]> Git Repo - linux.git/blame - fs/xfs/xfs_aops.c
xfs: use new extent lookup helpers in __xfs_reflink_reserve_cow
[linux.git] / fs / xfs / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
70a9883c 19#include "xfs_shared.h"
239880ef
DC
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
1da177e4 23#include "xfs_mount.h"
1da177e4 24#include "xfs_inode.h"
239880ef 25#include "xfs_trans.h"
281627df 26#include "xfs_inode_item.h"
a844f451 27#include "xfs_alloc.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_iomap.h"
0b1b213f 30#include "xfs_trace.h"
3ed3a434 31#include "xfs_bmap.h"
68988114 32#include "xfs_bmap_util.h"
a4fbe6ab 33#include "xfs_bmap_btree.h"
ef473667 34#include "xfs_reflink.h"
5a0e3ad6 35#include <linux/gfp.h>
1da177e4 36#include <linux/mpage.h>
10ce4444 37#include <linux/pagevec.h>
1da177e4
LT
38#include <linux/writeback.h>
39
273dda76
CH
40/* flags for direct write completions */
41#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
42#define XFS_DIO_FLAG_APPEND (1 << 1)
0613f16c 43#define XFS_DIO_FLAG_COW (1 << 2)
273dda76 44
fbcc0256
DC
45/*
46 * structure owned by writepages passed to individual writepage calls
47 */
48struct xfs_writepage_ctx {
49 struct xfs_bmbt_irec imap;
50 bool imap_valid;
51 unsigned int io_type;
fbcc0256
DC
52 struct xfs_ioend *ioend;
53 sector_t last_block;
54};
55
0b1b213f 56void
f51623b2
NS
57xfs_count_page_state(
58 struct page *page,
59 int *delalloc,
f51623b2
NS
60 int *unwritten)
61{
62 struct buffer_head *bh, *head;
63
20cb52eb 64 *delalloc = *unwritten = 0;
f51623b2
NS
65
66 bh = head = page_buffers(page);
67 do {
20cb52eb 68 if (buffer_unwritten(bh))
f51623b2
NS
69 (*unwritten) = 1;
70 else if (buffer_delay(bh))
71 (*delalloc) = 1;
72 } while ((bh = bh->b_this_page) != head);
73}
74
20a90f58 75struct block_device *
6214ed44 76xfs_find_bdev_for_inode(
046f1685 77 struct inode *inode)
6214ed44 78{
046f1685 79 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
80 struct xfs_mount *mp = ip->i_mount;
81
71ddabb9 82 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
83 return mp->m_rtdev_targp->bt_bdev;
84 else
85 return mp->m_ddev_targp->bt_bdev;
86}
87
f6d6d4fc 88/*
37992c18
DC
89 * We're now finished for good with this page. Update the page state via the
90 * associated buffer_heads, paying attention to the start and end offsets that
91 * we need to process on the page.
28b783e4
DC
92 *
93 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
94 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
95 * the page at all, as we may be racing with memory reclaim and it can free both
96 * the bufferhead chain and the page as it will see the page as clean and
97 * unused.
37992c18
DC
98 */
99static void
100xfs_finish_page_writeback(
101 struct inode *inode,
102 struct bio_vec *bvec,
103 int error)
104{
37992c18 105 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
28b783e4 106 struct buffer_head *head, *bh, *next;
37992c18 107 unsigned int off = 0;
28b783e4 108 unsigned int bsize;
37992c18
DC
109
110 ASSERT(bvec->bv_offset < PAGE_SIZE);
690a7871 111 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
37992c18 112 ASSERT(end < PAGE_SIZE);
690a7871 113 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
37992c18
DC
114
115 bh = head = page_buffers(bvec->bv_page);
116
28b783e4 117 bsize = bh->b_size;
37992c18 118 do {
28b783e4 119 next = bh->b_this_page;
37992c18
DC
120 if (off < bvec->bv_offset)
121 goto next_bh;
122 if (off > end)
123 break;
124 bh->b_end_io(bh, !error);
125next_bh:
28b783e4
DC
126 off += bsize;
127 } while ((bh = next) != head);
37992c18
DC
128}
129
130/*
131 * We're now finished for good with this ioend structure. Update the page
132 * state, release holds on bios, and finally free up memory. Do not use the
133 * ioend after this.
f6d6d4fc 134 */
0829c360
CH
135STATIC void
136xfs_destroy_ioend(
0e51a8e1
CH
137 struct xfs_ioend *ioend,
138 int error)
0829c360 139{
37992c18 140 struct inode *inode = ioend->io_inode;
0e51a8e1 141 struct bio *last = ioend->io_bio;
37992c18 142 struct bio *bio, *next;
f6d6d4fc 143
0e51a8e1 144 for (bio = &ioend->io_inline_bio; bio; bio = next) {
37992c18
DC
145 struct bio_vec *bvec;
146 int i;
147
0e51a8e1
CH
148 /*
149 * For the last bio, bi_private points to the ioend, so we
150 * need to explicitly end the iteration here.
151 */
152 if (bio == last)
153 next = NULL;
154 else
155 next = bio->bi_private;
583fa586 156
37992c18
DC
157 /* walk each page on bio, ending page IO on them */
158 bio_for_each_segment_all(bvec, bio, i)
159 xfs_finish_page_writeback(inode, bvec, error);
160
161 bio_put(bio);
f6d6d4fc 162 }
0829c360
CH
163}
164
fc0063c4
CH
165/*
166 * Fast and loose check if this write could update the on-disk inode size.
167 */
168static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
169{
170 return ioend->io_offset + ioend->io_size >
171 XFS_I(ioend->io_inode)->i_d.di_size;
172}
173
281627df
CH
174STATIC int
175xfs_setfilesize_trans_alloc(
176 struct xfs_ioend *ioend)
177{
178 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
179 struct xfs_trans *tp;
180 int error;
181
253f4911
CH
182 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
183 if (error)
281627df 184 return error;
281627df
CH
185
186 ioend->io_append_trans = tp;
187
d9457dc0 188 /*
437a255a 189 * We may pass freeze protection with a transaction. So tell lockdep
d9457dc0
JK
190 * we released it.
191 */
bee9182d 192 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
281627df
CH
193 /*
194 * We hand off the transaction to the completion thread now, so
195 * clear the flag here.
196 */
197 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
198 return 0;
199}
200
ba87ea69 201/*
2813d682 202 * Update on-disk file size now that data has been written to disk.
ba87ea69 203 */
281627df 204STATIC int
e372843a 205__xfs_setfilesize(
2ba66237
CH
206 struct xfs_inode *ip,
207 struct xfs_trans *tp,
208 xfs_off_t offset,
209 size_t size)
ba87ea69 210{
ba87ea69 211 xfs_fsize_t isize;
ba87ea69 212
aa6bf01d 213 xfs_ilock(ip, XFS_ILOCK_EXCL);
2ba66237 214 isize = xfs_new_eof(ip, offset + size);
281627df
CH
215 if (!isize) {
216 xfs_iunlock(ip, XFS_ILOCK_EXCL);
4906e215 217 xfs_trans_cancel(tp);
281627df 218 return 0;
ba87ea69
LM
219 }
220
2ba66237 221 trace_xfs_setfilesize(ip, offset, size);
281627df
CH
222
223 ip->i_d.di_size = isize;
224 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
226
70393313 227 return xfs_trans_commit(tp);
77d7a0c2
DC
228}
229
e372843a
CH
230int
231xfs_setfilesize(
232 struct xfs_inode *ip,
233 xfs_off_t offset,
234 size_t size)
235{
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_trans *tp;
238 int error;
239
240 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
241 if (error)
242 return error;
243
244 return __xfs_setfilesize(ip, tp, offset, size);
245}
246
2ba66237
CH
247STATIC int
248xfs_setfilesize_ioend(
0e51a8e1
CH
249 struct xfs_ioend *ioend,
250 int error)
2ba66237
CH
251{
252 struct xfs_inode *ip = XFS_I(ioend->io_inode);
253 struct xfs_trans *tp = ioend->io_append_trans;
254
255 /*
256 * The transaction may have been allocated in the I/O submission thread,
257 * thus we need to mark ourselves as being in a transaction manually.
258 * Similarly for freeze protection.
259 */
260 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
bee9182d 261 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
2ba66237 262
5cb13dcd 263 /* we abort the update if there was an IO error */
0e51a8e1 264 if (error) {
5cb13dcd 265 xfs_trans_cancel(tp);
0e51a8e1 266 return error;
5cb13dcd
Z
267 }
268
e372843a 269 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
2ba66237
CH
270}
271
0829c360 272/*
5ec4fabb 273 * IO write completion.
f6d6d4fc
CH
274 */
275STATIC void
5ec4fabb 276xfs_end_io(
77d7a0c2 277 struct work_struct *work)
0829c360 278{
0e51a8e1
CH
279 struct xfs_ioend *ioend =
280 container_of(work, struct xfs_ioend, io_work);
281 struct xfs_inode *ip = XFS_I(ioend->io_inode);
282 int error = ioend->io_bio->bi_error;
ba87ea69 283
af055e37
BF
284 /*
285 * Set an error if the mount has shut down and proceed with end I/O
286 * processing so it can perform whatever cleanups are necessary.
287 */
288 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
0e51a8e1 289 error = -EIO;
04f658ee 290
43caeb18
DW
291 /*
292 * For a CoW extent, we need to move the mapping from the CoW fork
293 * to the data fork. If instead an error happened, just dump the
294 * new blocks.
295 */
296 if (ioend->io_type == XFS_IO_COW) {
297 if (error)
298 goto done;
299 if (ioend->io_bio->bi_error) {
300 error = xfs_reflink_cancel_cow_range(ip,
301 ioend->io_offset, ioend->io_size);
302 goto done;
303 }
304 error = xfs_reflink_end_cow(ip, ioend->io_offset,
305 ioend->io_size);
306 if (error)
307 goto done;
308 }
309
5ec4fabb
CH
310 /*
311 * For unwritten extents we need to issue transactions to convert a
312 * range to normal written extens after the data I/O has finished.
5cb13dcd
Z
313 * Detecting and handling completion IO errors is done individually
314 * for each case as different cleanup operations need to be performed
315 * on error.
5ec4fabb 316 */
0d882a36 317 if (ioend->io_type == XFS_IO_UNWRITTEN) {
0e51a8e1 318 if (error)
5cb13dcd 319 goto done;
437a255a
DC
320 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
321 ioend->io_size);
281627df 322 } else if (ioend->io_append_trans) {
0e51a8e1 323 error = xfs_setfilesize_ioend(ioend, error);
84803fb7 324 } else {
43caeb18
DW
325 ASSERT(!xfs_ioend_is_append(ioend) ||
326 ioend->io_type == XFS_IO_COW);
5ec4fabb 327 }
ba87ea69 328
04f658ee 329done:
0e51a8e1 330 xfs_destroy_ioend(ioend, error);
c626d174
DC
331}
332
0e51a8e1
CH
333STATIC void
334xfs_end_bio(
335 struct bio *bio)
0829c360 336{
0e51a8e1
CH
337 struct xfs_ioend *ioend = bio->bi_private;
338 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
0829c360 339
43caeb18 340 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
0e51a8e1
CH
341 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
342 else if (ioend->io_append_trans)
343 queue_work(mp->m_data_workqueue, &ioend->io_work);
344 else
345 xfs_destroy_ioend(ioend, bio->bi_error);
0829c360
CH
346}
347
1da177e4
LT
348STATIC int
349xfs_map_blocks(
350 struct inode *inode,
351 loff_t offset,
207d0416 352 struct xfs_bmbt_irec *imap,
988ef927 353 int type)
1da177e4 354{
a206c817
CH
355 struct xfs_inode *ip = XFS_I(inode);
356 struct xfs_mount *mp = ip->i_mount;
ed1e7b7e 357 ssize_t count = 1 << inode->i_blkbits;
a206c817
CH
358 xfs_fileoff_t offset_fsb, end_fsb;
359 int error = 0;
a206c817
CH
360 int bmapi_flags = XFS_BMAPI_ENTIRE;
361 int nimaps = 1;
362
363 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 364 return -EIO;
a206c817 365
ef473667 366 ASSERT(type != XFS_IO_COW);
0d882a36 367 if (type == XFS_IO_UNWRITTEN)
a206c817 368 bmapi_flags |= XFS_BMAPI_IGSTATE;
8ff2957d 369
988ef927 370 xfs_ilock(ip, XFS_ILOCK_SHARED);
8ff2957d
CH
371 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
372 (ip->i_df.if_flags & XFS_IFEXTENTS));
d2c28191 373 ASSERT(offset <= mp->m_super->s_maxbytes);
8ff2957d 374
d2c28191
DC
375 if (offset + count > mp->m_super->s_maxbytes)
376 count = mp->m_super->s_maxbytes - offset;
a206c817
CH
377 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
378 offset_fsb = XFS_B_TO_FSBT(mp, offset);
5c8ed202
DC
379 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
380 imap, &nimaps, bmapi_flags);
ef473667
DW
381 /*
382 * Truncate an overwrite extent if there's a pending CoW
383 * reservation before the end of this extent. This forces us
384 * to come back to writepage to take care of the CoW.
385 */
386 if (nimaps && type == XFS_IO_OVERWRITE)
387 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
8ff2957d 388 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a206c817 389
8ff2957d 390 if (error)
2451337d 391 return error;
a206c817 392
0d882a36 393 if (type == XFS_IO_DELALLOC &&
8ff2957d 394 (!nimaps || isnullstartblock(imap->br_startblock))) {
60b4984f
DW
395 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
396 imap);
a206c817 397 if (!error)
ef473667 398 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
2451337d 399 return error;
a206c817
CH
400 }
401
8ff2957d 402#ifdef DEBUG
0d882a36 403 if (type == XFS_IO_UNWRITTEN) {
8ff2957d
CH
404 ASSERT(nimaps);
405 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
406 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
407 }
408#endif
409 if (nimaps)
410 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
411 return 0;
1da177e4
LT
412}
413
fbcc0256 414STATIC bool
558e6891 415xfs_imap_valid(
8699bb0a 416 struct inode *inode,
207d0416 417 struct xfs_bmbt_irec *imap,
558e6891 418 xfs_off_t offset)
1da177e4 419{
558e6891 420 offset >>= inode->i_blkbits;
8699bb0a 421
558e6891
CH
422 return offset >= imap->br_startoff &&
423 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
424}
425
f6d6d4fc
CH
426STATIC void
427xfs_start_buffer_writeback(
428 struct buffer_head *bh)
429{
430 ASSERT(buffer_mapped(bh));
431 ASSERT(buffer_locked(bh));
432 ASSERT(!buffer_delay(bh));
433 ASSERT(!buffer_unwritten(bh));
434
435 mark_buffer_async_write(bh);
436 set_buffer_uptodate(bh);
437 clear_buffer_dirty(bh);
438}
439
440STATIC void
441xfs_start_page_writeback(
442 struct page *page,
e10de372 443 int clear_dirty)
f6d6d4fc
CH
444{
445 ASSERT(PageLocked(page));
446 ASSERT(!PageWriteback(page));
0d085a52
DC
447
448 /*
449 * if the page was not fully cleaned, we need to ensure that the higher
450 * layers come back to it correctly. That means we need to keep the page
451 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
452 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
453 * write this page in this writeback sweep will be made.
454 */
455 if (clear_dirty) {
92132021 456 clear_page_dirty_for_io(page);
0d085a52
DC
457 set_page_writeback(page);
458 } else
459 set_page_writeback_keepwrite(page);
460
f6d6d4fc 461 unlock_page(page);
f6d6d4fc
CH
462}
463
c7c1a7d8 464static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
f6d6d4fc
CH
465{
466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467}
468
469/*
bb18782a
DC
470 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
471 * it, and we submit that bio. The ioend may be used for multiple bio
472 * submissions, so we only want to allocate an append transaction for the ioend
473 * once. In the case of multiple bio submission, each bio will take an IO
474 * reference to the ioend to ensure that the ioend completion is only done once
475 * all bios have been submitted and the ioend is really done.
7bf7f352
DC
476 *
477 * If @fail is non-zero, it means that we have a situation where some part of
478 * the submission process has failed after we have marked paged for writeback
bb18782a
DC
479 * and unlocked them. In this situation, we need to fail the bio and ioend
480 * rather than submit it to IO. This typically only happens on a filesystem
481 * shutdown.
f6d6d4fc 482 */
e10de372 483STATIC int
f6d6d4fc 484xfs_submit_ioend(
06342cf8 485 struct writeback_control *wbc,
0e51a8e1 486 struct xfs_ioend *ioend,
e10de372 487 int status)
f6d6d4fc 488{
e10de372
DC
489 /* Reserve log space if we might write beyond the on-disk inode size. */
490 if (!status &&
0e51a8e1 491 ioend->io_type != XFS_IO_UNWRITTEN &&
bb18782a
DC
492 xfs_ioend_is_append(ioend) &&
493 !ioend->io_append_trans)
e10de372 494 status = xfs_setfilesize_trans_alloc(ioend);
bb18782a 495
0e51a8e1
CH
496 ioend->io_bio->bi_private = ioend;
497 ioend->io_bio->bi_end_io = xfs_end_bio;
50bfcd0c
MC
498 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
499 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
e10de372
DC
500 /*
501 * If we are failing the IO now, just mark the ioend with an
502 * error and finish it. This will run IO completion immediately
503 * as there is only one reference to the ioend at this point in
504 * time.
505 */
506 if (status) {
0e51a8e1
CH
507 ioend->io_bio->bi_error = status;
508 bio_endio(ioend->io_bio);
e10de372
DC
509 return status;
510 }
d88992f6 511
4e49ea4a 512 submit_bio(ioend->io_bio);
e10de372 513 return 0;
f6d6d4fc 514}
f6d6d4fc 515
0e51a8e1
CH
516static void
517xfs_init_bio_from_bh(
518 struct bio *bio,
519 struct buffer_head *bh)
520{
521 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
522 bio->bi_bdev = bh->b_bdev;
523}
7bf7f352 524
0e51a8e1
CH
525static struct xfs_ioend *
526xfs_alloc_ioend(
527 struct inode *inode,
528 unsigned int type,
529 xfs_off_t offset,
530 struct buffer_head *bh)
531{
532 struct xfs_ioend *ioend;
533 struct bio *bio;
f6d6d4fc 534
0e51a8e1
CH
535 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
536 xfs_init_bio_from_bh(bio, bh);
537
538 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
539 INIT_LIST_HEAD(&ioend->io_list);
540 ioend->io_type = type;
541 ioend->io_inode = inode;
542 ioend->io_size = 0;
543 ioend->io_offset = offset;
544 INIT_WORK(&ioend->io_work, xfs_end_io);
545 ioend->io_append_trans = NULL;
546 ioend->io_bio = bio;
547 return ioend;
548}
549
550/*
551 * Allocate a new bio, and chain the old bio to the new one.
552 *
553 * Note that we have to do perform the chaining in this unintuitive order
554 * so that the bi_private linkage is set up in the right direction for the
555 * traversal in xfs_destroy_ioend().
556 */
557static void
558xfs_chain_bio(
559 struct xfs_ioend *ioend,
560 struct writeback_control *wbc,
561 struct buffer_head *bh)
562{
563 struct bio *new;
564
565 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
566 xfs_init_bio_from_bh(new, bh);
567
568 bio_chain(ioend->io_bio, new);
569 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
50bfcd0c
MC
570 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
571 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
4e49ea4a 572 submit_bio(ioend->io_bio);
0e51a8e1 573 ioend->io_bio = new;
f6d6d4fc
CH
574}
575
576/*
577 * Test to see if we've been building up a completion structure for
578 * earlier buffers -- if so, we try to append to this ioend if we
579 * can, otherwise we finish off any current ioend and start another.
e10de372
DC
580 * Return the ioend we finished off so that the caller can submit it
581 * once it has finished processing the dirty page.
f6d6d4fc
CH
582 */
583STATIC void
584xfs_add_to_ioend(
585 struct inode *inode,
586 struct buffer_head *bh,
7336cea8 587 xfs_off_t offset,
e10de372 588 struct xfs_writepage_ctx *wpc,
bb18782a 589 struct writeback_control *wbc,
e10de372 590 struct list_head *iolist)
f6d6d4fc 591{
fbcc0256 592 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
0df61da8
DW
593 bh->b_blocknr != wpc->last_block + 1 ||
594 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
e10de372
DC
595 if (wpc->ioend)
596 list_add(&wpc->ioend->io_list, iolist);
0e51a8e1 597 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
f6d6d4fc
CH
598 }
599
0e51a8e1
CH
600 /*
601 * If the buffer doesn't fit into the bio we need to allocate a new
602 * one. This shouldn't happen more than once for a given buffer.
603 */
604 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
605 xfs_chain_bio(wpc->ioend, wbc, bh);
bb18782a 606
fbcc0256
DC
607 wpc->ioend->io_size += bh->b_size;
608 wpc->last_block = bh->b_blocknr;
e10de372 609 xfs_start_buffer_writeback(bh);
f6d6d4fc
CH
610}
611
87cbc49c
NS
612STATIC void
613xfs_map_buffer(
046f1685 614 struct inode *inode,
87cbc49c 615 struct buffer_head *bh,
207d0416 616 struct xfs_bmbt_irec *imap,
046f1685 617 xfs_off_t offset)
87cbc49c
NS
618{
619 sector_t bn;
8699bb0a 620 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
621 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
622 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 623
207d0416
CH
624 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 626
e513182d 627 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 628 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 629
046f1685 630 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
631
632 bh->b_blocknr = bn;
633 set_buffer_mapped(bh);
634}
635
1da177e4
LT
636STATIC void
637xfs_map_at_offset(
046f1685 638 struct inode *inode,
1da177e4 639 struct buffer_head *bh,
207d0416 640 struct xfs_bmbt_irec *imap,
046f1685 641 xfs_off_t offset)
1da177e4 642{
207d0416
CH
643 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
644 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4 645
207d0416 646 xfs_map_buffer(inode, bh, imap, offset);
1da177e4
LT
647 set_buffer_mapped(bh);
648 clear_buffer_delay(bh);
f6d6d4fc 649 clear_buffer_unwritten(bh);
1da177e4
LT
650}
651
1da177e4 652/*
a49935f2
DC
653 * Test if a given page contains at least one buffer of a given @type.
654 * If @check_all_buffers is true, then we walk all the buffers in the page to
655 * try to find one of the type passed in. If it is not set, then the caller only
656 * needs to check the first buffer on the page for a match.
1da177e4 657 */
a49935f2 658STATIC bool
6ffc4db5 659xfs_check_page_type(
10ce4444 660 struct page *page,
a49935f2
DC
661 unsigned int type,
662 bool check_all_buffers)
1da177e4 663{
a49935f2
DC
664 struct buffer_head *bh;
665 struct buffer_head *head;
1da177e4 666
a49935f2
DC
667 if (PageWriteback(page))
668 return false;
669 if (!page->mapping)
670 return false;
671 if (!page_has_buffers(page))
672 return false;
1da177e4 673
a49935f2
DC
674 bh = head = page_buffers(page);
675 do {
676 if (buffer_unwritten(bh)) {
677 if (type == XFS_IO_UNWRITTEN)
678 return true;
679 } else if (buffer_delay(bh)) {
805eeb8e 680 if (type == XFS_IO_DELALLOC)
a49935f2
DC
681 return true;
682 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
805eeb8e 683 if (type == XFS_IO_OVERWRITE)
a49935f2
DC
684 return true;
685 }
1da177e4 686
a49935f2
DC
687 /* If we are only checking the first buffer, we are done now. */
688 if (!check_all_buffers)
689 break;
690 } while ((bh = bh->b_this_page) != head);
1da177e4 691
a49935f2 692 return false;
1da177e4
LT
693}
694
3ed3a434
DC
695STATIC void
696xfs_vm_invalidatepage(
697 struct page *page,
d47992f8
LC
698 unsigned int offset,
699 unsigned int length)
3ed3a434 700{
34097dfe
LC
701 trace_xfs_invalidatepage(page->mapping->host, page, offset,
702 length);
703 block_invalidatepage(page, offset, length);
3ed3a434
DC
704}
705
706/*
707 * If the page has delalloc buffers on it, we need to punch them out before we
708 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710 * is done on that same region - the delalloc extent is returned when none is
711 * supposed to be there.
712 *
713 * We prevent this by truncating away the delalloc regions on the page before
714 * invalidating it. Because they are delalloc, we can do this without needing a
715 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716 * truncation without a transaction as there is no space left for block
717 * reservation (typically why we see a ENOSPC in writeback).
718 *
719 * This is not a performance critical path, so for now just do the punching a
720 * buffer head at a time.
721 */
722STATIC void
723xfs_aops_discard_page(
724 struct page *page)
725{
726 struct inode *inode = page->mapping->host;
727 struct xfs_inode *ip = XFS_I(inode);
728 struct buffer_head *bh, *head;
729 loff_t offset = page_offset(page);
3ed3a434 730
a49935f2 731 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
3ed3a434
DC
732 goto out_invalidate;
733
e8c3753c
DC
734 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
735 goto out_invalidate;
736
4f10700a 737 xfs_alert(ip->i_mount,
3ed3a434
DC
738 "page discard on page %p, inode 0x%llx, offset %llu.",
739 page, ip->i_ino, offset);
740
741 xfs_ilock(ip, XFS_ILOCK_EXCL);
742 bh = head = page_buffers(page);
743 do {
3ed3a434 744 int error;
c726de44 745 xfs_fileoff_t start_fsb;
3ed3a434
DC
746
747 if (!buffer_delay(bh))
748 goto next_buffer;
749
c726de44
DC
750 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
751 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
3ed3a434
DC
752 if (error) {
753 /* something screwed, just bail */
e8c3753c 754 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
4f10700a 755 xfs_alert(ip->i_mount,
3ed3a434 756 "page discard unable to remove delalloc mapping.");
e8c3753c 757 }
3ed3a434
DC
758 break;
759 }
760next_buffer:
c726de44 761 offset += 1 << inode->i_blkbits;
3ed3a434
DC
762
763 } while ((bh = bh->b_this_page) != head);
764
765 xfs_iunlock(ip, XFS_ILOCK_EXCL);
766out_invalidate:
09cbfeaf 767 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
3ed3a434
DC
768 return;
769}
770
ef473667
DW
771static int
772xfs_map_cow(
773 struct xfs_writepage_ctx *wpc,
774 struct inode *inode,
775 loff_t offset,
776 unsigned int *new_type)
777{
778 struct xfs_inode *ip = XFS_I(inode);
779 struct xfs_bmbt_irec imap;
780 bool is_cow = false, need_alloc = false;
781 int error;
782
783 /*
784 * If we already have a valid COW mapping keep using it.
785 */
786 if (wpc->io_type == XFS_IO_COW) {
787 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
788 if (wpc->imap_valid) {
789 *new_type = XFS_IO_COW;
790 return 0;
791 }
792 }
793
794 /*
795 * Else we need to check if there is a COW mapping at this offset.
796 */
797 xfs_ilock(ip, XFS_ILOCK_SHARED);
798 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
799 xfs_iunlock(ip, XFS_ILOCK_SHARED);
800
801 if (!is_cow)
802 return 0;
803
804 /*
805 * And if the COW mapping has a delayed extent here we need to
806 * allocate real space for it now.
807 */
808 if (need_alloc) {
809 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
810 &imap);
811 if (error)
812 return error;
813 }
814
815 wpc->io_type = *new_type = XFS_IO_COW;
816 wpc->imap_valid = true;
817 wpc->imap = imap;
818 return 0;
819}
820
e10de372
DC
821/*
822 * We implement an immediate ioend submission policy here to avoid needing to
823 * chain multiple ioends and hence nest mempool allocations which can violate
824 * forward progress guarantees we need to provide. The current ioend we are
825 * adding buffers to is cached on the writepage context, and if the new buffer
826 * does not append to the cached ioend it will create a new ioend and cache that
827 * instead.
828 *
829 * If a new ioend is created and cached, the old ioend is returned and queued
830 * locally for submission once the entire page is processed or an error has been
831 * detected. While ioends are submitted immediately after they are completed,
832 * batching optimisations are provided by higher level block plugging.
833 *
834 * At the end of a writeback pass, there will be a cached ioend remaining on the
835 * writepage context that the caller will need to submit.
836 */
bfce7d2e
DC
837static int
838xfs_writepage_map(
839 struct xfs_writepage_ctx *wpc,
e10de372 840 struct writeback_control *wbc,
bfce7d2e
DC
841 struct inode *inode,
842 struct page *page,
843 loff_t offset,
844 __uint64_t end_offset)
845{
e10de372
DC
846 LIST_HEAD(submit_list);
847 struct xfs_ioend *ioend, *next;
bfce7d2e
DC
848 struct buffer_head *bh, *head;
849 ssize_t len = 1 << inode->i_blkbits;
850 int error = 0;
bfce7d2e 851 int count = 0;
e10de372 852 int uptodate = 1;
ef473667 853 unsigned int new_type;
bfce7d2e
DC
854
855 bh = head = page_buffers(page);
856 offset = page_offset(page);
bfce7d2e
DC
857 do {
858 if (offset >= end_offset)
859 break;
860 if (!buffer_uptodate(bh))
861 uptodate = 0;
862
863 /*
864 * set_page_dirty dirties all buffers in a page, independent
865 * of their state. The dirty state however is entirely
866 * meaningless for holes (!mapped && uptodate), so skip
867 * buffers covering holes here.
868 */
869 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
870 wpc->imap_valid = false;
871 continue;
872 }
873
ef473667
DW
874 if (buffer_unwritten(bh))
875 new_type = XFS_IO_UNWRITTEN;
876 else if (buffer_delay(bh))
877 new_type = XFS_IO_DELALLOC;
878 else if (buffer_uptodate(bh))
879 new_type = XFS_IO_OVERWRITE;
880 else {
bfce7d2e
DC
881 if (PageUptodate(page))
882 ASSERT(buffer_mapped(bh));
883 /*
884 * This buffer is not uptodate and will not be
885 * written to disk. Ensure that we will put any
886 * subsequent writeable buffers into a new
887 * ioend.
888 */
889 wpc->imap_valid = false;
890 continue;
891 }
892
ef473667
DW
893 if (xfs_is_reflink_inode(XFS_I(inode))) {
894 error = xfs_map_cow(wpc, inode, offset, &new_type);
895 if (error)
896 goto out;
897 }
898
899 if (wpc->io_type != new_type) {
900 wpc->io_type = new_type;
901 wpc->imap_valid = false;
902 }
903
bfce7d2e
DC
904 if (wpc->imap_valid)
905 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
906 offset);
907 if (!wpc->imap_valid) {
908 error = xfs_map_blocks(inode, offset, &wpc->imap,
909 wpc->io_type);
910 if (error)
e10de372 911 goto out;
bfce7d2e
DC
912 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
913 offset);
914 }
915 if (wpc->imap_valid) {
916 lock_buffer(bh);
917 if (wpc->io_type != XFS_IO_OVERWRITE)
918 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
bb18782a 919 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
bfce7d2e
DC
920 count++;
921 }
922
bfce7d2e
DC
923 } while (offset += len, ((bh = bh->b_this_page) != head));
924
925 if (uptodate && bh == head)
926 SetPageUptodate(page);
927
e10de372 928 ASSERT(wpc->ioend || list_empty(&submit_list));
bfce7d2e 929
e10de372 930out:
bfce7d2e 931 /*
e10de372
DC
932 * On error, we have to fail the ioend here because we have locked
933 * buffers in the ioend. If we don't do this, we'll deadlock
934 * invalidating the page as that tries to lock the buffers on the page.
935 * Also, because we may have set pages under writeback, we have to make
936 * sure we run IO completion to mark the error state of the IO
937 * appropriately, so we can't cancel the ioend directly here. That means
938 * we have to mark this page as under writeback if we included any
939 * buffers from it in the ioend chain so that completion treats it
940 * correctly.
bfce7d2e 941 *
e10de372
DC
942 * If we didn't include the page in the ioend, the on error we can
943 * simply discard and unlock it as there are no other users of the page
944 * or it's buffers right now. The caller will still need to trigger
945 * submission of outstanding ioends on the writepage context so they are
946 * treated correctly on error.
bfce7d2e 947 */
e10de372
DC
948 if (count) {
949 xfs_start_page_writeback(page, !error);
950
951 /*
952 * Preserve the original error if there was one, otherwise catch
953 * submission errors here and propagate into subsequent ioend
954 * submissions.
955 */
956 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
957 int error2;
958
959 list_del_init(&ioend->io_list);
960 error2 = xfs_submit_ioend(wbc, ioend, error);
961 if (error2 && !error)
962 error = error2;
963 }
964 } else if (error) {
bfce7d2e
DC
965 xfs_aops_discard_page(page);
966 ClearPageUptodate(page);
967 unlock_page(page);
e10de372
DC
968 } else {
969 /*
970 * We can end up here with no error and nothing to write if we
971 * race with a partial page truncate on a sub-page block sized
972 * filesystem. In that case we need to mark the page clean.
973 */
974 xfs_start_page_writeback(page, 1);
975 end_page_writeback(page);
bfce7d2e 976 }
e10de372 977
bfce7d2e
DC
978 mapping_set_error(page->mapping, error);
979 return error;
980}
981
1da177e4 982/*
89f3b363
CH
983 * Write out a dirty page.
984 *
985 * For delalloc space on the page we need to allocate space and flush it.
986 * For unwritten space on the page we need to start the conversion to
987 * regular allocated space.
89f3b363 988 * For any other dirty buffer heads on the page we should flush them.
1da177e4 989 */
1da177e4 990STATIC int
fbcc0256 991xfs_do_writepage(
89f3b363 992 struct page *page,
fbcc0256
DC
993 struct writeback_control *wbc,
994 void *data)
1da177e4 995{
fbcc0256 996 struct xfs_writepage_ctx *wpc = data;
89f3b363 997 struct inode *inode = page->mapping->host;
1da177e4 998 loff_t offset;
1da177e4 999 __uint64_t end_offset;
ad68972a 1000 pgoff_t end_index;
89f3b363 1001
34097dfe 1002 trace_xfs_writepage(inode, page, 0, 0);
89f3b363 1003
20cb52eb
CH
1004 ASSERT(page_has_buffers(page));
1005
89f3b363
CH
1006 /*
1007 * Refuse to write the page out if we are called from reclaim context.
1008 *
d4f7a5cb
CH
1009 * This avoids stack overflows when called from deeply used stacks in
1010 * random callers for direct reclaim or memcg reclaim. We explicitly
1011 * allow reclaim from kswapd as the stack usage there is relatively low.
89f3b363 1012 *
94054fa3
MG
1013 * This should never happen except in the case of a VM regression so
1014 * warn about it.
89f3b363 1015 */
94054fa3
MG
1016 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 PF_MEMALLOC))
b5420f23 1018 goto redirty;
1da177e4 1019
89f3b363 1020 /*
680a647b
CH
1021 * Given that we do not allow direct reclaim to call us, we should
1022 * never be called while in a filesystem transaction.
89f3b363 1023 */
448011e2 1024 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
b5420f23 1025 goto redirty;
89f3b363 1026
8695d27e 1027 /*
ad68972a
DC
1028 * Is this page beyond the end of the file?
1029 *
8695d27e
JL
1030 * The page index is less than the end_index, adjust the end_offset
1031 * to the highest offset that this page should represent.
1032 * -----------------------------------------------------
1033 * | file mapping | <EOF> |
1034 * -----------------------------------------------------
1035 * | Page ... | Page N-2 | Page N-1 | Page N | |
1036 * ^--------------------------------^----------|--------
1037 * | desired writeback range | see else |
1038 * ---------------------------------^------------------|
1039 */
ad68972a 1040 offset = i_size_read(inode);
09cbfeaf 1041 end_index = offset >> PAGE_SHIFT;
8695d27e 1042 if (page->index < end_index)
09cbfeaf 1043 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
8695d27e
JL
1044 else {
1045 /*
1046 * Check whether the page to write out is beyond or straddles
1047 * i_size or not.
1048 * -------------------------------------------------------
1049 * | file mapping | <EOF> |
1050 * -------------------------------------------------------
1051 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1052 * ^--------------------------------^-----------|---------
1053 * | | Straddles |
1054 * ---------------------------------^-----------|--------|
1055 */
09cbfeaf 1056 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
6b7a03f0
CH
1057
1058 /*
ff9a28f6
JK
1059 * Skip the page if it is fully outside i_size, e.g. due to a
1060 * truncate operation that is in progress. We must redirty the
1061 * page so that reclaim stops reclaiming it. Otherwise
1062 * xfs_vm_releasepage() is called on it and gets confused.
8695d27e
JL
1063 *
1064 * Note that the end_index is unsigned long, it would overflow
1065 * if the given offset is greater than 16TB on 32-bit system
1066 * and if we do check the page is fully outside i_size or not
1067 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 * will be evaluated to 0. Hence this page will be redirtied
1069 * and be written out repeatedly which would result in an
1070 * infinite loop, the user program that perform this operation
1071 * will hang. Instead, we can verify this situation by checking
1072 * if the page to write is totally beyond the i_size or if it's
1073 * offset is just equal to the EOF.
6b7a03f0 1074 */
8695d27e
JL
1075 if (page->index > end_index ||
1076 (page->index == end_index && offset_into_page == 0))
ff9a28f6 1077 goto redirty;
6b7a03f0
CH
1078
1079 /*
1080 * The page straddles i_size. It must be zeroed out on each
1081 * and every writepage invocation because it may be mmapped.
1082 * "A file is mapped in multiples of the page size. For a file
8695d27e 1083 * that is not a multiple of the page size, the remaining
6b7a03f0
CH
1084 * memory is zeroed when mapped, and writes to that region are
1085 * not written out to the file."
1086 */
09cbfeaf 1087 zero_user_segment(page, offset_into_page, PAGE_SIZE);
8695d27e
JL
1088
1089 /* Adjust the end_offset to the end of file */
1090 end_offset = offset;
1da177e4
LT
1091 }
1092
e10de372 1093 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
f51623b2 1094
b5420f23 1095redirty:
f51623b2
NS
1096 redirty_page_for_writepage(wbc, page);
1097 unlock_page(page);
1098 return 0;
f51623b2
NS
1099}
1100
fbcc0256
DC
1101STATIC int
1102xfs_vm_writepage(
1103 struct page *page,
1104 struct writeback_control *wbc)
1105{
1106 struct xfs_writepage_ctx wpc = {
1107 .io_type = XFS_IO_INVALID,
1108 };
1109 int ret;
1110
1111 ret = xfs_do_writepage(page, wbc, &wpc);
e10de372
DC
1112 if (wpc.ioend)
1113 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1114 return ret;
fbcc0256
DC
1115}
1116
7d4fb40a
NS
1117STATIC int
1118xfs_vm_writepages(
1119 struct address_space *mapping,
1120 struct writeback_control *wbc)
1121{
fbcc0256
DC
1122 struct xfs_writepage_ctx wpc = {
1123 .io_type = XFS_IO_INVALID,
1124 };
1125 int ret;
1126
b3aea4ed 1127 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7f6d5b52
RZ
1128 if (dax_mapping(mapping))
1129 return dax_writeback_mapping_range(mapping,
1130 xfs_find_bdev_for_inode(mapping->host), wbc);
1131
fbcc0256 1132 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
e10de372
DC
1133 if (wpc.ioend)
1134 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 return ret;
7d4fb40a
NS
1136}
1137
f51623b2
NS
1138/*
1139 * Called to move a page into cleanable state - and from there
89f3b363 1140 * to be released. The page should already be clean. We always
f51623b2
NS
1141 * have buffer heads in this call.
1142 *
89f3b363 1143 * Returns 1 if the page is ok to release, 0 otherwise.
f51623b2
NS
1144 */
1145STATIC int
238f4c54 1146xfs_vm_releasepage(
f51623b2
NS
1147 struct page *page,
1148 gfp_t gfp_mask)
1149{
20cb52eb 1150 int delalloc, unwritten;
f51623b2 1151
34097dfe 1152 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
238f4c54 1153
99579cce
BF
1154 /*
1155 * mm accommodates an old ext3 case where clean pages might not have had
1156 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 * ->releasepage() via shrink_active_list(). Conversely,
1158 * block_invalidatepage() can send pages that are still marked dirty
1159 * but otherwise have invalidated buffers.
1160 *
1161 * We've historically freed buffers on the latter. Instead, quietly
1162 * filter out all dirty pages to avoid spurious buffer state warnings.
1163 * This can likely be removed once shrink_active_list() is fixed.
1164 */
1165 if (PageDirty(page))
1166 return 0;
1167
20cb52eb 1168 xfs_count_page_state(page, &delalloc, &unwritten);
f51623b2 1169
448011e2 1170 if (WARN_ON_ONCE(delalloc))
f51623b2 1171 return 0;
448011e2 1172 if (WARN_ON_ONCE(unwritten))
f51623b2
NS
1173 return 0;
1174
f51623b2
NS
1175 return try_to_free_buffers(page);
1176}
1177
a719370b 1178/*
273dda76
CH
1179 * When we map a DIO buffer, we may need to pass flags to
1180 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
3e12dbbd
DC
1181 *
1182 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1183 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1184 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1185 * extending the file size. We won't know for sure until IO completion is run
1186 * and the actual max write offset is communicated to the IO completion
1187 * routine.
a719370b
DC
1188 */
1189static void
1190xfs_map_direct(
1191 struct inode *inode,
1192 struct buffer_head *bh_result,
1193 struct xfs_bmbt_irec *imap,
0613f16c
DW
1194 xfs_off_t offset,
1195 bool is_cow)
a719370b 1196{
273dda76 1197 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
d5cc2e3f 1198 xfs_off_t size = bh_result->b_size;
d5cc2e3f 1199
273dda76 1200 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
0613f16c
DW
1201 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1202 XFS_IO_OVERWRITE, imap);
d5cc2e3f 1203
273dda76
CH
1204 if (ISUNWRITTEN(imap)) {
1205 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1206 set_buffer_defer_completion(bh_result);
0613f16c
DW
1207 } else if (is_cow) {
1208 *flags |= XFS_DIO_FLAG_COW;
1209 set_buffer_defer_completion(bh_result);
1210 }
1211 if (offset + size > i_size_read(inode) || offset + size < 0) {
273dda76 1212 *flags |= XFS_DIO_FLAG_APPEND;
a06c277a 1213 set_buffer_defer_completion(bh_result);
a719370b
DC
1214 }
1215}
1216
1fdca9c2
DC
1217/*
1218 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1219 * is, so that we can avoid repeated get_blocks calls.
1220 *
1221 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1222 * for blocks beyond EOF must be marked new so that sub block regions can be
1223 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1224 * was just allocated or is unwritten, otherwise the callers would overwrite
1225 * existing data with zeros. Hence we have to split the mapping into a range up
1226 * to and including EOF, and a second mapping for beyond EOF.
1227 */
1228static void
1229xfs_map_trim_size(
1230 struct inode *inode,
1231 sector_t iblock,
1232 struct buffer_head *bh_result,
1233 struct xfs_bmbt_irec *imap,
1234 xfs_off_t offset,
1235 ssize_t size)
1236{
1237 xfs_off_t mapping_size;
1238
1239 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1240 mapping_size <<= inode->i_blkbits;
1241
1242 ASSERT(mapping_size > 0);
1243 if (mapping_size > size)
1244 mapping_size = size;
1245 if (offset < i_size_read(inode) &&
1246 offset + mapping_size >= i_size_read(inode)) {
1247 /* limit mapping to block that spans EOF */
1248 mapping_size = roundup_64(i_size_read(inode) - offset,
1249 1 << inode->i_blkbits);
1250 }
1251 if (mapping_size > LONG_MAX)
1252 mapping_size = LONG_MAX;
1253
1254 bh_result->b_size = mapping_size;
1255}
1256
0613f16c
DW
1257/* Bounce unaligned directio writes to the page cache. */
1258static int
1259xfs_bounce_unaligned_dio_write(
1260 struct xfs_inode *ip,
1261 xfs_fileoff_t offset_fsb,
1262 struct xfs_bmbt_irec *imap)
1263{
1264 struct xfs_bmbt_irec irec;
1265 xfs_fileoff_t delta;
1266 bool shared;
1267 bool x;
1268 int error;
1269
1270 irec = *imap;
1271 if (offset_fsb > irec.br_startoff) {
1272 delta = offset_fsb - irec.br_startoff;
1273 irec.br_blockcount -= delta;
1274 irec.br_startblock += delta;
1275 irec.br_startoff = offset_fsb;
1276 }
1277 error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x);
1278 if (error)
1279 return error;
1280
1281 /*
1282 * We're here because we're trying to do a directio write to a
1283 * region that isn't aligned to a filesystem block. If any part
1284 * of the extent is shared, fall back to buffered mode to handle
1285 * the RMW. This is done by returning -EREMCHG ("remote addr
1286 * changed"), which is caught further up the call stack.
1287 */
1288 if (shared) {
1289 trace_xfs_reflink_bounce_dio_write(ip, imap);
1290 return -EREMCHG;
1291 }
1292 return 0;
1293}
1294
1da177e4 1295STATIC int
c2536668 1296__xfs_get_blocks(
1da177e4
LT
1297 struct inode *inode,
1298 sector_t iblock,
1da177e4
LT
1299 struct buffer_head *bh_result,
1300 int create,
3e12dbbd
DC
1301 bool direct,
1302 bool dax_fault)
1da177e4 1303{
a206c817
CH
1304 struct xfs_inode *ip = XFS_I(inode);
1305 struct xfs_mount *mp = ip->i_mount;
1306 xfs_fileoff_t offset_fsb, end_fsb;
1307 int error = 0;
1308 int lockmode = 0;
207d0416 1309 struct xfs_bmbt_irec imap;
a206c817 1310 int nimaps = 1;
fdc7ed75
NS
1311 xfs_off_t offset;
1312 ssize_t size;
207d0416 1313 int new = 0;
0613f16c
DW
1314 bool is_cow = false;
1315 bool need_alloc = false;
a206c817 1316
6e8a27a8
CH
1317 BUG_ON(create && !direct);
1318
a206c817 1319 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 1320 return -EIO;
1da177e4 1321
fdc7ed75 1322 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1323 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1324 size = bh_result->b_size;
364f358a 1325
6e8a27a8 1326 if (!create && offset >= i_size_read(inode))
364f358a
LM
1327 return 0;
1328
507630b2
DC
1329 /*
1330 * Direct I/O is usually done on preallocated files, so try getting
6e8a27a8 1331 * a block mapping without an exclusive lock first.
507630b2 1332 */
6e8a27a8 1333 lockmode = xfs_ilock_data_map_shared(ip);
f2bde9b8 1334
d2c28191
DC
1335 ASSERT(offset <= mp->m_super->s_maxbytes);
1336 if (offset + size > mp->m_super->s_maxbytes)
1337 size = mp->m_super->s_maxbytes - offset;
a206c817
CH
1338 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1339 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1340
0613f16c
DW
1341 if (create && direct && xfs_is_reflink_inode(ip))
1342 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1343 &need_alloc);
1344 if (!is_cow) {
1345 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1346 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1347 /*
1348 * Truncate an overwrite extent if there's a pending CoW
1349 * reservation before the end of this extent. This
1350 * forces us to come back to get_blocks to take care of
1351 * the CoW.
1352 */
1353 if (create && direct && nimaps &&
1354 imap.br_startblock != HOLESTARTBLOCK &&
1355 imap.br_startblock != DELAYSTARTBLOCK &&
1356 !ISUNWRITTEN(&imap))
1357 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1358 &imap);
1359 }
1360 ASSERT(!need_alloc);
1da177e4 1361 if (error)
a206c817
CH
1362 goto out_unlock;
1363
04197b34
BF
1364 /*
1365 * The only time we can ever safely find delalloc blocks on direct I/O
1366 * is a dio write to post-eof speculative preallocation. All other
1367 * scenarios are indicative of a problem or misuse (such as mixing
1368 * direct and mapped I/O).
1369 *
1370 * The file may be unmapped by the time we get here so we cannot
1371 * reliably fail the I/O based on mapping. Instead, fail the I/O if this
1372 * is a read or a write within eof. Otherwise, carry on but warn as a
1373 * precuation if the file happens to be mapped.
1374 */
1375 if (direct && imap.br_startblock == DELAYSTARTBLOCK) {
1376 if (!create || offset < i_size_read(VFS_I(ip))) {
1377 WARN_ON_ONCE(1);
1378 error = -EIO;
1379 goto out_unlock;
1380 }
1381 WARN_ON_ONCE(mapping_mapped(VFS_I(ip)->i_mapping));
1382 }
1383
1ca19157 1384 /* for DAX, we convert unwritten extents directly */
a206c817
CH
1385 if (create &&
1386 (!nimaps ||
1387 (imap.br_startblock == HOLESTARTBLOCK ||
1ca19157
DC
1388 imap.br_startblock == DELAYSTARTBLOCK) ||
1389 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
6e8a27a8
CH
1390 /*
1391 * xfs_iomap_write_direct() expects the shared lock. It
1392 * is unlocked on return.
1393 */
1394 if (lockmode == XFS_ILOCK_EXCL)
1395 xfs_ilock_demote(ip, lockmode);
6b698ede 1396
6e8a27a8
CH
1397 error = xfs_iomap_write_direct(ip, offset, size,
1398 &imap, nimaps);
1399 if (error)
1400 return error;
1401 new = 1;
507630b2 1402
d5cc2e3f
DC
1403 trace_xfs_get_blocks_alloc(ip, offset, size,
1404 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1405 : XFS_IO_DELALLOC, &imap);
a206c817 1406 } else if (nimaps) {
d5cc2e3f
DC
1407 trace_xfs_get_blocks_found(ip, offset, size,
1408 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1409 : XFS_IO_OVERWRITE, &imap);
507630b2 1410 xfs_iunlock(ip, lockmode);
a206c817
CH
1411 } else {
1412 trace_xfs_get_blocks_notfound(ip, offset, size);
1413 goto out_unlock;
1414 }
1da177e4 1415
1ca19157
DC
1416 if (IS_DAX(inode) && create) {
1417 ASSERT(!ISUNWRITTEN(&imap));
1418 /* zeroing is not needed at a higher layer */
1419 new = 0;
1420 }
1421
1fdca9c2 1422 /* trim mapping down to size requested */
6e8a27a8 1423 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1fdca9c2 1424
a719370b
DC
1425 /*
1426 * For unwritten extents do not report a disk address in the buffered
1427 * read case (treat as if we're reading into a hole).
1428 */
207d0416 1429 if (imap.br_startblock != HOLESTARTBLOCK &&
a719370b
DC
1430 imap.br_startblock != DELAYSTARTBLOCK &&
1431 (create || !ISUNWRITTEN(&imap))) {
0613f16c
DW
1432 if (create && direct && !is_cow) {
1433 error = xfs_bounce_unaligned_dio_write(ip, offset_fsb,
1434 &imap);
1435 if (error)
1436 return error;
1437 }
1438
a719370b
DC
1439 xfs_map_buffer(inode, bh_result, &imap, offset);
1440 if (ISUNWRITTEN(&imap))
1da177e4 1441 set_buffer_unwritten(bh_result);
a719370b 1442 /* direct IO needs special help */
6e8a27a8 1443 if (create) {
273dda76
CH
1444 if (dax_fault)
1445 ASSERT(!ISUNWRITTEN(&imap));
1446 else
0613f16c
DW
1447 xfs_map_direct(inode, bh_result, &imap, offset,
1448 is_cow);
273dda76 1449 }
1da177e4
LT
1450 }
1451
c2536668
NS
1452 /*
1453 * If this is a realtime file, data may be on a different device.
1454 * to that pointed to from the buffer_head b_bdev currently.
1455 */
046f1685 1456 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1457
c2536668 1458 /*
549054af
DC
1459 * If we previously allocated a block out beyond eof and we are now
1460 * coming back to use it then we will need to flag it as new even if it
1461 * has a disk address.
1462 *
1463 * With sub-block writes into unwritten extents we also need to mark
1464 * the buffer as new so that the unwritten parts of the buffer gets
1465 * correctly zeroed.
1da177e4
LT
1466 */
1467 if (create &&
1468 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1469 (offset >= i_size_read(inode)) ||
207d0416 1470 (new || ISUNWRITTEN(&imap))))
1da177e4 1471 set_buffer_new(bh_result);
1da177e4 1472
1da177e4 1473 return 0;
a206c817
CH
1474
1475out_unlock:
1476 xfs_iunlock(ip, lockmode);
2451337d 1477 return error;
1da177e4
LT
1478}
1479
1480int
c2536668 1481xfs_get_blocks(
1da177e4
LT
1482 struct inode *inode,
1483 sector_t iblock,
1484 struct buffer_head *bh_result,
1485 int create)
1486{
3e12dbbd 1487 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1da177e4
LT
1488}
1489
6b698ede 1490int
e4c573bb 1491xfs_get_blocks_direct(
1da177e4
LT
1492 struct inode *inode,
1493 sector_t iblock,
1da177e4
LT
1494 struct buffer_head *bh_result,
1495 int create)
1496{
3e12dbbd
DC
1497 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1498}
1499
1500int
1501xfs_get_blocks_dax_fault(
1502 struct inode *inode,
1503 sector_t iblock,
1504 struct buffer_head *bh_result,
1505 int create)
1506{
1507 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1da177e4
LT
1508}
1509
273dda76
CH
1510/*
1511 * Complete a direct I/O write request.
1512 *
1513 * xfs_map_direct passes us some flags in the private data to tell us what to
1514 * do. If no flags are set, then the write IO is an overwrite wholly within
1515 * the existing allocated file size and so there is nothing for us to do.
1516 *
1517 * Note that in this case the completion can be called in interrupt context,
1518 * whereas if we have flags set we will always be called in task context
1519 * (i.e. from a workqueue).
1520 */
fa8d972d 1521int
273dda76
CH
1522xfs_end_io_direct_write(
1523 struct kiocb *iocb,
209fb87a 1524 loff_t offset,
273dda76
CH
1525 ssize_t size,
1526 void *private)
f0973863 1527{
273dda76
CH
1528 struct inode *inode = file_inode(iocb->ki_filp);
1529 struct xfs_inode *ip = XFS_I(inode);
273dda76
CH
1530 uintptr_t flags = (uintptr_t)private;
1531 int error = 0;
a06c277a 1532
273dda76 1533 trace_xfs_end_io_direct_write(ip, offset, size);
f0973863 1534
e372843a 1535 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
273dda76 1536 return -EIO;
d5cc2e3f 1537
273dda76
CH
1538 if (size <= 0)
1539 return size;
f0973863 1540
2813d682 1541 /*
273dda76 1542 * The flags tell us whether we are doing unwritten extent conversions
6dfa1b67
DC
1543 * or an append transaction that updates the on-disk file size. These
1544 * cases are the only cases where we should *potentially* be needing
a06c277a 1545 * to update the VFS inode size.
273dda76
CH
1546 */
1547 if (flags == 0) {
1548 ASSERT(offset + size <= i_size_read(inode));
1549 return 0;
1550 }
1551
1552 /*
6dfa1b67 1553 * We need to update the in-core inode size here so that we don't end up
a06c277a
DC
1554 * with the on-disk inode size being outside the in-core inode size. We
1555 * have no other method of updating EOF for AIO, so always do it here
1556 * if necessary.
b9d59846
DC
1557 *
1558 * We need to lock the test/set EOF update as we can be racing with
1559 * other IO completions here to update the EOF. Failing to serialise
1560 * here can result in EOF moving backwards and Bad Things Happen when
1561 * that occurs.
2813d682 1562 */
273dda76 1563 spin_lock(&ip->i_flags_lock);
2ba66237
CH
1564 if (offset + size > i_size_read(inode))
1565 i_size_write(inode, offset + size);
273dda76 1566 spin_unlock(&ip->i_flags_lock);
2813d682 1567
feac470e
CH
1568 if (flags & XFS_DIO_FLAG_COW)
1569 error = xfs_reflink_end_cow(ip, offset, size);
273dda76
CH
1570 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1571 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
209fb87a 1572
273dda76 1573 error = xfs_iomap_write_unwritten(ip, offset, size);
0613f16c 1574 }
0613f16c 1575 if (flags & XFS_DIO_FLAG_APPEND) {
273dda76 1576 trace_xfs_end_io_direct_write_append(ip, offset, size);
6b698ede 1577
e372843a 1578 error = xfs_setfilesize(ip, offset, size);
6b698ede
DC
1579 }
1580
273dda76 1581 return error;
6b698ede
DC
1582}
1583
c19b104a
CH
1584STATIC ssize_t
1585xfs_vm_direct_IO(
6e1ba0bc 1586 struct kiocb *iocb,
c8b8e32d 1587 struct iov_iter *iter)
6e1ba0bc 1588{
58e59854 1589 /*
fa8d972d 1590 * We just need the method present so that open/fcntl allow direct I/O.
58e59854 1591 */
fa8d972d 1592 return -EINVAL;
f51623b2 1593}
1da177e4
LT
1594
1595STATIC sector_t
e4c573bb 1596xfs_vm_bmap(
1da177e4
LT
1597 struct address_space *mapping,
1598 sector_t block)
1599{
1600 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1601 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1602
cca28fb8 1603 trace_xfs_vm_bmap(XFS_I(inode));
126468b1 1604 xfs_ilock(ip, XFS_IOLOCK_SHARED);
db1327b1
DW
1605
1606 /*
1607 * The swap code (ab-)uses ->bmap to get a block mapping and then
1608 * bypasseѕ the file system for actual I/O. We really can't allow
1609 * that on reflinks inodes, so we have to skip out here. And yes,
1610 * 0 is the magic code for a bmap error..
1611 */
1612 if (xfs_is_reflink_inode(ip)) {
1613 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1614 return 0;
1615 }
4bc1ea6b 1616 filemap_write_and_wait(mapping);
126468b1 1617 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1618 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1619}
1620
1621STATIC int
e4c573bb 1622xfs_vm_readpage(
1da177e4
LT
1623 struct file *unused,
1624 struct page *page)
1625{
121e213e 1626 trace_xfs_vm_readpage(page->mapping->host, 1);
c2536668 1627 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1628}
1629
1630STATIC int
e4c573bb 1631xfs_vm_readpages(
1da177e4
LT
1632 struct file *unused,
1633 struct address_space *mapping,
1634 struct list_head *pages,
1635 unsigned nr_pages)
1636{
121e213e 1637 trace_xfs_vm_readpages(mapping->host, nr_pages);
c2536668 1638 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1639}
1640
22e757a4
DC
1641/*
1642 * This is basically a copy of __set_page_dirty_buffers() with one
1643 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1644 * dirty, we'll never be able to clean them because we don't write buffers
1645 * beyond EOF, and that means we can't invalidate pages that span EOF
1646 * that have been marked dirty. Further, the dirty state can leak into
1647 * the file interior if the file is extended, resulting in all sorts of
1648 * bad things happening as the state does not match the underlying data.
1649 *
1650 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1651 * this only exist because of bufferheads and how the generic code manages them.
1652 */
1653STATIC int
1654xfs_vm_set_page_dirty(
1655 struct page *page)
1656{
1657 struct address_space *mapping = page->mapping;
1658 struct inode *inode = mapping->host;
1659 loff_t end_offset;
1660 loff_t offset;
1661 int newly_dirty;
1662
1663 if (unlikely(!mapping))
1664 return !TestSetPageDirty(page);
1665
1666 end_offset = i_size_read(inode);
1667 offset = page_offset(page);
1668
1669 spin_lock(&mapping->private_lock);
1670 if (page_has_buffers(page)) {
1671 struct buffer_head *head = page_buffers(page);
1672 struct buffer_head *bh = head;
1673
1674 do {
1675 if (offset < end_offset)
1676 set_buffer_dirty(bh);
1677 bh = bh->b_this_page;
1678 offset += 1 << inode->i_blkbits;
1679 } while (bh != head);
1680 }
c4843a75 1681 /*
81f8c3a4
JW
1682 * Lock out page->mem_cgroup migration to keep PageDirty
1683 * synchronized with per-memcg dirty page counters.
c4843a75 1684 */
62cccb8c 1685 lock_page_memcg(page);
22e757a4
DC
1686 newly_dirty = !TestSetPageDirty(page);
1687 spin_unlock(&mapping->private_lock);
1688
1689 if (newly_dirty) {
1690 /* sigh - __set_page_dirty() is static, so copy it here, too */
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&mapping->tree_lock, flags);
1694 if (page->mapping) { /* Race with truncate? */
1695 WARN_ON_ONCE(!PageUptodate(page));
62cccb8c 1696 account_page_dirtied(page, mapping);
22e757a4
DC
1697 radix_tree_tag_set(&mapping->page_tree,
1698 page_index(page), PAGECACHE_TAG_DIRTY);
1699 }
1700 spin_unlock_irqrestore(&mapping->tree_lock, flags);
22e757a4 1701 }
62cccb8c 1702 unlock_page_memcg(page);
c4843a75
GT
1703 if (newly_dirty)
1704 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
22e757a4
DC
1705 return newly_dirty;
1706}
1707
f5e54d6e 1708const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1709 .readpage = xfs_vm_readpage,
1710 .readpages = xfs_vm_readpages,
1711 .writepage = xfs_vm_writepage,
7d4fb40a 1712 .writepages = xfs_vm_writepages,
22e757a4 1713 .set_page_dirty = xfs_vm_set_page_dirty,
238f4c54
NS
1714 .releasepage = xfs_vm_releasepage,
1715 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb
NS
1716 .bmap = xfs_vm_bmap,
1717 .direct_IO = xfs_vm_direct_IO,
e965f963 1718 .migratepage = buffer_migrate_page,
bddaafa1 1719 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1720 .error_remove_page = generic_error_remove_page,
1da177e4 1721};
This page took 1.33735 seconds and 4 git commands to generate.