq(&pidmap_lock); |
7be6d991 | 186 | if (!map->page) { |
3fbc9648 | 187 | map->page = page; |
7be6d991 AGR |
188 | page = NULL; |
189 | } | |
92476d7f | 190 | spin_unlock_irq(&pidmap_lock); |
7be6d991 | 191 | kfree(page); |
1da177e4 LT |
192 | if (unlikely(!map->page)) |
193 | break; | |
194 | } | |
195 | if (likely(atomic_read(&map->nr_free))) { | |
196 | do { | |
197 | if (!test_and_set_bit(offset, map->page)) { | |
198 | atomic_dec(&map->nr_free); | |
5fdee8c4 | 199 | set_last_pid(pid_ns, last, pid); |
1da177e4 LT |
200 | return pid; |
201 | } | |
202 | offset = find_next_offset(map, offset); | |
61a58c6c | 203 | pid = mk_pid(pid_ns, map, offset); |
c52b0b91 | 204 | } while (offset < BITS_PER_PAGE && pid < pid_max); |
1da177e4 | 205 | } |
61a58c6c | 206 | if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { |
1da177e4 LT |
207 | ++map; |
208 | offset = 0; | |
209 | } else { | |
61a58c6c | 210 | map = &pid_ns->pidmap[0]; |
1da177e4 LT |
211 | offset = RESERVED_PIDS; |
212 | if (unlikely(last == offset)) | |
213 | break; | |
214 | } | |
61a58c6c | 215 | pid = mk_pid(pid_ns, map, offset); |
1da177e4 LT |
216 | } |
217 | return -1; | |
218 | } | |
219 | ||
74bd59bb | 220 | int next_pidmap(struct pid_namespace *pid_ns, int last) |
0804ef4b EB |
221 | { |
222 | int offset; | |
f40f50d3 | 223 | struct pidmap *map, *end; |
0804ef4b EB |
224 | |
225 | offset = (last + 1) & BITS_PER_PAGE_MASK; | |
61a58c6c SB |
226 | map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; |
227 | end = &pid_ns->pidmap[PIDMAP_ENTRIES]; | |
f40f50d3 | 228 | for (; map < end; map++, offset = 0) { |
0804ef4b EB |
229 | if (unlikely(!map->page)) |
230 | continue; | |
231 | offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); | |
232 | if (offset < BITS_PER_PAGE) | |
61a58c6c | 233 | return mk_pid(pid_ns, map, offset); |
0804ef4b EB |
234 | } |
235 | return -1; | |
236 | } | |
237 | ||
7ad5b3a5 | 238 | void put_pid(struct pid *pid) |
92476d7f | 239 | { |
baf8f0f8 PE |
240 | struct pid_namespace *ns; |
241 | ||
92476d7f EB |
242 | if (!pid) |
243 | return; | |
baf8f0f8 | 244 | |
8ef047aa | 245 | ns = pid->numbers[pid->level].ns; |
92476d7f | 246 | if ((atomic_read(&pid->count) == 1) || |
8ef047aa | 247 | atomic_dec_and_test(&pid->count)) { |
baf8f0f8 | 248 | kmem_cache_free(ns->pid_cachep, pid); |
b461cc03 | 249 | put_pid_ns(ns); |
8ef047aa | 250 | } |
92476d7f | 251 | } |
bbf73147 | 252 | EXPORT_SYMBOL_GPL(put_pid); |
92476d7f EB |
253 | |
254 | static void delayed_put_pid(struct rcu_head *rhp) | |
255 | { | |
256 | struct pid *pid = container_of(rhp, struct pid, rcu); | |
257 | put_pid(pid); | |
258 | } | |
259 | ||
7ad5b3a5 | 260 | void free_pid(struct pid *pid) |
92476d7f EB |
261 | { |
262 | /* We can be called with write_lock_irq(&tasklist_lock) held */ | |
8ef047aa | 263 | int i; |
92476d7f EB |
264 | unsigned long flags; |
265 | ||
266 | spin_lock_irqsave(&pidmap_lock, flags); | |
198fe21b PE |
267 | for (i = 0; i <= pid->level; i++) |
268 | hlist_del_rcu(&pid->numbers[i].pid_chain); | |
92476d7f EB |
269 | spin_unlock_irqrestore(&pidmap_lock, flags); |
270 | ||
8ef047aa | 271 | for (i = 0; i <= pid->level; i++) |
b7127aa4 | 272 | free_pidmap(pid->numbers + i); |
8ef047aa | 273 | |
92476d7f EB |
274 | call_rcu(&pid->rcu, delayed_put_pid); |
275 | } | |
276 | ||
8ef047aa | 277 | struct pid *alloc_pid(struct pid_namespace *ns) |
92476d7f EB |
278 | { |
279 | struct pid *pid; | |
280 | enum pid_type type; | |
8ef047aa PE |
281 | int i, nr; |
282 | struct pid_namespace *tmp; | |
198fe21b | 283 | struct upid *upid; |
92476d7f | 284 | |
baf8f0f8 | 285 | pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); |
92476d7f EB |
286 | if (!pid) |
287 | goto out; | |
288 | ||
8ef047aa PE |
289 | tmp = ns; |
290 | for (i = ns->level; i >= 0; i--) { | |
291 | nr = alloc_pidmap(tmp); | |
292 | if (nr < 0) | |
293 | goto out_free; | |
92476d7f | 294 | |
8ef047aa PE |
295 | pid->numbers[i].nr = nr; |
296 | pid->numbers[i].ns = tmp; | |
297 | tmp = tmp->parent; | |
298 | } | |
299 | ||
b461cc03 | 300 | get_pid_ns(ns); |
8ef047aa | 301 | pid->level = ns->level; |
92476d7f | 302 | atomic_set(&pid->count, 1); |
92476d7f EB |
303 | for (type = 0; type < PIDTYPE_MAX; ++type) |
304 | INIT_HLIST_HEAD(&pid->tasks[type]); | |
305 | ||
417e3152 | 306 | upid = pid->numbers + ns->level; |
92476d7f | 307 | spin_lock_irq(&pidmap_lock); |
417e3152 | 308 | for ( ; upid >= pid->numbers; --upid) |
198fe21b PE |
309 | hlist_add_head_rcu(&upid->pid_chain, |
310 | &pid_hash[pid_hashfn(upid->nr, upid->ns)]); | |
92476d7f EB |
311 | spin_unlock_irq(&pidmap_lock); |
312 | ||
313 | out: | |
314 | return pid; | |
315 | ||
316 | out_free: | |
b7127aa4 ON |
317 | while (++i <= ns->level) |
318 | free_pidmap(pid->numbers + i); | |
8ef047aa | 319 | |
baf8f0f8 | 320 | kmem_cache_free(ns->pid_cachep, pid); |
92476d7f EB |
321 | pid = NULL; |
322 | goto out; | |
323 | } | |
324 | ||
7ad5b3a5 | 325 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) |
1da177e4 LT |
326 | { |
327 | struct hlist_node *elem; | |
198fe21b PE |
328 | struct upid *pnr; |
329 | ||
330 | hlist_for_each_entry_rcu(pnr, elem, | |
331 | &pid_hash[pid_hashfn(nr, ns)], pid_chain) | |
332 | if (pnr->nr == nr && pnr->ns == ns) | |
333 | return container_of(pnr, struct pid, | |
334 | numbers[ns->level]); | |
1da177e4 | 335 | |
1da177e4 LT |
336 | return NULL; |
337 | } | |
198fe21b | 338 | EXPORT_SYMBOL_GPL(find_pid_ns); |
1da177e4 | 339 | |
8990571e PE |
340 | struct pid *find_vpid(int nr) |
341 | { | |
342 | return find_pid_ns(nr, current->nsproxy->pid_ns); | |
343 | } | |
344 | EXPORT_SYMBOL_GPL(find_vpid); | |
345 | ||
e713d0da SB |
346 | /* |
347 | * attach_pid() must be called with the tasklist_lock write-held. | |
348 | */ | |
24336eae | 349 | void attach_pid(struct task_struct *task, enum pid_type type, |
e713d0da | 350 | struct pid *pid) |
1da177e4 | 351 | { |
92476d7f | 352 | struct pid_link *link; |
92476d7f | 353 | |
92476d7f | 354 | link = &task->pids[type]; |
e713d0da | 355 | link->pid = pid; |
92476d7f | 356 | hlist_add_head_rcu(&link->node, &pid->tasks[type]); |
1da177e4 LT |
357 | } |
358 | ||
24336eae ON |
359 | static void __change_pid(struct task_struct *task, enum pid_type type, |
360 | struct pid *new) | |
1da177e4 | 361 | { |
92476d7f EB |
362 | struct pid_link *link; |
363 | struct pid *pid; | |
364 | int tmp; | |
1da177e4 | 365 | |
92476d7f EB |
366 | link = &task->pids[type]; |
367 | pid = link->pid; | |
1da177e4 | 368 | |
92476d7f | 369 | hlist_del_rcu(&link->node); |
24336eae | 370 | link->pid = new; |
1da177e4 | 371 | |
92476d7f EB |
372 | for (tmp = PIDTYPE_MAX; --tmp >= 0; ) |
373 | if (!hlist_empty(&pid->tasks[tmp])) | |
374 | return; | |
1da177e4 | 375 | |
92476d7f | 376 | free_pid(pid); |
1da177e4 LT |
377 | } |
378 | ||
24336eae ON |
379 | void detach_pid(struct task_struct *task, enum pid_type type) |
380 | { | |
381 | __change_pid(task, type, NULL); | |
382 | } | |
383 | ||
384 | void change_pid(struct task_struct *task, enum pid_type type, | |
385 | struct pid *pid) | |
386 | { | |
387 | __change_pid(task, type, pid); | |
388 | attach_pid(task, type, pid); | |
389 | } | |
390 | ||
c18258c6 | 391 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ |
7ad5b3a5 | 392 | void transfer_pid(struct task_struct *old, struct task_struct *new, |
c18258c6 EB |
393 | enum pid_type type) |
394 | { | |
395 | new->pids[type].pid = old->pids[type].pid; | |
396 | hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | |
c18258c6 EB |
397 | } |
398 | ||
7ad5b3a5 | 399 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) |
1da177e4 | 400 | { |
92476d7f EB |
401 | struct task_struct *result = NULL; |
402 | if (pid) { | |
403 | struct hlist_node *first; | |
db1466b3 PM |
404 | first = rcu_dereference_check(pid->tasks[type].first, |
405 | rcu_read_lock_held() || | |
406 | lockdep_tasklist_lock_is_held()); | |
92476d7f EB |
407 | if (first) |
408 | result = hlist_entry(first, struct task_struct, pids[(type)].node); | |
409 | } | |
410 | return result; | |
411 | } | |
eccba068 | 412 | EXPORT_SYMBOL(pid_task); |
1da177e4 | 413 | |
92476d7f | 414 | /* |
9728e5d6 | 415 | * Must be called under rcu_read_lock(). |
92476d7f | 416 | */ |
17f98dcf | 417 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) |
92476d7f | 418 | { |
17f98dcf | 419 | return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); |
92476d7f | 420 | } |
1da177e4 | 421 | |
228ebcbe PE |
422 | struct task_struct *find_task_by_vpid(pid_t vnr) |
423 | { | |
17f98dcf | 424 | return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns); |
228ebcbe | 425 | } |
228ebcbe | 426 | |
1a657f78 ON |
427 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) |
428 | { | |
429 | struct pid *pid; | |
430 | rcu_read_lock(); | |
2ae448ef ON |
431 | if (type != PIDTYPE_PID) |
432 | task = task->group_leader; | |
1a657f78 ON |
433 | pid = get_pid(task->pids[type].pid); |
434 | rcu_read_unlock(); | |
435 | return pid; | |
436 | } | |
437 | ||
7ad5b3a5 | 438 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) |
92476d7f EB |
439 | { |
440 | struct task_struct *result; | |
441 | rcu_read_lock(); | |
442 | result = pid_task(pid, type); | |
443 | if (result) | |
444 | get_task_struct(result); | |
445 | rcu_read_unlock(); | |
446 | return result; | |
1da177e4 LT |
447 | } |
448 | ||
92476d7f | 449 | struct pid *find_get_pid(pid_t nr) |
1da177e4 LT |
450 | { |
451 | struct pid *pid; | |
452 | ||
92476d7f | 453 | rcu_read_lock(); |
198fe21b | 454 | pid = get_pid(find_vpid(nr)); |
92476d7f | 455 | rcu_read_unlock(); |
1da177e4 | 456 | |
92476d7f | 457 | return pid; |
1da177e4 | 458 | } |
339caf2a | 459 | EXPORT_SYMBOL_GPL(find_get_pid); |
1da177e4 | 460 | |
7af57294 PE |
461 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) |
462 | { | |
463 | struct upid *upid; | |
464 | pid_t nr = 0; | |
465 | ||
466 | if (pid && ns->level <= pid->level) { | |
467 | upid = &pid->numbers[ns->level]; | |
468 | if (upid->ns == ns) | |
469 | nr = upid->nr; | |
470 | } | |
471 | return nr; | |
472 | } | |
473 | ||
44c4e1b2 EB |
474 | pid_t pid_vnr(struct pid *pid) |
475 | { | |
476 | return pid_nr_ns(pid, current->nsproxy->pid_ns); | |
477 | } | |
478 | EXPORT_SYMBOL_GPL(pid_vnr); | |
479 | ||
52ee2dfd ON |
480 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, |
481 | struct pid_namespace *ns) | |
2f2a3a46 | 482 | { |
52ee2dfd ON |
483 | pid_t nr = 0; |
484 | ||
485 | rcu_read_lock(); | |
486 | if (!ns) | |
487 | ns = current->nsproxy->pid_ns; | |
488 | if (likely(pid_alive(task))) { | |
489 | if (type != PIDTYPE_PID) | |
490 | task = task->group_leader; | |
491 | nr = pid_nr_ns(task->pids[type].pid, ns); | |
492 | } | |
493 | rcu_read_unlock(); | |
494 | ||
495 | return nr; | |
2f2a3a46 | 496 | } |
52ee2dfd | 497 | EXPORT_SYMBOL(__task_pid_nr_ns); |
2f2a3a46 PE |
498 | |
499 | pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) | |
500 | { | |
501 | return pid_nr_ns(task_tgid(tsk), ns); | |
502 | } | |
503 | EXPORT_SYMBOL(task_tgid_nr_ns); | |
504 | ||
61bce0f1 EB |
505 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) |
506 | { | |
507 | return ns_of_pid(task_pid(tsk)); | |
508 | } | |
509 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | |
510 | ||
0804ef4b | 511 | /* |
025dfdaf | 512 | * Used by proc to find the first pid that is greater than or equal to nr. |
0804ef4b | 513 | * |
e49859e7 | 514 | * If there is a pid at nr this function is exactly the same as find_pid_ns. |
0804ef4b | 515 | */ |
198fe21b | 516 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) |
0804ef4b EB |
517 | { |
518 | struct pid *pid; | |
519 | ||
520 | do { | |
198fe21b | 521 | pid = find_pid_ns(nr, ns); |
0804ef4b EB |
522 | if (pid) |
523 | break; | |
198fe21b | 524 | nr = next_pidmap(ns, nr); |
0804ef4b EB |
525 | } while (nr > 0); |
526 | ||
527 | return pid; | |
528 | } | |
529 | ||
1da177e4 LT |
530 | /* |
531 | * The pid hash table is scaled according to the amount of memory in the | |
532 | * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or | |
533 | * more. | |
534 | */ | |
535 | void __init pidhash_init(void) | |
536 | { | |
92476d7f | 537 | int i, pidhash_size; |
1da177e4 | 538 | |
2c85f51d JB |
539 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
540 | HASH_EARLY | HASH_SMALL, | |
541 | &pidhash_shift, NULL, 4096); | |
1da177e4 LT |
542 | pidhash_size = 1 << pidhash_shift; |
543 | ||
92476d7f EB |
544 | for (i = 0; i < pidhash_size; i++) |
545 | INIT_HLIST_HEAD(&pid_hash[i]); | |
1da177e4 LT |
546 | } |
547 | ||
548 | void __init pidmap_init(void) | |
549 | { | |
72680a19 HB |
550 | /* bump default and minimum pid_max based on number of cpus */ |
551 | pid_max = min(pid_max_max, max_t(int, pid_max, | |
552 | PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | |
553 | pid_max_min = max_t(int, pid_max_min, | |
554 | PIDS_PER_CPU_MIN * num_possible_cpus()); | |
555 | pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | |
556 | ||
61a58c6c | 557 | init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
73b9ebfe | 558 | /* Reserve PID 0. We never call free_pidmap(0) */ |
61a58c6c SB |
559 | set_bit(0, init_pid_ns.pidmap[0].page); |
560 | atomic_dec(&init_pid_ns.pidmap[0].nr_free); | |
92476d7f | 561 | |
74bd59bb PE |
562 | init_pid_ns.pid_cachep = KMEM_CACHE(pid, |
563 | SLAB_HWCACHE_ALIGN | SLAB_PANIC); | |
1da177e4 | 564 | } |