]> Git Repo - linux.git/blame - kernel/sys.c
set_user: add capability check when rlimit(RLIMIT_NPROC) exceeds
[linux.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
1da177e4
LT
27#include <linux/suspend.h>
28#include <linux/tty.h>
7ed20e1a 29#include <linux/signal.h>
9f46080c 30#include <linux/cn_proc.h>
3cfc348b 31#include <linux/getcpu.h>
6eaeeaba 32#include <linux/task_io_accounting_ops.h>
1d9d02fe 33#include <linux/seccomp.h>
4047727e 34#include <linux/cpu.h>
e28cbf22 35#include <linux/personality.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
b32dfe37
CG
38#include <linux/file.h>
39#include <linux/mount.h>
5a0e3ad6 40#include <linux/gfp.h>
40dc166c 41#include <linux/syscore_ops.h>
be27425d
AK
42#include <linux/version.h>
43#include <linux/ctype.h>
1446e1df 44#include <linux/syscall_user_dispatch.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
ecc421e0 50#include <linux/time_namespace.h>
7fe5e042 51#include <linux/binfmts.h>
1da177e4 52
4a22f166 53#include <linux/sched.h>
4eb5aaa3 54#include <linux/sched/autogroup.h>
4f17722c 55#include <linux/sched/loadavg.h>
03441a34 56#include <linux/sched/stat.h>
6e84f315 57#include <linux/sched/mm.h>
f7ccbae4 58#include <linux/sched/coredump.h>
29930025 59#include <linux/sched/task.h>
32ef5517 60#include <linux/sched/cputime.h>
4a22f166
SR
61#include <linux/rcupdate.h>
62#include <linux/uidgid.h>
63#include <linux/cred.h>
64
b617cfc8
TG
65#include <linux/nospec.h>
66
04c6862c 67#include <linux/kmsg_dump.h>
be27425d
AK
68/* Move somewhere else to avoid recompiling? */
69#include <generated/utsrelease.h>
04c6862c 70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4
LT
72#include <asm/io.h>
73#include <asm/unistd.h>
74
e530dca5
DB
75#include "uid16.h"
76
1da177e4 77#ifndef SET_UNALIGN_CTL
ec94fc3d 78# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
79#endif
80#ifndef GET_UNALIGN_CTL
ec94fc3d 81# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
82#endif
83#ifndef SET_FPEMU_CTL
ec94fc3d 84# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
85#endif
86#ifndef GET_FPEMU_CTL
ec94fc3d 87# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
88#endif
89#ifndef SET_FPEXC_CTL
ec94fc3d 90# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
91#endif
92#ifndef GET_FPEXC_CTL
ec94fc3d 93# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 94#endif
651d765d 95#ifndef GET_ENDIAN
ec94fc3d 96# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
97#endif
98#ifndef SET_ENDIAN
ec94fc3d 99# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 100#endif
8fb402bc
EB
101#ifndef GET_TSC_CTL
102# define GET_TSC_CTL(a) (-EINVAL)
103#endif
104#ifndef SET_TSC_CTL
105# define SET_TSC_CTL(a) (-EINVAL)
106#endif
9791554b
PB
107#ifndef GET_FP_MODE
108# define GET_FP_MODE(a) (-EINVAL)
109#endif
110#ifndef SET_FP_MODE
111# define SET_FP_MODE(a,b) (-EINVAL)
112#endif
2d2123bc
DM
113#ifndef SVE_SET_VL
114# define SVE_SET_VL(a) (-EINVAL)
115#endif
116#ifndef SVE_GET_VL
117# define SVE_GET_VL() (-EINVAL)
118#endif
ba830885
KM
119#ifndef PAC_RESET_KEYS
120# define PAC_RESET_KEYS(a, b) (-EINVAL)
121#endif
20169862
PC
122#ifndef PAC_SET_ENABLED_KEYS
123# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
124#endif
125#ifndef PAC_GET_ENABLED_KEYS
126# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
127#endif
63f0c603
CM
128#ifndef SET_TAGGED_ADDR_CTRL
129# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
130#endif
131#ifndef GET_TAGGED_ADDR_CTRL
132# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
133#endif
1da177e4
LT
134
135/*
136 * this is where the system-wide overflow UID and GID are defined, for
137 * architectures that now have 32-bit UID/GID but didn't in the past
138 */
139
140int overflowuid = DEFAULT_OVERFLOWUID;
141int overflowgid = DEFAULT_OVERFLOWGID;
142
1da177e4
LT
143EXPORT_SYMBOL(overflowuid);
144EXPORT_SYMBOL(overflowgid);
1da177e4
LT
145
146/*
147 * the same as above, but for filesystems which can only store a 16-bit
148 * UID and GID. as such, this is needed on all architectures
149 */
150
151int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 152int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
153
154EXPORT_SYMBOL(fs_overflowuid);
155EXPORT_SYMBOL(fs_overflowgid);
156
fc832ad3
SH
157/*
158 * Returns true if current's euid is same as p's uid or euid,
159 * or has CAP_SYS_NICE to p's user_ns.
160 *
161 * Called with rcu_read_lock, creds are safe
162 */
163static bool set_one_prio_perm(struct task_struct *p)
164{
165 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
166
5af66203
EB
167 if (uid_eq(pcred->uid, cred->euid) ||
168 uid_eq(pcred->euid, cred->euid))
fc832ad3 169 return true;
c4a4d603 170 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
171 return true;
172 return false;
173}
174
c69e8d9c
DH
175/*
176 * set the priority of a task
177 * - the caller must hold the RCU read lock
178 */
1da177e4
LT
179static int set_one_prio(struct task_struct *p, int niceval, int error)
180{
181 int no_nice;
182
fc832ad3 183 if (!set_one_prio_perm(p)) {
1da177e4
LT
184 error = -EPERM;
185 goto out;
186 }
e43379f1 187 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
188 error = -EACCES;
189 goto out;
190 }
191 no_nice = security_task_setnice(p, niceval);
192 if (no_nice) {
193 error = no_nice;
194 goto out;
195 }
196 if (error == -ESRCH)
197 error = 0;
198 set_user_nice(p, niceval);
199out:
200 return error;
201}
202
754fe8d2 203SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
204{
205 struct task_struct *g, *p;
206 struct user_struct *user;
86a264ab 207 const struct cred *cred = current_cred();
1da177e4 208 int error = -EINVAL;
41487c65 209 struct pid *pgrp;
7b44ab97 210 kuid_t uid;
1da177e4 211
3e88c553 212 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
213 goto out;
214
215 /* normalize: avoid signed division (rounding problems) */
216 error = -ESRCH;
c4a4d2f4
DY
217 if (niceval < MIN_NICE)
218 niceval = MIN_NICE;
219 if (niceval > MAX_NICE)
220 niceval = MAX_NICE;
1da177e4 221
d4581a23 222 rcu_read_lock();
1da177e4
LT
223 read_lock(&tasklist_lock);
224 switch (which) {
ec94fc3d 225 case PRIO_PROCESS:
226 if (who)
227 p = find_task_by_vpid(who);
228 else
229 p = current;
230 if (p)
231 error = set_one_prio(p, niceval, error);
232 break;
233 case PRIO_PGRP:
234 if (who)
235 pgrp = find_vpid(who);
236 else
237 pgrp = task_pgrp(current);
238 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 error = set_one_prio(p, niceval, error);
240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 break;
242 case PRIO_USER:
243 uid = make_kuid(cred->user_ns, who);
244 user = cred->user;
245 if (!who)
246 uid = cred->uid;
247 else if (!uid_eq(uid, cred->uid)) {
248 user = find_user(uid);
249 if (!user)
86a264ab 250 goto out_unlock; /* No processes for this user */
ec94fc3d 251 }
252 do_each_thread(g, p) {
8639b461 253 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 254 error = set_one_prio(p, niceval, error);
255 } while_each_thread(g, p);
256 if (!uid_eq(uid, cred->uid))
257 free_uid(user); /* For find_user() */
258 break;
1da177e4
LT
259 }
260out_unlock:
261 read_unlock(&tasklist_lock);
d4581a23 262 rcu_read_unlock();
1da177e4
LT
263out:
264 return error;
265}
266
267/*
268 * Ugh. To avoid negative return values, "getpriority()" will
269 * not return the normal nice-value, but a negated value that
270 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271 * to stay compatible.
272 */
754fe8d2 273SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
274{
275 struct task_struct *g, *p;
276 struct user_struct *user;
86a264ab 277 const struct cred *cred = current_cred();
1da177e4 278 long niceval, retval = -ESRCH;
41487c65 279 struct pid *pgrp;
7b44ab97 280 kuid_t uid;
1da177e4 281
3e88c553 282 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
283 return -EINVAL;
284
70118837 285 rcu_read_lock();
1da177e4
LT
286 read_lock(&tasklist_lock);
287 switch (which) {
ec94fc3d 288 case PRIO_PROCESS:
289 if (who)
290 p = find_task_by_vpid(who);
291 else
292 p = current;
293 if (p) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 break;
299 case PRIO_PGRP:
300 if (who)
301 pgrp = find_vpid(who);
302 else
303 pgrp = task_pgrp(current);
304 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 niceval = nice_to_rlimit(task_nice(p));
306 if (niceval > retval)
307 retval = niceval;
308 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 break;
310 case PRIO_USER:
311 uid = make_kuid(cred->user_ns, who);
312 user = cred->user;
313 if (!who)
314 uid = cred->uid;
315 else if (!uid_eq(uid, cred->uid)) {
316 user = find_user(uid);
317 if (!user)
318 goto out_unlock; /* No processes for this user */
319 }
320 do_each_thread(g, p) {
8639b461 321 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 322 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
323 if (niceval > retval)
324 retval = niceval;
325 }
ec94fc3d 326 } while_each_thread(g, p);
327 if (!uid_eq(uid, cred->uid))
328 free_uid(user); /* for find_user() */
329 break;
1da177e4
LT
330 }
331out_unlock:
332 read_unlock(&tasklist_lock);
70118837 333 rcu_read_unlock();
1da177e4
LT
334
335 return retval;
336}
337
1da177e4
LT
338/*
339 * Unprivileged users may change the real gid to the effective gid
340 * or vice versa. (BSD-style)
341 *
342 * If you set the real gid at all, or set the effective gid to a value not
343 * equal to the real gid, then the saved gid is set to the new effective gid.
344 *
345 * This makes it possible for a setgid program to completely drop its
346 * privileges, which is often a useful assertion to make when you are doing
347 * a security audit over a program.
348 *
349 * The general idea is that a program which uses just setregid() will be
350 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 351 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
352 *
353 * SMP: There are not races, the GIDs are checked only by filesystem
354 * operations (as far as semantic preservation is concerned).
355 */
2813893f 356#ifdef CONFIG_MULTIUSER
e530dca5 357long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 358{
a29c33f4 359 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
360 const struct cred *old;
361 struct cred *new;
1da177e4 362 int retval;
a29c33f4
EB
363 kgid_t krgid, kegid;
364
365 krgid = make_kgid(ns, rgid);
366 kegid = make_kgid(ns, egid);
367
368 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
369 return -EINVAL;
370 if ((egid != (gid_t) -1) && !gid_valid(kegid))
371 return -EINVAL;
1da177e4 372
d84f4f99
DH
373 new = prepare_creds();
374 if (!new)
375 return -ENOMEM;
376 old = current_cred();
377
d84f4f99 378 retval = -EPERM;
1da177e4 379 if (rgid != (gid_t) -1) {
a29c33f4
EB
380 if (gid_eq(old->gid, krgid) ||
381 gid_eq(old->egid, krgid) ||
111767c1 382 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 383 new->gid = krgid;
1da177e4 384 else
d84f4f99 385 goto error;
1da177e4
LT
386 }
387 if (egid != (gid_t) -1) {
a29c33f4
EB
388 if (gid_eq(old->gid, kegid) ||
389 gid_eq(old->egid, kegid) ||
390 gid_eq(old->sgid, kegid) ||
111767c1 391 ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4 392 new->egid = kegid;
756184b7 393 else
d84f4f99 394 goto error;
1da177e4 395 }
d84f4f99 396
1da177e4 397 if (rgid != (gid_t) -1 ||
a29c33f4 398 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
399 new->sgid = new->egid;
400 new->fsgid = new->egid;
401
39030e13
TC
402 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
403 if (retval < 0)
404 goto error;
405
d84f4f99
DH
406 return commit_creds(new);
407
408error:
409 abort_creds(new);
410 return retval;
1da177e4
LT
411}
412
e530dca5
DB
413SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
414{
415 return __sys_setregid(rgid, egid);
416}
417
1da177e4 418/*
ec94fc3d 419 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
420 *
421 * SMP: Same implicit races as above.
422 */
e530dca5 423long __sys_setgid(gid_t gid)
1da177e4 424{
a29c33f4 425 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
426 const struct cred *old;
427 struct cred *new;
1da177e4 428 int retval;
a29c33f4
EB
429 kgid_t kgid;
430
431 kgid = make_kgid(ns, gid);
432 if (!gid_valid(kgid))
433 return -EINVAL;
1da177e4 434
d84f4f99
DH
435 new = prepare_creds();
436 if (!new)
437 return -ENOMEM;
438 old = current_cred();
439
d84f4f99 440 retval = -EPERM;
111767c1 441 if (ns_capable_setid(old->user_ns, CAP_SETGID))
a29c33f4
EB
442 new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 new->egid = new->fsgid = kgid;
1da177e4 445 else
d84f4f99 446 goto error;
1da177e4 447
39030e13
TC
448 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
449 if (retval < 0)
450 goto error;
451
d84f4f99
DH
452 return commit_creds(new);
453
454error:
455 abort_creds(new);
456 return retval;
1da177e4 457}
54e99124 458
e530dca5
DB
459SYSCALL_DEFINE1(setgid, gid_t, gid)
460{
461 return __sys_setgid(gid);
462}
463
d84f4f99
DH
464/*
465 * change the user struct in a credentials set to match the new UID
466 */
467static int set_user(struct cred *new)
1da177e4
LT
468{
469 struct user_struct *new_user;
470
078de5f7 471 new_user = alloc_uid(new->uid);
1da177e4
LT
472 if (!new_user)
473 return -EAGAIN;
474
72fa5997
VK
475 /*
476 * We don't fail in case of NPROC limit excess here because too many
477 * poorly written programs don't check set*uid() return code, assuming
478 * it never fails if called by root. We may still enforce NPROC limit
479 * for programs doing set*uid()+execve() by harmlessly deferring the
480 * failure to the execve() stage.
481 */
21d1c5e3 482 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
2863643f
RX
483 new_user != INIT_USER &&
484 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
72fa5997
VK
485 current->flags |= PF_NPROC_EXCEEDED;
486 else
487 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 488
d84f4f99
DH
489 free_uid(new->user);
490 new->user = new_user;
1da177e4
LT
491 return 0;
492}
493
494/*
495 * Unprivileged users may change the real uid to the effective uid
496 * or vice versa. (BSD-style)
497 *
498 * If you set the real uid at all, or set the effective uid to a value not
499 * equal to the real uid, then the saved uid is set to the new effective uid.
500 *
501 * This makes it possible for a setuid program to completely drop its
502 * privileges, which is often a useful assertion to make when you are doing
503 * a security audit over a program.
504 *
505 * The general idea is that a program which uses just setreuid() will be
506 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 507 * 100% compatible with POSIX with saved IDs.
1da177e4 508 */
e530dca5 509long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 510{
a29c33f4 511 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
512 const struct cred *old;
513 struct cred *new;
1da177e4 514 int retval;
a29c33f4
EB
515 kuid_t kruid, keuid;
516
517 kruid = make_kuid(ns, ruid);
518 keuid = make_kuid(ns, euid);
519
520 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
521 return -EINVAL;
522 if ((euid != (uid_t) -1) && !uid_valid(keuid))
523 return -EINVAL;
1da177e4 524
d84f4f99
DH
525 new = prepare_creds();
526 if (!new)
527 return -ENOMEM;
528 old = current_cred();
529
d84f4f99 530 retval = -EPERM;
1da177e4 531 if (ruid != (uid_t) -1) {
a29c33f4
EB
532 new->uid = kruid;
533 if (!uid_eq(old->uid, kruid) &&
534 !uid_eq(old->euid, kruid) &&
40852275 535 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 536 goto error;
1da177e4
LT
537 }
538
539 if (euid != (uid_t) -1) {
a29c33f4
EB
540 new->euid = keuid;
541 if (!uid_eq(old->uid, keuid) &&
542 !uid_eq(old->euid, keuid) &&
543 !uid_eq(old->suid, keuid) &&
40852275 544 !ns_capable_setid(old->user_ns, CAP_SETUID))
d84f4f99 545 goto error;
1da177e4
LT
546 }
547
a29c33f4 548 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
549 retval = set_user(new);
550 if (retval < 0)
551 goto error;
552 }
1da177e4 553 if (ruid != (uid_t) -1 ||
a29c33f4 554 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
555 new->suid = new->euid;
556 new->fsuid = new->euid;
1da177e4 557
d84f4f99
DH
558 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
559 if (retval < 0)
560 goto error;
1da177e4 561
905ae01c
AG
562 retval = set_cred_ucounts(new);
563 if (retval < 0)
564 goto error;
565
d84f4f99 566 return commit_creds(new);
1da177e4 567
d84f4f99
DH
568error:
569 abort_creds(new);
570 return retval;
571}
ec94fc3d 572
e530dca5
DB
573SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
574{
575 return __sys_setreuid(ruid, euid);
576}
577
1da177e4 578/*
ec94fc3d 579 * setuid() is implemented like SysV with SAVED_IDS
580 *
1da177e4 581 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 582 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
583 * user and then switch back, because if you're root, setuid() sets
584 * the saved uid too. If you don't like this, blame the bright people
585 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
586 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 587 * regain them by swapping the real and effective uid.
1da177e4 588 */
e530dca5 589long __sys_setuid(uid_t uid)
1da177e4 590{
a29c33f4 591 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
592 const struct cred *old;
593 struct cred *new;
1da177e4 594 int retval;
a29c33f4
EB
595 kuid_t kuid;
596
597 kuid = make_kuid(ns, uid);
598 if (!uid_valid(kuid))
599 return -EINVAL;
1da177e4 600
d84f4f99
DH
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604 old = current_cred();
605
d84f4f99 606 retval = -EPERM;
40852275 607 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
608 new->suid = new->uid = kuid;
609 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
610 retval = set_user(new);
611 if (retval < 0)
612 goto error;
d84f4f99 613 }
a29c33f4 614 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 615 goto error;
1da177e4 616 }
1da177e4 617
a29c33f4 618 new->fsuid = new->euid = kuid;
d84f4f99
DH
619
620 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
621 if (retval < 0)
622 goto error;
1da177e4 623
905ae01c
AG
624 retval = set_cred_ucounts(new);
625 if (retval < 0)
626 goto error;
627
d84f4f99 628 return commit_creds(new);
1da177e4 629
d84f4f99
DH
630error:
631 abort_creds(new);
632 return retval;
1da177e4
LT
633}
634
e530dca5
DB
635SYSCALL_DEFINE1(setuid, uid_t, uid)
636{
637 return __sys_setuid(uid);
638}
639
1da177e4
LT
640
641/*
642 * This function implements a generic ability to update ruid, euid,
643 * and suid. This allows you to implement the 4.4 compatible seteuid().
644 */
e530dca5 645long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 646{
a29c33f4 647 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
648 const struct cred *old;
649 struct cred *new;
1da177e4 650 int retval;
a29c33f4
EB
651 kuid_t kruid, keuid, ksuid;
652
653 kruid = make_kuid(ns, ruid);
654 keuid = make_kuid(ns, euid);
655 ksuid = make_kuid(ns, suid);
656
657 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
658 return -EINVAL;
659
660 if ((euid != (uid_t) -1) && !uid_valid(keuid))
661 return -EINVAL;
662
663 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
664 return -EINVAL;
1da177e4 665
d84f4f99
DH
666 new = prepare_creds();
667 if (!new)
668 return -ENOMEM;
669
d84f4f99 670 old = current_cred();
1da177e4 671
d84f4f99 672 retval = -EPERM;
40852275 673 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
674 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
675 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 676 goto error;
a29c33f4
EB
677 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
678 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 679 goto error;
a29c33f4
EB
680 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
681 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 682 goto error;
1da177e4 683 }
d84f4f99 684
1da177e4 685 if (ruid != (uid_t) -1) {
a29c33f4
EB
686 new->uid = kruid;
687 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
688 retval = set_user(new);
689 if (retval < 0)
690 goto error;
691 }
1da177e4 692 }
d84f4f99 693 if (euid != (uid_t) -1)
a29c33f4 694 new->euid = keuid;
1da177e4 695 if (suid != (uid_t) -1)
a29c33f4 696 new->suid = ksuid;
d84f4f99 697 new->fsuid = new->euid;
1da177e4 698
d84f4f99
DH
699 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
700 if (retval < 0)
701 goto error;
1da177e4 702
905ae01c
AG
703 retval = set_cred_ucounts(new);
704 if (retval < 0)
705 goto error;
706
d84f4f99 707 return commit_creds(new);
1da177e4 708
d84f4f99
DH
709error:
710 abort_creds(new);
711 return retval;
1da177e4
LT
712}
713
e530dca5
DB
714SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
715{
716 return __sys_setresuid(ruid, euid, suid);
717}
718
a29c33f4 719SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 720{
86a264ab 721 const struct cred *cred = current_cred();
1da177e4 722 int retval;
a29c33f4
EB
723 uid_t ruid, euid, suid;
724
725 ruid = from_kuid_munged(cred->user_ns, cred->uid);
726 euid = from_kuid_munged(cred->user_ns, cred->euid);
727 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 728
ec94fc3d 729 retval = put_user(ruid, ruidp);
730 if (!retval) {
731 retval = put_user(euid, euidp);
732 if (!retval)
733 return put_user(suid, suidp);
734 }
1da177e4
LT
735 return retval;
736}
737
738/*
739 * Same as above, but for rgid, egid, sgid.
740 */
e530dca5 741long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 742{
a29c33f4 743 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
744 const struct cred *old;
745 struct cred *new;
1da177e4 746 int retval;
a29c33f4
EB
747 kgid_t krgid, kegid, ksgid;
748
749 krgid = make_kgid(ns, rgid);
750 kegid = make_kgid(ns, egid);
751 ksgid = make_kgid(ns, sgid);
752
753 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
754 return -EINVAL;
755 if ((egid != (gid_t) -1) && !gid_valid(kegid))
756 return -EINVAL;
757 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
758 return -EINVAL;
1da177e4 759
d84f4f99
DH
760 new = prepare_creds();
761 if (!new)
762 return -ENOMEM;
763 old = current_cred();
764
d84f4f99 765 retval = -EPERM;
111767c1 766 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
767 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
768 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 769 goto error;
a29c33f4
EB
770 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
771 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 772 goto error;
a29c33f4
EB
773 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
774 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 775 goto error;
1da177e4 776 }
d84f4f99 777
1da177e4 778 if (rgid != (gid_t) -1)
a29c33f4 779 new->gid = krgid;
d84f4f99 780 if (egid != (gid_t) -1)
a29c33f4 781 new->egid = kegid;
1da177e4 782 if (sgid != (gid_t) -1)
a29c33f4 783 new->sgid = ksgid;
d84f4f99 784 new->fsgid = new->egid;
1da177e4 785
39030e13
TC
786 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
787 if (retval < 0)
788 goto error;
789
d84f4f99
DH
790 return commit_creds(new);
791
792error:
793 abort_creds(new);
794 return retval;
1da177e4
LT
795}
796
e530dca5
DB
797SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
798{
799 return __sys_setresgid(rgid, egid, sgid);
800}
801
a29c33f4 802SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 803{
86a264ab 804 const struct cred *cred = current_cred();
1da177e4 805 int retval;
a29c33f4
EB
806 gid_t rgid, egid, sgid;
807
808 rgid = from_kgid_munged(cred->user_ns, cred->gid);
809 egid = from_kgid_munged(cred->user_ns, cred->egid);
810 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 811
ec94fc3d 812 retval = put_user(rgid, rgidp);
813 if (!retval) {
814 retval = put_user(egid, egidp);
815 if (!retval)
816 retval = put_user(sgid, sgidp);
817 }
1da177e4
LT
818
819 return retval;
820}
821
822
823/*
824 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
825 * is used for "access()" and for the NFS daemon (letting nfsd stay at
826 * whatever uid it wants to). It normally shadows "euid", except when
827 * explicitly set by setfsuid() or for access..
828 */
e530dca5 829long __sys_setfsuid(uid_t uid)
1da177e4 830{
d84f4f99
DH
831 const struct cred *old;
832 struct cred *new;
833 uid_t old_fsuid;
a29c33f4
EB
834 kuid_t kuid;
835
836 old = current_cred();
837 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
838
839 kuid = make_kuid(old->user_ns, uid);
840 if (!uid_valid(kuid))
841 return old_fsuid;
1da177e4 842
d84f4f99
DH
843 new = prepare_creds();
844 if (!new)
a29c33f4 845 return old_fsuid;
1da177e4 846
a29c33f4
EB
847 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
848 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
40852275 849 ns_capable_setid(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
850 if (!uid_eq(kuid, old->fsuid)) {
851 new->fsuid = kuid;
d84f4f99
DH
852 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
853 goto change_okay;
1da177e4 854 }
1da177e4
LT
855 }
856
d84f4f99
DH
857 abort_creds(new);
858 return old_fsuid;
1da177e4 859
d84f4f99
DH
860change_okay:
861 commit_creds(new);
1da177e4
LT
862 return old_fsuid;
863}
864
e530dca5
DB
865SYSCALL_DEFINE1(setfsuid, uid_t, uid)
866{
867 return __sys_setfsuid(uid);
868}
869
1da177e4 870/*
f42df9e6 871 * Samma på svenska..
1da177e4 872 */
e530dca5 873long __sys_setfsgid(gid_t gid)
1da177e4 874{
d84f4f99
DH
875 const struct cred *old;
876 struct cred *new;
877 gid_t old_fsgid;
a29c33f4
EB
878 kgid_t kgid;
879
880 old = current_cred();
881 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
882
883 kgid = make_kgid(old->user_ns, gid);
884 if (!gid_valid(kgid))
885 return old_fsgid;
d84f4f99
DH
886
887 new = prepare_creds();
888 if (!new)
a29c33f4 889 return old_fsgid;
1da177e4 890
a29c33f4
EB
891 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
892 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
111767c1 893 ns_capable_setid(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
894 if (!gid_eq(kgid, old->fsgid)) {
895 new->fsgid = kgid;
39030e13
TC
896 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
897 goto change_okay;
1da177e4 898 }
1da177e4 899 }
d84f4f99 900
d84f4f99
DH
901 abort_creds(new);
902 return old_fsgid;
903
904change_okay:
905 commit_creds(new);
1da177e4
LT
906 return old_fsgid;
907}
e530dca5
DB
908
909SYSCALL_DEFINE1(setfsgid, gid_t, gid)
910{
911 return __sys_setfsgid(gid);
912}
2813893f 913#endif /* CONFIG_MULTIUSER */
1da177e4 914
4a22f166
SR
915/**
916 * sys_getpid - return the thread group id of the current process
917 *
918 * Note, despite the name, this returns the tgid not the pid. The tgid and
919 * the pid are identical unless CLONE_THREAD was specified on clone() in
920 * which case the tgid is the same in all threads of the same group.
921 *
922 * This is SMP safe as current->tgid does not change.
923 */
924SYSCALL_DEFINE0(getpid)
925{
926 return task_tgid_vnr(current);
927}
928
929/* Thread ID - the internal kernel "pid" */
930SYSCALL_DEFINE0(gettid)
931{
932 return task_pid_vnr(current);
933}
934
935/*
936 * Accessing ->real_parent is not SMP-safe, it could
937 * change from under us. However, we can use a stale
938 * value of ->real_parent under rcu_read_lock(), see
939 * release_task()->call_rcu(delayed_put_task_struct).
940 */
941SYSCALL_DEFINE0(getppid)
942{
943 int pid;
944
945 rcu_read_lock();
946 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
947 rcu_read_unlock();
948
949 return pid;
950}
951
952SYSCALL_DEFINE0(getuid)
953{
954 /* Only we change this so SMP safe */
955 return from_kuid_munged(current_user_ns(), current_uid());
956}
957
958SYSCALL_DEFINE0(geteuid)
959{
960 /* Only we change this so SMP safe */
961 return from_kuid_munged(current_user_ns(), current_euid());
962}
963
964SYSCALL_DEFINE0(getgid)
965{
966 /* Only we change this so SMP safe */
967 return from_kgid_munged(current_user_ns(), current_gid());
968}
969
970SYSCALL_DEFINE0(getegid)
971{
972 /* Only we change this so SMP safe */
973 return from_kgid_munged(current_user_ns(), current_egid());
974}
975
ca2406ed 976static void do_sys_times(struct tms *tms)
f06febc9 977{
5613fda9 978 u64 tgutime, tgstime, cutime, cstime;
f06febc9 979
e80d0a1a 980 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
981 cutime = current->signal->cutime;
982 cstime = current->signal->cstime;
5613fda9
FW
983 tms->tms_utime = nsec_to_clock_t(tgutime);
984 tms->tms_stime = nsec_to_clock_t(tgstime);
985 tms->tms_cutime = nsec_to_clock_t(cutime);
986 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
987}
988
58fd3aa2 989SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 990{
1da177e4
LT
991 if (tbuf) {
992 struct tms tmp;
f06febc9
FM
993
994 do_sys_times(&tmp);
1da177e4
LT
995 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
996 return -EFAULT;
997 }
e3d5a27d 998 force_successful_syscall_return();
1da177e4
LT
999 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1000}
1001
ca2406ed
AV
1002#ifdef CONFIG_COMPAT
1003static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1004{
1005 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1006}
1007
1008COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1009{
1010 if (tbuf) {
1011 struct tms tms;
1012 struct compat_tms tmp;
1013
1014 do_sys_times(&tms);
1015 /* Convert our struct tms to the compat version. */
1016 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1017 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1018 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1019 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1020 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1021 return -EFAULT;
1022 }
1023 force_successful_syscall_return();
1024 return compat_jiffies_to_clock_t(jiffies);
1025}
1026#endif
1027
1da177e4
LT
1028/*
1029 * This needs some heavy checking ...
1030 * I just haven't the stomach for it. I also don't fully
1031 * understand sessions/pgrp etc. Let somebody who does explain it.
1032 *
1033 * OK, I think I have the protection semantics right.... this is really
1034 * only important on a multi-user system anyway, to make sure one user
1035 * can't send a signal to a process owned by another. -TYT, 12/12/91
1036 *
98611e4e 1037 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1038 */
b290ebe2 1039SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1040{
1041 struct task_struct *p;
ee0acf90 1042 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1043 struct pid *pgrp;
1044 int err;
1da177e4
LT
1045
1046 if (!pid)
b488893a 1047 pid = task_pid_vnr(group_leader);
1da177e4
LT
1048 if (!pgid)
1049 pgid = pid;
1050 if (pgid < 0)
1051 return -EINVAL;
950eaaca 1052 rcu_read_lock();
1da177e4
LT
1053
1054 /* From this point forward we keep holding onto the tasklist lock
1055 * so that our parent does not change from under us. -DaveM
1056 */
1057 write_lock_irq(&tasklist_lock);
1058
1059 err = -ESRCH;
4e021306 1060 p = find_task_by_vpid(pid);
1da177e4
LT
1061 if (!p)
1062 goto out;
1063
1064 err = -EINVAL;
1065 if (!thread_group_leader(p))
1066 goto out;
1067
4e021306 1068 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1069 err = -EPERM;
41487c65 1070 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1071 goto out;
1072 err = -EACCES;
98611e4e 1073 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1074 goto out;
1075 } else {
1076 err = -ESRCH;
ee0acf90 1077 if (p != group_leader)
1da177e4
LT
1078 goto out;
1079 }
1080
1081 err = -EPERM;
1082 if (p->signal->leader)
1083 goto out;
1084
4e021306 1085 pgrp = task_pid(p);
1da177e4 1086 if (pgid != pid) {
b488893a 1087 struct task_struct *g;
1da177e4 1088
4e021306
ON
1089 pgrp = find_vpid(pgid);
1090 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1091 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1092 goto out;
1da177e4
LT
1093 }
1094
1da177e4
LT
1095 err = security_task_setpgid(p, pgid);
1096 if (err)
1097 goto out;
1098
1b0f7ffd 1099 if (task_pgrp(p) != pgrp)
83beaf3c 1100 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1101
1102 err = 0;
1103out:
1104 /* All paths lead to here, thus we are safe. -DaveM */
1105 write_unlock_irq(&tasklist_lock);
950eaaca 1106 rcu_read_unlock();
1da177e4
LT
1107 return err;
1108}
1109
192c5807 1110static int do_getpgid(pid_t pid)
1da177e4 1111{
12a3de0a
ON
1112 struct task_struct *p;
1113 struct pid *grp;
1114 int retval;
1115
1116 rcu_read_lock();
756184b7 1117 if (!pid)
12a3de0a 1118 grp = task_pgrp(current);
756184b7 1119 else {
1da177e4 1120 retval = -ESRCH;
12a3de0a
ON
1121 p = find_task_by_vpid(pid);
1122 if (!p)
1123 goto out;
1124 grp = task_pgrp(p);
1125 if (!grp)
1126 goto out;
1127
1128 retval = security_task_getpgid(p);
1129 if (retval)
1130 goto out;
1da177e4 1131 }
12a3de0a
ON
1132 retval = pid_vnr(grp);
1133out:
1134 rcu_read_unlock();
1135 return retval;
1da177e4
LT
1136}
1137
192c5807
DB
1138SYSCALL_DEFINE1(getpgid, pid_t, pid)
1139{
1140 return do_getpgid(pid);
1141}
1142
1da177e4
LT
1143#ifdef __ARCH_WANT_SYS_GETPGRP
1144
dbf040d9 1145SYSCALL_DEFINE0(getpgrp)
1da177e4 1146{
192c5807 1147 return do_getpgid(0);
1da177e4
LT
1148}
1149
1150#endif
1151
dbf040d9 1152SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1153{
1dd768c0
ON
1154 struct task_struct *p;
1155 struct pid *sid;
1156 int retval;
1157
1158 rcu_read_lock();
756184b7 1159 if (!pid)
1dd768c0 1160 sid = task_session(current);
756184b7 1161 else {
1da177e4 1162 retval = -ESRCH;
1dd768c0
ON
1163 p = find_task_by_vpid(pid);
1164 if (!p)
1165 goto out;
1166 sid = task_session(p);
1167 if (!sid)
1168 goto out;
1169
1170 retval = security_task_getsid(p);
1171 if (retval)
1172 goto out;
1da177e4 1173 }
1dd768c0
ON
1174 retval = pid_vnr(sid);
1175out:
1176 rcu_read_unlock();
1177 return retval;
1da177e4
LT
1178}
1179
81dabb46
ON
1180static void set_special_pids(struct pid *pid)
1181{
1182 struct task_struct *curr = current->group_leader;
1183
1184 if (task_session(curr) != pid)
1185 change_pid(curr, PIDTYPE_SID, pid);
1186
1187 if (task_pgrp(curr) != pid)
1188 change_pid(curr, PIDTYPE_PGID, pid);
1189}
1190
e2aaa9f4 1191int ksys_setsid(void)
1da177e4 1192{
e19f247a 1193 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1194 struct pid *sid = task_pid(group_leader);
1195 pid_t session = pid_vnr(sid);
1da177e4
LT
1196 int err = -EPERM;
1197
1da177e4 1198 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1199 /* Fail if I am already a session leader */
1200 if (group_leader->signal->leader)
1201 goto out;
1202
430c6231
ON
1203 /* Fail if a process group id already exists that equals the
1204 * proposed session id.
390e2ff0 1205 */
6806aac6 1206 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1207 goto out;
1208
e19f247a 1209 group_leader->signal->leader = 1;
81dabb46 1210 set_special_pids(sid);
24ec839c 1211
9c9f4ded 1212 proc_clear_tty(group_leader);
24ec839c 1213
e4cc0a9c 1214 err = session;
1da177e4
LT
1215out:
1216 write_unlock_irq(&tasklist_lock);
5091faa4 1217 if (err > 0) {
0d0df599 1218 proc_sid_connector(group_leader);
5091faa4
MG
1219 sched_autogroup_create_attach(group_leader);
1220 }
1da177e4
LT
1221 return err;
1222}
1223
e2aaa9f4
DB
1224SYSCALL_DEFINE0(setsid)
1225{
1226 return ksys_setsid();
1227}
1228
1da177e4
LT
1229DECLARE_RWSEM(uts_sem);
1230
e28cbf22
CH
1231#ifdef COMPAT_UTS_MACHINE
1232#define override_architecture(name) \
46da2766 1233 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1234 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1235 sizeof(COMPAT_UTS_MACHINE)))
1236#else
1237#define override_architecture(name) 0
1238#endif
1239
be27425d
AK
1240/*
1241 * Work around broken programs that cannot handle "Linux 3.0".
1242 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
b7285b42
JN
1243 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1244 * 2.6.60.
be27425d 1245 */
2702b152 1246static int override_release(char __user *release, size_t len)
be27425d
AK
1247{
1248 int ret = 0;
be27425d
AK
1249
1250 if (current->personality & UNAME26) {
2702b152
KC
1251 const char *rest = UTS_RELEASE;
1252 char buf[65] = { 0 };
be27425d
AK
1253 int ndots = 0;
1254 unsigned v;
2702b152 1255 size_t copy;
be27425d
AK
1256
1257 while (*rest) {
1258 if (*rest == '.' && ++ndots >= 3)
1259 break;
1260 if (!isdigit(*rest) && *rest != '.')
1261 break;
1262 rest++;
1263 }
88a68672 1264 v = LINUX_VERSION_PATCHLEVEL + 60;
31fd84b9 1265 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1266 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1267 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1268 }
1269 return ret;
1270}
1271
e48fbb69 1272SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4 1273{
42a0cc34 1274 struct new_utsname tmp;
1da177e4
LT
1275
1276 down_read(&uts_sem);
42a0cc34 1277 memcpy(&tmp, utsname(), sizeof(tmp));
1da177e4 1278 up_read(&uts_sem);
42a0cc34
JH
1279 if (copy_to_user(name, &tmp, sizeof(tmp)))
1280 return -EFAULT;
e28cbf22 1281
42a0cc34
JH
1282 if (override_release(name->release, sizeof(name->release)))
1283 return -EFAULT;
1284 if (override_architecture(name))
1285 return -EFAULT;
1286 return 0;
1da177e4
LT
1287}
1288
5cacdb4a
CH
1289#ifdef __ARCH_WANT_SYS_OLD_UNAME
1290/*
1291 * Old cruft
1292 */
1293SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1294{
42a0cc34 1295 struct old_utsname tmp;
5cacdb4a
CH
1296
1297 if (!name)
1298 return -EFAULT;
1299
1300 down_read(&uts_sem);
42a0cc34 1301 memcpy(&tmp, utsname(), sizeof(tmp));
5cacdb4a 1302 up_read(&uts_sem);
42a0cc34
JH
1303 if (copy_to_user(name, &tmp, sizeof(tmp)))
1304 return -EFAULT;
5cacdb4a 1305
42a0cc34
JH
1306 if (override_release(name->release, sizeof(name->release)))
1307 return -EFAULT;
1308 if (override_architecture(name))
1309 return -EFAULT;
1310 return 0;
5cacdb4a
CH
1311}
1312
1313SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1314{
5e1aada0 1315 struct oldold_utsname tmp;
5cacdb4a
CH
1316
1317 if (!name)
1318 return -EFAULT;
5cacdb4a 1319
5e1aada0
JP
1320 memset(&tmp, 0, sizeof(tmp));
1321
5cacdb4a 1322 down_read(&uts_sem);
42a0cc34
JH
1323 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1324 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1325 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1326 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1327 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
5cacdb4a 1328 up_read(&uts_sem);
42a0cc34
JH
1329 if (copy_to_user(name, &tmp, sizeof(tmp)))
1330 return -EFAULT;
5cacdb4a 1331
42a0cc34
JH
1332 if (override_architecture(name))
1333 return -EFAULT;
1334 if (override_release(name->release, sizeof(name->release)))
1335 return -EFAULT;
1336 return 0;
5cacdb4a
CH
1337}
1338#endif
1339
5a8a82b1 1340SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1341{
1342 int errno;
1343 char tmp[__NEW_UTS_LEN];
1344
bb96a6f5 1345 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1346 return -EPERM;
fc832ad3 1347
1da177e4
LT
1348 if (len < 0 || len > __NEW_UTS_LEN)
1349 return -EINVAL;
1da177e4
LT
1350 errno = -EFAULT;
1351 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1352 struct new_utsname *u;
9679e4dd 1353
42a0cc34
JH
1354 down_write(&uts_sem);
1355 u = utsname();
9679e4dd
AM
1356 memcpy(u->nodename, tmp, len);
1357 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1358 errno = 0;
499eea6b 1359 uts_proc_notify(UTS_PROC_HOSTNAME);
42a0cc34 1360 up_write(&uts_sem);
1da177e4 1361 }
1da177e4
LT
1362 return errno;
1363}
1364
1365#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1366
5a8a82b1 1367SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4 1368{
42a0cc34 1369 int i;
9679e4dd 1370 struct new_utsname *u;
42a0cc34 1371 char tmp[__NEW_UTS_LEN + 1];
1da177e4
LT
1372
1373 if (len < 0)
1374 return -EINVAL;
1375 down_read(&uts_sem);
9679e4dd
AM
1376 u = utsname();
1377 i = 1 + strlen(u->nodename);
1da177e4
LT
1378 if (i > len)
1379 i = len;
42a0cc34 1380 memcpy(tmp, u->nodename, i);
1da177e4 1381 up_read(&uts_sem);
42a0cc34
JH
1382 if (copy_to_user(name, tmp, i))
1383 return -EFAULT;
1384 return 0;
1da177e4
LT
1385}
1386
1387#endif
1388
1389/*
1390 * Only setdomainname; getdomainname can be implemented by calling
1391 * uname()
1392 */
5a8a82b1 1393SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1394{
1395 int errno;
1396 char tmp[__NEW_UTS_LEN];
1397
fc832ad3 1398 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1399 return -EPERM;
1400 if (len < 0 || len > __NEW_UTS_LEN)
1401 return -EINVAL;
1402
1da177e4
LT
1403 errno = -EFAULT;
1404 if (!copy_from_user(tmp, name, len)) {
42a0cc34 1405 struct new_utsname *u;
9679e4dd 1406
42a0cc34
JH
1407 down_write(&uts_sem);
1408 u = utsname();
9679e4dd
AM
1409 memcpy(u->domainname, tmp, len);
1410 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1411 errno = 0;
499eea6b 1412 uts_proc_notify(UTS_PROC_DOMAINNAME);
42a0cc34 1413 up_write(&uts_sem);
1da177e4 1414 }
1da177e4
LT
1415 return errno;
1416}
1417
e48fbb69 1418SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1419{
b9518345
JS
1420 struct rlimit value;
1421 int ret;
1422
1423 ret = do_prlimit(current, resource, NULL, &value);
1424 if (!ret)
1425 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1426
1427 return ret;
1da177e4
LT
1428}
1429
d9e968cb
AV
1430#ifdef CONFIG_COMPAT
1431
1432COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1433 struct compat_rlimit __user *, rlim)
1434{
1435 struct rlimit r;
1436 struct compat_rlimit r32;
1437
1438 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1439 return -EFAULT;
1440
1441 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1442 r.rlim_cur = RLIM_INFINITY;
1443 else
1444 r.rlim_cur = r32.rlim_cur;
1445 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1446 r.rlim_max = RLIM_INFINITY;
1447 else
1448 r.rlim_max = r32.rlim_max;
1449 return do_prlimit(current, resource, &r, NULL);
1450}
1451
1452COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1453 struct compat_rlimit __user *, rlim)
1454{
1455 struct rlimit r;
1456 int ret;
1457
1458 ret = do_prlimit(current, resource, NULL, &r);
1459 if (!ret) {
58c7ffc0 1460 struct compat_rlimit r32;
d9e968cb
AV
1461 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1462 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1463 else
1464 r32.rlim_cur = r.rlim_cur;
1465 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1466 r32.rlim_max = COMPAT_RLIM_INFINITY;
1467 else
1468 r32.rlim_max = r.rlim_max;
1469
1470 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1471 return -EFAULT;
1472 }
1473 return ret;
1474}
1475
1476#endif
1477
1da177e4
LT
1478#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1479
1480/*
1481 * Back compatibility for getrlimit. Needed for some apps.
1482 */
e48fbb69
HC
1483SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1484 struct rlimit __user *, rlim)
1da177e4
LT
1485{
1486 struct rlimit x;
1487 if (resource >= RLIM_NLIMITS)
1488 return -EINVAL;
1489
23d6aef7 1490 resource = array_index_nospec(resource, RLIM_NLIMITS);
1da177e4
LT
1491 task_lock(current->group_leader);
1492 x = current->signal->rlim[resource];
1493 task_unlock(current->group_leader);
756184b7 1494 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1495 x.rlim_cur = 0x7FFFFFFF;
756184b7 1496 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1497 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1498 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1499}
1500
613763a1
AV
1501#ifdef CONFIG_COMPAT
1502COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1503 struct compat_rlimit __user *, rlim)
1504{
1505 struct rlimit r;
1506
1507 if (resource >= RLIM_NLIMITS)
1508 return -EINVAL;
1509
23d6aef7 1510 resource = array_index_nospec(resource, RLIM_NLIMITS);
613763a1
AV
1511 task_lock(current->group_leader);
1512 r = current->signal->rlim[resource];
1513 task_unlock(current->group_leader);
1514 if (r.rlim_cur > 0x7FFFFFFF)
1515 r.rlim_cur = 0x7FFFFFFF;
1516 if (r.rlim_max > 0x7FFFFFFF)
1517 r.rlim_max = 0x7FFFFFFF;
1518
1519 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1520 put_user(r.rlim_max, &rlim->rlim_max))
1521 return -EFAULT;
1522 return 0;
1523}
1524#endif
1525
1da177e4
LT
1526#endif
1527
c022a0ac
JS
1528static inline bool rlim64_is_infinity(__u64 rlim64)
1529{
1530#if BITS_PER_LONG < 64
1531 return rlim64 >= ULONG_MAX;
1532#else
1533 return rlim64 == RLIM64_INFINITY;
1534#endif
1535}
1536
1537static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1538{
1539 if (rlim->rlim_cur == RLIM_INFINITY)
1540 rlim64->rlim_cur = RLIM64_INFINITY;
1541 else
1542 rlim64->rlim_cur = rlim->rlim_cur;
1543 if (rlim->rlim_max == RLIM_INFINITY)
1544 rlim64->rlim_max = RLIM64_INFINITY;
1545 else
1546 rlim64->rlim_max = rlim->rlim_max;
1547}
1548
1549static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1550{
1551 if (rlim64_is_infinity(rlim64->rlim_cur))
1552 rlim->rlim_cur = RLIM_INFINITY;
1553 else
1554 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1555 if (rlim64_is_infinity(rlim64->rlim_max))
1556 rlim->rlim_max = RLIM_INFINITY;
1557 else
1558 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1559}
1560
1c1e618d 1561/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1562int do_prlimit(struct task_struct *tsk, unsigned int resource,
1563 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1564{
5b41535a 1565 struct rlimit *rlim;
86f162f4 1566 int retval = 0;
1da177e4
LT
1567
1568 if (resource >= RLIM_NLIMITS)
1569 return -EINVAL;
5b41535a
JS
1570 if (new_rlim) {
1571 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1572 return -EINVAL;
1573 if (resource == RLIMIT_NOFILE &&
1574 new_rlim->rlim_max > sysctl_nr_open)
1575 return -EPERM;
1576 }
1da177e4 1577
1c1e618d
JS
1578 /* protect tsk->signal and tsk->sighand from disappearing */
1579 read_lock(&tasklist_lock);
1580 if (!tsk->sighand) {
1581 retval = -ESRCH;
1582 goto out;
1583 }
1584
5b41535a 1585 rlim = tsk->signal->rlim + resource;
86f162f4 1586 task_lock(tsk->group_leader);
5b41535a 1587 if (new_rlim) {
fc832ad3
SH
1588 /* Keep the capable check against init_user_ns until
1589 cgroups can contain all limits */
5b41535a
JS
1590 if (new_rlim->rlim_max > rlim->rlim_max &&
1591 !capable(CAP_SYS_RESOURCE))
1592 retval = -EPERM;
1593 if (!retval)
cad4ea54 1594 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1595 }
1596 if (!retval) {
1597 if (old_rlim)
1598 *old_rlim = *rlim;
1599 if (new_rlim)
1600 *rlim = *new_rlim;
9926e4c7 1601 }
7855c35d 1602 task_unlock(tsk->group_leader);
1da177e4 1603
d3561f78 1604 /*
24db4dd9 1605 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
5afe69c2 1606 * infinite. In case of RLIM_INFINITY the posix CPU timer code
24db4dd9 1607 * ignores the rlimit.
d3561f78 1608 */
5b41535a 1609 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1610 new_rlim->rlim_cur != RLIM_INFINITY &&
1611 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1612 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1613out:
1c1e618d 1614 read_unlock(&tasklist_lock);
2fb9d268 1615 return retval;
1da177e4
LT
1616}
1617
c022a0ac 1618/* rcu lock must be held */
791ec491
SS
1619static int check_prlimit_permission(struct task_struct *task,
1620 unsigned int flags)
c022a0ac
JS
1621{
1622 const struct cred *cred = current_cred(), *tcred;
791ec491 1623 bool id_match;
c022a0ac 1624
fc832ad3
SH
1625 if (current == task)
1626 return 0;
c022a0ac 1627
fc832ad3 1628 tcred = __task_cred(task);
791ec491
SS
1629 id_match = (uid_eq(cred->uid, tcred->euid) &&
1630 uid_eq(cred->uid, tcred->suid) &&
1631 uid_eq(cred->uid, tcred->uid) &&
1632 gid_eq(cred->gid, tcred->egid) &&
1633 gid_eq(cred->gid, tcred->sgid) &&
1634 gid_eq(cred->gid, tcred->gid));
1635 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1636 return -EPERM;
fc832ad3 1637
791ec491 1638 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1639}
1640
1641SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1642 const struct rlimit64 __user *, new_rlim,
1643 struct rlimit64 __user *, old_rlim)
1644{
1645 struct rlimit64 old64, new64;
1646 struct rlimit old, new;
1647 struct task_struct *tsk;
791ec491 1648 unsigned int checkflags = 0;
c022a0ac
JS
1649 int ret;
1650
791ec491
SS
1651 if (old_rlim)
1652 checkflags |= LSM_PRLIMIT_READ;
1653
c022a0ac
JS
1654 if (new_rlim) {
1655 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1656 return -EFAULT;
1657 rlim64_to_rlim(&new64, &new);
791ec491 1658 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1659 }
1660
1661 rcu_read_lock();
1662 tsk = pid ? find_task_by_vpid(pid) : current;
1663 if (!tsk) {
1664 rcu_read_unlock();
1665 return -ESRCH;
1666 }
791ec491 1667 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1668 if (ret) {
1669 rcu_read_unlock();
1670 return ret;
1671 }
1672 get_task_struct(tsk);
1673 rcu_read_unlock();
1674
1675 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1676 old_rlim ? &old : NULL);
1677
1678 if (!ret && old_rlim) {
1679 rlim_to_rlim64(&old, &old64);
1680 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1681 ret = -EFAULT;
1682 }
1683
1684 put_task_struct(tsk);
1685 return ret;
1686}
1687
7855c35d
JS
1688SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1689{
1690 struct rlimit new_rlim;
1691
1692 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1693 return -EFAULT;
5b41535a 1694 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1695}
1696
1da177e4
LT
1697/*
1698 * It would make sense to put struct rusage in the task_struct,
1699 * except that would make the task_struct be *really big*. After
1700 * task_struct gets moved into malloc'ed memory, it would
1701 * make sense to do this. It will make moving the rest of the information
1702 * a lot simpler! (Which we're not doing right now because we're not
1703 * measuring them yet).
1704 *
1da177e4
LT
1705 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1706 * races with threads incrementing their own counters. But since word
1707 * reads are atomic, we either get new values or old values and we don't
1708 * care which for the sums. We always take the siglock to protect reading
1709 * the c* fields from p->signal from races with exit.c updating those
1710 * fields when reaping, so a sample either gets all the additions of a
1711 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1712 *
de047c1b
RT
1713 * Locking:
1714 * We need to take the siglock for CHILDEREN, SELF and BOTH
1715 * for the cases current multithreaded, non-current single threaded
1716 * non-current multithreaded. Thread traversal is now safe with
1717 * the siglock held.
1718 * Strictly speaking, we donot need to take the siglock if we are current and
1719 * single threaded, as no one else can take our signal_struct away, no one
1720 * else can reap the children to update signal->c* counters, and no one else
1721 * can race with the signal-> fields. If we do not take any lock, the
1722 * signal-> fields could be read out of order while another thread was just
1723 * exiting. So we should place a read memory barrier when we avoid the lock.
1724 * On the writer side, write memory barrier is implied in __exit_signal
1725 * as __exit_signal releases the siglock spinlock after updating the signal->
1726 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1727 *
1da177e4
LT
1728 */
1729
f06febc9 1730static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1731{
679c9cd4
SK
1732 r->ru_nvcsw += t->nvcsw;
1733 r->ru_nivcsw += t->nivcsw;
1734 r->ru_minflt += t->min_flt;
1735 r->ru_majflt += t->maj_flt;
1736 r->ru_inblock += task_io_get_inblock(t);
1737 r->ru_oublock += task_io_get_oublock(t);
1738}
1739
ce72a16f 1740void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1741{
1742 struct task_struct *t;
1743 unsigned long flags;
5613fda9 1744 u64 tgutime, tgstime, utime, stime;
1f10206c 1745 unsigned long maxrss = 0;
1da177e4 1746
ec94fc3d 1747 memset((char *)r, 0, sizeof (*r));
64861634 1748 utime = stime = 0;
1da177e4 1749
679c9cd4 1750 if (who == RUSAGE_THREAD) {
e80d0a1a 1751 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1752 accumulate_thread_rusage(p, r);
1f10206c 1753 maxrss = p->signal->maxrss;
679c9cd4
SK
1754 goto out;
1755 }
1756
d6cf723a 1757 if (!lock_task_sighand(p, &flags))
de047c1b 1758 return;
0f59cc4a 1759
1da177e4 1760 switch (who) {
ec94fc3d 1761 case RUSAGE_BOTH:
1762 case RUSAGE_CHILDREN:
1763 utime = p->signal->cutime;
1764 stime = p->signal->cstime;
1765 r->ru_nvcsw = p->signal->cnvcsw;
1766 r->ru_nivcsw = p->signal->cnivcsw;
1767 r->ru_minflt = p->signal->cmin_flt;
1768 r->ru_majflt = p->signal->cmaj_flt;
1769 r->ru_inblock = p->signal->cinblock;
1770 r->ru_oublock = p->signal->coublock;
1771 maxrss = p->signal->cmaxrss;
1772
1773 if (who == RUSAGE_CHILDREN)
1da177e4 1774 break;
df561f66 1775 fallthrough;
0f59cc4a 1776
ec94fc3d 1777 case RUSAGE_SELF:
1778 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1779 utime += tgutime;
1780 stime += tgstime;
1781 r->ru_nvcsw += p->signal->nvcsw;
1782 r->ru_nivcsw += p->signal->nivcsw;
1783 r->ru_minflt += p->signal->min_flt;
1784 r->ru_majflt += p->signal->maj_flt;
1785 r->ru_inblock += p->signal->inblock;
1786 r->ru_oublock += p->signal->oublock;
1787 if (maxrss < p->signal->maxrss)
1788 maxrss = p->signal->maxrss;
1789 t = p;
1790 do {
1791 accumulate_thread_rusage(t, r);
1792 } while_each_thread(p, t);
1793 break;
1794
1795 default:
1796 BUG();
1da177e4 1797 }
de047c1b 1798 unlock_task_sighand(p, &flags);
de047c1b 1799
679c9cd4 1800out:
bdd565f8
AB
1801 r->ru_utime = ns_to_kernel_old_timeval(utime);
1802 r->ru_stime = ns_to_kernel_old_timeval(stime);
1f10206c
JP
1803
1804 if (who != RUSAGE_CHILDREN) {
1805 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1806
1f10206c
JP
1807 if (mm) {
1808 setmax_mm_hiwater_rss(&maxrss, mm);
1809 mmput(mm);
1810 }
1811 }
1812 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1813}
1814
ce72a16f 1815SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1816{
1817 struct rusage r;
ec94fc3d 1818
679c9cd4
SK
1819 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1820 who != RUSAGE_THREAD)
1da177e4 1821 return -EINVAL;
ce72a16f
AV
1822
1823 getrusage(current, who, &r);
1824 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1825}
1826
8d2d5c4a
AV
1827#ifdef CONFIG_COMPAT
1828COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1829{
1830 struct rusage r;
1831
1832 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1833 who != RUSAGE_THREAD)
1834 return -EINVAL;
1835
ce72a16f 1836 getrusage(current, who, &r);
8d2d5c4a
AV
1837 return put_compat_rusage(&r, ru);
1838}
1839#endif
1840
e48fbb69 1841SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1842{
1843 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1844 return mask;
1845}
3b7391de 1846
6e399cd1 1847static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1848{
2903ff01 1849 struct fd exe;
6e399cd1 1850 struct file *old_exe, *exe_file;
496ad9aa 1851 struct inode *inode;
2903ff01 1852 int err;
b32dfe37 1853
2903ff01
AV
1854 exe = fdget(fd);
1855 if (!exe.file)
b32dfe37
CG
1856 return -EBADF;
1857
496ad9aa 1858 inode = file_inode(exe.file);
b32dfe37
CG
1859
1860 /*
1861 * Because the original mm->exe_file points to executable file, make
1862 * sure that this one is executable as well, to avoid breaking an
1863 * overall picture.
1864 */
1865 err = -EACCES;
90f8572b 1866 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1867 goto exit;
1868
02f92b38 1869 err = file_permission(exe.file, MAY_EXEC);
b32dfe37
CG
1870 if (err)
1871 goto exit;
1872
bafb282d 1873 /*
4229fb1d 1874 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1875 */
6e399cd1 1876 exe_file = get_mm_exe_file(mm);
bafb282d 1877 err = -EBUSY;
6e399cd1 1878 if (exe_file) {
4229fb1d
KK
1879 struct vm_area_struct *vma;
1880
d8ed45c5 1881 mmap_read_lock(mm);
6e399cd1
DB
1882 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1883 if (!vma->vm_file)
1884 continue;
1885 if (path_equal(&vma->vm_file->f_path,
1886 &exe_file->f_path))
1887 goto exit_err;
1888 }
1889
d8ed45c5 1890 mmap_read_unlock(mm);
6e399cd1 1891 fput(exe_file);
bafb282d
KK
1892 }
1893
4229fb1d 1894 err = 0;
6e399cd1
DB
1895 /* set the new file, lockless */
1896 get_file(exe.file);
1897 old_exe = xchg(&mm->exe_file, exe.file);
1898 if (old_exe)
1899 fput(old_exe);
b32dfe37 1900exit:
2903ff01 1901 fdput(exe);
b32dfe37 1902 return err;
6e399cd1 1903exit_err:
d8ed45c5 1904 mmap_read_unlock(mm);
6e399cd1
DB
1905 fput(exe_file);
1906 goto exit;
b32dfe37
CG
1907}
1908
f606b77f 1909/*
11bbd8b4
MK
1910 * Check arithmetic relations of passed addresses.
1911 *
f606b77f
CG
1912 * WARNING: we don't require any capability here so be very careful
1913 * in what is allowed for modification from userspace.
1914 */
11bbd8b4 1915static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
f606b77f
CG
1916{
1917 unsigned long mmap_max_addr = TASK_SIZE;
f606b77f
CG
1918 int error = -EINVAL, i;
1919
1920 static const unsigned char offsets[] = {
1921 offsetof(struct prctl_mm_map, start_code),
1922 offsetof(struct prctl_mm_map, end_code),
1923 offsetof(struct prctl_mm_map, start_data),
1924 offsetof(struct prctl_mm_map, end_data),
1925 offsetof(struct prctl_mm_map, start_brk),
1926 offsetof(struct prctl_mm_map, brk),
1927 offsetof(struct prctl_mm_map, start_stack),
1928 offsetof(struct prctl_mm_map, arg_start),
1929 offsetof(struct prctl_mm_map, arg_end),
1930 offsetof(struct prctl_mm_map, env_start),
1931 offsetof(struct prctl_mm_map, env_end),
1932 };
1933
1934 /*
1935 * Make sure the members are not somewhere outside
1936 * of allowed address space.
1937 */
1938 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1939 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1940
1941 if ((unsigned long)val >= mmap_max_addr ||
1942 (unsigned long)val < mmap_min_addr)
1943 goto out;
1944 }
1945
1946 /*
1947 * Make sure the pairs are ordered.
1948 */
1949#define __prctl_check_order(__m1, __op, __m2) \
1950 ((unsigned long)prctl_map->__m1 __op \
1951 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1952 error = __prctl_check_order(start_code, <, end_code);
a9e73998 1953 error |= __prctl_check_order(start_data,<=, end_data);
f606b77f
CG
1954 error |= __prctl_check_order(start_brk, <=, brk);
1955 error |= __prctl_check_order(arg_start, <=, arg_end);
1956 error |= __prctl_check_order(env_start, <=, env_end);
1957 if (error)
1958 goto out;
1959#undef __prctl_check_order
1960
1961 error = -EINVAL;
1962
1963 /*
1964 * @brk should be after @end_data in traditional maps.
1965 */
1966 if (prctl_map->start_brk <= prctl_map->end_data ||
1967 prctl_map->brk <= prctl_map->end_data)
1968 goto out;
1969
1970 /*
1971 * Neither we should allow to override limits if they set.
1972 */
1973 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1974 prctl_map->start_brk, prctl_map->end_data,
1975 prctl_map->start_data))
1976 goto out;
1977
f606b77f
CG
1978 error = 0;
1979out:
1980 return error;
1981}
1982
4a00e9df 1983#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1984static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1985{
1986 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1987 unsigned long user_auxv[AT_VECTOR_SIZE];
1988 struct mm_struct *mm = current->mm;
1989 int error;
1990
1991 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1992 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1993
1994 if (opt == PR_SET_MM_MAP_SIZE)
1995 return put_user((unsigned int)sizeof(prctl_map),
1996 (unsigned int __user *)addr);
1997
1998 if (data_size != sizeof(prctl_map))
1999 return -EINVAL;
2000
2001 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2002 return -EFAULT;
2003
11bbd8b4 2004 error = validate_prctl_map_addr(&prctl_map);
f606b77f
CG
2005 if (error)
2006 return error;
2007
2008 if (prctl_map.auxv_size) {
11bbd8b4
MK
2009 /*
2010 * Someone is trying to cheat the auxv vector.
2011 */
2012 if (!prctl_map.auxv ||
2013 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2014 return -EINVAL;
2015
f606b77f
CG
2016 memset(user_auxv, 0, sizeof(user_auxv));
2017 if (copy_from_user(user_auxv,
2018 (const void __user *)prctl_map.auxv,
2019 prctl_map.auxv_size))
2020 return -EFAULT;
2021
2022 /* Last entry must be AT_NULL as specification requires */
2023 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2024 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2025 }
2026
ddf1d398 2027 if (prctl_map.exe_fd != (u32)-1) {
11bbd8b4 2028 /*
ebd6de68
NV
2029 * Check if the current user is checkpoint/restore capable.
2030 * At the time of this writing, it checks for CAP_SYS_ADMIN
2031 * or CAP_CHECKPOINT_RESTORE.
2032 * Note that a user with access to ptrace can masquerade an
2033 * arbitrary program as any executable, even setuid ones.
2034 * This may have implications in the tomoyo subsystem.
11bbd8b4 2035 */
ebd6de68 2036 if (!checkpoint_restore_ns_capable(current_user_ns()))
227175b2 2037 return -EPERM;
11bbd8b4 2038
6e399cd1 2039 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2040 if (error)
2041 return error;
2042 }
2043
88aa7cc6 2044 /*
5afe69c2 2045 * arg_lock protects concurrent updates but we still need mmap_lock for
88aa7cc6
YS
2046 * read to exclude races with sys_brk.
2047 */
d8ed45c5 2048 mmap_read_lock(mm);
f606b77f
CG
2049
2050 /*
2051 * We don't validate if these members are pointing to
2052 * real present VMAs because application may have correspond
2053 * VMAs already unmapped and kernel uses these members for statistics
2054 * output in procfs mostly, except
2055 *
15ec0fcf 2056 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
5afe69c2 2057 * for VMAs when updating these members so anything wrong written
f606b77f
CG
2058 * here cause kernel to swear at userspace program but won't lead
2059 * to any problem in kernel itself
2060 */
2061
88aa7cc6 2062 spin_lock(&mm->arg_lock);
f606b77f
CG
2063 mm->start_code = prctl_map.start_code;
2064 mm->end_code = prctl_map.end_code;
2065 mm->start_data = prctl_map.start_data;
2066 mm->end_data = prctl_map.end_data;
2067 mm->start_brk = prctl_map.start_brk;
2068 mm->brk = prctl_map.brk;
2069 mm->start_stack = prctl_map.start_stack;
2070 mm->arg_start = prctl_map.arg_start;
2071 mm->arg_end = prctl_map.arg_end;
2072 mm->env_start = prctl_map.env_start;
2073 mm->env_end = prctl_map.env_end;
88aa7cc6 2074 spin_unlock(&mm->arg_lock);
f606b77f
CG
2075
2076 /*
2077 * Note this update of @saved_auxv is lockless thus
2078 * if someone reads this member in procfs while we're
2079 * updating -- it may get partly updated results. It's
2080 * known and acceptable trade off: we leave it as is to
2081 * not introduce additional locks here making the kernel
2082 * more complex.
2083 */
2084 if (prctl_map.auxv_size)
2085 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2086
d8ed45c5 2087 mmap_read_unlock(mm);
ddf1d398 2088 return 0;
f606b77f
CG
2089}
2090#endif /* CONFIG_CHECKPOINT_RESTORE */
2091
4a00e9df
AD
2092static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2093 unsigned long len)
2094{
2095 /*
2096 * This doesn't move the auxiliary vector itself since it's pinned to
2097 * mm_struct, but it permits filling the vector with new values. It's
2098 * up to the caller to provide sane values here, otherwise userspace
2099 * tools which use this vector might be unhappy.
2100 */
c995f12a 2101 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
4a00e9df
AD
2102
2103 if (len > sizeof(user_auxv))
2104 return -EINVAL;
2105
2106 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2107 return -EFAULT;
2108
2109 /* Make sure the last entry is always AT_NULL */
2110 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2111 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2112
2113 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2114
2115 task_lock(current);
2116 memcpy(mm->saved_auxv, user_auxv, len);
2117 task_unlock(current);
2118
2119 return 0;
2120}
2121
028ee4be
CG
2122static int prctl_set_mm(int opt, unsigned long addr,
2123 unsigned long arg4, unsigned long arg5)
2124{
028ee4be 2125 struct mm_struct *mm = current->mm;
11bbd8b4
MK
2126 struct prctl_mm_map prctl_map = {
2127 .auxv = NULL,
2128 .auxv_size = 0,
2129 .exe_fd = -1,
2130 };
fe8c7f5c
CG
2131 struct vm_area_struct *vma;
2132 int error;
028ee4be 2133
f606b77f
CG
2134 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2135 opt != PR_SET_MM_MAP &&
2136 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2137 return -EINVAL;
2138
f606b77f
CG
2139#ifdef CONFIG_CHECKPOINT_RESTORE
2140 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2141 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2142#endif
2143
79f0713d 2144 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2145 return -EPERM;
2146
6e399cd1
DB
2147 if (opt == PR_SET_MM_EXE_FILE)
2148 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2149
4a00e9df
AD
2150 if (opt == PR_SET_MM_AUXV)
2151 return prctl_set_auxv(mm, addr, arg4);
2152
1ad75b9e 2153 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2154 return -EINVAL;
2155
fe8c7f5c
CG
2156 error = -EINVAL;
2157
bc81426f 2158 /*
5afe69c2 2159 * arg_lock protects concurrent updates of arg boundaries, we need
c1e8d7c6 2160 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
bc81426f
MK
2161 * validation.
2162 */
d8ed45c5 2163 mmap_read_lock(mm);
028ee4be
CG
2164 vma = find_vma(mm, addr);
2165
bc81426f 2166 spin_lock(&mm->arg_lock);
4a00e9df
AD
2167 prctl_map.start_code = mm->start_code;
2168 prctl_map.end_code = mm->end_code;
2169 prctl_map.start_data = mm->start_data;
2170 prctl_map.end_data = mm->end_data;
2171 prctl_map.start_brk = mm->start_brk;
2172 prctl_map.brk = mm->brk;
2173 prctl_map.start_stack = mm->start_stack;
2174 prctl_map.arg_start = mm->arg_start;
2175 prctl_map.arg_end = mm->arg_end;
2176 prctl_map.env_start = mm->env_start;
2177 prctl_map.env_end = mm->env_end;
4a00e9df 2178
028ee4be
CG
2179 switch (opt) {
2180 case PR_SET_MM_START_CODE:
4a00e9df 2181 prctl_map.start_code = addr;
fe8c7f5c 2182 break;
028ee4be 2183 case PR_SET_MM_END_CODE:
4a00e9df 2184 prctl_map.end_code = addr;
028ee4be 2185 break;
028ee4be 2186 case PR_SET_MM_START_DATA:
4a00e9df 2187 prctl_map.start_data = addr;
028ee4be 2188 break;
fe8c7f5c 2189 case PR_SET_MM_END_DATA:
4a00e9df
AD
2190 prctl_map.end_data = addr;
2191 break;
2192 case PR_SET_MM_START_STACK:
2193 prctl_map.start_stack = addr;
028ee4be 2194 break;
028ee4be 2195 case PR_SET_MM_START_BRK:
4a00e9df 2196 prctl_map.start_brk = addr;
028ee4be 2197 break;
028ee4be 2198 case PR_SET_MM_BRK:
4a00e9df 2199 prctl_map.brk = addr;
028ee4be 2200 break;
4a00e9df
AD
2201 case PR_SET_MM_ARG_START:
2202 prctl_map.arg_start = addr;
2203 break;
2204 case PR_SET_MM_ARG_END:
2205 prctl_map.arg_end = addr;
2206 break;
2207 case PR_SET_MM_ENV_START:
2208 prctl_map.env_start = addr;
2209 break;
2210 case PR_SET_MM_ENV_END:
2211 prctl_map.env_end = addr;
2212 break;
2213 default:
2214 goto out;
2215 }
2216
11bbd8b4 2217 error = validate_prctl_map_addr(&prctl_map);
4a00e9df
AD
2218 if (error)
2219 goto out;
028ee4be 2220
4a00e9df 2221 switch (opt) {
fe8c7f5c
CG
2222 /*
2223 * If command line arguments and environment
2224 * are placed somewhere else on stack, we can
2225 * set them up here, ARG_START/END to setup
5afe69c2 2226 * command line arguments and ENV_START/END
fe8c7f5c
CG
2227 * for environment.
2228 */
2229 case PR_SET_MM_START_STACK:
2230 case PR_SET_MM_ARG_START:
2231 case PR_SET_MM_ARG_END:
2232 case PR_SET_MM_ENV_START:
2233 case PR_SET_MM_ENV_END:
2234 if (!vma) {
2235 error = -EFAULT;
2236 goto out;
2237 }
028ee4be
CG
2238 }
2239
4a00e9df
AD
2240 mm->start_code = prctl_map.start_code;
2241 mm->end_code = prctl_map.end_code;
2242 mm->start_data = prctl_map.start_data;
2243 mm->end_data = prctl_map.end_data;
2244 mm->start_brk = prctl_map.start_brk;
2245 mm->brk = prctl_map.brk;
2246 mm->start_stack = prctl_map.start_stack;
2247 mm->arg_start = prctl_map.arg_start;
2248 mm->arg_end = prctl_map.arg_end;
2249 mm->env_start = prctl_map.env_start;
2250 mm->env_end = prctl_map.env_end;
2251
028ee4be 2252 error = 0;
028ee4be 2253out:
bc81426f 2254 spin_unlock(&mm->arg_lock);
d8ed45c5 2255 mmap_read_unlock(mm);
028ee4be
CG
2256 return error;
2257}
300f786b 2258
52b36941 2259#ifdef CONFIG_CHECKPOINT_RESTORE
986b9eac 2260static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2261{
2262 return put_user(me->clear_child_tid, tid_addr);
2263}
52b36941 2264#else
986b9eac 2265static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
300f786b
CG
2266{
2267 return -EINVAL;
2268}
028ee4be
CG
2269#endif
2270
749860ce
PT
2271static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2272{
2273 /*
5afe69c2
XC
2274 * If task has has_child_subreaper - all its descendants
2275 * already have these flag too and new descendants will
749860ce
PT
2276 * inherit it on fork, skip them.
2277 *
2278 * If we've found child_reaper - skip descendants in
2279 * it's subtree as they will never get out pidns.
2280 */
2281 if (p->signal->has_child_subreaper ||
2282 is_child_reaper(task_pid(p)))
2283 return 0;
2284
2285 p->signal->has_child_subreaper = 1;
2286 return 1;
2287}
2288
7bbf1373 2289int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
b617cfc8
TG
2290{
2291 return -EINVAL;
2292}
2293
7bbf1373
KC
2294int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2295 unsigned long ctrl)
b617cfc8
TG
2296{
2297 return -EINVAL;
2298}
2299
a37b0715 2300#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
8d19f1c8 2301
c4ea37c2
HC
2302SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2303 unsigned long, arg4, unsigned long, arg5)
1da177e4 2304{
b6dff3ec
DH
2305 struct task_struct *me = current;
2306 unsigned char comm[sizeof(me->comm)];
2307 long error;
1da177e4 2308
d84f4f99
DH
2309 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2310 if (error != -ENOSYS)
1da177e4
LT
2311 return error;
2312
d84f4f99 2313 error = 0;
1da177e4 2314 switch (option) {
f3cbd435
AM
2315 case PR_SET_PDEATHSIG:
2316 if (!valid_signal(arg2)) {
2317 error = -EINVAL;
1da177e4 2318 break;
f3cbd435
AM
2319 }
2320 me->pdeath_signal = arg2;
2321 break;
2322 case PR_GET_PDEATHSIG:
2323 error = put_user(me->pdeath_signal, (int __user *)arg2);
2324 break;
2325 case PR_GET_DUMPABLE:
2326 error = get_dumpable(me->mm);
2327 break;
2328 case PR_SET_DUMPABLE:
2329 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2330 error = -EINVAL;
1da177e4 2331 break;
f3cbd435
AM
2332 }
2333 set_dumpable(me->mm, arg2);
2334 break;
1da177e4 2335
f3cbd435
AM
2336 case PR_SET_UNALIGN:
2337 error = SET_UNALIGN_CTL(me, arg2);
2338 break;
2339 case PR_GET_UNALIGN:
2340 error = GET_UNALIGN_CTL(me, arg2);
2341 break;
2342 case PR_SET_FPEMU:
2343 error = SET_FPEMU_CTL(me, arg2);
2344 break;
2345 case PR_GET_FPEMU:
2346 error = GET_FPEMU_CTL(me, arg2);
2347 break;
2348 case PR_SET_FPEXC:
2349 error = SET_FPEXC_CTL(me, arg2);
2350 break;
2351 case PR_GET_FPEXC:
2352 error = GET_FPEXC_CTL(me, arg2);
2353 break;
2354 case PR_GET_TIMING:
2355 error = PR_TIMING_STATISTICAL;
2356 break;
2357 case PR_SET_TIMING:
2358 if (arg2 != PR_TIMING_STATISTICAL)
2359 error = -EINVAL;
2360 break;
2361 case PR_SET_NAME:
2362 comm[sizeof(me->comm) - 1] = 0;
2363 if (strncpy_from_user(comm, (char __user *)arg2,
2364 sizeof(me->comm) - 1) < 0)
2365 return -EFAULT;
2366 set_task_comm(me, comm);
2367 proc_comm_connector(me);
2368 break;
2369 case PR_GET_NAME:
2370 get_task_comm(comm, me);
2371 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2372 return -EFAULT;
2373 break;
2374 case PR_GET_ENDIAN:
2375 error = GET_ENDIAN(me, arg2);
2376 break;
2377 case PR_SET_ENDIAN:
2378 error = SET_ENDIAN(me, arg2);
2379 break;
2380 case PR_GET_SECCOMP:
2381 error = prctl_get_seccomp();
2382 break;
2383 case PR_SET_SECCOMP:
2384 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2385 break;
2386 case PR_GET_TSC:
2387 error = GET_TSC_CTL(arg2);
2388 break;
2389 case PR_SET_TSC:
2390 error = SET_TSC_CTL(arg2);
2391 break;
2392 case PR_TASK_PERF_EVENTS_DISABLE:
2393 error = perf_event_task_disable();
2394 break;
2395 case PR_TASK_PERF_EVENTS_ENABLE:
2396 error = perf_event_task_enable();
2397 break;
2398 case PR_GET_TIMERSLACK:
da8b44d5
JS
2399 if (current->timer_slack_ns > ULONG_MAX)
2400 error = ULONG_MAX;
2401 else
2402 error = current->timer_slack_ns;
f3cbd435
AM
2403 break;
2404 case PR_SET_TIMERSLACK:
2405 if (arg2 <= 0)
2406 current->timer_slack_ns =
6976675d 2407 current->default_timer_slack_ns;
f3cbd435
AM
2408 else
2409 current->timer_slack_ns = arg2;
2410 break;
2411 case PR_MCE_KILL:
2412 if (arg4 | arg5)
2413 return -EINVAL;
2414 switch (arg2) {
2415 case PR_MCE_KILL_CLEAR:
2416 if (arg3 != 0)
4db96cf0 2417 return -EINVAL;
f3cbd435 2418 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2419 break;
f3cbd435
AM
2420 case PR_MCE_KILL_SET:
2421 current->flags |= PF_MCE_PROCESS;
2422 if (arg3 == PR_MCE_KILL_EARLY)
2423 current->flags |= PF_MCE_EARLY;
2424 else if (arg3 == PR_MCE_KILL_LATE)
2425 current->flags &= ~PF_MCE_EARLY;
2426 else if (arg3 == PR_MCE_KILL_DEFAULT)
2427 current->flags &=
2428 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2429 else
259e5e6c 2430 return -EINVAL;
259e5e6c 2431 break;
1da177e4 2432 default:
f3cbd435
AM
2433 return -EINVAL;
2434 }
2435 break;
2436 case PR_MCE_KILL_GET:
2437 if (arg2 | arg3 | arg4 | arg5)
2438 return -EINVAL;
2439 if (current->flags & PF_MCE_PROCESS)
2440 error = (current->flags & PF_MCE_EARLY) ?
2441 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2442 else
2443 error = PR_MCE_KILL_DEFAULT;
2444 break;
2445 case PR_SET_MM:
2446 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2447 break;
2448 case PR_GET_TID_ADDRESS:
986b9eac 2449 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
f3cbd435
AM
2450 break;
2451 case PR_SET_CHILD_SUBREAPER:
2452 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2453 if (!arg2)
2454 break;
2455
2456 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2457 break;
2458 case PR_GET_CHILD_SUBREAPER:
2459 error = put_user(me->signal->is_child_subreaper,
2460 (int __user *)arg2);
2461 break;
2462 case PR_SET_NO_NEW_PRIVS:
2463 if (arg2 != 1 || arg3 || arg4 || arg5)
2464 return -EINVAL;
2465
1d4457f9 2466 task_set_no_new_privs(current);
f3cbd435
AM
2467 break;
2468 case PR_GET_NO_NEW_PRIVS:
2469 if (arg2 || arg3 || arg4 || arg5)
2470 return -EINVAL;
1d4457f9 2471 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2472 case PR_GET_THP_DISABLE:
2473 if (arg2 || arg3 || arg4 || arg5)
2474 return -EINVAL;
18600332 2475 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2476 break;
2477 case PR_SET_THP_DISABLE:
2478 if (arg3 || arg4 || arg5)
2479 return -EINVAL;
d8ed45c5 2480 if (mmap_write_lock_killable(me->mm))
17b0573d 2481 return -EINTR;
a0715cc2 2482 if (arg2)
18600332 2483 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2484 else
18600332 2485 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
d8ed45c5 2486 mmap_write_unlock(me->mm);
a0715cc2 2487 break;
fe3d197f 2488 case PR_MPX_ENABLE_MANAGEMENT:
fe3d197f 2489 case PR_MPX_DISABLE_MANAGEMENT:
f240652b
DH
2490 /* No longer implemented: */
2491 return -EINVAL;
9791554b
PB
2492 case PR_SET_FP_MODE:
2493 error = SET_FP_MODE(me, arg2);
2494 break;
2495 case PR_GET_FP_MODE:
2496 error = GET_FP_MODE(me);
2497 break;
2d2123bc
DM
2498 case PR_SVE_SET_VL:
2499 error = SVE_SET_VL(arg2);
2500 break;
2501 case PR_SVE_GET_VL:
2502 error = SVE_GET_VL();
2503 break;
b617cfc8
TG
2504 case PR_GET_SPECULATION_CTRL:
2505 if (arg3 || arg4 || arg5)
2506 return -EINVAL;
7bbf1373 2507 error = arch_prctl_spec_ctrl_get(me, arg2);
b617cfc8
TG
2508 break;
2509 case PR_SET_SPECULATION_CTRL:
2510 if (arg4 || arg5)
2511 return -EINVAL;
7bbf1373 2512 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
b617cfc8 2513 break;
ba830885
KM
2514 case PR_PAC_RESET_KEYS:
2515 if (arg3 || arg4 || arg5)
2516 return -EINVAL;
2517 error = PAC_RESET_KEYS(me, arg2);
2518 break;
20169862
PC
2519 case PR_PAC_SET_ENABLED_KEYS:
2520 if (arg4 || arg5)
2521 return -EINVAL;
2522 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2523 break;
2524 case PR_PAC_GET_ENABLED_KEYS:
2525 if (arg2 || arg3 || arg4 || arg5)
2526 return -EINVAL;
2527 error = PAC_GET_ENABLED_KEYS(me);
2528 break;
63f0c603 2529 case PR_SET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2530 if (arg3 || arg4 || arg5)
2531 return -EINVAL;
63f0c603
CM
2532 error = SET_TAGGED_ADDR_CTRL(arg2);
2533 break;
2534 case PR_GET_TAGGED_ADDR_CTRL:
3e91ec89
CM
2535 if (arg2 || arg3 || arg4 || arg5)
2536 return -EINVAL;
63f0c603
CM
2537 error = GET_TAGGED_ADDR_CTRL();
2538 break;
8d19f1c8
MC
2539 case PR_SET_IO_FLUSHER:
2540 if (!capable(CAP_SYS_RESOURCE))
2541 return -EPERM;
2542
2543 if (arg3 || arg4 || arg5)
2544 return -EINVAL;
2545
2546 if (arg2 == 1)
2547 current->flags |= PR_IO_FLUSHER;
2548 else if (!arg2)
2549 current->flags &= ~PR_IO_FLUSHER;
2550 else
2551 return -EINVAL;
2552 break;
2553 case PR_GET_IO_FLUSHER:
2554 if (!capable(CAP_SYS_RESOURCE))
2555 return -EPERM;
2556
2557 if (arg2 || arg3 || arg4 || arg5)
2558 return -EINVAL;
2559
2560 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2561 break;
1446e1df
GKB
2562 case PR_SET_SYSCALL_USER_DISPATCH:
2563 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2564 (char __user *) arg5);
2565 break;
7ac592aa
CH
2566#ifdef CONFIG_SCHED_CORE
2567 case PR_SCHED_CORE:
2568 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2569 break;
2570#endif
f3cbd435
AM
2571 default:
2572 error = -EINVAL;
2573 break;
1da177e4
LT
2574 }
2575 return error;
2576}
3cfc348b 2577
836f92ad
HC
2578SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2579 struct getcpu_cache __user *, unused)
3cfc348b
AK
2580{
2581 int err = 0;
2582 int cpu = raw_smp_processor_id();
ec94fc3d 2583
3cfc348b
AK
2584 if (cpup)
2585 err |= put_user(cpu, cpup);
2586 if (nodep)
2587 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2588 return err ? -EFAULT : 0;
2589}
10a0a8d4 2590
4a22f166
SR
2591/**
2592 * do_sysinfo - fill in sysinfo struct
2593 * @info: pointer to buffer to fill
2594 */
2595static int do_sysinfo(struct sysinfo *info)
2596{
2597 unsigned long mem_total, sav_total;
2598 unsigned int mem_unit, bitcount;
dc1b7b6c 2599 struct timespec64 tp;
4a22f166
SR
2600
2601 memset(info, 0, sizeof(struct sysinfo));
2602
dc1b7b6c 2603 ktime_get_boottime_ts64(&tp);
ecc421e0 2604 timens_add_boottime(&tp);
4a22f166
SR
2605 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2606
2607 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2608
2609 info->procs = nr_threads;
2610
2611 si_meminfo(info);
2612 si_swapinfo(info);
2613
2614 /*
2615 * If the sum of all the available memory (i.e. ram + swap)
2616 * is less than can be stored in a 32 bit unsigned long then
2617 * we can be binary compatible with 2.2.x kernels. If not,
2618 * well, in that case 2.2.x was broken anyways...
2619 *
2620 * -Erik Andersen <[email protected]>
2621 */
2622
2623 mem_total = info->totalram + info->totalswap;
2624 if (mem_total < info->totalram || mem_total < info->totalswap)
2625 goto out;
2626 bitcount = 0;
2627 mem_unit = info->mem_unit;
2628 while (mem_unit > 1) {
2629 bitcount++;
2630 mem_unit >>= 1;
2631 sav_total = mem_total;
2632 mem_total <<= 1;
2633 if (mem_total < sav_total)
2634 goto out;
2635 }
2636
2637 /*
2638 * If mem_total did not overflow, multiply all memory values by
2639 * info->mem_unit and set it to 1. This leaves things compatible
2640 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2641 * kernels...
2642 */
2643
2644 info->mem_unit = 1;
2645 info->totalram <<= bitcount;
2646 info->freeram <<= bitcount;
2647 info->sharedram <<= bitcount;
2648 info->bufferram <<= bitcount;
2649 info->totalswap <<= bitcount;
2650 info->freeswap <<= bitcount;
2651 info->totalhigh <<= bitcount;
2652 info->freehigh <<= bitcount;
2653
2654out:
2655 return 0;
2656}
2657
2658SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2659{
2660 struct sysinfo val;
2661
2662 do_sysinfo(&val);
2663
2664 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2665 return -EFAULT;
2666
2667 return 0;
2668}
2669
2670#ifdef CONFIG_COMPAT
2671struct compat_sysinfo {
2672 s32 uptime;
2673 u32 loads[3];
2674 u32 totalram;
2675 u32 freeram;
2676 u32 sharedram;
2677 u32 bufferram;
2678 u32 totalswap;
2679 u32 freeswap;
2680 u16 procs;
2681 u16 pad;
2682 u32 totalhigh;
2683 u32 freehigh;
2684 u32 mem_unit;
2685 char _f[20-2*sizeof(u32)-sizeof(int)];
2686};
2687
2688COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2689{
2690 struct sysinfo s;
ce5155c4 2691 struct compat_sysinfo s_32;
4a22f166
SR
2692
2693 do_sysinfo(&s);
2694
2695 /* Check to see if any memory value is too large for 32-bit and scale
2696 * down if needed
2697 */
0baae41e 2698 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2699 int bitcount = 0;
2700
2701 while (s.mem_unit < PAGE_SIZE) {
2702 s.mem_unit <<= 1;
2703 bitcount++;
2704 }
2705
2706 s.totalram >>= bitcount;
2707 s.freeram >>= bitcount;
2708 s.sharedram >>= bitcount;
2709 s.bufferram >>= bitcount;
2710 s.totalswap >>= bitcount;
2711 s.freeswap >>= bitcount;
2712 s.totalhigh >>= bitcount;
2713 s.freehigh >>= bitcount;
2714 }
2715
ce5155c4
AV
2716 memset(&s_32, 0, sizeof(s_32));
2717 s_32.uptime = s.uptime;
2718 s_32.loads[0] = s.loads[0];
2719 s_32.loads[1] = s.loads[1];
2720 s_32.loads[2] = s.loads[2];
2721 s_32.totalram = s.totalram;
2722 s_32.freeram = s.freeram;
2723 s_32.sharedram = s.sharedram;
2724 s_32.bufferram = s.bufferram;
2725 s_32.totalswap = s.totalswap;
2726 s_32.freeswap = s.freeswap;
2727 s_32.procs = s.procs;
2728 s_32.totalhigh = s.totalhigh;
2729 s_32.freehigh = s.freehigh;
2730 s_32.mem_unit = s.mem_unit;
2731 if (copy_to_user(info, &s_32, sizeof(s_32)))
4a22f166 2732 return -EFAULT;
4a22f166
SR
2733 return 0;
2734}
2735#endif /* CONFIG_COMPAT */
This page took 2.18887 seconds and 4 git commands to generate.