]>
Commit | Line | Data |
---|---|---|
dc009d92 EB |
1 | /* |
2 | * kexec.c - kexec system call | |
3 | * Copyright (C) 2002-2004 Eric Biederman <[email protected]> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
dc009d92 EB |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
15 | #include <linux/spinlock.h> | |
16 | #include <linux/list.h> | |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
20 | #include <linux/syscalls.h> | |
21 | #include <linux/ioport.h> | |
6e274d14 | 22 | #include <linux/hardirq.h> |
85916f81 MD |
23 | #include <linux/elf.h> |
24 | #include <linux/elfcore.h> | |
6e274d14 | 25 | |
dc009d92 EB |
26 | #include <asm/page.h> |
27 | #include <asm/uaccess.h> | |
28 | #include <asm/io.h> | |
29 | #include <asm/system.h> | |
30 | #include <asm/semaphore.h> | |
31 | ||
cc571658 VG |
32 | /* Per cpu memory for storing cpu states in case of system crash. */ |
33 | note_buf_t* crash_notes; | |
34 | ||
dc009d92 EB |
35 | /* Location of the reserved area for the crash kernel */ |
36 | struct resource crashk_res = { | |
37 | .name = "Crash kernel", | |
38 | .start = 0, | |
39 | .end = 0, | |
40 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | |
41 | }; | |
42 | ||
6e274d14 AN |
43 | int kexec_should_crash(struct task_struct *p) |
44 | { | |
f400e198 | 45 | if (in_interrupt() || !p->pid || is_init(p) || panic_on_oops) |
6e274d14 AN |
46 | return 1; |
47 | return 0; | |
48 | } | |
49 | ||
dc009d92 EB |
50 | /* |
51 | * When kexec transitions to the new kernel there is a one-to-one | |
52 | * mapping between physical and virtual addresses. On processors | |
53 | * where you can disable the MMU this is trivial, and easy. For | |
54 | * others it is still a simple predictable page table to setup. | |
55 | * | |
56 | * In that environment kexec copies the new kernel to its final | |
57 | * resting place. This means I can only support memory whose | |
58 | * physical address can fit in an unsigned long. In particular | |
59 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
60 | * If the assembly stub has more restrictive requirements | |
61 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
62 | * defined more restrictively in <asm/kexec.h>. | |
63 | * | |
64 | * The code for the transition from the current kernel to the | |
65 | * the new kernel is placed in the control_code_buffer, whose size | |
66 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | |
67 | * page of memory is necessary, but some architectures require more. | |
68 | * Because this memory must be identity mapped in the transition from | |
69 | * virtual to physical addresses it must live in the range | |
70 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
71 | * modifiable. | |
72 | * | |
73 | * The assembly stub in the control code buffer is passed a linked list | |
74 | * of descriptor pages detailing the source pages of the new kernel, | |
75 | * and the destination addresses of those source pages. As this data | |
76 | * structure is not used in the context of the current OS, it must | |
77 | * be self-contained. | |
78 | * | |
79 | * The code has been made to work with highmem pages and will use a | |
80 | * destination page in its final resting place (if it happens | |
81 | * to allocate it). The end product of this is that most of the | |
82 | * physical address space, and most of RAM can be used. | |
83 | * | |
84 | * Future directions include: | |
85 | * - allocating a page table with the control code buffer identity | |
86 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
87 | * reliable. | |
88 | */ | |
89 | ||
90 | /* | |
91 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
92 | * allocating pages whose destination address we do not care about. | |
93 | */ | |
94 | #define KIMAGE_NO_DEST (-1UL) | |
95 | ||
72414d3f MS |
96 | static int kimage_is_destination_range(struct kimage *image, |
97 | unsigned long start, unsigned long end); | |
98 | static struct page *kimage_alloc_page(struct kimage *image, | |
9796fdd8 | 99 | gfp_t gfp_mask, |
72414d3f | 100 | unsigned long dest); |
dc009d92 EB |
101 | |
102 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
103 | unsigned long nr_segments, |
104 | struct kexec_segment __user *segments) | |
dc009d92 EB |
105 | { |
106 | size_t segment_bytes; | |
107 | struct kimage *image; | |
108 | unsigned long i; | |
109 | int result; | |
110 | ||
111 | /* Allocate a controlling structure */ | |
112 | result = -ENOMEM; | |
4668edc3 | 113 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
72414d3f | 114 | if (!image) |
dc009d92 | 115 | goto out; |
72414d3f | 116 | |
dc009d92 EB |
117 | image->head = 0; |
118 | image->entry = &image->head; | |
119 | image->last_entry = &image->head; | |
120 | image->control_page = ~0; /* By default this does not apply */ | |
121 | image->start = entry; | |
122 | image->type = KEXEC_TYPE_DEFAULT; | |
123 | ||
124 | /* Initialize the list of control pages */ | |
125 | INIT_LIST_HEAD(&image->control_pages); | |
126 | ||
127 | /* Initialize the list of destination pages */ | |
128 | INIT_LIST_HEAD(&image->dest_pages); | |
129 | ||
130 | /* Initialize the list of unuseable pages */ | |
131 | INIT_LIST_HEAD(&image->unuseable_pages); | |
132 | ||
133 | /* Read in the segments */ | |
134 | image->nr_segments = nr_segments; | |
135 | segment_bytes = nr_segments * sizeof(*segments); | |
136 | result = copy_from_user(image->segment, segments, segment_bytes); | |
137 | if (result) | |
138 | goto out; | |
139 | ||
140 | /* | |
141 | * Verify we have good destination addresses. The caller is | |
142 | * responsible for making certain we don't attempt to load | |
143 | * the new image into invalid or reserved areas of RAM. This | |
144 | * just verifies it is an address we can use. | |
145 | * | |
146 | * Since the kernel does everything in page size chunks ensure | |
147 | * the destination addreses are page aligned. Too many | |
148 | * special cases crop of when we don't do this. The most | |
149 | * insidious is getting overlapping destination addresses | |
150 | * simply because addresses are changed to page size | |
151 | * granularity. | |
152 | */ | |
153 | result = -EADDRNOTAVAIL; | |
154 | for (i = 0; i < nr_segments; i++) { | |
155 | unsigned long mstart, mend; | |
72414d3f | 156 | |
dc009d92 EB |
157 | mstart = image->segment[i].mem; |
158 | mend = mstart + image->segment[i].memsz; | |
159 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
160 | goto out; | |
161 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
162 | goto out; | |
163 | } | |
164 | ||
165 | /* Verify our destination addresses do not overlap. | |
166 | * If we alloed overlapping destination addresses | |
167 | * through very weird things can happen with no | |
168 | * easy explanation as one segment stops on another. | |
169 | */ | |
170 | result = -EINVAL; | |
72414d3f | 171 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
172 | unsigned long mstart, mend; |
173 | unsigned long j; | |
72414d3f | 174 | |
dc009d92 EB |
175 | mstart = image->segment[i].mem; |
176 | mend = mstart + image->segment[i].memsz; | |
72414d3f | 177 | for (j = 0; j < i; j++) { |
dc009d92 EB |
178 | unsigned long pstart, pend; |
179 | pstart = image->segment[j].mem; | |
180 | pend = pstart + image->segment[j].memsz; | |
181 | /* Do the segments overlap ? */ | |
182 | if ((mend > pstart) && (mstart < pend)) | |
183 | goto out; | |
184 | } | |
185 | } | |
186 | ||
187 | /* Ensure our buffer sizes are strictly less than | |
188 | * our memory sizes. This should always be the case, | |
189 | * and it is easier to check up front than to be surprised | |
190 | * later on. | |
191 | */ | |
192 | result = -EINVAL; | |
72414d3f | 193 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
194 | if (image->segment[i].bufsz > image->segment[i].memsz) |
195 | goto out; | |
196 | } | |
197 | ||
dc009d92 | 198 | result = 0; |
72414d3f MS |
199 | out: |
200 | if (result == 0) | |
dc009d92 | 201 | *rimage = image; |
72414d3f | 202 | else |
dc009d92 | 203 | kfree(image); |
72414d3f | 204 | |
dc009d92 EB |
205 | return result; |
206 | ||
207 | } | |
208 | ||
209 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
210 | unsigned long nr_segments, |
211 | struct kexec_segment __user *segments) | |
dc009d92 EB |
212 | { |
213 | int result; | |
214 | struct kimage *image; | |
215 | ||
216 | /* Allocate and initialize a controlling structure */ | |
217 | image = NULL; | |
218 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 219 | if (result) |
dc009d92 | 220 | goto out; |
72414d3f | 221 | |
dc009d92 EB |
222 | *rimage = image; |
223 | ||
224 | /* | |
225 | * Find a location for the control code buffer, and add it | |
226 | * the vector of segments so that it's pages will also be | |
227 | * counted as destination pages. | |
228 | */ | |
229 | result = -ENOMEM; | |
230 | image->control_code_page = kimage_alloc_control_pages(image, | |
72414d3f | 231 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
dc009d92 EB |
232 | if (!image->control_code_page) { |
233 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
234 | goto out; | |
235 | } | |
236 | ||
237 | result = 0; | |
238 | out: | |
72414d3f | 239 | if (result == 0) |
dc009d92 | 240 | *rimage = image; |
72414d3f | 241 | else |
dc009d92 | 242 | kfree(image); |
72414d3f | 243 | |
dc009d92 EB |
244 | return result; |
245 | } | |
246 | ||
247 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f | 248 | unsigned long nr_segments, |
314b6a4d | 249 | struct kexec_segment __user *segments) |
dc009d92 EB |
250 | { |
251 | int result; | |
252 | struct kimage *image; | |
253 | unsigned long i; | |
254 | ||
255 | image = NULL; | |
256 | /* Verify we have a valid entry point */ | |
257 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | |
258 | result = -EADDRNOTAVAIL; | |
259 | goto out; | |
260 | } | |
261 | ||
262 | /* Allocate and initialize a controlling structure */ | |
263 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 264 | if (result) |
dc009d92 | 265 | goto out; |
dc009d92 EB |
266 | |
267 | /* Enable the special crash kernel control page | |
268 | * allocation policy. | |
269 | */ | |
270 | image->control_page = crashk_res.start; | |
271 | image->type = KEXEC_TYPE_CRASH; | |
272 | ||
273 | /* | |
274 | * Verify we have good destination addresses. Normally | |
275 | * the caller is responsible for making certain we don't | |
276 | * attempt to load the new image into invalid or reserved | |
277 | * areas of RAM. But crash kernels are preloaded into a | |
278 | * reserved area of ram. We must ensure the addresses | |
279 | * are in the reserved area otherwise preloading the | |
280 | * kernel could corrupt things. | |
281 | */ | |
282 | result = -EADDRNOTAVAIL; | |
283 | for (i = 0; i < nr_segments; i++) { | |
284 | unsigned long mstart, mend; | |
72414d3f | 285 | |
dc009d92 | 286 | mstart = image->segment[i].mem; |
50cccc69 | 287 | mend = mstart + image->segment[i].memsz - 1; |
dc009d92 EB |
288 | /* Ensure we are within the crash kernel limits */ |
289 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | |
290 | goto out; | |
291 | } | |
292 | ||
dc009d92 EB |
293 | /* |
294 | * Find a location for the control code buffer, and add | |
295 | * the vector of segments so that it's pages will also be | |
296 | * counted as destination pages. | |
297 | */ | |
298 | result = -ENOMEM; | |
299 | image->control_code_page = kimage_alloc_control_pages(image, | |
72414d3f | 300 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
dc009d92 EB |
301 | if (!image->control_code_page) { |
302 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
303 | goto out; | |
304 | } | |
305 | ||
306 | result = 0; | |
72414d3f MS |
307 | out: |
308 | if (result == 0) | |
dc009d92 | 309 | *rimage = image; |
72414d3f | 310 | else |
dc009d92 | 311 | kfree(image); |
72414d3f | 312 | |
dc009d92 EB |
313 | return result; |
314 | } | |
315 | ||
72414d3f MS |
316 | static int kimage_is_destination_range(struct kimage *image, |
317 | unsigned long start, | |
318 | unsigned long end) | |
dc009d92 EB |
319 | { |
320 | unsigned long i; | |
321 | ||
322 | for (i = 0; i < image->nr_segments; i++) { | |
323 | unsigned long mstart, mend; | |
72414d3f | 324 | |
dc009d92 | 325 | mstart = image->segment[i].mem; |
72414d3f MS |
326 | mend = mstart + image->segment[i].memsz; |
327 | if ((end > mstart) && (start < mend)) | |
dc009d92 | 328 | return 1; |
dc009d92 | 329 | } |
72414d3f | 330 | |
dc009d92 EB |
331 | return 0; |
332 | } | |
333 | ||
9796fdd8 | 334 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
dc009d92 EB |
335 | { |
336 | struct page *pages; | |
72414d3f | 337 | |
dc009d92 EB |
338 | pages = alloc_pages(gfp_mask, order); |
339 | if (pages) { | |
340 | unsigned int count, i; | |
341 | pages->mapping = NULL; | |
4c21e2f2 | 342 | set_page_private(pages, order); |
dc009d92 | 343 | count = 1 << order; |
72414d3f | 344 | for (i = 0; i < count; i++) |
dc009d92 | 345 | SetPageReserved(pages + i); |
dc009d92 | 346 | } |
72414d3f | 347 | |
dc009d92 EB |
348 | return pages; |
349 | } | |
350 | ||
351 | static void kimage_free_pages(struct page *page) | |
352 | { | |
353 | unsigned int order, count, i; | |
72414d3f | 354 | |
4c21e2f2 | 355 | order = page_private(page); |
dc009d92 | 356 | count = 1 << order; |
72414d3f | 357 | for (i = 0; i < count; i++) |
dc009d92 | 358 | ClearPageReserved(page + i); |
dc009d92 EB |
359 | __free_pages(page, order); |
360 | } | |
361 | ||
362 | static void kimage_free_page_list(struct list_head *list) | |
363 | { | |
364 | struct list_head *pos, *next; | |
72414d3f | 365 | |
dc009d92 EB |
366 | list_for_each_safe(pos, next, list) { |
367 | struct page *page; | |
368 | ||
369 | page = list_entry(pos, struct page, lru); | |
370 | list_del(&page->lru); | |
dc009d92 EB |
371 | kimage_free_pages(page); |
372 | } | |
373 | } | |
374 | ||
72414d3f MS |
375 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
376 | unsigned int order) | |
dc009d92 EB |
377 | { |
378 | /* Control pages are special, they are the intermediaries | |
379 | * that are needed while we copy the rest of the pages | |
380 | * to their final resting place. As such they must | |
381 | * not conflict with either the destination addresses | |
382 | * or memory the kernel is already using. | |
383 | * | |
384 | * The only case where we really need more than one of | |
385 | * these are for architectures where we cannot disable | |
386 | * the MMU and must instead generate an identity mapped | |
387 | * page table for all of the memory. | |
388 | * | |
389 | * At worst this runs in O(N) of the image size. | |
390 | */ | |
391 | struct list_head extra_pages; | |
392 | struct page *pages; | |
393 | unsigned int count; | |
394 | ||
395 | count = 1 << order; | |
396 | INIT_LIST_HEAD(&extra_pages); | |
397 | ||
398 | /* Loop while I can allocate a page and the page allocated | |
399 | * is a destination page. | |
400 | */ | |
401 | do { | |
402 | unsigned long pfn, epfn, addr, eaddr; | |
72414d3f | 403 | |
dc009d92 EB |
404 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
405 | if (!pages) | |
406 | break; | |
407 | pfn = page_to_pfn(pages); | |
408 | epfn = pfn + count; | |
409 | addr = pfn << PAGE_SHIFT; | |
410 | eaddr = epfn << PAGE_SHIFT; | |
411 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
72414d3f | 412 | kimage_is_destination_range(image, addr, eaddr)) { |
dc009d92 EB |
413 | list_add(&pages->lru, &extra_pages); |
414 | pages = NULL; | |
415 | } | |
72414d3f MS |
416 | } while (!pages); |
417 | ||
dc009d92 EB |
418 | if (pages) { |
419 | /* Remember the allocated page... */ | |
420 | list_add(&pages->lru, &image->control_pages); | |
421 | ||
422 | /* Because the page is already in it's destination | |
423 | * location we will never allocate another page at | |
424 | * that address. Therefore kimage_alloc_pages | |
425 | * will not return it (again) and we don't need | |
426 | * to give it an entry in image->segment[]. | |
427 | */ | |
428 | } | |
429 | /* Deal with the destination pages I have inadvertently allocated. | |
430 | * | |
431 | * Ideally I would convert multi-page allocations into single | |
432 | * page allocations, and add everyting to image->dest_pages. | |
433 | * | |
434 | * For now it is simpler to just free the pages. | |
435 | */ | |
436 | kimage_free_page_list(&extra_pages); | |
dc009d92 | 437 | |
72414d3f | 438 | return pages; |
dc009d92 EB |
439 | } |
440 | ||
72414d3f MS |
441 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
442 | unsigned int order) | |
dc009d92 EB |
443 | { |
444 | /* Control pages are special, they are the intermediaries | |
445 | * that are needed while we copy the rest of the pages | |
446 | * to their final resting place. As such they must | |
447 | * not conflict with either the destination addresses | |
448 | * or memory the kernel is already using. | |
449 | * | |
450 | * Control pages are also the only pags we must allocate | |
451 | * when loading a crash kernel. All of the other pages | |
452 | * are specified by the segments and we just memcpy | |
453 | * into them directly. | |
454 | * | |
455 | * The only case where we really need more than one of | |
456 | * these are for architectures where we cannot disable | |
457 | * the MMU and must instead generate an identity mapped | |
458 | * page table for all of the memory. | |
459 | * | |
460 | * Given the low demand this implements a very simple | |
461 | * allocator that finds the first hole of the appropriate | |
462 | * size in the reserved memory region, and allocates all | |
463 | * of the memory up to and including the hole. | |
464 | */ | |
465 | unsigned long hole_start, hole_end, size; | |
466 | struct page *pages; | |
72414d3f | 467 | |
dc009d92 EB |
468 | pages = NULL; |
469 | size = (1 << order) << PAGE_SHIFT; | |
470 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
471 | hole_end = hole_start + size - 1; | |
72414d3f | 472 | while (hole_end <= crashk_res.end) { |
dc009d92 | 473 | unsigned long i; |
72414d3f MS |
474 | |
475 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | |
dc009d92 | 476 | break; |
72414d3f | 477 | if (hole_end > crashk_res.end) |
dc009d92 | 478 | break; |
dc009d92 | 479 | /* See if I overlap any of the segments */ |
72414d3f | 480 | for (i = 0; i < image->nr_segments; i++) { |
dc009d92 | 481 | unsigned long mstart, mend; |
72414d3f | 482 | |
dc009d92 EB |
483 | mstart = image->segment[i].mem; |
484 | mend = mstart + image->segment[i].memsz - 1; | |
485 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
486 | /* Advance the hole to the end of the segment */ | |
487 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
488 | hole_end = hole_start + size - 1; | |
489 | break; | |
490 | } | |
491 | } | |
492 | /* If I don't overlap any segments I have found my hole! */ | |
493 | if (i == image->nr_segments) { | |
494 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
495 | break; | |
496 | } | |
497 | } | |
72414d3f | 498 | if (pages) |
dc009d92 | 499 | image->control_page = hole_end; |
72414d3f | 500 | |
dc009d92 EB |
501 | return pages; |
502 | } | |
503 | ||
504 | ||
72414d3f MS |
505 | struct page *kimage_alloc_control_pages(struct kimage *image, |
506 | unsigned int order) | |
dc009d92 EB |
507 | { |
508 | struct page *pages = NULL; | |
72414d3f MS |
509 | |
510 | switch (image->type) { | |
dc009d92 EB |
511 | case KEXEC_TYPE_DEFAULT: |
512 | pages = kimage_alloc_normal_control_pages(image, order); | |
513 | break; | |
514 | case KEXEC_TYPE_CRASH: | |
515 | pages = kimage_alloc_crash_control_pages(image, order); | |
516 | break; | |
517 | } | |
72414d3f | 518 | |
dc009d92 EB |
519 | return pages; |
520 | } | |
521 | ||
522 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
523 | { | |
72414d3f | 524 | if (*image->entry != 0) |
dc009d92 | 525 | image->entry++; |
72414d3f | 526 | |
dc009d92 EB |
527 | if (image->entry == image->last_entry) { |
528 | kimage_entry_t *ind_page; | |
529 | struct page *page; | |
72414d3f | 530 | |
dc009d92 | 531 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
72414d3f | 532 | if (!page) |
dc009d92 | 533 | return -ENOMEM; |
72414d3f | 534 | |
dc009d92 EB |
535 | ind_page = page_address(page); |
536 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
537 | image->entry = ind_page; | |
72414d3f MS |
538 | image->last_entry = ind_page + |
539 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
dc009d92 EB |
540 | } |
541 | *image->entry = entry; | |
542 | image->entry++; | |
543 | *image->entry = 0; | |
72414d3f | 544 | |
dc009d92 EB |
545 | return 0; |
546 | } | |
547 | ||
72414d3f MS |
548 | static int kimage_set_destination(struct kimage *image, |
549 | unsigned long destination) | |
dc009d92 EB |
550 | { |
551 | int result; | |
552 | ||
553 | destination &= PAGE_MASK; | |
554 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
72414d3f | 555 | if (result == 0) |
dc009d92 | 556 | image->destination = destination; |
72414d3f | 557 | |
dc009d92 EB |
558 | return result; |
559 | } | |
560 | ||
561 | ||
562 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
563 | { | |
564 | int result; | |
565 | ||
566 | page &= PAGE_MASK; | |
567 | result = kimage_add_entry(image, page | IND_SOURCE); | |
72414d3f | 568 | if (result == 0) |
dc009d92 | 569 | image->destination += PAGE_SIZE; |
72414d3f | 570 | |
dc009d92 EB |
571 | return result; |
572 | } | |
573 | ||
574 | ||
575 | static void kimage_free_extra_pages(struct kimage *image) | |
576 | { | |
577 | /* Walk through and free any extra destination pages I may have */ | |
578 | kimage_free_page_list(&image->dest_pages); | |
579 | ||
580 | /* Walk through and free any unuseable pages I have cached */ | |
581 | kimage_free_page_list(&image->unuseable_pages); | |
582 | ||
583 | } | |
584 | static int kimage_terminate(struct kimage *image) | |
585 | { | |
72414d3f | 586 | if (*image->entry != 0) |
dc009d92 | 587 | image->entry++; |
72414d3f | 588 | |
dc009d92 | 589 | *image->entry = IND_DONE; |
72414d3f | 590 | |
dc009d92 EB |
591 | return 0; |
592 | } | |
593 | ||
594 | #define for_each_kimage_entry(image, ptr, entry) \ | |
595 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
596 | ptr = (entry & IND_INDIRECTION)? \ | |
597 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | |
598 | ||
599 | static void kimage_free_entry(kimage_entry_t entry) | |
600 | { | |
601 | struct page *page; | |
602 | ||
603 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
604 | kimage_free_pages(page); | |
605 | } | |
606 | ||
607 | static void kimage_free(struct kimage *image) | |
608 | { | |
609 | kimage_entry_t *ptr, entry; | |
610 | kimage_entry_t ind = 0; | |
611 | ||
612 | if (!image) | |
613 | return; | |
72414d3f | 614 | |
dc009d92 EB |
615 | kimage_free_extra_pages(image); |
616 | for_each_kimage_entry(image, ptr, entry) { | |
617 | if (entry & IND_INDIRECTION) { | |
618 | /* Free the previous indirection page */ | |
72414d3f | 619 | if (ind & IND_INDIRECTION) |
dc009d92 | 620 | kimage_free_entry(ind); |
dc009d92 EB |
621 | /* Save this indirection page until we are |
622 | * done with it. | |
623 | */ | |
624 | ind = entry; | |
625 | } | |
72414d3f | 626 | else if (entry & IND_SOURCE) |
dc009d92 | 627 | kimage_free_entry(entry); |
dc009d92 EB |
628 | } |
629 | /* Free the final indirection page */ | |
72414d3f | 630 | if (ind & IND_INDIRECTION) |
dc009d92 | 631 | kimage_free_entry(ind); |
dc009d92 EB |
632 | |
633 | /* Handle any machine specific cleanup */ | |
634 | machine_kexec_cleanup(image); | |
635 | ||
636 | /* Free the kexec control pages... */ | |
637 | kimage_free_page_list(&image->control_pages); | |
638 | kfree(image); | |
639 | } | |
640 | ||
72414d3f MS |
641 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
642 | unsigned long page) | |
dc009d92 EB |
643 | { |
644 | kimage_entry_t *ptr, entry; | |
645 | unsigned long destination = 0; | |
646 | ||
647 | for_each_kimage_entry(image, ptr, entry) { | |
72414d3f | 648 | if (entry & IND_DESTINATION) |
dc009d92 | 649 | destination = entry & PAGE_MASK; |
dc009d92 | 650 | else if (entry & IND_SOURCE) { |
72414d3f | 651 | if (page == destination) |
dc009d92 | 652 | return ptr; |
dc009d92 EB |
653 | destination += PAGE_SIZE; |
654 | } | |
655 | } | |
72414d3f | 656 | |
314b6a4d | 657 | return NULL; |
dc009d92 EB |
658 | } |
659 | ||
72414d3f | 660 | static struct page *kimage_alloc_page(struct kimage *image, |
9796fdd8 | 661 | gfp_t gfp_mask, |
72414d3f | 662 | unsigned long destination) |
dc009d92 EB |
663 | { |
664 | /* | |
665 | * Here we implement safeguards to ensure that a source page | |
666 | * is not copied to its destination page before the data on | |
667 | * the destination page is no longer useful. | |
668 | * | |
669 | * To do this we maintain the invariant that a source page is | |
670 | * either its own destination page, or it is not a | |
671 | * destination page at all. | |
672 | * | |
673 | * That is slightly stronger than required, but the proof | |
674 | * that no problems will not occur is trivial, and the | |
675 | * implementation is simply to verify. | |
676 | * | |
677 | * When allocating all pages normally this algorithm will run | |
678 | * in O(N) time, but in the worst case it will run in O(N^2) | |
679 | * time. If the runtime is a problem the data structures can | |
680 | * be fixed. | |
681 | */ | |
682 | struct page *page; | |
683 | unsigned long addr; | |
684 | ||
685 | /* | |
686 | * Walk through the list of destination pages, and see if I | |
687 | * have a match. | |
688 | */ | |
689 | list_for_each_entry(page, &image->dest_pages, lru) { | |
690 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
691 | if (addr == destination) { | |
692 | list_del(&page->lru); | |
693 | return page; | |
694 | } | |
695 | } | |
696 | page = NULL; | |
697 | while (1) { | |
698 | kimage_entry_t *old; | |
699 | ||
700 | /* Allocate a page, if we run out of memory give up */ | |
701 | page = kimage_alloc_pages(gfp_mask, 0); | |
72414d3f | 702 | if (!page) |
314b6a4d | 703 | return NULL; |
dc009d92 | 704 | /* If the page cannot be used file it away */ |
72414d3f MS |
705 | if (page_to_pfn(page) > |
706 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
dc009d92 EB |
707 | list_add(&page->lru, &image->unuseable_pages); |
708 | continue; | |
709 | } | |
710 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
711 | ||
712 | /* If it is the destination page we want use it */ | |
713 | if (addr == destination) | |
714 | break; | |
715 | ||
716 | /* If the page is not a destination page use it */ | |
72414d3f MS |
717 | if (!kimage_is_destination_range(image, addr, |
718 | addr + PAGE_SIZE)) | |
dc009d92 EB |
719 | break; |
720 | ||
721 | /* | |
722 | * I know that the page is someones destination page. | |
723 | * See if there is already a source page for this | |
724 | * destination page. And if so swap the source pages. | |
725 | */ | |
726 | old = kimage_dst_used(image, addr); | |
727 | if (old) { | |
728 | /* If so move it */ | |
729 | unsigned long old_addr; | |
730 | struct page *old_page; | |
731 | ||
732 | old_addr = *old & PAGE_MASK; | |
733 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
734 | copy_highpage(page, old_page); | |
735 | *old = addr | (*old & ~PAGE_MASK); | |
736 | ||
737 | /* The old page I have found cannot be a | |
738 | * destination page, so return it. | |
739 | */ | |
740 | addr = old_addr; | |
741 | page = old_page; | |
742 | break; | |
743 | } | |
744 | else { | |
745 | /* Place the page on the destination list I | |
746 | * will use it later. | |
747 | */ | |
748 | list_add(&page->lru, &image->dest_pages); | |
749 | } | |
750 | } | |
72414d3f | 751 | |
dc009d92 EB |
752 | return page; |
753 | } | |
754 | ||
755 | static int kimage_load_normal_segment(struct kimage *image, | |
72414d3f | 756 | struct kexec_segment *segment) |
dc009d92 EB |
757 | { |
758 | unsigned long maddr; | |
759 | unsigned long ubytes, mbytes; | |
760 | int result; | |
314b6a4d | 761 | unsigned char __user *buf; |
dc009d92 EB |
762 | |
763 | result = 0; | |
764 | buf = segment->buf; | |
765 | ubytes = segment->bufsz; | |
766 | mbytes = segment->memsz; | |
767 | maddr = segment->mem; | |
768 | ||
769 | result = kimage_set_destination(image, maddr); | |
72414d3f | 770 | if (result < 0) |
dc009d92 | 771 | goto out; |
72414d3f MS |
772 | |
773 | while (mbytes) { | |
dc009d92 EB |
774 | struct page *page; |
775 | char *ptr; | |
776 | size_t uchunk, mchunk; | |
72414d3f | 777 | |
dc009d92 EB |
778 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
779 | if (page == 0) { | |
780 | result = -ENOMEM; | |
781 | goto out; | |
782 | } | |
72414d3f MS |
783 | result = kimage_add_page(image, page_to_pfn(page) |
784 | << PAGE_SHIFT); | |
785 | if (result < 0) | |
dc009d92 | 786 | goto out; |
72414d3f | 787 | |
dc009d92 EB |
788 | ptr = kmap(page); |
789 | /* Start with a clear page */ | |
790 | memset(ptr, 0, PAGE_SIZE); | |
791 | ptr += maddr & ~PAGE_MASK; | |
792 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 793 | if (mchunk > mbytes) |
dc009d92 | 794 | mchunk = mbytes; |
72414d3f | 795 | |
dc009d92 | 796 | uchunk = mchunk; |
72414d3f | 797 | if (uchunk > ubytes) |
dc009d92 | 798 | uchunk = ubytes; |
72414d3f | 799 | |
dc009d92 EB |
800 | result = copy_from_user(ptr, buf, uchunk); |
801 | kunmap(page); | |
802 | if (result) { | |
803 | result = (result < 0) ? result : -EIO; | |
804 | goto out; | |
805 | } | |
806 | ubytes -= uchunk; | |
807 | maddr += mchunk; | |
808 | buf += mchunk; | |
809 | mbytes -= mchunk; | |
810 | } | |
72414d3f | 811 | out: |
dc009d92 EB |
812 | return result; |
813 | } | |
814 | ||
815 | static int kimage_load_crash_segment(struct kimage *image, | |
72414d3f | 816 | struct kexec_segment *segment) |
dc009d92 EB |
817 | { |
818 | /* For crash dumps kernels we simply copy the data from | |
819 | * user space to it's destination. | |
820 | * We do things a page at a time for the sake of kmap. | |
821 | */ | |
822 | unsigned long maddr; | |
823 | unsigned long ubytes, mbytes; | |
824 | int result; | |
314b6a4d | 825 | unsigned char __user *buf; |
dc009d92 EB |
826 | |
827 | result = 0; | |
828 | buf = segment->buf; | |
829 | ubytes = segment->bufsz; | |
830 | mbytes = segment->memsz; | |
831 | maddr = segment->mem; | |
72414d3f | 832 | while (mbytes) { |
dc009d92 EB |
833 | struct page *page; |
834 | char *ptr; | |
835 | size_t uchunk, mchunk; | |
72414d3f | 836 | |
dc009d92 EB |
837 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
838 | if (page == 0) { | |
839 | result = -ENOMEM; | |
840 | goto out; | |
841 | } | |
842 | ptr = kmap(page); | |
843 | ptr += maddr & ~PAGE_MASK; | |
844 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 845 | if (mchunk > mbytes) |
dc009d92 | 846 | mchunk = mbytes; |
72414d3f | 847 | |
dc009d92 EB |
848 | uchunk = mchunk; |
849 | if (uchunk > ubytes) { | |
850 | uchunk = ubytes; | |
851 | /* Zero the trailing part of the page */ | |
852 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
853 | } | |
854 | result = copy_from_user(ptr, buf, uchunk); | |
a7956113 | 855 | kexec_flush_icache_page(page); |
dc009d92 EB |
856 | kunmap(page); |
857 | if (result) { | |
858 | result = (result < 0) ? result : -EIO; | |
859 | goto out; | |
860 | } | |
861 | ubytes -= uchunk; | |
862 | maddr += mchunk; | |
863 | buf += mchunk; | |
864 | mbytes -= mchunk; | |
865 | } | |
72414d3f | 866 | out: |
dc009d92 EB |
867 | return result; |
868 | } | |
869 | ||
870 | static int kimage_load_segment(struct kimage *image, | |
72414d3f | 871 | struct kexec_segment *segment) |
dc009d92 EB |
872 | { |
873 | int result = -ENOMEM; | |
72414d3f MS |
874 | |
875 | switch (image->type) { | |
dc009d92 EB |
876 | case KEXEC_TYPE_DEFAULT: |
877 | result = kimage_load_normal_segment(image, segment); | |
878 | break; | |
879 | case KEXEC_TYPE_CRASH: | |
880 | result = kimage_load_crash_segment(image, segment); | |
881 | break; | |
882 | } | |
72414d3f | 883 | |
dc009d92 EB |
884 | return result; |
885 | } | |
886 | ||
887 | /* | |
888 | * Exec Kernel system call: for obvious reasons only root may call it. | |
889 | * | |
890 | * This call breaks up into three pieces. | |
891 | * - A generic part which loads the new kernel from the current | |
892 | * address space, and very carefully places the data in the | |
893 | * allocated pages. | |
894 | * | |
895 | * - A generic part that interacts with the kernel and tells all of | |
896 | * the devices to shut down. Preventing on-going dmas, and placing | |
897 | * the devices in a consistent state so a later kernel can | |
898 | * reinitialize them. | |
899 | * | |
900 | * - A machine specific part that includes the syscall number | |
901 | * and the copies the image to it's final destination. And | |
902 | * jumps into the image at entry. | |
903 | * | |
904 | * kexec does not sync, or unmount filesystems so if you need | |
905 | * that to happen you need to do that yourself. | |
906 | */ | |
c330dda9 JM |
907 | struct kimage *kexec_image; |
908 | struct kimage *kexec_crash_image; | |
dc009d92 EB |
909 | /* |
910 | * A home grown binary mutex. | |
911 | * Nothing can wait so this mutex is safe to use | |
912 | * in interrupt context :) | |
913 | */ | |
c330dda9 | 914 | static int kexec_lock; |
dc009d92 | 915 | |
72414d3f MS |
916 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, |
917 | struct kexec_segment __user *segments, | |
918 | unsigned long flags) | |
dc009d92 EB |
919 | { |
920 | struct kimage **dest_image, *image; | |
921 | int locked; | |
922 | int result; | |
923 | ||
924 | /* We only trust the superuser with rebooting the system. */ | |
925 | if (!capable(CAP_SYS_BOOT)) | |
926 | return -EPERM; | |
927 | ||
928 | /* | |
929 | * Verify we have a legal set of flags | |
930 | * This leaves us room for future extensions. | |
931 | */ | |
932 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | |
933 | return -EINVAL; | |
934 | ||
935 | /* Verify we are on the appropriate architecture */ | |
936 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | |
937 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | |
dc009d92 | 938 | return -EINVAL; |
dc009d92 EB |
939 | |
940 | /* Put an artificial cap on the number | |
941 | * of segments passed to kexec_load. | |
942 | */ | |
943 | if (nr_segments > KEXEC_SEGMENT_MAX) | |
944 | return -EINVAL; | |
945 | ||
946 | image = NULL; | |
947 | result = 0; | |
948 | ||
949 | /* Because we write directly to the reserved memory | |
950 | * region when loading crash kernels we need a mutex here to | |
951 | * prevent multiple crash kernels from attempting to load | |
952 | * simultaneously, and to prevent a crash kernel from loading | |
953 | * over the top of a in use crash kernel. | |
954 | * | |
955 | * KISS: always take the mutex. | |
956 | */ | |
957 | locked = xchg(&kexec_lock, 1); | |
72414d3f | 958 | if (locked) |
dc009d92 | 959 | return -EBUSY; |
72414d3f | 960 | |
dc009d92 | 961 | dest_image = &kexec_image; |
72414d3f | 962 | if (flags & KEXEC_ON_CRASH) |
dc009d92 | 963 | dest_image = &kexec_crash_image; |
dc009d92 EB |
964 | if (nr_segments > 0) { |
965 | unsigned long i; | |
72414d3f | 966 | |
dc009d92 | 967 | /* Loading another kernel to reboot into */ |
72414d3f MS |
968 | if ((flags & KEXEC_ON_CRASH) == 0) |
969 | result = kimage_normal_alloc(&image, entry, | |
970 | nr_segments, segments); | |
dc009d92 EB |
971 | /* Loading another kernel to switch to if this one crashes */ |
972 | else if (flags & KEXEC_ON_CRASH) { | |
973 | /* Free any current crash dump kernel before | |
974 | * we corrupt it. | |
975 | */ | |
976 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
72414d3f MS |
977 | result = kimage_crash_alloc(&image, entry, |
978 | nr_segments, segments); | |
dc009d92 | 979 | } |
72414d3f | 980 | if (result) |
dc009d92 | 981 | goto out; |
72414d3f | 982 | |
dc009d92 | 983 | result = machine_kexec_prepare(image); |
72414d3f | 984 | if (result) |
dc009d92 | 985 | goto out; |
72414d3f MS |
986 | |
987 | for (i = 0; i < nr_segments; i++) { | |
dc009d92 | 988 | result = kimage_load_segment(image, &image->segment[i]); |
72414d3f | 989 | if (result) |
dc009d92 | 990 | goto out; |
dc009d92 EB |
991 | } |
992 | result = kimage_terminate(image); | |
72414d3f | 993 | if (result) |
dc009d92 | 994 | goto out; |
dc009d92 EB |
995 | } |
996 | /* Install the new kernel, and Uninstall the old */ | |
997 | image = xchg(dest_image, image); | |
998 | ||
72414d3f | 999 | out: |
0b4a8a78 RM |
1000 | locked = xchg(&kexec_lock, 0); /* Release the mutex */ |
1001 | BUG_ON(!locked); | |
dc009d92 | 1002 | kimage_free(image); |
72414d3f | 1003 | |
dc009d92 EB |
1004 | return result; |
1005 | } | |
1006 | ||
1007 | #ifdef CONFIG_COMPAT | |
1008 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | |
72414d3f MS |
1009 | unsigned long nr_segments, |
1010 | struct compat_kexec_segment __user *segments, | |
1011 | unsigned long flags) | |
dc009d92 EB |
1012 | { |
1013 | struct compat_kexec_segment in; | |
1014 | struct kexec_segment out, __user *ksegments; | |
1015 | unsigned long i, result; | |
1016 | ||
1017 | /* Don't allow clients that don't understand the native | |
1018 | * architecture to do anything. | |
1019 | */ | |
72414d3f | 1020 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
dc009d92 | 1021 | return -EINVAL; |
dc009d92 | 1022 | |
72414d3f | 1023 | if (nr_segments > KEXEC_SEGMENT_MAX) |
dc009d92 | 1024 | return -EINVAL; |
dc009d92 EB |
1025 | |
1026 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | |
1027 | for (i=0; i < nr_segments; i++) { | |
1028 | result = copy_from_user(&in, &segments[i], sizeof(in)); | |
72414d3f | 1029 | if (result) |
dc009d92 | 1030 | return -EFAULT; |
dc009d92 EB |
1031 | |
1032 | out.buf = compat_ptr(in.buf); | |
1033 | out.bufsz = in.bufsz; | |
1034 | out.mem = in.mem; | |
1035 | out.memsz = in.memsz; | |
1036 | ||
1037 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | |
72414d3f | 1038 | if (result) |
dc009d92 | 1039 | return -EFAULT; |
dc009d92 EB |
1040 | } |
1041 | ||
1042 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | |
1043 | } | |
1044 | #endif | |
1045 | ||
6e274d14 | 1046 | void crash_kexec(struct pt_regs *regs) |
dc009d92 | 1047 | { |
dc009d92 EB |
1048 | int locked; |
1049 | ||
1050 | ||
1051 | /* Take the kexec_lock here to prevent sys_kexec_load | |
1052 | * running on one cpu from replacing the crash kernel | |
1053 | * we are using after a panic on a different cpu. | |
1054 | * | |
1055 | * If the crash kernel was not located in a fixed area | |
1056 | * of memory the xchg(&kexec_crash_image) would be | |
1057 | * sufficient. But since I reuse the memory... | |
1058 | */ | |
1059 | locked = xchg(&kexec_lock, 1); | |
1060 | if (!locked) { | |
c0ce7d08 | 1061 | if (kexec_crash_image) { |
e996e581 VG |
1062 | struct pt_regs fixed_regs; |
1063 | crash_setup_regs(&fixed_regs, regs); | |
1064 | machine_crash_shutdown(&fixed_regs); | |
c0ce7d08 | 1065 | machine_kexec(kexec_crash_image); |
dc009d92 | 1066 | } |
0b4a8a78 RM |
1067 | locked = xchg(&kexec_lock, 0); |
1068 | BUG_ON(!locked); | |
dc009d92 EB |
1069 | } |
1070 | } | |
cc571658 | 1071 | |
85916f81 MD |
1072 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1073 | size_t data_len) | |
1074 | { | |
1075 | struct elf_note note; | |
1076 | ||
1077 | note.n_namesz = strlen(name) + 1; | |
1078 | note.n_descsz = data_len; | |
1079 | note.n_type = type; | |
1080 | memcpy(buf, ¬e, sizeof(note)); | |
1081 | buf += (sizeof(note) + 3)/4; | |
1082 | memcpy(buf, name, note.n_namesz); | |
1083 | buf += (note.n_namesz + 3)/4; | |
1084 | memcpy(buf, data, note.n_descsz); | |
1085 | buf += (note.n_descsz + 3)/4; | |
1086 | ||
1087 | return buf; | |
1088 | } | |
1089 | ||
1090 | static void final_note(u32 *buf) | |
1091 | { | |
1092 | struct elf_note note; | |
1093 | ||
1094 | note.n_namesz = 0; | |
1095 | note.n_descsz = 0; | |
1096 | note.n_type = 0; | |
1097 | memcpy(buf, ¬e, sizeof(note)); | |
1098 | } | |
1099 | ||
1100 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1101 | { | |
1102 | struct elf_prstatus prstatus; | |
1103 | u32 *buf; | |
1104 | ||
1105 | if ((cpu < 0) || (cpu >= NR_CPUS)) | |
1106 | return; | |
1107 | ||
1108 | /* Using ELF notes here is opportunistic. | |
1109 | * I need a well defined structure format | |
1110 | * for the data I pass, and I need tags | |
1111 | * on the data to indicate what information I have | |
1112 | * squirrelled away. ELF notes happen to provide | |
1113 | * all of that, so there is no need to invent something new. | |
1114 | */ | |
1115 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | |
1116 | if (!buf) | |
1117 | return; | |
1118 | memset(&prstatus, 0, sizeof(prstatus)); | |
1119 | prstatus.pr_pid = current->pid; | |
1120 | elf_core_copy_regs(&prstatus.pr_reg, regs); | |
6672f76a SH |
1121 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1122 | &prstatus, sizeof(prstatus)); | |
85916f81 MD |
1123 | final_note(buf); |
1124 | } | |
1125 | ||
cc571658 VG |
1126 | static int __init crash_notes_memory_init(void) |
1127 | { | |
1128 | /* Allocate memory for saving cpu registers. */ | |
1129 | crash_notes = alloc_percpu(note_buf_t); | |
1130 | if (!crash_notes) { | |
1131 | printk("Kexec: Memory allocation for saving cpu register" | |
1132 | " states failed\n"); | |
1133 | return -ENOMEM; | |
1134 | } | |
1135 | return 0; | |
1136 | } | |
1137 | module_init(crash_notes_memory_init) |