]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of | |
3 | * the "Intel 460GTX Chipset Software Developer's Manual": | |
4 | * http://developer.intel.com/design/itanium/downloads/24870401s.htm | |
5 | */ | |
6 | /* | |
7 | * 460GX support by Chris Ahna <[email protected]> | |
8 | * Clean up & simplification by David Mosberger-Tang <[email protected]> | |
9 | */ | |
10 | #include <linux/module.h> | |
11 | #include <linux/pci.h> | |
12 | #include <linux/init.h> | |
4e57b681 TS |
13 | #include <linux/string.h> |
14 | #include <linux/slab.h> | |
1da177e4 | 15 | #include <linux/agp_backend.h> |
e57aa839 | 16 | #include <linux/log2.h> |
1da177e4 LT |
17 | |
18 | #include "agp.h" | |
19 | ||
20 | #define INTEL_I460_BAPBASE 0x98 | |
21 | #define INTEL_I460_GXBCTL 0xa0 | |
22 | #define INTEL_I460_AGPSIZ 0xa2 | |
23 | #define INTEL_I460_ATTBASE 0xfe200000 | |
24 | #define INTEL_I460_GATT_VALID (1UL << 24) | |
25 | #define INTEL_I460_GATT_COHERENT (1UL << 25) | |
26 | ||
27 | /* | |
28 | * The i460 can operate with large (4MB) pages, but there is no sane way to support this | |
29 | * within the current kernel/DRM environment, so we disable the relevant code for now. | |
30 | * See also comments in ia64_alloc_page()... | |
31 | */ | |
32 | #define I460_LARGE_IO_PAGES 0 | |
33 | ||
34 | #if I460_LARGE_IO_PAGES | |
35 | # define I460_IO_PAGE_SHIFT i460.io_page_shift | |
36 | #else | |
37 | # define I460_IO_PAGE_SHIFT 12 | |
38 | #endif | |
39 | ||
40 | #define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT) | |
41 | #define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT)) | |
42 | #define I460_SRAM_IO_DISABLE (1 << 4) | |
43 | #define I460_BAPBASE_ENABLE (1 << 3) | |
44 | #define I460_AGPSIZ_MASK 0x7 | |
45 | #define I460_4M_PS (1 << 1) | |
46 | ||
47 | /* Control bits for Out-Of-GART coherency and Burst Write Combining */ | |
48 | #define I460_GXBCTL_OOG (1UL << 0) | |
49 | #define I460_GXBCTL_BWC (1UL << 2) | |
50 | ||
51 | /* | |
52 | * gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the | |
53 | * gatt_table and gatt_table_real pointers a "void *"... | |
54 | */ | |
55 | #define RD_GATT(index) readl((u32 *) i460.gatt + (index)) | |
56 | #define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index)) | |
57 | /* | |
58 | * The 460 spec says we have to read the last location written to make sure that all | |
59 | * writes have taken effect | |
60 | */ | |
61 | #define WR_FLUSH_GATT(index) RD_GATT(index) | |
62 | ||
1da177e4 LT |
63 | static struct { |
64 | void *gatt; /* ioremap'd GATT area */ | |
65 | ||
66 | /* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */ | |
67 | u8 io_page_shift; | |
68 | ||
69 | /* BIOS configures chipset to one of 2 possible apbase values: */ | |
70 | u8 dynamic_apbase; | |
71 | ||
72 | /* structure for tracking partial use of 4MB GART pages: */ | |
73 | struct lp_desc { | |
74 | unsigned long *alloced_map; /* bitmap of kernel-pages in use */ | |
75 | int refcount; /* number of kernel pages using the large page */ | |
76 | u64 paddr; /* physical address of large page */ | |
77 | } *lp_desc; | |
78 | } i460; | |
79 | ||
e5524f35 | 80 | static const struct aper_size_info_8 i460_sizes[3] = |
1da177e4 LT |
81 | { |
82 | /* | |
83 | * The 32GB aperture is only available with a 4M GART page size. Due to the | |
84 | * dynamic GART page size, we can't figure out page_order or num_entries until | |
85 | * runtime. | |
86 | */ | |
87 | {32768, 0, 0, 4}, | |
88 | {1024, 0, 0, 2}, | |
89 | {256, 0, 0, 1} | |
90 | }; | |
91 | ||
92 | static struct gatt_mask i460_masks[] = | |
93 | { | |
94 | { | |
95 | .mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT, | |
96 | .type = 0 | |
97 | } | |
98 | }; | |
99 | ||
100 | static int i460_fetch_size (void) | |
101 | { | |
102 | int i; | |
103 | u8 temp; | |
104 | struct aper_size_info_8 *values; | |
105 | ||
106 | /* Determine the GART page size */ | |
107 | pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &temp); | |
108 | i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12; | |
109 | pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift); | |
110 | ||
111 | if (i460.io_page_shift != I460_IO_PAGE_SHIFT) { | |
112 | printk(KERN_ERR PFX | |
49ebd7c6 AM |
113 | "I/O (GART) page-size %luKB doesn't match expected " |
114 | "size %luKB\n", | |
115 | 1UL << (i460.io_page_shift - 10), | |
116 | 1UL << (I460_IO_PAGE_SHIFT)); | |
1da177e4 LT |
117 | return 0; |
118 | } | |
119 | ||
120 | values = A_SIZE_8(agp_bridge->driver->aperture_sizes); | |
121 | ||
122 | pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); | |
123 | ||
124 | /* Exit now if the IO drivers for the GART SRAMS are turned off */ | |
125 | if (temp & I460_SRAM_IO_DISABLE) { | |
126 | printk(KERN_ERR PFX "GART SRAMS disabled on 460GX chipset\n"); | |
127 | printk(KERN_ERR PFX "AGPGART operation not possible\n"); | |
128 | return 0; | |
129 | } | |
130 | ||
131 | /* Make sure we don't try to create an 2 ^ 23 entry GATT */ | |
132 | if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) { | |
133 | printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n"); | |
134 | return 0; | |
135 | } | |
136 | ||
137 | /* Determine the proper APBASE register */ | |
138 | if (temp & I460_BAPBASE_ENABLE) | |
139 | i460.dynamic_apbase = INTEL_I460_BAPBASE; | |
140 | else | |
141 | i460.dynamic_apbase = AGP_APBASE; | |
142 | ||
143 | for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { | |
144 | /* | |
145 | * Dynamically calculate the proper num_entries and page_order values for | |
146 | * the define aperture sizes. Take care not to shift off the end of | |
147 | * values[i].size. | |
148 | */ | |
149 | values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12); | |
e57aa839 | 150 | values[i].page_order = ilog2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT); |
1da177e4 LT |
151 | } |
152 | ||
153 | for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { | |
154 | /* Neglect control bits when matching up size_value */ | |
155 | if ((temp & I460_AGPSIZ_MASK) == values[i].size_value) { | |
156 | agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); | |
157 | agp_bridge->aperture_size_idx = i; | |
158 | return values[i].size; | |
159 | } | |
160 | } | |
161 | ||
162 | return 0; | |
163 | } | |
164 | ||
165 | /* There isn't anything to do here since 460 has no GART TLB. */ | |
166 | static void i460_tlb_flush (struct agp_memory *mem) | |
167 | { | |
168 | return; | |
169 | } | |
170 | ||
171 | /* | |
172 | * This utility function is needed to prevent corruption of the control bits | |
173 | * which are stored along with the aperture size in 460's AGPSIZ register | |
174 | */ | |
175 | static void i460_write_agpsiz (u8 size_value) | |
176 | { | |
177 | u8 temp; | |
178 | ||
179 | pci_read_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, &temp); | |
180 | pci_write_config_byte(agp_bridge->dev, INTEL_I460_AGPSIZ, | |
181 | ((temp & ~I460_AGPSIZ_MASK) | size_value)); | |
182 | } | |
183 | ||
184 | static void i460_cleanup (void) | |
185 | { | |
186 | struct aper_size_info_8 *previous_size; | |
187 | ||
188 | previous_size = A_SIZE_8(agp_bridge->previous_size); | |
189 | i460_write_agpsiz(previous_size->size_value); | |
190 | ||
191 | if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) | |
192 | kfree(i460.lp_desc); | |
193 | } | |
194 | ||
195 | static int i460_configure (void) | |
196 | { | |
197 | union { | |
198 | u32 small[2]; | |
199 | u64 large; | |
200 | } temp; | |
201 | size_t size; | |
202 | u8 scratch; | |
203 | struct aper_size_info_8 *current_size; | |
204 | ||
205 | temp.large = 0; | |
206 | ||
207 | current_size = A_SIZE_8(agp_bridge->current_size); | |
208 | i460_write_agpsiz(current_size->size_value); | |
209 | ||
210 | /* | |
211 | * Do the necessary rigmarole to read all eight bytes of APBASE. | |
212 | * This has to be done since the AGP aperture can be above 4GB on | |
213 | * 460 based systems. | |
214 | */ | |
215 | pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase, &(temp.small[0])); | |
216 | pci_read_config_dword(agp_bridge->dev, i460.dynamic_apbase + 4, &(temp.small[1])); | |
217 | ||
218 | /* Clear BAR control bits */ | |
219 | agp_bridge->gart_bus_addr = temp.large & ~((1UL << 3) - 1); | |
220 | ||
221 | pci_read_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, &scratch); | |
222 | pci_write_config_byte(agp_bridge->dev, INTEL_I460_GXBCTL, | |
223 | (scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC); | |
224 | ||
225 | /* | |
226 | * Initialize partial allocation trackers if a GART page is bigger than a kernel | |
227 | * page. | |
228 | */ | |
229 | if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) { | |
230 | size = current_size->num_entries * sizeof(i460.lp_desc[0]); | |
0ea27d9f | 231 | i460.lp_desc = kzalloc(size, GFP_KERNEL); |
1da177e4 LT |
232 | if (!i460.lp_desc) |
233 | return -ENOMEM; | |
1da177e4 LT |
234 | } |
235 | return 0; | |
236 | } | |
237 | ||
238 | static int i460_create_gatt_table (struct agp_bridge_data *bridge) | |
239 | { | |
240 | int page_order, num_entries, i; | |
241 | void *temp; | |
242 | ||
243 | /* | |
244 | * Load up the fixed address of the GART SRAMS which hold our GATT table. | |
245 | */ | |
246 | temp = agp_bridge->current_size; | |
247 | page_order = A_SIZE_8(temp)->page_order; | |
248 | num_entries = A_SIZE_8(temp)->num_entries; | |
249 | ||
250 | i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order); | |
5bdbc7dc ST |
251 | if (!i460.gatt) { |
252 | printk(KERN_ERR PFX "ioremap failed\n"); | |
253 | return -ENOMEM; | |
254 | } | |
1da177e4 LT |
255 | |
256 | /* These are no good, the should be removed from the agp_bridge strucure... */ | |
257 | agp_bridge->gatt_table_real = NULL; | |
258 | agp_bridge->gatt_table = NULL; | |
259 | agp_bridge->gatt_bus_addr = 0; | |
260 | ||
261 | for (i = 0; i < num_entries; ++i) | |
262 | WR_GATT(i, 0); | |
263 | WR_FLUSH_GATT(i - 1); | |
264 | return 0; | |
265 | } | |
266 | ||
267 | static int i460_free_gatt_table (struct agp_bridge_data *bridge) | |
268 | { | |
269 | int num_entries, i; | |
270 | void *temp; | |
271 | ||
272 | temp = agp_bridge->current_size; | |
273 | ||
274 | num_entries = A_SIZE_8(temp)->num_entries; | |
275 | ||
276 | for (i = 0; i < num_entries; ++i) | |
277 | WR_GATT(i, 0); | |
278 | WR_FLUSH_GATT(num_entries - 1); | |
279 | ||
280 | iounmap(i460.gatt); | |
281 | return 0; | |
282 | } | |
283 | ||
284 | /* | |
285 | * The following functions are called when the I/O (GART) page size is smaller than | |
286 | * PAGE_SIZE. | |
287 | */ | |
288 | ||
289 | static int i460_insert_memory_small_io_page (struct agp_memory *mem, | |
290 | off_t pg_start, int type) | |
291 | { | |
292 | unsigned long paddr, io_pg_start, io_page_size; | |
293 | int i, j, k, num_entries; | |
294 | void *temp; | |
295 | ||
296 | pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n", | |
297 | mem, pg_start, type, mem->memory[0]); | |
298 | ||
a030ce44 TH |
299 | if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) |
300 | return -EINVAL; | |
301 | ||
1da177e4 LT |
302 | io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start; |
303 | ||
304 | temp = agp_bridge->current_size; | |
305 | num_entries = A_SIZE_8(temp)->num_entries; | |
306 | ||
307 | if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) { | |
308 | printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); | |
309 | return -EINVAL; | |
310 | } | |
311 | ||
312 | j = io_pg_start; | |
313 | while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) { | |
314 | if (!PGE_EMPTY(agp_bridge, RD_GATT(j))) { | |
315 | pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n", | |
316 | j, RD_GATT(j)); | |
317 | return -EBUSY; | |
318 | } | |
319 | j++; | |
320 | } | |
321 | ||
322 | io_page_size = 1UL << I460_IO_PAGE_SHIFT; | |
323 | for (i = 0, j = io_pg_start; i < mem->page_count; i++) { | |
324 | paddr = mem->memory[i]; | |
325 | for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size) | |
326 | WR_GATT(j, agp_bridge->driver->mask_memory(agp_bridge, | |
327 | paddr, mem->type)); | |
328 | } | |
329 | WR_FLUSH_GATT(j - 1); | |
330 | return 0; | |
331 | } | |
332 | ||
333 | static int i460_remove_memory_small_io_page(struct agp_memory *mem, | |
334 | off_t pg_start, int type) | |
335 | { | |
336 | int i; | |
337 | ||
338 | pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n", | |
339 | mem, pg_start, type); | |
340 | ||
341 | pg_start = I460_IOPAGES_PER_KPAGE * pg_start; | |
342 | ||
343 | for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++) | |
344 | WR_GATT(i, 0); | |
345 | WR_FLUSH_GATT(i - 1); | |
346 | return 0; | |
347 | } | |
348 | ||
349 | #if I460_LARGE_IO_PAGES | |
350 | ||
351 | /* | |
352 | * These functions are called when the I/O (GART) page size exceeds PAGE_SIZE. | |
353 | * | |
354 | * This situation is interesting since AGP memory allocations that are smaller than a | |
355 | * single GART page are possible. The i460.lp_desc array tracks partial allocation of the | |
356 | * large GART pages to work around this issue. | |
357 | * | |
358 | * i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page | |
359 | * pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and | |
360 | * i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated). | |
361 | */ | |
362 | ||
363 | static int i460_alloc_large_page (struct lp_desc *lp) | |
364 | { | |
365 | unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT; | |
366 | size_t map_size; | |
367 | void *lpage; | |
368 | ||
369 | lpage = (void *) __get_free_pages(GFP_KERNEL, order); | |
370 | if (!lpage) { | |
371 | printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n"); | |
372 | return -ENOMEM; | |
373 | } | |
374 | ||
375 | map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8; | |
0ea27d9f | 376 | lp->alloced_map = kzalloc(map_size, GFP_KERNEL); |
1da177e4 LT |
377 | if (!lp->alloced_map) { |
378 | free_pages((unsigned long) lpage, order); | |
379 | printk(KERN_ERR PFX "Out of memory, we're in trouble...\n"); | |
380 | return -ENOMEM; | |
381 | } | |
1da177e4 | 382 | |
07eee78e | 383 | lp->paddr = virt_to_gart(lpage); |
1da177e4 LT |
384 | lp->refcount = 0; |
385 | atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); | |
386 | return 0; | |
387 | } | |
388 | ||
389 | static void i460_free_large_page (struct lp_desc *lp) | |
390 | { | |
391 | kfree(lp->alloced_map); | |
392 | lp->alloced_map = NULL; | |
393 | ||
07eee78e | 394 | free_pages((unsigned long) gart_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT); |
1da177e4 LT |
395 | atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge->current_memory_agp); |
396 | } | |
397 | ||
398 | static int i460_insert_memory_large_io_page (struct agp_memory *mem, | |
399 | off_t pg_start, int type) | |
400 | { | |
401 | int i, start_offset, end_offset, idx, pg, num_entries; | |
402 | struct lp_desc *start, *end, *lp; | |
403 | void *temp; | |
404 | ||
a030ce44 TH |
405 | if (type >= AGP_USER_TYPES || mem->type >= AGP_USER_TYPES) |
406 | return -EINVAL; | |
407 | ||
1da177e4 LT |
408 | temp = agp_bridge->current_size; |
409 | num_entries = A_SIZE_8(temp)->num_entries; | |
410 | ||
411 | /* Figure out what pg_start means in terms of our large GART pages */ | |
6a92a4e0 DJ |
412 | start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; |
413 | end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; | |
414 | start_offset = pg_start % I460_KPAGES_PER_IOPAGE; | |
415 | end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; | |
1da177e4 LT |
416 | |
417 | if (end > i460.lp_desc + num_entries) { | |
418 | printk(KERN_ERR PFX "Looks like we're out of AGP memory\n"); | |
419 | return -EINVAL; | |
420 | } | |
421 | ||
422 | /* Check if the requested region of the aperture is free */ | |
423 | for (lp = start; lp <= end; ++lp) { | |
424 | if (!lp->alloced_map) | |
425 | continue; /* OK, the entire large page is available... */ | |
426 | ||
427 | for (idx = ((lp == start) ? start_offset : 0); | |
428 | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | |
429 | idx++) | |
430 | { | |
431 | if (test_bit(idx, lp->alloced_map)) | |
432 | return -EBUSY; | |
433 | } | |
434 | } | |
435 | ||
436 | for (lp = start, i = 0; lp <= end; ++lp) { | |
437 | if (!lp->alloced_map) { | |
438 | /* Allocate new GART pages... */ | |
439 | if (i460_alloc_large_page(lp) < 0) | |
440 | return -ENOMEM; | |
441 | pg = lp - i460.lp_desc; | |
442 | WR_GATT(pg, agp_bridge->driver->mask_memory(agp_bridge, | |
443 | lp->paddr, 0)); | |
444 | WR_FLUSH_GATT(pg); | |
445 | } | |
446 | ||
447 | for (idx = ((lp == start) ? start_offset : 0); | |
448 | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | |
449 | idx++, i++) | |
450 | { | |
451 | mem->memory[i] = lp->paddr + idx*PAGE_SIZE; | |
452 | __set_bit(idx, lp->alloced_map); | |
453 | ++lp->refcount; | |
454 | } | |
455 | } | |
456 | return 0; | |
457 | } | |
458 | ||
459 | static int i460_remove_memory_large_io_page (struct agp_memory *mem, | |
460 | off_t pg_start, int type) | |
461 | { | |
462 | int i, pg, start_offset, end_offset, idx, num_entries; | |
463 | struct lp_desc *start, *end, *lp; | |
464 | void *temp; | |
465 | ||
466 | temp = agp_bridge->driver->current_size; | |
467 | num_entries = A_SIZE_8(temp)->num_entries; | |
468 | ||
469 | /* Figure out what pg_start means in terms of our large GART pages */ | |
6a92a4e0 DJ |
470 | start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE]; |
471 | end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE]; | |
472 | start_offset = pg_start % I460_KPAGES_PER_IOPAGE; | |
473 | end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE; | |
1da177e4 LT |
474 | |
475 | for (i = 0, lp = start; lp <= end; ++lp) { | |
476 | for (idx = ((lp == start) ? start_offset : 0); | |
477 | idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE); | |
478 | idx++, i++) | |
479 | { | |
480 | mem->memory[i] = 0; | |
481 | __clear_bit(idx, lp->alloced_map); | |
482 | --lp->refcount; | |
483 | } | |
484 | ||
485 | /* Free GART pages if they are unused */ | |
486 | if (lp->refcount == 0) { | |
487 | pg = lp - i460.lp_desc; | |
488 | WR_GATT(pg, 0); | |
489 | WR_FLUSH_GATT(pg); | |
490 | i460_free_large_page(lp); | |
491 | } | |
492 | } | |
493 | return 0; | |
494 | } | |
495 | ||
496 | /* Wrapper routines to call the approriate {small_io_page,large_io_page} function */ | |
497 | ||
498 | static int i460_insert_memory (struct agp_memory *mem, | |
499 | off_t pg_start, int type) | |
500 | { | |
501 | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) | |
502 | return i460_insert_memory_small_io_page(mem, pg_start, type); | |
503 | else | |
504 | return i460_insert_memory_large_io_page(mem, pg_start, type); | |
505 | } | |
506 | ||
507 | static int i460_remove_memory (struct agp_memory *mem, | |
508 | off_t pg_start, int type) | |
509 | { | |
510 | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) | |
511 | return i460_remove_memory_small_io_page(mem, pg_start, type); | |
512 | else | |
513 | return i460_remove_memory_large_io_page(mem, pg_start, type); | |
514 | } | |
515 | ||
516 | /* | |
517 | * If the I/O (GART) page size is bigger than the kernel page size, we don't want to | |
518 | * allocate memory until we know where it is to be bound in the aperture (a | |
519 | * multi-kernel-page alloc might fit inside of an already allocated GART page). | |
520 | * | |
521 | * Let's just hope nobody counts on the allocated AGP memory being there before bind time | |
522 | * (I don't think current drivers do)... | |
523 | */ | |
524 | static void *i460_alloc_page (struct agp_bridge_data *bridge) | |
525 | { | |
526 | void *page; | |
527 | ||
88d51967 | 528 | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { |
1da177e4 | 529 | page = agp_generic_alloc_page(agp_bridge); |
88d51967 AH |
530 | global_flush_tlb(); |
531 | } else | |
1da177e4 LT |
532 | /* Returning NULL would cause problems */ |
533 | /* AK: really dubious code. */ | |
534 | page = (void *)~0UL; | |
535 | return page; | |
536 | } | |
537 | ||
a2721e99 | 538 | static void i460_destroy_page (void *page, int flags) |
1da177e4 | 539 | { |
88d51967 | 540 | if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT) { |
a2721e99 | 541 | agp_generic_destroy_page(page, flags); |
88d51967 AH |
542 | global_flush_tlb(); |
543 | } | |
1da177e4 LT |
544 | } |
545 | ||
546 | #endif /* I460_LARGE_IO_PAGES */ | |
547 | ||
548 | static unsigned long i460_mask_memory (struct agp_bridge_data *bridge, | |
549 | unsigned long addr, int type) | |
550 | { | |
551 | /* Make sure the returned address is a valid GATT entry */ | |
552 | return bridge->driver->masks[0].mask | |
49ebd7c6 | 553 | | (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xfffff000) >> 12); |
1da177e4 LT |
554 | } |
555 | ||
e047d1cf | 556 | const struct agp_bridge_driver intel_i460_driver = { |
1da177e4 LT |
557 | .owner = THIS_MODULE, |
558 | .aperture_sizes = i460_sizes, | |
559 | .size_type = U8_APER_SIZE, | |
560 | .num_aperture_sizes = 3, | |
561 | .configure = i460_configure, | |
562 | .fetch_size = i460_fetch_size, | |
563 | .cleanup = i460_cleanup, | |
564 | .tlb_flush = i460_tlb_flush, | |
565 | .mask_memory = i460_mask_memory, | |
566 | .masks = i460_masks, | |
567 | .agp_enable = agp_generic_enable, | |
568 | .cache_flush = global_cache_flush, | |
569 | .create_gatt_table = i460_create_gatt_table, | |
570 | .free_gatt_table = i460_free_gatt_table, | |
571 | #if I460_LARGE_IO_PAGES | |
572 | .insert_memory = i460_insert_memory, | |
573 | .remove_memory = i460_remove_memory, | |
574 | .agp_alloc_page = i460_alloc_page, | |
575 | .agp_destroy_page = i460_destroy_page, | |
576 | #else | |
577 | .insert_memory = i460_insert_memory_small_io_page, | |
578 | .remove_memory = i460_remove_memory_small_io_page, | |
579 | .agp_alloc_page = agp_generic_alloc_page, | |
580 | .agp_destroy_page = agp_generic_destroy_page, | |
581 | #endif | |
582 | .alloc_by_type = agp_generic_alloc_by_type, | |
583 | .free_by_type = agp_generic_free_by_type, | |
a030ce44 | 584 | .agp_type_to_mask_type = agp_generic_type_to_mask_type, |
1da177e4 LT |
585 | .cant_use_aperture = 1, |
586 | }; | |
587 | ||
588 | static int __devinit agp_intel_i460_probe(struct pci_dev *pdev, | |
589 | const struct pci_device_id *ent) | |
590 | { | |
591 | struct agp_bridge_data *bridge; | |
592 | u8 cap_ptr; | |
593 | ||
594 | cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); | |
595 | if (!cap_ptr) | |
596 | return -ENODEV; | |
597 | ||
598 | bridge = agp_alloc_bridge(); | |
599 | if (!bridge) | |
600 | return -ENOMEM; | |
601 | ||
602 | bridge->driver = &intel_i460_driver; | |
603 | bridge->dev = pdev; | |
604 | bridge->capndx = cap_ptr; | |
605 | ||
606 | printk(KERN_INFO PFX "Detected Intel 460GX chipset\n"); | |
607 | ||
608 | pci_set_drvdata(pdev, bridge); | |
609 | return agp_add_bridge(bridge); | |
610 | } | |
611 | ||
612 | static void __devexit agp_intel_i460_remove(struct pci_dev *pdev) | |
613 | { | |
614 | struct agp_bridge_data *bridge = pci_get_drvdata(pdev); | |
615 | ||
616 | agp_remove_bridge(bridge); | |
617 | agp_put_bridge(bridge); | |
618 | } | |
619 | ||
620 | static struct pci_device_id agp_intel_i460_pci_table[] = { | |
621 | { | |
622 | .class = (PCI_CLASS_BRIDGE_HOST << 8), | |
623 | .class_mask = ~0, | |
624 | .vendor = PCI_VENDOR_ID_INTEL, | |
625 | .device = PCI_DEVICE_ID_INTEL_84460GX, | |
626 | .subvendor = PCI_ANY_ID, | |
627 | .subdevice = PCI_ANY_ID, | |
628 | }, | |
629 | { } | |
630 | }; | |
631 | ||
632 | MODULE_DEVICE_TABLE(pci, agp_intel_i460_pci_table); | |
633 | ||
634 | static struct pci_driver agp_intel_i460_pci_driver = { | |
635 | .name = "agpgart-intel-i460", | |
636 | .id_table = agp_intel_i460_pci_table, | |
637 | .probe = agp_intel_i460_probe, | |
638 | .remove = __devexit_p(agp_intel_i460_remove), | |
639 | }; | |
640 | ||
641 | static int __init agp_intel_i460_init(void) | |
642 | { | |
643 | if (agp_off) | |
644 | return -EINVAL; | |
645 | return pci_register_driver(&agp_intel_i460_pci_driver); | |
646 | } | |
647 | ||
648 | static void __exit agp_intel_i460_cleanup(void) | |
649 | { | |
650 | pci_unregister_driver(&agp_intel_i460_pci_driver); | |
651 | } | |
652 | ||
653 | module_init(agp_intel_i460_init); | |
654 | module_exit(agp_intel_i460_cleanup); | |
655 | ||
656 | MODULE_AUTHOR("Chris Ahna <[email protected]>"); | |
657 | MODULE_LICENSE("GPL and additional rights"); |