]>
Commit | Line | Data |
---|---|---|
4d86dfbb VG |
1 | /* |
2 | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License version 2 as | |
6 | * published by the Free Software Foundation. | |
7 | */ | |
8 | ||
9 | #include <linux/types.h> | |
10 | #include <linux/kprobes.h> | |
11 | #include <linux/slab.h> | |
12 | #include <linux/module.h> | |
4d86dfbb VG |
13 | #include <linux/kdebug.h> |
14 | #include <linux/sched.h> | |
15 | #include <linux/uaccess.h> | |
16 | #include <asm/cacheflush.h> | |
17 | #include <asm/current.h> | |
18 | #include <asm/disasm.h> | |
19 | ||
20 | #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \ | |
21 | (unsigned long)current_thread_info() + THREAD_SIZE - (addr)) | |
22 | ||
23 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | |
24 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | |
25 | ||
26 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | |
27 | { | |
28 | /* Attempt to probe at unaligned address */ | |
29 | if ((unsigned long)p->addr & 0x01) | |
30 | return -EINVAL; | |
31 | ||
32 | /* Address should not be in exception handling code */ | |
33 | ||
34 | p->ainsn.is_short = is_short_instr((unsigned long)p->addr); | |
35 | p->opcode = *p->addr; | |
36 | ||
37 | return 0; | |
38 | } | |
39 | ||
40 | void __kprobes arch_arm_kprobe(struct kprobe *p) | |
41 | { | |
42 | *p->addr = UNIMP_S_INSTRUCTION; | |
43 | ||
44 | flush_icache_range((unsigned long)p->addr, | |
45 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | |
46 | } | |
47 | ||
48 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | |
49 | { | |
50 | *p->addr = p->opcode; | |
51 | ||
52 | flush_icache_range((unsigned long)p->addr, | |
53 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | |
54 | } | |
55 | ||
56 | void __kprobes arch_remove_kprobe(struct kprobe *p) | |
57 | { | |
58 | arch_disarm_kprobe(p); | |
59 | ||
60 | /* Can we remove the kprobe in the middle of kprobe handling? */ | |
61 | if (p->ainsn.t1_addr) { | |
62 | *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; | |
63 | ||
64 | flush_icache_range((unsigned long)p->ainsn.t1_addr, | |
65 | (unsigned long)p->ainsn.t1_addr + | |
66 | sizeof(kprobe_opcode_t)); | |
67 | ||
68 | p->ainsn.t1_addr = NULL; | |
69 | } | |
70 | ||
71 | if (p->ainsn.t2_addr) { | |
72 | *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; | |
73 | ||
74 | flush_icache_range((unsigned long)p->ainsn.t2_addr, | |
75 | (unsigned long)p->ainsn.t2_addr + | |
76 | sizeof(kprobe_opcode_t)); | |
77 | ||
78 | p->ainsn.t2_addr = NULL; | |
79 | } | |
80 | } | |
81 | ||
82 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | |
83 | { | |
84 | kcb->prev_kprobe.kp = kprobe_running(); | |
85 | kcb->prev_kprobe.status = kcb->kprobe_status; | |
86 | } | |
87 | ||
88 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | |
89 | { | |
6855e95c | 90 | __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
4d86dfbb VG |
91 | kcb->kprobe_status = kcb->prev_kprobe.status; |
92 | } | |
93 | ||
94 | static inline void __kprobes set_current_kprobe(struct kprobe *p) | |
95 | { | |
6855e95c | 96 | __this_cpu_write(current_kprobe, p); |
4d86dfbb VG |
97 | } |
98 | ||
99 | static void __kprobes resume_execution(struct kprobe *p, unsigned long addr, | |
100 | struct pt_regs *regs) | |
101 | { | |
102 | /* Remove the trap instructions inserted for single step and | |
103 | * restore the original instructions | |
104 | */ | |
105 | if (p->ainsn.t1_addr) { | |
106 | *(p->ainsn.t1_addr) = p->ainsn.t1_opcode; | |
107 | ||
108 | flush_icache_range((unsigned long)p->ainsn.t1_addr, | |
109 | (unsigned long)p->ainsn.t1_addr + | |
110 | sizeof(kprobe_opcode_t)); | |
111 | ||
112 | p->ainsn.t1_addr = NULL; | |
113 | } | |
114 | ||
115 | if (p->ainsn.t2_addr) { | |
116 | *(p->ainsn.t2_addr) = p->ainsn.t2_opcode; | |
117 | ||
118 | flush_icache_range((unsigned long)p->ainsn.t2_addr, | |
119 | (unsigned long)p->ainsn.t2_addr + | |
120 | sizeof(kprobe_opcode_t)); | |
121 | ||
122 | p->ainsn.t2_addr = NULL; | |
123 | } | |
124 | ||
125 | return; | |
126 | } | |
127 | ||
128 | static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs) | |
129 | { | |
130 | unsigned long next_pc; | |
131 | unsigned long tgt_if_br = 0; | |
132 | int is_branch; | |
133 | unsigned long bta; | |
134 | ||
135 | /* Copy the opcode back to the kprobe location and execute the | |
136 | * instruction. Because of this we will not be able to get into the | |
137 | * same kprobe until this kprobe is done | |
138 | */ | |
139 | *(p->addr) = p->opcode; | |
140 | ||
141 | flush_icache_range((unsigned long)p->addr, | |
142 | (unsigned long)p->addr + sizeof(kprobe_opcode_t)); | |
143 | ||
144 | /* Now we insert the trap at the next location after this instruction to | |
145 | * single step. If it is a branch we insert the trap at possible branch | |
146 | * targets | |
147 | */ | |
148 | ||
149 | bta = regs->bta; | |
150 | ||
151 | if (regs->status32 & 0x40) { | |
152 | /* We are in a delay slot with the branch taken */ | |
153 | ||
154 | next_pc = bta & ~0x01; | |
155 | ||
156 | if (!p->ainsn.is_short) { | |
157 | if (bta & 0x01) | |
158 | regs->blink += 2; | |
159 | else { | |
160 | /* Branch not taken */ | |
161 | next_pc += 2; | |
162 | ||
163 | /* next pc is taken from bta after executing the | |
164 | * delay slot instruction | |
165 | */ | |
166 | regs->bta += 2; | |
167 | } | |
168 | } | |
169 | ||
170 | is_branch = 0; | |
171 | } else | |
172 | is_branch = | |
173 | disasm_next_pc((unsigned long)p->addr, regs, | |
174 | (struct callee_regs *) current->thread.callee_reg, | |
175 | &next_pc, &tgt_if_br); | |
176 | ||
177 | p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc; | |
178 | p->ainsn.t1_opcode = *(p->ainsn.t1_addr); | |
179 | *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION; | |
180 | ||
181 | flush_icache_range((unsigned long)p->ainsn.t1_addr, | |
182 | (unsigned long)p->ainsn.t1_addr + | |
183 | sizeof(kprobe_opcode_t)); | |
184 | ||
185 | if (is_branch) { | |
186 | p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br; | |
187 | p->ainsn.t2_opcode = *(p->ainsn.t2_addr); | |
188 | *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION; | |
189 | ||
190 | flush_icache_range((unsigned long)p->ainsn.t2_addr, | |
191 | (unsigned long)p->ainsn.t2_addr + | |
192 | sizeof(kprobe_opcode_t)); | |
193 | } | |
194 | } | |
195 | ||
196 | int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs) | |
197 | { | |
198 | struct kprobe *p; | |
199 | struct kprobe_ctlblk *kcb; | |
200 | ||
201 | preempt_disable(); | |
202 | ||
203 | kcb = get_kprobe_ctlblk(); | |
204 | p = get_kprobe((unsigned long *)addr); | |
205 | ||
206 | if (p) { | |
207 | /* | |
208 | * We have reentered the kprobe_handler, since another kprobe | |
209 | * was hit while within the handler, we save the original | |
210 | * kprobes and single step on the instruction of the new probe | |
211 | * without calling any user handlers to avoid recursive | |
212 | * kprobes. | |
213 | */ | |
214 | if (kprobe_running()) { | |
215 | save_previous_kprobe(kcb); | |
216 | set_current_kprobe(p); | |
217 | kprobes_inc_nmissed_count(p); | |
218 | setup_singlestep(p, regs); | |
219 | kcb->kprobe_status = KPROBE_REENTER; | |
220 | return 1; | |
221 | } | |
222 | ||
223 | set_current_kprobe(p); | |
224 | kcb->kprobe_status = KPROBE_HIT_ACTIVE; | |
225 | ||
226 | /* If we have no pre-handler or it returned 0, we continue with | |
227 | * normal processing. If we have a pre-handler and it returned | |
228 | * non-zero - which is expected from setjmp_pre_handler for | |
229 | * jprobe, we return without single stepping and leave that to | |
230 | * the break-handler which is invoked by a kprobe from | |
231 | * jprobe_return | |
232 | */ | |
233 | if (!p->pre_handler || !p->pre_handler(p, regs)) { | |
234 | setup_singlestep(p, regs); | |
235 | kcb->kprobe_status = KPROBE_HIT_SS; | |
236 | } | |
237 | ||
238 | return 1; | |
239 | } else if (kprobe_running()) { | |
6855e95c | 240 | p = __this_cpu_read(current_kprobe); |
4d86dfbb VG |
241 | if (p->break_handler && p->break_handler(p, regs)) { |
242 | setup_singlestep(p, regs); | |
243 | kcb->kprobe_status = KPROBE_HIT_SS; | |
244 | return 1; | |
245 | } | |
246 | } | |
247 | ||
248 | /* no_kprobe: */ | |
249 | preempt_enable_no_resched(); | |
250 | return 0; | |
251 | } | |
252 | ||
253 | static int __kprobes arc_post_kprobe_handler(unsigned long addr, | |
254 | struct pt_regs *regs) | |
255 | { | |
256 | struct kprobe *cur = kprobe_running(); | |
257 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | |
258 | ||
259 | if (!cur) | |
260 | return 0; | |
261 | ||
262 | resume_execution(cur, addr, regs); | |
263 | ||
264 | /* Rearm the kprobe */ | |
265 | arch_arm_kprobe(cur); | |
266 | ||
267 | /* | |
268 | * When we return from trap instruction we go to the next instruction | |
269 | * We restored the actual instruction in resume_exectuiont and we to | |
270 | * return to the same address and execute it | |
271 | */ | |
272 | regs->ret = addr; | |
273 | ||
274 | if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | |
275 | kcb->kprobe_status = KPROBE_HIT_SSDONE; | |
276 | cur->post_handler(cur, regs, 0); | |
277 | } | |
278 | ||
279 | if (kcb->kprobe_status == KPROBE_REENTER) { | |
280 | restore_previous_kprobe(kcb); | |
281 | goto out; | |
282 | } | |
283 | ||
284 | reset_current_kprobe(); | |
285 | ||
286 | out: | |
287 | preempt_enable_no_resched(); | |
288 | return 1; | |
289 | } | |
290 | ||
291 | /* | |
292 | * Fault can be for the instruction being single stepped or for the | |
293 | * pre/post handlers in the module. | |
294 | * This is applicable for applications like user probes, where we have the | |
295 | * probe in user space and the handlers in the kernel | |
296 | */ | |
297 | ||
298 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr) | |
299 | { | |
300 | struct kprobe *cur = kprobe_running(); | |
301 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | |
302 | ||
303 | switch (kcb->kprobe_status) { | |
304 | case KPROBE_HIT_SS: | |
305 | case KPROBE_REENTER: | |
306 | /* | |
307 | * We are here because the instruction being single stepped | |
308 | * caused the fault. We reset the current kprobe and allow the | |
309 | * exception handler as if it is regular exception. In our | |
310 | * case it doesn't matter because the system will be halted | |
311 | */ | |
312 | resume_execution(cur, (unsigned long)cur->addr, regs); | |
313 | ||
314 | if (kcb->kprobe_status == KPROBE_REENTER) | |
315 | restore_previous_kprobe(kcb); | |
316 | else | |
317 | reset_current_kprobe(); | |
318 | ||
319 | preempt_enable_no_resched(); | |
320 | break; | |
321 | ||
322 | case KPROBE_HIT_ACTIVE: | |
323 | case KPROBE_HIT_SSDONE: | |
324 | /* | |
325 | * We are here because the instructions in the pre/post handler | |
326 | * caused the fault. | |
327 | */ | |
328 | ||
329 | /* We increment the nmissed count for accounting, | |
23d6d3db | 330 | * we can also use npre/npostfault count for accounting |
4d86dfbb VG |
331 | * these specific fault cases. |
332 | */ | |
333 | kprobes_inc_nmissed_count(cur); | |
334 | ||
335 | /* | |
336 | * We come here because instructions in the pre/post | |
337 | * handler caused the page_fault, this could happen | |
338 | * if handler tries to access user space by | |
339 | * copy_from_user(), get_user() etc. Let the | |
340 | * user-specified handler try to fix it first. | |
341 | */ | |
342 | if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | |
343 | return 1; | |
344 | ||
345 | /* | |
346 | * In case the user-specified fault handler returned zero, | |
347 | * try to fix up. | |
348 | */ | |
349 | if (fixup_exception(regs)) | |
350 | return 1; | |
351 | ||
352 | /* | |
353 | * fixup_exception() could not handle it, | |
354 | * Let do_page_fault() fix it. | |
355 | */ | |
356 | break; | |
357 | ||
358 | default: | |
359 | break; | |
360 | } | |
361 | return 0; | |
362 | } | |
363 | ||
364 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | |
365 | unsigned long val, void *data) | |
366 | { | |
367 | struct die_args *args = data; | |
368 | unsigned long addr = args->err; | |
369 | int ret = NOTIFY_DONE; | |
370 | ||
371 | switch (val) { | |
372 | case DIE_IERR: | |
373 | if (arc_kprobe_handler(addr, args->regs)) | |
374 | return NOTIFY_STOP; | |
375 | break; | |
376 | ||
377 | case DIE_TRAP: | |
378 | if (arc_post_kprobe_handler(addr, args->regs)) | |
379 | return NOTIFY_STOP; | |
380 | break; | |
381 | ||
382 | default: | |
383 | break; | |
384 | } | |
385 | ||
386 | return ret; | |
387 | } | |
388 | ||
389 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | |
390 | { | |
391 | struct jprobe *jp = container_of(p, struct jprobe, kp); | |
392 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | |
393 | unsigned long sp_addr = regs->sp; | |
394 | ||
395 | kcb->jprobe_saved_regs = *regs; | |
396 | memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); | |
397 | regs->ret = (unsigned long)(jp->entry); | |
398 | ||
399 | return 1; | |
400 | } | |
401 | ||
402 | void __kprobes jprobe_return(void) | |
403 | { | |
404 | __asm__ __volatile__("unimp_s"); | |
405 | return; | |
406 | } | |
407 | ||
408 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | |
409 | { | |
410 | struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | |
411 | unsigned long sp_addr; | |
412 | ||
413 | *regs = kcb->jprobe_saved_regs; | |
414 | sp_addr = regs->sp; | |
415 | memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr)); | |
416 | preempt_enable_no_resched(); | |
417 | ||
418 | return 1; | |
419 | } | |
420 | ||
421 | static void __used kretprobe_trampoline_holder(void) | |
422 | { | |
423 | __asm__ __volatile__(".global kretprobe_trampoline\n" | |
424 | "kretprobe_trampoline:\n" "nop\n"); | |
425 | } | |
426 | ||
427 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | |
428 | struct pt_regs *regs) | |
429 | { | |
430 | ||
431 | ri->ret_addr = (kprobe_opcode_t *) regs->blink; | |
432 | ||
433 | /* Replace the return addr with trampoline addr */ | |
434 | regs->blink = (unsigned long)&kretprobe_trampoline; | |
435 | } | |
436 | ||
437 | static int __kprobes trampoline_probe_handler(struct kprobe *p, | |
438 | struct pt_regs *regs) | |
439 | { | |
440 | struct kretprobe_instance *ri = NULL; | |
441 | struct hlist_head *head, empty_rp; | |
7f85e5ec | 442 | struct hlist_node *tmp; |
4d86dfbb VG |
443 | unsigned long flags, orig_ret_address = 0; |
444 | unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | |
445 | ||
446 | INIT_HLIST_HEAD(&empty_rp); | |
447 | kretprobe_hash_lock(current, &head, &flags); | |
448 | ||
449 | /* | |
450 | * It is possible to have multiple instances associated with a given | |
451 | * task either because an multiple functions in the call path | |
452 | * have a return probe installed on them, and/or more than one return | |
453 | * return probe was registered for a target function. | |
454 | * | |
455 | * We can handle this because: | |
456 | * - instances are always inserted at the head of the list | |
457 | * - when multiple return probes are registered for the same | |
458 | * function, the first instance's ret_addr will point to the | |
459 | * real return address, and all the rest will point to | |
460 | * kretprobe_trampoline | |
461 | */ | |
7f85e5ec | 462 | hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
4d86dfbb VG |
463 | if (ri->task != current) |
464 | /* another task is sharing our hash bucket */ | |
465 | continue; | |
466 | ||
467 | if (ri->rp && ri->rp->handler) | |
468 | ri->rp->handler(ri, regs); | |
469 | ||
470 | orig_ret_address = (unsigned long)ri->ret_addr; | |
471 | recycle_rp_inst(ri, &empty_rp); | |
472 | ||
473 | if (orig_ret_address != trampoline_address) { | |
474 | /* | |
475 | * This is the real return address. Any other | |
476 | * instances associated with this task are for | |
477 | * other calls deeper on the call stack | |
478 | */ | |
479 | break; | |
480 | } | |
481 | } | |
482 | ||
483 | kretprobe_assert(ri, orig_ret_address, trampoline_address); | |
484 | regs->ret = orig_ret_address; | |
485 | ||
486 | reset_current_kprobe(); | |
487 | kretprobe_hash_unlock(current, &flags); | |
488 | preempt_enable_no_resched(); | |
489 | ||
7f85e5ec | 490 | hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
4d86dfbb VG |
491 | hlist_del(&ri->hlist); |
492 | kfree(ri); | |
493 | } | |
494 | ||
495 | /* By returning a non zero value, we are telling the kprobe handler | |
496 | * that we don't want the post_handler to run | |
497 | */ | |
498 | return 1; | |
499 | } | |
500 | ||
501 | static struct kprobe trampoline_p = { | |
502 | .addr = (kprobe_opcode_t *) &kretprobe_trampoline, | |
503 | .pre_handler = trampoline_probe_handler | |
504 | }; | |
505 | ||
506 | int __init arch_init_kprobes(void) | |
507 | { | |
508 | /* Registering the trampoline code for the kret probe */ | |
509 | return register_kprobe(&trampoline_p); | |
510 | } | |
511 | ||
512 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | |
513 | { | |
514 | if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline) | |
515 | return 1; | |
516 | ||
517 | return 0; | |
518 | } | |
519 | ||
38a9ff6d | 520 | void trap_is_kprobe(unsigned long address, struct pt_regs *regs) |
4d86dfbb | 521 | { |
38a9ff6d | 522 | notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP); |
4d86dfbb | 523 | } |