]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
78dff418 BP |
2 | * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin |
3 | * cleaned up code to current version of sparse and added the slicing-by-8 | |
4 | * algorithm to the closely similar existing slicing-by-4 algorithm. | |
5 | * | |
1da177e4 LT |
6 | * Oct 15, 2000 Matt Domsch <[email protected]> |
7 | * Nicer crc32 functions/docs submitted by [email protected]. Thanks! | |
8 | * Code was from the public domain, copyright abandoned. Code was | |
9 | * subsequently included in the kernel, thus was re-licensed under the | |
10 | * GNU GPL v2. | |
11 | * | |
12 | * Oct 12, 2000 Matt Domsch <[email protected]> | |
13 | * Same crc32 function was used in 5 other places in the kernel. | |
14 | * I made one version, and deleted the others. | |
15 | * There are various incantations of crc32(). Some use a seed of 0 or ~0. | |
16 | * Some xor at the end with ~0. The generic crc32() function takes | |
17 | * seed as an argument, and doesn't xor at the end. Then individual | |
18 | * users can do whatever they need. | |
19 | * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0. | |
20 | * fs/jffs2 uses seed 0, doesn't xor with ~0. | |
21 | * fs/partitions/efi.c uses seed ~0, xor's with ~0. | |
22 | * | |
23 | * This source code is licensed under the GNU General Public License, | |
24 | * Version 2. See the file COPYING for more details. | |
25 | */ | |
26 | ||
fbedceb1 BP |
27 | /* see: Documentation/crc32.txt for a description of algorithms */ |
28 | ||
1da177e4 | 29 | #include <linux/crc32.h> |
1da177e4 | 30 | #include <linux/module.h> |
1da177e4 | 31 | #include <linux/types.h> |
cc0ac199 | 32 | #include <linux/sched.h> |
1da177e4 | 33 | #include "crc32defs.h" |
60e58d5c | 34 | |
9a1dbf6a | 35 | #if CRC_LE_BITS > 8 |
38b4fe5f | 36 | # define tole(x) ((__force u32) cpu_to_le32(x)) |
1da177e4 | 37 | #else |
4f2a9463 JT |
38 | # define tole(x) (x) |
39 | #endif | |
40 | ||
9a1dbf6a | 41 | #if CRC_BE_BITS > 8 |
38b4fe5f | 42 | # define tobe(x) ((__force u32) cpu_to_be32(x)) |
4f2a9463 JT |
43 | #else |
44 | # define tobe(x) (x) | |
1da177e4 | 45 | #endif |
60e58d5c | 46 | |
1da177e4 LT |
47 | #include "crc32table.h" |
48 | ||
49 | MODULE_AUTHOR("Matt Domsch <[email protected]>"); | |
46c5801e | 50 | MODULE_DESCRIPTION("Various CRC32 calculations"); |
1da177e4 LT |
51 | MODULE_LICENSE("GPL"); |
52 | ||
9a1dbf6a | 53 | #if CRC_LE_BITS > 8 || CRC_BE_BITS > 8 |
ddcaccbc | 54 | |
324eb0f1 | 55 | /* implements slicing-by-4 or slicing-by-8 algorithm */ |
d8f1c477 | 56 | static inline u32 __pure |
836e2af9 | 57 | crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256]) |
ddcaccbc | 58 | { |
0d2daf5c | 59 | # ifdef __LITTLE_ENDIAN |
5742332d | 60 | # define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8) |
324eb0f1 BP |
61 | # define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \ |
62 | t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255]) | |
63 | # define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \ | |
64 | t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255]) | |
ddcaccbc | 65 | # else |
5742332d | 66 | # define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8) |
324eb0f1 BP |
67 | # define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \ |
68 | t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255]) | |
69 | # define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \ | |
70 | t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255]) | |
ddcaccbc | 71 | # endif |
4f2a9463 | 72 | const u32 *b; |
ddcaccbc | 73 | size_t rem_len; |
0292c497 BP |
74 | # ifdef CONFIG_X86 |
75 | size_t i; | |
76 | # endif | |
5742332d | 77 | const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3]; |
49ac572b | 78 | # if CRC_LE_BITS != 32 |
324eb0f1 | 79 | const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7]; |
49ac572b | 80 | # endif |
324eb0f1 | 81 | u32 q; |
ddcaccbc JT |
82 | |
83 | /* Align it */ | |
4f2a9463 | 84 | if (unlikely((long)buf & 3 && len)) { |
ddcaccbc | 85 | do { |
4f2a9463 JT |
86 | DO_CRC(*buf++); |
87 | } while ((--len) && ((long)buf)&3); | |
ddcaccbc | 88 | } |
324eb0f1 BP |
89 | |
90 | # if CRC_LE_BITS == 32 | |
ddcaccbc | 91 | rem_len = len & 3; |
ddcaccbc | 92 | len = len >> 2; |
324eb0f1 BP |
93 | # else |
94 | rem_len = len & 7; | |
95 | len = len >> 3; | |
96 | # endif | |
97 | ||
4f2a9463 | 98 | b = (const u32 *)buf; |
0292c497 BP |
99 | # ifdef CONFIG_X86 |
100 | --b; | |
101 | for (i = 0; i < len; i++) { | |
102 | # else | |
ddcaccbc | 103 | for (--b; len; --len) { |
0292c497 | 104 | # endif |
324eb0f1 BP |
105 | q = crc ^ *++b; /* use pre increment for speed */ |
106 | # if CRC_LE_BITS == 32 | |
107 | crc = DO_CRC4; | |
108 | # else | |
109 | crc = DO_CRC8; | |
110 | q = *++b; | |
111 | crc ^= DO_CRC4; | |
112 | # endif | |
ddcaccbc JT |
113 | } |
114 | len = rem_len; | |
115 | /* And the last few bytes */ | |
116 | if (len) { | |
117 | u8 *p = (u8 *)(b + 1) - 1; | |
0292c497 BP |
118 | # ifdef CONFIG_X86 |
119 | for (i = 0; i < len; i++) | |
120 | DO_CRC(*++p); /* use pre increment for speed */ | |
121 | # else | |
ddcaccbc JT |
122 | do { |
123 | DO_CRC(*++p); /* use pre increment for speed */ | |
124 | } while (--len); | |
0292c497 | 125 | # endif |
ddcaccbc JT |
126 | } |
127 | return crc; | |
4f2a9463 | 128 | #undef DO_CRC |
836e2af9 | 129 | #undef DO_CRC4 |
324eb0f1 | 130 | #undef DO_CRC8 |
ddcaccbc JT |
131 | } |
132 | #endif | |
60e58d5c | 133 | |
6e95fcaa | 134 | |
2f72100c | 135 | /** |
f2e1d2ac GZ |
136 | * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II |
137 | * CRC32/CRC32C | |
138 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other | |
139 | * uses, or the previous crc32/crc32c value if computing incrementally. | |
140 | * @p: pointer to buffer over which CRC32/CRC32C is run | |
2f72100c | 141 | * @len: length of buffer @p |
f2e1d2ac GZ |
142 | * @tab: little-endian Ethernet table |
143 | * @polynomial: CRC32/CRC32c LE polynomial | |
2f72100c | 144 | */ |
46c5801e DW |
145 | static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p, |
146 | size_t len, const u32 (*tab)[256], | |
147 | u32 polynomial) | |
1da177e4 | 148 | { |
60e58d5c | 149 | #if CRC_LE_BITS == 1 |
1da177e4 LT |
150 | int i; |
151 | while (len--) { | |
152 | crc ^= *p++; | |
153 | for (i = 0; i < 8; i++) | |
46c5801e | 154 | crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0); |
1da177e4 | 155 | } |
60e58d5c | 156 | # elif CRC_LE_BITS == 2 |
1da177e4 LT |
157 | while (len--) { |
158 | crc ^= *p++; | |
46c5801e DW |
159 | crc = (crc >> 2) ^ tab[0][crc & 3]; |
160 | crc = (crc >> 2) ^ tab[0][crc & 3]; | |
161 | crc = (crc >> 2) ^ tab[0][crc & 3]; | |
162 | crc = (crc >> 2) ^ tab[0][crc & 3]; | |
1da177e4 | 163 | } |
60e58d5c | 164 | # elif CRC_LE_BITS == 4 |
1da177e4 LT |
165 | while (len--) { |
166 | crc ^= *p++; | |
46c5801e DW |
167 | crc = (crc >> 4) ^ tab[0][crc & 15]; |
168 | crc = (crc >> 4) ^ tab[0][crc & 15]; | |
1da177e4 | 169 | } |
60e58d5c | 170 | # elif CRC_LE_BITS == 8 |
9a1dbf6a BP |
171 | /* aka Sarwate algorithm */ |
172 | while (len--) { | |
173 | crc ^= *p++; | |
46c5801e | 174 | crc = (crc >> 8) ^ tab[0][crc & 255]; |
9a1dbf6a BP |
175 | } |
176 | # else | |
ce4320dd | 177 | crc = (__force u32) __cpu_to_le32(crc); |
60e58d5c | 178 | crc = crc32_body(crc, p, len, tab); |
ce4320dd | 179 | crc = __le32_to_cpu((__force __le32)crc); |
60e58d5c | 180 | #endif |
1da177e4 | 181 | return crc; |
1da177e4 | 182 | } |
46c5801e DW |
183 | |
184 | #if CRC_LE_BITS == 1 | |
185 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | |
186 | { | |
187 | return crc32_le_generic(crc, p, len, NULL, CRCPOLY_LE); | |
188 | } | |
189 | u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) | |
190 | { | |
191 | return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE); | |
192 | } | |
193 | #else | |
194 | u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len) | |
195 | { | |
8f243af4 JM |
196 | return crc32_le_generic(crc, p, len, |
197 | (const u32 (*)[256])crc32table_le, CRCPOLY_LE); | |
46c5801e DW |
198 | } |
199 | u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len) | |
200 | { | |
8f243af4 JM |
201 | return crc32_le_generic(crc, p, len, |
202 | (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE); | |
46c5801e DW |
203 | } |
204 | #endif | |
6d514b4e GS |
205 | EXPORT_SYMBOL(crc32_le); |
206 | EXPORT_SYMBOL(__crc32c_le); | |
207 | ||
208 | /* | |
209 | * This multiplies the polynomials x and y modulo the given modulus. | |
210 | * This follows the "little-endian" CRC convention that the lsbit | |
211 | * represents the highest power of x, and the msbit represents x^0. | |
212 | */ | |
213 | static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus) | |
214 | { | |
215 | u32 product = x & 1 ? y : 0; | |
216 | int i; | |
217 | ||
218 | for (i = 0; i < 31; i++) { | |
219 | product = (product >> 1) ^ (product & 1 ? modulus : 0); | |
220 | x >>= 1; | |
221 | product ^= x & 1 ? y : 0; | |
222 | } | |
223 | ||
224 | return product; | |
225 | } | |
226 | ||
227 | /** | |
8a29896a | 228 | * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time |
6d514b4e GS |
229 | * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient) |
230 | * @len: The number of bytes. @crc is multiplied by x^(8*@len) | |
231 | * @polynomial: The modulus used to reduce the result to 32 bits. | |
232 | * | |
233 | * It's possible to parallelize CRC computations by computing a CRC | |
234 | * over separate ranges of a buffer, then summing them. | |
235 | * This shifts the given CRC by 8*len bits (i.e. produces the same effect | |
236 | * as appending len bytes of zero to the data), in time proportional | |
237 | * to log(len). | |
238 | */ | |
239 | static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len, | |
240 | u32 polynomial) | |
241 | { | |
242 | u32 power = polynomial; /* CRC of x^32 */ | |
243 | int i; | |
244 | ||
245 | /* Shift up to 32 bits in the simple linear way */ | |
246 | for (i = 0; i < 8 * (int)(len & 3); i++) | |
247 | crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0); | |
248 | ||
249 | len >>= 2; | |
250 | if (!len) | |
251 | return crc; | |
252 | ||
253 | for (;;) { | |
254 | /* "power" is x^(2^i), modulo the polynomial */ | |
255 | if (len & 1) | |
256 | crc = gf2_multiply(crc, power, polynomial); | |
257 | ||
258 | len >>= 1; | |
259 | if (!len) | |
260 | break; | |
261 | ||
262 | /* Square power, advancing to x^(2^(i+1)) */ | |
263 | power = gf2_multiply(power, power, polynomial); | |
264 | } | |
265 | ||
266 | return crc; | |
267 | } | |
268 | ||
269 | u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len) | |
6e95fcaa | 270 | { |
6d514b4e | 271 | return crc32_generic_shift(crc, len, CRCPOLY_LE); |
6e95fcaa DB |
272 | } |
273 | ||
6d514b4e | 274 | u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len) |
6e95fcaa | 275 | { |
6d514b4e | 276 | return crc32_generic_shift(crc, len, CRC32C_POLY_LE); |
6e95fcaa | 277 | } |
6d514b4e GS |
278 | EXPORT_SYMBOL(crc32_le_shift); |
279 | EXPORT_SYMBOL(__crc32c_le_shift); | |
1da177e4 | 280 | |
2f72100c | 281 | /** |
f2e1d2ac | 282 | * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32 |
2f72100c RD |
283 | * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for |
284 | * other uses, or the previous crc32 value if computing incrementally. | |
f2e1d2ac | 285 | * @p: pointer to buffer over which CRC32 is run |
2f72100c | 286 | * @len: length of buffer @p |
f2e1d2ac GZ |
287 | * @tab: big-endian Ethernet table |
288 | * @polynomial: CRC32 BE polynomial | |
2f72100c | 289 | */ |
46c5801e DW |
290 | static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p, |
291 | size_t len, const u32 (*tab)[256], | |
292 | u32 polynomial) | |
1da177e4 | 293 | { |
60e58d5c | 294 | #if CRC_BE_BITS == 1 |
1da177e4 LT |
295 | int i; |
296 | while (len--) { | |
297 | crc ^= *p++ << 24; | |
298 | for (i = 0; i < 8; i++) | |
299 | crc = | |
46c5801e | 300 | (crc << 1) ^ ((crc & 0x80000000) ? polynomial : |
1da177e4 LT |
301 | 0); |
302 | } | |
60e58d5c | 303 | # elif CRC_BE_BITS == 2 |
1da177e4 LT |
304 | while (len--) { |
305 | crc ^= *p++ << 24; | |
46c5801e DW |
306 | crc = (crc << 2) ^ tab[0][crc >> 30]; |
307 | crc = (crc << 2) ^ tab[0][crc >> 30]; | |
308 | crc = (crc << 2) ^ tab[0][crc >> 30]; | |
309 | crc = (crc << 2) ^ tab[0][crc >> 30]; | |
1da177e4 | 310 | } |
60e58d5c | 311 | # elif CRC_BE_BITS == 4 |
1da177e4 LT |
312 | while (len--) { |
313 | crc ^= *p++ << 24; | |
46c5801e DW |
314 | crc = (crc << 4) ^ tab[0][crc >> 28]; |
315 | crc = (crc << 4) ^ tab[0][crc >> 28]; | |
1da177e4 | 316 | } |
60e58d5c | 317 | # elif CRC_BE_BITS == 8 |
9a1dbf6a BP |
318 | while (len--) { |
319 | crc ^= *p++ << 24; | |
46c5801e | 320 | crc = (crc << 8) ^ tab[0][crc >> 24]; |
9a1dbf6a BP |
321 | } |
322 | # else | |
ce4320dd | 323 | crc = (__force u32) __cpu_to_be32(crc); |
60e58d5c | 324 | crc = crc32_body(crc, p, len, tab); |
ce4320dd | 325 | crc = __be32_to_cpu((__force __be32)crc); |
1da177e4 | 326 | # endif |
60e58d5c | 327 | return crc; |
1da177e4 | 328 | } |
46c5801e DW |
329 | |
330 | #if CRC_LE_BITS == 1 | |
331 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | |
332 | { | |
333 | return crc32_be_generic(crc, p, len, NULL, CRCPOLY_BE); | |
334 | } | |
335 | #else | |
336 | u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len) | |
337 | { | |
8f243af4 JM |
338 | return crc32_be_generic(crc, p, len, |
339 | (const u32 (*)[256])crc32table_be, CRCPOLY_BE); | |
46c5801e DW |
340 | } |
341 | #endif | |
1da177e4 | 342 | EXPORT_SYMBOL(crc32_be); |