]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
f30c2269 | 2 | * linux/kernel/posix-timers.c |
1da177e4 LT |
3 | * |
4 | * | |
5 | * 2002-10-15 Posix Clocks & timers | |
6 | * by George Anzinger [email protected] | |
7 | * | |
8 | * Copyright (C) 2002 2003 by MontaVista Software. | |
9 | * | |
10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | |
11 | * Copyright (C) 2004 Boris Hu | |
12 | * | |
13 | * This program is free software; you can redistribute it and/or modify | |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or (at | |
16 | * your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, but | |
19 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * General Public License for more details. | |
22 | ||
23 | * You should have received a copy of the GNU General Public License | |
24 | * along with this program; if not, write to the Free Software | |
25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
26 | * | |
27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | |
28 | */ | |
29 | ||
30 | /* These are all the functions necessary to implement | |
31 | * POSIX clocks & timers | |
32 | */ | |
33 | #include <linux/mm.h> | |
1da177e4 LT |
34 | #include <linux/interrupt.h> |
35 | #include <linux/slab.h> | |
36 | #include <linux/time.h> | |
97d1f15b | 37 | #include <linux/mutex.h> |
1da177e4 LT |
38 | |
39 | #include <asm/uaccess.h> | |
1da177e4 LT |
40 | #include <linux/list.h> |
41 | #include <linux/init.h> | |
42 | #include <linux/compiler.h> | |
43 | #include <linux/idr.h> | |
0606f422 | 44 | #include <linux/posix-clock.h> |
1da177e4 LT |
45 | #include <linux/posix-timers.h> |
46 | #include <linux/syscalls.h> | |
47 | #include <linux/wait.h> | |
48 | #include <linux/workqueue.h> | |
9984de1a | 49 | #include <linux/export.h> |
1da177e4 | 50 | |
1da177e4 LT |
51 | /* |
52 | * Management arrays for POSIX timers. Timers are kept in slab memory | |
53 | * Timer ids are allocated by an external routine that keeps track of the | |
54 | * id and the timer. The external interface is: | |
55 | * | |
56 | * void *idr_find(struct idr *idp, int id); to find timer_id <id> | |
57 | * int idr_get_new(struct idr *idp, void *ptr); to get a new id and | |
58 | * related it to <ptr> | |
59 | * void idr_remove(struct idr *idp, int id); to release <id> | |
60 | * void idr_init(struct idr *idp); to initialize <idp> | |
61 | * which we supply. | |
62 | * The idr_get_new *may* call slab for more memory so it must not be | |
63 | * called under a spin lock. Likewise idr_remore may release memory | |
64 | * (but it may be ok to do this under a lock...). | |
65 | * idr_find is just a memory look up and is quite fast. A -1 return | |
66 | * indicates that the requested id does not exist. | |
67 | */ | |
68 | ||
69 | /* | |
70 | * Lets keep our timers in a slab cache :-) | |
71 | */ | |
e18b890b | 72 | static struct kmem_cache *posix_timers_cache; |
1da177e4 LT |
73 | static struct idr posix_timers_id; |
74 | static DEFINE_SPINLOCK(idr_lock); | |
75 | ||
1da177e4 LT |
76 | /* |
77 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | |
78 | * SIGEV values. Here we put out an error if this assumption fails. | |
79 | */ | |
80 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | |
81 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | |
82 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | |
83 | #endif | |
84 | ||
65da528d TG |
85 | /* |
86 | * parisc wants ENOTSUP instead of EOPNOTSUPP | |
87 | */ | |
88 | #ifndef ENOTSUP | |
89 | # define ENANOSLEEP_NOTSUP EOPNOTSUPP | |
90 | #else | |
91 | # define ENANOSLEEP_NOTSUP ENOTSUP | |
92 | #endif | |
1da177e4 LT |
93 | |
94 | /* | |
95 | * The timer ID is turned into a timer address by idr_find(). | |
96 | * Verifying a valid ID consists of: | |
97 | * | |
98 | * a) checking that idr_find() returns other than -1. | |
99 | * b) checking that the timer id matches the one in the timer itself. | |
100 | * c) that the timer owner is in the callers thread group. | |
101 | */ | |
102 | ||
103 | /* | |
104 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | |
105 | * to implement others. This structure defines the various | |
0061748d | 106 | * clocks. |
1da177e4 LT |
107 | * |
108 | * RESOLUTION: Clock resolution is used to round up timer and interval | |
109 | * times, NOT to report clock times, which are reported with as | |
110 | * much resolution as the system can muster. In some cases this | |
111 | * resolution may depend on the underlying clock hardware and | |
112 | * may not be quantifiable until run time, and only then is the | |
113 | * necessary code is written. The standard says we should say | |
114 | * something about this issue in the documentation... | |
115 | * | |
0061748d RC |
116 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
117 | * handle various clock functions. | |
1da177e4 | 118 | * |
0061748d RC |
119 | * The standard POSIX timer management code assumes the |
120 | * following: 1.) The k_itimer struct (sched.h) is used for | |
121 | * the timer. 2.) The list, it_lock, it_clock, it_id and | |
122 | * it_pid fields are not modified by timer code. | |
1da177e4 LT |
123 | * |
124 | * Permissions: It is assumed that the clock_settime() function defined | |
125 | * for each clock will take care of permission checks. Some | |
126 | * clocks may be set able by any user (i.e. local process | |
127 | * clocks) others not. Currently the only set able clock we | |
128 | * have is CLOCK_REALTIME and its high res counter part, both of | |
129 | * which we beg off on and pass to do_sys_settimeofday(). | |
130 | */ | |
131 | ||
132 | static struct k_clock posix_clocks[MAX_CLOCKS]; | |
becf8b5d | 133 | |
1da177e4 | 134 | /* |
becf8b5d | 135 | * These ones are defined below. |
1da177e4 | 136 | */ |
becf8b5d TG |
137 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
138 | struct timespec __user *rmtp); | |
838394fb | 139 | static int common_timer_create(struct k_itimer *new_timer); |
becf8b5d TG |
140 | static void common_timer_get(struct k_itimer *, struct itimerspec *); |
141 | static int common_timer_set(struct k_itimer *, int, | |
142 | struct itimerspec *, struct itimerspec *); | |
143 | static int common_timer_del(struct k_itimer *timer); | |
1da177e4 | 144 | |
c9cb2e3d | 145 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); |
1da177e4 | 146 | |
20f33a03 NK |
147 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
148 | ||
149 | #define lock_timer(tid, flags) \ | |
150 | ({ struct k_itimer *__timr; \ | |
151 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ | |
152 | __timr; \ | |
153 | }) | |
1da177e4 LT |
154 | |
155 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | |
156 | { | |
157 | spin_unlock_irqrestore(&timr->it_lock, flags); | |
158 | } | |
159 | ||
42285777 TG |
160 | /* Get clock_realtime */ |
161 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) | |
162 | { | |
163 | ktime_get_real_ts(tp); | |
164 | return 0; | |
165 | } | |
166 | ||
26f9a479 TG |
167 | /* Set clock_realtime */ |
168 | static int posix_clock_realtime_set(const clockid_t which_clock, | |
169 | const struct timespec *tp) | |
170 | { | |
171 | return do_sys_settimeofday(tp, NULL); | |
172 | } | |
173 | ||
f1f1d5eb RC |
174 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
175 | struct timex *t) | |
176 | { | |
177 | return do_adjtimex(t); | |
178 | } | |
179 | ||
becf8b5d TG |
180 | /* |
181 | * Get monotonic time for posix timers | |
182 | */ | |
183 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | |
184 | { | |
185 | ktime_get_ts(tp); | |
186 | return 0; | |
187 | } | |
1da177e4 | 188 | |
2d42244a | 189 | /* |
7fdd7f89 | 190 | * Get monotonic-raw time for posix timers |
2d42244a JS |
191 | */ |
192 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |
193 | { | |
194 | getrawmonotonic(tp); | |
195 | return 0; | |
196 | } | |
197 | ||
da15cfda JS |
198 | |
199 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | |
200 | { | |
201 | *tp = current_kernel_time(); | |
202 | return 0; | |
203 | } | |
204 | ||
205 | static int posix_get_monotonic_coarse(clockid_t which_clock, | |
206 | struct timespec *tp) | |
207 | { | |
208 | *tp = get_monotonic_coarse(); | |
209 | return 0; | |
210 | } | |
211 | ||
6622e670 | 212 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) |
da15cfda JS |
213 | { |
214 | *tp = ktime_to_timespec(KTIME_LOW_RES); | |
215 | return 0; | |
216 | } | |
7fdd7f89 JS |
217 | |
218 | static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) | |
219 | { | |
220 | get_monotonic_boottime(tp); | |
221 | return 0; | |
222 | } | |
223 | ||
224 | ||
1da177e4 LT |
225 | /* |
226 | * Initialize everything, well, just everything in Posix clocks/timers ;) | |
227 | */ | |
228 | static __init int init_posix_timers(void) | |
229 | { | |
becf8b5d | 230 | struct k_clock clock_realtime = { |
2fd1f040 | 231 | .clock_getres = hrtimer_get_res, |
42285777 | 232 | .clock_get = posix_clock_realtime_get, |
26f9a479 | 233 | .clock_set = posix_clock_realtime_set, |
f1f1d5eb | 234 | .clock_adj = posix_clock_realtime_adj, |
a5cd2880 | 235 | .nsleep = common_nsleep, |
59bd5bc2 | 236 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 237 | .timer_create = common_timer_create, |
27722df1 | 238 | .timer_set = common_timer_set, |
a7319fa2 | 239 | .timer_get = common_timer_get, |
6761c670 | 240 | .timer_del = common_timer_del, |
1da177e4 | 241 | }; |
becf8b5d | 242 | struct k_clock clock_monotonic = { |
2fd1f040 TG |
243 | .clock_getres = hrtimer_get_res, |
244 | .clock_get = posix_ktime_get_ts, | |
a5cd2880 | 245 | .nsleep = common_nsleep, |
59bd5bc2 | 246 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 247 | .timer_create = common_timer_create, |
27722df1 | 248 | .timer_set = common_timer_set, |
a7319fa2 | 249 | .timer_get = common_timer_get, |
6761c670 | 250 | .timer_del = common_timer_del, |
1da177e4 | 251 | }; |
2d42244a | 252 | struct k_clock clock_monotonic_raw = { |
2fd1f040 TG |
253 | .clock_getres = hrtimer_get_res, |
254 | .clock_get = posix_get_monotonic_raw, | |
2d42244a | 255 | }; |
da15cfda | 256 | struct k_clock clock_realtime_coarse = { |
2fd1f040 TG |
257 | .clock_getres = posix_get_coarse_res, |
258 | .clock_get = posix_get_realtime_coarse, | |
da15cfda JS |
259 | }; |
260 | struct k_clock clock_monotonic_coarse = { | |
2fd1f040 TG |
261 | .clock_getres = posix_get_coarse_res, |
262 | .clock_get = posix_get_monotonic_coarse, | |
da15cfda | 263 | }; |
7fdd7f89 JS |
264 | struct k_clock clock_boottime = { |
265 | .clock_getres = hrtimer_get_res, | |
266 | .clock_get = posix_get_boottime, | |
267 | .nsleep = common_nsleep, | |
268 | .nsleep_restart = hrtimer_nanosleep_restart, | |
269 | .timer_create = common_timer_create, | |
270 | .timer_set = common_timer_set, | |
271 | .timer_get = common_timer_get, | |
272 | .timer_del = common_timer_del, | |
273 | }; | |
1da177e4 | 274 | |
52708737 TG |
275 | posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); |
276 | posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); | |
277 | posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | |
278 | posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | |
279 | posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | |
7fdd7f89 | 280 | posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); |
1da177e4 LT |
281 | |
282 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | |
040b5c6f AD |
283 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
284 | NULL); | |
1da177e4 LT |
285 | idr_init(&posix_timers_id); |
286 | return 0; | |
287 | } | |
288 | ||
289 | __initcall(init_posix_timers); | |
290 | ||
1da177e4 LT |
291 | static void schedule_next_timer(struct k_itimer *timr) |
292 | { | |
44f21475 RZ |
293 | struct hrtimer *timer = &timr->it.real.timer; |
294 | ||
becf8b5d | 295 | if (timr->it.real.interval.tv64 == 0) |
1da177e4 LT |
296 | return; |
297 | ||
4d672e7a DL |
298 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, |
299 | timer->base->get_time(), | |
300 | timr->it.real.interval); | |
44f21475 | 301 | |
1da177e4 LT |
302 | timr->it_overrun_last = timr->it_overrun; |
303 | timr->it_overrun = -1; | |
304 | ++timr->it_requeue_pending; | |
44f21475 | 305 | hrtimer_restart(timer); |
1da177e4 LT |
306 | } |
307 | ||
308 | /* | |
309 | * This function is exported for use by the signal deliver code. It is | |
310 | * called just prior to the info block being released and passes that | |
311 | * block to us. It's function is to update the overrun entry AND to | |
312 | * restart the timer. It should only be called if the timer is to be | |
313 | * restarted (i.e. we have flagged this in the sys_private entry of the | |
314 | * info block). | |
315 | * | |
25985edc | 316 | * To protect against the timer going away while the interrupt is queued, |
1da177e4 LT |
317 | * we require that the it_requeue_pending flag be set. |
318 | */ | |
319 | void do_schedule_next_timer(struct siginfo *info) | |
320 | { | |
321 | struct k_itimer *timr; | |
322 | unsigned long flags; | |
323 | ||
324 | timr = lock_timer(info->si_tid, &flags); | |
325 | ||
becf8b5d TG |
326 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
327 | if (timr->it_clock < 0) | |
328 | posix_cpu_timer_schedule(timr); | |
329 | else | |
330 | schedule_next_timer(timr); | |
1da177e4 | 331 | |
54da1174 | 332 | info->si_overrun += timr->it_overrun_last; |
becf8b5d TG |
333 | } |
334 | ||
b6557fbc TG |
335 | if (timr) |
336 | unlock_timer(timr, flags); | |
1da177e4 LT |
337 | } |
338 | ||
ba661292 | 339 | int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4 | 340 | { |
27af4245 ON |
341 | struct task_struct *task; |
342 | int shared, ret = -1; | |
ba661292 ON |
343 | /* |
344 | * FIXME: if ->sigq is queued we can race with | |
345 | * dequeue_signal()->do_schedule_next_timer(). | |
346 | * | |
347 | * If dequeue_signal() sees the "right" value of | |
348 | * si_sys_private it calls do_schedule_next_timer(). | |
349 | * We re-queue ->sigq and drop ->it_lock(). | |
350 | * do_schedule_next_timer() locks the timer | |
351 | * and re-schedules it while ->sigq is pending. | |
352 | * Not really bad, but not that we want. | |
353 | */ | |
1da177e4 | 354 | timr->sigq->info.si_sys_private = si_private; |
1da177e4 | 355 | |
27af4245 ON |
356 | rcu_read_lock(); |
357 | task = pid_task(timr->it_pid, PIDTYPE_PID); | |
358 | if (task) { | |
359 | shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); | |
360 | ret = send_sigqueue(timr->sigq, task, shared); | |
361 | } | |
362 | rcu_read_unlock(); | |
4aa73611 ON |
363 | /* If we failed to send the signal the timer stops. */ |
364 | return ret > 0; | |
1da177e4 LT |
365 | } |
366 | EXPORT_SYMBOL_GPL(posix_timer_event); | |
367 | ||
368 | /* | |
369 | * This function gets called when a POSIX.1b interval timer expires. It | |
370 | * is used as a callback from the kernel internal timer. The | |
371 | * run_timer_list code ALWAYS calls with interrupts on. | |
372 | ||
373 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | |
374 | */ | |
c9cb2e3d | 375 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4 | 376 | { |
05cfb614 | 377 | struct k_itimer *timr; |
1da177e4 | 378 | unsigned long flags; |
becf8b5d | 379 | int si_private = 0; |
c9cb2e3d | 380 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4 | 381 | |
05cfb614 | 382 | timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4 | 383 | spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4 | 384 | |
becf8b5d TG |
385 | if (timr->it.real.interval.tv64 != 0) |
386 | si_private = ++timr->it_requeue_pending; | |
1da177e4 | 387 | |
becf8b5d TG |
388 | if (posix_timer_event(timr, si_private)) { |
389 | /* | |
390 | * signal was not sent because of sig_ignor | |
391 | * we will not get a call back to restart it AND | |
392 | * it should be restarted. | |
393 | */ | |
394 | if (timr->it.real.interval.tv64 != 0) { | |
58229a18 TG |
395 | ktime_t now = hrtimer_cb_get_time(timer); |
396 | ||
397 | /* | |
398 | * FIXME: What we really want, is to stop this | |
399 | * timer completely and restart it in case the | |
400 | * SIG_IGN is removed. This is a non trivial | |
401 | * change which involves sighand locking | |
402 | * (sigh !), which we don't want to do late in | |
403 | * the release cycle. | |
404 | * | |
405 | * For now we just let timers with an interval | |
406 | * less than a jiffie expire every jiffie to | |
407 | * avoid softirq starvation in case of SIG_IGN | |
408 | * and a very small interval, which would put | |
409 | * the timer right back on the softirq pending | |
410 | * list. By moving now ahead of time we trick | |
411 | * hrtimer_forward() to expire the timer | |
412 | * later, while we still maintain the overrun | |
413 | * accuracy, but have some inconsistency in | |
414 | * the timer_gettime() case. This is at least | |
415 | * better than a starved softirq. A more | |
416 | * complex fix which solves also another related | |
417 | * inconsistency is already in the pipeline. | |
418 | */ | |
419 | #ifdef CONFIG_HIGH_RES_TIMERS | |
420 | { | |
421 | ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); | |
422 | ||
423 | if (timr->it.real.interval.tv64 < kj.tv64) | |
424 | now = ktime_add(now, kj); | |
425 | } | |
426 | #endif | |
4d672e7a | 427 | timr->it_overrun += (unsigned int) |
58229a18 | 428 | hrtimer_forward(timer, now, |
becf8b5d TG |
429 | timr->it.real.interval); |
430 | ret = HRTIMER_RESTART; | |
a0a0c28c | 431 | ++timr->it_requeue_pending; |
1da177e4 | 432 | } |
1da177e4 | 433 | } |
1da177e4 | 434 | |
becf8b5d TG |
435 | unlock_timer(timr, flags); |
436 | return ret; | |
437 | } | |
1da177e4 | 438 | |
27af4245 | 439 | static struct pid *good_sigevent(sigevent_t * event) |
1da177e4 LT |
440 | { |
441 | struct task_struct *rtn = current->group_leader; | |
442 | ||
443 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | |
8dc86af0 | 444 | (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || |
bac0abd6 | 445 | !same_thread_group(rtn, current) || |
1da177e4 LT |
446 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) |
447 | return NULL; | |
448 | ||
449 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | |
450 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | |
451 | return NULL; | |
452 | ||
27af4245 | 453 | return task_pid(rtn); |
1da177e4 LT |
454 | } |
455 | ||
52708737 TG |
456 | void posix_timers_register_clock(const clockid_t clock_id, |
457 | struct k_clock *new_clock) | |
1da177e4 LT |
458 | { |
459 | if ((unsigned) clock_id >= MAX_CLOCKS) { | |
4359ac0a TG |
460 | printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", |
461 | clock_id); | |
462 | return; | |
463 | } | |
464 | ||
465 | if (!new_clock->clock_get) { | |
466 | printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", | |
467 | clock_id); | |
468 | return; | |
469 | } | |
470 | if (!new_clock->clock_getres) { | |
471 | printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", | |
1da177e4 LT |
472 | clock_id); |
473 | return; | |
474 | } | |
475 | ||
476 | posix_clocks[clock_id] = *new_clock; | |
477 | } | |
52708737 | 478 | EXPORT_SYMBOL_GPL(posix_timers_register_clock); |
1da177e4 LT |
479 | |
480 | static struct k_itimer * alloc_posix_timer(void) | |
481 | { | |
482 | struct k_itimer *tmr; | |
c3762229 | 483 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4 LT |
484 | if (!tmr) |
485 | return tmr; | |
1da177e4 LT |
486 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
487 | kmem_cache_free(posix_timers_cache, tmr); | |
aa94fbd5 | 488 | return NULL; |
1da177e4 | 489 | } |
ba661292 | 490 | memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); |
1da177e4 LT |
491 | return tmr; |
492 | } | |
493 | ||
8af08871 ED |
494 | static void k_itimer_rcu_free(struct rcu_head *head) |
495 | { | |
496 | struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); | |
497 | ||
498 | kmem_cache_free(posix_timers_cache, tmr); | |
499 | } | |
500 | ||
1da177e4 LT |
501 | #define IT_ID_SET 1 |
502 | #define IT_ID_NOT_SET 0 | |
503 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |
504 | { | |
505 | if (it_id_set) { | |
506 | unsigned long flags; | |
507 | spin_lock_irqsave(&idr_lock, flags); | |
508 | idr_remove(&posix_timers_id, tmr->it_id); | |
509 | spin_unlock_irqrestore(&idr_lock, flags); | |
510 | } | |
89992102 | 511 | put_pid(tmr->it_pid); |
1da177e4 | 512 | sigqueue_free(tmr->sigq); |
8af08871 | 513 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
1da177e4 LT |
514 | } |
515 | ||
cc785ac2 TG |
516 | static struct k_clock *clockid_to_kclock(const clockid_t id) |
517 | { | |
518 | if (id < 0) | |
0606f422 RC |
519 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
520 | &clock_posix_dynamic : &clock_posix_cpu; | |
cc785ac2 TG |
521 | |
522 | if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) | |
523 | return NULL; | |
524 | return &posix_clocks[id]; | |
525 | } | |
526 | ||
838394fb TG |
527 | static int common_timer_create(struct k_itimer *new_timer) |
528 | { | |
529 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | |
530 | return 0; | |
531 | } | |
532 | ||
1da177e4 LT |
533 | /* Create a POSIX.1b interval timer. */ |
534 | ||
362e9c07 HC |
535 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
536 | struct sigevent __user *, timer_event_spec, | |
537 | timer_t __user *, created_timer_id) | |
1da177e4 | 538 | { |
838394fb | 539 | struct k_clock *kc = clockid_to_kclock(which_clock); |
2cd499e3 | 540 | struct k_itimer *new_timer; |
ef864c95 | 541 | int error, new_timer_id; |
1da177e4 LT |
542 | sigevent_t event; |
543 | int it_id_set = IT_ID_NOT_SET; | |
544 | ||
838394fb | 545 | if (!kc) |
1da177e4 | 546 | return -EINVAL; |
838394fb TG |
547 | if (!kc->timer_create) |
548 | return -EOPNOTSUPP; | |
1da177e4 LT |
549 | |
550 | new_timer = alloc_posix_timer(); | |
551 | if (unlikely(!new_timer)) | |
552 | return -EAGAIN; | |
553 | ||
554 | spin_lock_init(&new_timer->it_lock); | |
555 | retry: | |
556 | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | |
557 | error = -EAGAIN; | |
558 | goto out; | |
559 | } | |
560 | spin_lock_irq(&idr_lock); | |
5a51b713 | 561 | error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id); |
1da177e4 | 562 | spin_unlock_irq(&idr_lock); |
ef864c95 ON |
563 | if (error) { |
564 | if (error == -EAGAIN) | |
565 | goto retry; | |
1da177e4 | 566 | /* |
0b0a3e7b | 567 | * Weird looking, but we return EAGAIN if the IDR is |
1da177e4 LT |
568 | * full (proper POSIX return value for this) |
569 | */ | |
570 | error = -EAGAIN; | |
571 | goto out; | |
572 | } | |
573 | ||
574 | it_id_set = IT_ID_SET; | |
575 | new_timer->it_id = (timer_t) new_timer_id; | |
576 | new_timer->it_clock = which_clock; | |
577 | new_timer->it_overrun = -1; | |
1da177e4 | 578 | |
1da177e4 LT |
579 | if (timer_event_spec) { |
580 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | |
581 | error = -EFAULT; | |
582 | goto out; | |
583 | } | |
36b2f046 | 584 | rcu_read_lock(); |
89992102 | 585 | new_timer->it_pid = get_pid(good_sigevent(&event)); |
36b2f046 | 586 | rcu_read_unlock(); |
89992102 | 587 | if (!new_timer->it_pid) { |
1da177e4 LT |
588 | error = -EINVAL; |
589 | goto out; | |
590 | } | |
591 | } else { | |
5a9fa730 ON |
592 | event.sigev_notify = SIGEV_SIGNAL; |
593 | event.sigev_signo = SIGALRM; | |
594 | event.sigev_value.sival_int = new_timer->it_id; | |
89992102 | 595 | new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4 LT |
596 | } |
597 | ||
5a9fa730 ON |
598 | new_timer->it_sigev_notify = event.sigev_notify; |
599 | new_timer->sigq->info.si_signo = event.sigev_signo; | |
600 | new_timer->sigq->info.si_value = event.sigev_value; | |
717835d9 | 601 | new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa730 | 602 | new_timer->sigq->info.si_code = SI_TIMER; |
717835d9 | 603 | |
2b08de00 AV |
604 | if (copy_to_user(created_timer_id, |
605 | &new_timer_id, sizeof (new_timer_id))) { | |
606 | error = -EFAULT; | |
607 | goto out; | |
608 | } | |
609 | ||
838394fb | 610 | error = kc->timer_create(new_timer); |
45e0fffc AV |
611 | if (error) |
612 | goto out; | |
613 | ||
36b2f046 | 614 | spin_lock_irq(¤t->sighand->siglock); |
27af4245 | 615 | new_timer->it_signal = current->signal; |
36b2f046 ON |
616 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
617 | spin_unlock_irq(¤t->sighand->siglock); | |
ef864c95 ON |
618 | |
619 | return 0; | |
838394fb | 620 | /* |
1da177e4 LT |
621 | * In the case of the timer belonging to another task, after |
622 | * the task is unlocked, the timer is owned by the other task | |
623 | * and may cease to exist at any time. Don't use or modify | |
624 | * new_timer after the unlock call. | |
625 | */ | |
1da177e4 | 626 | out: |
ef864c95 | 627 | release_posix_timer(new_timer, it_id_set); |
1da177e4 LT |
628 | return error; |
629 | } | |
630 | ||
1da177e4 LT |
631 | /* |
632 | * Locking issues: We need to protect the result of the id look up until | |
633 | * we get the timer locked down so it is not deleted under us. The | |
634 | * removal is done under the idr spinlock so we use that here to bridge | |
635 | * the find to the timer lock. To avoid a dead lock, the timer id MUST | |
636 | * be release with out holding the timer lock. | |
637 | */ | |
20f33a03 | 638 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4 LT |
639 | { |
640 | struct k_itimer *timr; | |
8af08871 ED |
641 | |
642 | rcu_read_lock(); | |
31d92845 | 643 | timr = idr_find(&posix_timers_id, (int)timer_id); |
1da177e4 | 644 | if (timr) { |
8af08871 | 645 | spin_lock_irqsave(&timr->it_lock, *flags); |
89992102 | 646 | if (timr->it_signal == current->signal) { |
8af08871 | 647 | rcu_read_unlock(); |
31d92845 ON |
648 | return timr; |
649 | } | |
8af08871 | 650 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
31d92845 | 651 | } |
8af08871 | 652 | rcu_read_unlock(); |
1da177e4 | 653 | |
31d92845 | 654 | return NULL; |
1da177e4 LT |
655 | } |
656 | ||
657 | /* | |
658 | * Get the time remaining on a POSIX.1b interval timer. This function | |
659 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | |
660 | * mess with irq. | |
661 | * | |
662 | * We have a couple of messes to clean up here. First there is the case | |
663 | * of a timer that has a requeue pending. These timers should appear to | |
664 | * be in the timer list with an expiry as if we were to requeue them | |
665 | * now. | |
666 | * | |
667 | * The second issue is the SIGEV_NONE timer which may be active but is | |
668 | * not really ever put in the timer list (to save system resources). | |
669 | * This timer may be expired, and if so, we will do it here. Otherwise | |
670 | * it is the same as a requeue pending timer WRT to what we should | |
671 | * report. | |
672 | */ | |
673 | static void | |
674 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | |
675 | { | |
3b98a532 | 676 | ktime_t now, remaining, iv; |
becf8b5d | 677 | struct hrtimer *timer = &timr->it.real.timer; |
1da177e4 | 678 | |
becf8b5d | 679 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
becf8b5d | 680 | |
3b98a532 RZ |
681 | iv = timr->it.real.interval; |
682 | ||
becf8b5d | 683 | /* interval timer ? */ |
3b98a532 RZ |
684 | if (iv.tv64) |
685 | cur_setting->it_interval = ktime_to_timespec(iv); | |
686 | else if (!hrtimer_active(timer) && | |
687 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
becf8b5d | 688 | return; |
3b98a532 RZ |
689 | |
690 | now = timer->base->get_time(); | |
691 | ||
becf8b5d | 692 | /* |
3b98a532 RZ |
693 | * When a requeue is pending or this is a SIGEV_NONE |
694 | * timer move the expiry time forward by intervals, so | |
695 | * expiry is > now. | |
becf8b5d | 696 | */ |
3b98a532 RZ |
697 | if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || |
698 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | |
4d672e7a | 699 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); |
3b98a532 | 700 | |
cc584b21 | 701 | remaining = ktime_sub(hrtimer_get_expires(timer), now); |
becf8b5d | 702 | /* Return 0 only, when the timer is expired and not pending */ |
3b98a532 RZ |
703 | if (remaining.tv64 <= 0) { |
704 | /* | |
705 | * A single shot SIGEV_NONE timer must return 0, when | |
706 | * it is expired ! | |
707 | */ | |
708 | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
709 | cur_setting->it_value.tv_nsec = 1; | |
710 | } else | |
becf8b5d | 711 | cur_setting->it_value = ktime_to_timespec(remaining); |
1da177e4 LT |
712 | } |
713 | ||
714 | /* Get the time remaining on a POSIX.1b interval timer. */ | |
362e9c07 HC |
715 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
716 | struct itimerspec __user *, setting) | |
1da177e4 | 717 | { |
1da177e4 | 718 | struct itimerspec cur_setting; |
a7319fa2 TG |
719 | struct k_itimer *timr; |
720 | struct k_clock *kc; | |
1da177e4 | 721 | unsigned long flags; |
a7319fa2 | 722 | int ret = 0; |
1da177e4 LT |
723 | |
724 | timr = lock_timer(timer_id, &flags); | |
725 | if (!timr) | |
726 | return -EINVAL; | |
727 | ||
a7319fa2 TG |
728 | kc = clockid_to_kclock(timr->it_clock); |
729 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) | |
730 | ret = -EINVAL; | |
731 | else | |
732 | kc->timer_get(timr, &cur_setting); | |
1da177e4 LT |
733 | |
734 | unlock_timer(timr, flags); | |
735 | ||
a7319fa2 | 736 | if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) |
1da177e4 LT |
737 | return -EFAULT; |
738 | ||
a7319fa2 | 739 | return ret; |
1da177e4 | 740 | } |
becf8b5d | 741 | |
1da177e4 LT |
742 | /* |
743 | * Get the number of overruns of a POSIX.1b interval timer. This is to | |
744 | * be the overrun of the timer last delivered. At the same time we are | |
745 | * accumulating overruns on the next timer. The overrun is frozen when | |
746 | * the signal is delivered, either at the notify time (if the info block | |
747 | * is not queued) or at the actual delivery time (as we are informed by | |
748 | * the call back to do_schedule_next_timer(). So all we need to do is | |
749 | * to pick up the frozen overrun. | |
750 | */ | |
362e9c07 | 751 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4 LT |
752 | { |
753 | struct k_itimer *timr; | |
754 | int overrun; | |
5ba25331 | 755 | unsigned long flags; |
1da177e4 LT |
756 | |
757 | timr = lock_timer(timer_id, &flags); | |
758 | if (!timr) | |
759 | return -EINVAL; | |
760 | ||
761 | overrun = timr->it_overrun_last; | |
762 | unlock_timer(timr, flags); | |
763 | ||
764 | return overrun; | |
765 | } | |
1da177e4 LT |
766 | |
767 | /* Set a POSIX.1b interval timer. */ | |
768 | /* timr->it_lock is taken. */ | |
858119e1 | 769 | static int |
1da177e4 LT |
770 | common_timer_set(struct k_itimer *timr, int flags, |
771 | struct itimerspec *new_setting, struct itimerspec *old_setting) | |
772 | { | |
becf8b5d | 773 | struct hrtimer *timer = &timr->it.real.timer; |
7978672c | 774 | enum hrtimer_mode mode; |
1da177e4 LT |
775 | |
776 | if (old_setting) | |
777 | common_timer_get(timr, old_setting); | |
778 | ||
779 | /* disable the timer */ | |
becf8b5d | 780 | timr->it.real.interval.tv64 = 0; |
1da177e4 LT |
781 | /* |
782 | * careful here. If smp we could be in the "fire" routine which will | |
783 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | |
784 | */ | |
becf8b5d | 785 | if (hrtimer_try_to_cancel(timer) < 0) |
1da177e4 | 786 | return TIMER_RETRY; |
1da177e4 LT |
787 | |
788 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | |
789 | ~REQUEUE_PENDING; | |
790 | timr->it_overrun_last = 0; | |
1da177e4 | 791 | |
becf8b5d TG |
792 | /* switch off the timer when it_value is zero */ |
793 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | |
794 | return 0; | |
1da177e4 | 795 | |
c9cb2e3d | 796 | mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
7978672c | 797 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
7978672c | 798 | timr->it.real.timer.function = posix_timer_fn; |
becf8b5d | 799 | |
cc584b21 | 800 | hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); |
becf8b5d TG |
801 | |
802 | /* Convert interval */ | |
803 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); | |
804 | ||
805 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | |
952bbc87 TG |
806 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { |
807 | /* Setup correct expiry time for relative timers */ | |
5a7780e7 | 808 | if (mode == HRTIMER_MODE_REL) { |
cc584b21 | 809 | hrtimer_add_expires(timer, timer->base->get_time()); |
5a7780e7 | 810 | } |
becf8b5d | 811 | return 0; |
952bbc87 | 812 | } |
becf8b5d | 813 | |
cc584b21 | 814 | hrtimer_start_expires(timer, mode); |
1da177e4 LT |
815 | return 0; |
816 | } | |
817 | ||
818 | /* Set a POSIX.1b interval timer */ | |
362e9c07 HC |
819 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
820 | const struct itimerspec __user *, new_setting, | |
821 | struct itimerspec __user *, old_setting) | |
1da177e4 LT |
822 | { |
823 | struct k_itimer *timr; | |
824 | struct itimerspec new_spec, old_spec; | |
825 | int error = 0; | |
5ba25331 | 826 | unsigned long flag; |
1da177e4 | 827 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; |
27722df1 | 828 | struct k_clock *kc; |
1da177e4 LT |
829 | |
830 | if (!new_setting) | |
831 | return -EINVAL; | |
832 | ||
833 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | |
834 | return -EFAULT; | |
835 | ||
becf8b5d TG |
836 | if (!timespec_valid(&new_spec.it_interval) || |
837 | !timespec_valid(&new_spec.it_value)) | |
1da177e4 LT |
838 | return -EINVAL; |
839 | retry: | |
840 | timr = lock_timer(timer_id, &flag); | |
841 | if (!timr) | |
842 | return -EINVAL; | |
843 | ||
27722df1 TG |
844 | kc = clockid_to_kclock(timr->it_clock); |
845 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) | |
846 | error = -EINVAL; | |
847 | else | |
848 | error = kc->timer_set(timr, flags, &new_spec, rtn); | |
1da177e4 LT |
849 | |
850 | unlock_timer(timr, flag); | |
851 | if (error == TIMER_RETRY) { | |
852 | rtn = NULL; // We already got the old time... | |
853 | goto retry; | |
854 | } | |
855 | ||
becf8b5d TG |
856 | if (old_setting && !error && |
857 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | |
1da177e4 LT |
858 | error = -EFAULT; |
859 | ||
860 | return error; | |
861 | } | |
862 | ||
6761c670 | 863 | static int common_timer_del(struct k_itimer *timer) |
1da177e4 | 864 | { |
becf8b5d | 865 | timer->it.real.interval.tv64 = 0; |
f972be33 | 866 | |
becf8b5d | 867 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1da177e4 | 868 | return TIMER_RETRY; |
1da177e4 LT |
869 | return 0; |
870 | } | |
871 | ||
872 | static inline int timer_delete_hook(struct k_itimer *timer) | |
873 | { | |
6761c670 TG |
874 | struct k_clock *kc = clockid_to_kclock(timer->it_clock); |
875 | ||
876 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) | |
877 | return -EINVAL; | |
878 | return kc->timer_del(timer); | |
1da177e4 LT |
879 | } |
880 | ||
881 | /* Delete a POSIX.1b interval timer. */ | |
362e9c07 | 882 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4 LT |
883 | { |
884 | struct k_itimer *timer; | |
5ba25331 | 885 | unsigned long flags; |
1da177e4 | 886 | |
1da177e4 | 887 | retry_delete: |
1da177e4 LT |
888 | timer = lock_timer(timer_id, &flags); |
889 | if (!timer) | |
890 | return -EINVAL; | |
891 | ||
becf8b5d | 892 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
893 | unlock_timer(timer, flags); |
894 | goto retry_delete; | |
895 | } | |
becf8b5d | 896 | |
1da177e4 LT |
897 | spin_lock(¤t->sighand->siglock); |
898 | list_del(&timer->list); | |
899 | spin_unlock(¤t->sighand->siglock); | |
900 | /* | |
901 | * This keeps any tasks waiting on the spin lock from thinking | |
902 | * they got something (see the lock code above). | |
903 | */ | |
89992102 | 904 | timer->it_signal = NULL; |
4b7a1304 | 905 | |
1da177e4 LT |
906 | unlock_timer(timer, flags); |
907 | release_posix_timer(timer, IT_ID_SET); | |
908 | return 0; | |
909 | } | |
becf8b5d | 910 | |
1da177e4 LT |
911 | /* |
912 | * return timer owned by the process, used by exit_itimers | |
913 | */ | |
858119e1 | 914 | static void itimer_delete(struct k_itimer *timer) |
1da177e4 LT |
915 | { |
916 | unsigned long flags; | |
917 | ||
1da177e4 | 918 | retry_delete: |
1da177e4 LT |
919 | spin_lock_irqsave(&timer->it_lock, flags); |
920 | ||
becf8b5d | 921 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
922 | unlock_timer(timer, flags); |
923 | goto retry_delete; | |
924 | } | |
1da177e4 LT |
925 | list_del(&timer->list); |
926 | /* | |
927 | * This keeps any tasks waiting on the spin lock from thinking | |
928 | * they got something (see the lock code above). | |
929 | */ | |
89992102 | 930 | timer->it_signal = NULL; |
4b7a1304 | 931 | |
1da177e4 LT |
932 | unlock_timer(timer, flags); |
933 | release_posix_timer(timer, IT_ID_SET); | |
934 | } | |
935 | ||
936 | /* | |
25f407f0 | 937 | * This is called by do_exit or de_thread, only when there are no more |
1da177e4 LT |
938 | * references to the shared signal_struct. |
939 | */ | |
940 | void exit_itimers(struct signal_struct *sig) | |
941 | { | |
942 | struct k_itimer *tmr; | |
943 | ||
944 | while (!list_empty(&sig->posix_timers)) { | |
945 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | |
946 | itimer_delete(tmr); | |
947 | } | |
948 | } | |
949 | ||
362e9c07 HC |
950 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
951 | const struct timespec __user *, tp) | |
1da177e4 | 952 | { |
26f9a479 | 953 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
954 | struct timespec new_tp; |
955 | ||
26f9a479 | 956 | if (!kc || !kc->clock_set) |
1da177e4 | 957 | return -EINVAL; |
26f9a479 | 958 | |
1da177e4 LT |
959 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) |
960 | return -EFAULT; | |
961 | ||
26f9a479 | 962 | return kc->clock_set(which_clock, &new_tp); |
1da177e4 LT |
963 | } |
964 | ||
362e9c07 HC |
965 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
966 | struct timespec __user *,tp) | |
1da177e4 | 967 | { |
42285777 | 968 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
969 | struct timespec kernel_tp; |
970 | int error; | |
971 | ||
42285777 | 972 | if (!kc) |
1da177e4 | 973 | return -EINVAL; |
42285777 TG |
974 | |
975 | error = kc->clock_get(which_clock, &kernel_tp); | |
976 | ||
1da177e4 LT |
977 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) |
978 | error = -EFAULT; | |
979 | ||
980 | return error; | |
1da177e4 LT |
981 | } |
982 | ||
f1f1d5eb RC |
983 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
984 | struct timex __user *, utx) | |
985 | { | |
986 | struct k_clock *kc = clockid_to_kclock(which_clock); | |
987 | struct timex ktx; | |
988 | int err; | |
989 | ||
990 | if (!kc) | |
991 | return -EINVAL; | |
992 | if (!kc->clock_adj) | |
993 | return -EOPNOTSUPP; | |
994 | ||
995 | if (copy_from_user(&ktx, utx, sizeof(ktx))) | |
996 | return -EFAULT; | |
997 | ||
998 | err = kc->clock_adj(which_clock, &ktx); | |
999 | ||
1000 | if (!err && copy_to_user(utx, &ktx, sizeof(ktx))) | |
1001 | return -EFAULT; | |
1002 | ||
1003 | return err; | |
1004 | } | |
1005 | ||
362e9c07 HC |
1006 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
1007 | struct timespec __user *, tp) | |
1da177e4 | 1008 | { |
e5e542ee | 1009 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1010 | struct timespec rtn_tp; |
1011 | int error; | |
1012 | ||
e5e542ee | 1013 | if (!kc) |
1da177e4 LT |
1014 | return -EINVAL; |
1015 | ||
e5e542ee | 1016 | error = kc->clock_getres(which_clock, &rtn_tp); |
1da177e4 | 1017 | |
e5e542ee | 1018 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) |
1da177e4 | 1019 | error = -EFAULT; |
1da177e4 LT |
1020 | |
1021 | return error; | |
1022 | } | |
1023 | ||
97735f25 TG |
1024 | /* |
1025 | * nanosleep for monotonic and realtime clocks | |
1026 | */ | |
1027 | static int common_nsleep(const clockid_t which_clock, int flags, | |
1028 | struct timespec *tsave, struct timespec __user *rmtp) | |
1029 | { | |
080344b9 ON |
1030 | return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? |
1031 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | |
1032 | which_clock); | |
97735f25 | 1033 | } |
1da177e4 | 1034 | |
362e9c07 HC |
1035 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
1036 | const struct timespec __user *, rqtp, | |
1037 | struct timespec __user *, rmtp) | |
1da177e4 | 1038 | { |
a5cd2880 | 1039 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 | 1040 | struct timespec t; |
1da177e4 | 1041 | |
a5cd2880 | 1042 | if (!kc) |
1da177e4 | 1043 | return -EINVAL; |
a5cd2880 TG |
1044 | if (!kc->nsleep) |
1045 | return -ENANOSLEEP_NOTSUP; | |
1da177e4 LT |
1046 | |
1047 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | |
1048 | return -EFAULT; | |
1049 | ||
5f82b2b7 | 1050 | if (!timespec_valid(&t)) |
1da177e4 LT |
1051 | return -EINVAL; |
1052 | ||
a5cd2880 | 1053 | return kc->nsleep(which_clock, flags, &t, rmtp); |
1da177e4 | 1054 | } |
1711ef38 | 1055 | |
1711ef38 TA |
1056 | /* |
1057 | * This will restart clock_nanosleep. This is required only by | |
1058 | * compat_clock_nanosleep_restart for now. | |
1059 | */ | |
59bd5bc2 | 1060 | long clock_nanosleep_restart(struct restart_block *restart_block) |
1711ef38 | 1061 | { |
ab8177bc | 1062 | clockid_t which_clock = restart_block->nanosleep.clockid; |
59bd5bc2 TG |
1063 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1064 | ||
1065 | if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) | |
1066 | return -EINVAL; | |
1711ef38 | 1067 | |
59bd5bc2 | 1068 | return kc->nsleep_restart(restart_block); |
1711ef38 | 1069 | } |