]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * 2002-10-18 written by Jim Houston [email protected] | |
3 | * Copyright (C) 2002 by Concurrent Computer Corporation | |
4 | * Distributed under the GNU GPL license version 2. | |
5 | * | |
6 | * Modified by George Anzinger to reuse immediately and to use | |
7 | * find bit instructions. Also removed _irq on spinlocks. | |
8 | * | |
3219b3b7 ND |
9 | * Modified by Nadia Derbey to make it RCU safe. |
10 | * | |
e15ae2dd | 11 | * Small id to pointer translation service. |
1da177e4 | 12 | * |
e15ae2dd | 13 | * It uses a radix tree like structure as a sparse array indexed |
1da177e4 | 14 | * by the id to obtain the pointer. The bitmap makes allocating |
e15ae2dd | 15 | * a new id quick. |
1da177e4 LT |
16 | * |
17 | * You call it to allocate an id (an int) an associate with that id a | |
18 | * pointer or what ever, we treat it as a (void *). You can pass this | |
19 | * id to a user for him to pass back at a later time. You then pass | |
20 | * that id to this code and it returns your pointer. | |
1da177e4 LT |
21 | */ |
22 | ||
23 | #ifndef TEST // to test in user space... | |
24 | #include <linux/slab.h> | |
25 | #include <linux/init.h> | |
8bc3bcc9 | 26 | #include <linux/export.h> |
1da177e4 | 27 | #endif |
5806f07c | 28 | #include <linux/err.h> |
1da177e4 LT |
29 | #include <linux/string.h> |
30 | #include <linux/idr.h> | |
88eca020 | 31 | #include <linux/spinlock.h> |
d5c7409f | 32 | #include <linux/percpu.h> |
1da177e4 | 33 | |
e8c8d1bc TH |
34 | #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) |
35 | #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) | |
36 | ||
37 | /* Leave the possibility of an incomplete final layer */ | |
38 | #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) | |
39 | ||
40 | /* Number of id_layer structs to leave in free list */ | |
41 | #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) | |
42 | ||
e18b890b | 43 | static struct kmem_cache *idr_layer_cache; |
d5c7409f TH |
44 | static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); |
45 | static DEFINE_PER_CPU(int, idr_preload_cnt); | |
88eca020 | 46 | static DEFINE_SPINLOCK(simple_ida_lock); |
1da177e4 | 47 | |
326cf0f0 TH |
48 | /* the maximum ID which can be allocated given idr->layers */ |
49 | static int idr_max(int layers) | |
50 | { | |
51 | int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); | |
52 | ||
53 | return (1 << bits) - 1; | |
54 | } | |
55 | ||
54616283 TH |
56 | /* |
57 | * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is | |
58 | * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and | |
59 | * so on. | |
60 | */ | |
61 | static int idr_layer_prefix_mask(int layer) | |
62 | { | |
63 | return ~idr_max(layer + 1); | |
64 | } | |
65 | ||
4ae53789 | 66 | static struct idr_layer *get_from_free_list(struct idr *idp) |
1da177e4 LT |
67 | { |
68 | struct idr_layer *p; | |
c259cc28 | 69 | unsigned long flags; |
1da177e4 | 70 | |
c259cc28 | 71 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
72 | if ((p = idp->id_free)) { |
73 | idp->id_free = p->ary[0]; | |
74 | idp->id_free_cnt--; | |
75 | p->ary[0] = NULL; | |
76 | } | |
c259cc28 | 77 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
78 | return(p); |
79 | } | |
80 | ||
d5c7409f TH |
81 | /** |
82 | * idr_layer_alloc - allocate a new idr_layer | |
83 | * @gfp_mask: allocation mask | |
84 | * @layer_idr: optional idr to allocate from | |
85 | * | |
86 | * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch | |
87 | * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch | |
88 | * an idr_layer from @idr->id_free. | |
89 | * | |
90 | * @layer_idr is to maintain backward compatibility with the old alloc | |
91 | * interface - idr_pre_get() and idr_get_new*() - and will be removed | |
92 | * together with per-pool preload buffer. | |
93 | */ | |
94 | static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) | |
95 | { | |
96 | struct idr_layer *new; | |
97 | ||
98 | /* this is the old path, bypass to get_from_free_list() */ | |
99 | if (layer_idr) | |
100 | return get_from_free_list(layer_idr); | |
101 | ||
59bfbcf0 TH |
102 | /* |
103 | * Try to allocate directly from kmem_cache. We want to try this | |
104 | * before preload buffer; otherwise, non-preloading idr_alloc() | |
105 | * users will end up taking advantage of preloading ones. As the | |
106 | * following is allowed to fail for preloaded cases, suppress | |
107 | * warning this time. | |
108 | */ | |
109 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); | |
d5c7409f TH |
110 | if (new) |
111 | return new; | |
112 | ||
113 | /* | |
114 | * Try to fetch one from the per-cpu preload buffer if in process | |
115 | * context. See idr_preload() for details. | |
116 | */ | |
59bfbcf0 TH |
117 | if (!in_interrupt()) { |
118 | preempt_disable(); | |
119 | new = __this_cpu_read(idr_preload_head); | |
120 | if (new) { | |
121 | __this_cpu_write(idr_preload_head, new->ary[0]); | |
122 | __this_cpu_dec(idr_preload_cnt); | |
123 | new->ary[0] = NULL; | |
124 | } | |
125 | preempt_enable(); | |
126 | if (new) | |
127 | return new; | |
d5c7409f | 128 | } |
59bfbcf0 TH |
129 | |
130 | /* | |
131 | * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so | |
132 | * that memory allocation failure warning is printed as intended. | |
133 | */ | |
134 | return kmem_cache_zalloc(idr_layer_cache, gfp_mask); | |
d5c7409f TH |
135 | } |
136 | ||
cf481c20 ND |
137 | static void idr_layer_rcu_free(struct rcu_head *head) |
138 | { | |
139 | struct idr_layer *layer; | |
140 | ||
141 | layer = container_of(head, struct idr_layer, rcu_head); | |
142 | kmem_cache_free(idr_layer_cache, layer); | |
143 | } | |
144 | ||
0ffc2a9c | 145 | static inline void free_layer(struct idr *idr, struct idr_layer *p) |
cf481c20 | 146 | { |
15f3ec3f | 147 | if (idr->hint == p) |
0ffc2a9c | 148 | RCU_INIT_POINTER(idr->hint, NULL); |
cf481c20 ND |
149 | call_rcu(&p->rcu_head, idr_layer_rcu_free); |
150 | } | |
151 | ||
1eec0056 | 152 | /* only called when idp->lock is held */ |
4ae53789 | 153 | static void __move_to_free_list(struct idr *idp, struct idr_layer *p) |
1eec0056 SR |
154 | { |
155 | p->ary[0] = idp->id_free; | |
156 | idp->id_free = p; | |
157 | idp->id_free_cnt++; | |
158 | } | |
159 | ||
4ae53789 | 160 | static void move_to_free_list(struct idr *idp, struct idr_layer *p) |
1da177e4 | 161 | { |
c259cc28 RD |
162 | unsigned long flags; |
163 | ||
1da177e4 LT |
164 | /* |
165 | * Depends on the return element being zeroed. | |
166 | */ | |
c259cc28 | 167 | spin_lock_irqsave(&idp->lock, flags); |
4ae53789 | 168 | __move_to_free_list(idp, p); |
c259cc28 | 169 | spin_unlock_irqrestore(&idp->lock, flags); |
1da177e4 LT |
170 | } |
171 | ||
e33ac8bd TH |
172 | static void idr_mark_full(struct idr_layer **pa, int id) |
173 | { | |
174 | struct idr_layer *p = pa[0]; | |
175 | int l = 0; | |
176 | ||
1d9b2e1e | 177 | __set_bit(id & IDR_MASK, p->bitmap); |
e33ac8bd TH |
178 | /* |
179 | * If this layer is full mark the bit in the layer above to | |
180 | * show that this part of the radix tree is full. This may | |
181 | * complete the layer above and require walking up the radix | |
182 | * tree. | |
183 | */ | |
1d9b2e1e | 184 | while (bitmap_full(p->bitmap, IDR_SIZE)) { |
e33ac8bd TH |
185 | if (!(p = pa[++l])) |
186 | break; | |
187 | id = id >> IDR_BITS; | |
1d9b2e1e | 188 | __set_bit((id & IDR_MASK), p->bitmap); |
e33ac8bd TH |
189 | } |
190 | } | |
191 | ||
90ae3ae5 | 192 | static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) |
1da177e4 | 193 | { |
125c4c70 | 194 | while (idp->id_free_cnt < MAX_IDR_FREE) { |
1da177e4 | 195 | struct idr_layer *new; |
5b019e99 | 196 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); |
e15ae2dd | 197 | if (new == NULL) |
1da177e4 | 198 | return (0); |
4ae53789 | 199 | move_to_free_list(idp, new); |
1da177e4 LT |
200 | } |
201 | return 1; | |
202 | } | |
1da177e4 | 203 | |
12d1b439 TH |
204 | /** |
205 | * sub_alloc - try to allocate an id without growing the tree depth | |
206 | * @idp: idr handle | |
207 | * @starting_id: id to start search at | |
12d1b439 | 208 | * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer |
d5c7409f TH |
209 | * @gfp_mask: allocation mask for idr_layer_alloc() |
210 | * @layer_idr: optional idr passed to idr_layer_alloc() | |
12d1b439 TH |
211 | * |
212 | * Allocate an id in range [@starting_id, INT_MAX] from @idp without | |
213 | * growing its depth. Returns | |
214 | * | |
215 | * the allocated id >= 0 if successful, | |
216 | * -EAGAIN if the tree needs to grow for allocation to succeed, | |
217 | * -ENOSPC if the id space is exhausted, | |
218 | * -ENOMEM if more idr_layers need to be allocated. | |
219 | */ | |
d5c7409f TH |
220 | static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, |
221 | gfp_t gfp_mask, struct idr *layer_idr) | |
1da177e4 LT |
222 | { |
223 | int n, m, sh; | |
224 | struct idr_layer *p, *new; | |
7aae6dd8 | 225 | int l, id, oid; |
1da177e4 LT |
226 | |
227 | id = *starting_id; | |
7aae6dd8 | 228 | restart: |
1da177e4 LT |
229 | p = idp->top; |
230 | l = idp->layers; | |
231 | pa[l--] = NULL; | |
232 | while (1) { | |
233 | /* | |
234 | * We run around this while until we reach the leaf node... | |
235 | */ | |
236 | n = (id >> (IDR_BITS*l)) & IDR_MASK; | |
1d9b2e1e | 237 | m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); |
1da177e4 LT |
238 | if (m == IDR_SIZE) { |
239 | /* no space available go back to previous layer. */ | |
240 | l++; | |
7aae6dd8 | 241 | oid = id; |
e15ae2dd | 242 | id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; |
7aae6dd8 TH |
243 | |
244 | /* if already at the top layer, we need to grow */ | |
3afb69cb | 245 | if (id > idr_max(idp->layers)) { |
1da177e4 | 246 | *starting_id = id; |
12d1b439 | 247 | return -EAGAIN; |
1da177e4 | 248 | } |
d2e7276b TH |
249 | p = pa[l]; |
250 | BUG_ON(!p); | |
7aae6dd8 TH |
251 | |
252 | /* If we need to go up one layer, continue the | |
253 | * loop; otherwise, restart from the top. | |
254 | */ | |
255 | sh = IDR_BITS * (l + 1); | |
256 | if (oid >> sh == id >> sh) | |
257 | continue; | |
258 | else | |
259 | goto restart; | |
1da177e4 LT |
260 | } |
261 | if (m != n) { | |
262 | sh = IDR_BITS*l; | |
263 | id = ((id >> sh) ^ n ^ m) << sh; | |
264 | } | |
125c4c70 | 265 | if ((id >= MAX_IDR_BIT) || (id < 0)) |
12d1b439 | 266 | return -ENOSPC; |
1da177e4 LT |
267 | if (l == 0) |
268 | break; | |
269 | /* | |
270 | * Create the layer below if it is missing. | |
271 | */ | |
272 | if (!p->ary[m]) { | |
d5c7409f | 273 | new = idr_layer_alloc(gfp_mask, layer_idr); |
4ae53789 | 274 | if (!new) |
12d1b439 | 275 | return -ENOMEM; |
6ff2d39b | 276 | new->layer = l-1; |
54616283 | 277 | new->prefix = id & idr_layer_prefix_mask(new->layer); |
3219b3b7 | 278 | rcu_assign_pointer(p->ary[m], new); |
1da177e4 LT |
279 | p->count++; |
280 | } | |
281 | pa[l--] = p; | |
282 | p = p->ary[m]; | |
283 | } | |
e33ac8bd TH |
284 | |
285 | pa[l] = p; | |
286 | return id; | |
1da177e4 LT |
287 | } |
288 | ||
e33ac8bd | 289 | static int idr_get_empty_slot(struct idr *idp, int starting_id, |
d5c7409f TH |
290 | struct idr_layer **pa, gfp_t gfp_mask, |
291 | struct idr *layer_idr) | |
1da177e4 LT |
292 | { |
293 | struct idr_layer *p, *new; | |
294 | int layers, v, id; | |
c259cc28 | 295 | unsigned long flags; |
e15ae2dd | 296 | |
1da177e4 LT |
297 | id = starting_id; |
298 | build_up: | |
299 | p = idp->top; | |
300 | layers = idp->layers; | |
301 | if (unlikely(!p)) { | |
d5c7409f | 302 | if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) |
12d1b439 | 303 | return -ENOMEM; |
6ff2d39b | 304 | p->layer = 0; |
1da177e4 LT |
305 | layers = 1; |
306 | } | |
307 | /* | |
308 | * Add a new layer to the top of the tree if the requested | |
309 | * id is larger than the currently allocated space. | |
310 | */ | |
326cf0f0 | 311 | while (id > idr_max(layers)) { |
1da177e4 | 312 | layers++; |
711a49a0 MS |
313 | if (!p->count) { |
314 | /* special case: if the tree is currently empty, | |
315 | * then we grow the tree by moving the top node | |
316 | * upwards. | |
317 | */ | |
318 | p->layer++; | |
54616283 | 319 | WARN_ON_ONCE(p->prefix); |
1da177e4 | 320 | continue; |
711a49a0 | 321 | } |
d5c7409f | 322 | if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { |
1da177e4 LT |
323 | /* |
324 | * The allocation failed. If we built part of | |
325 | * the structure tear it down. | |
326 | */ | |
c259cc28 | 327 | spin_lock_irqsave(&idp->lock, flags); |
1da177e4 LT |
328 | for (new = p; p && p != idp->top; new = p) { |
329 | p = p->ary[0]; | |
330 | new->ary[0] = NULL; | |
1d9b2e1e TH |
331 | new->count = 0; |
332 | bitmap_clear(new->bitmap, 0, IDR_SIZE); | |
4ae53789 | 333 | __move_to_free_list(idp, new); |
1da177e4 | 334 | } |
c259cc28 | 335 | spin_unlock_irqrestore(&idp->lock, flags); |
12d1b439 | 336 | return -ENOMEM; |
1da177e4 LT |
337 | } |
338 | new->ary[0] = p; | |
339 | new->count = 1; | |
6ff2d39b | 340 | new->layer = layers-1; |
54616283 | 341 | new->prefix = id & idr_layer_prefix_mask(new->layer); |
1d9b2e1e TH |
342 | if (bitmap_full(p->bitmap, IDR_SIZE)) |
343 | __set_bit(0, new->bitmap); | |
1da177e4 LT |
344 | p = new; |
345 | } | |
3219b3b7 | 346 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 347 | idp->layers = layers; |
d5c7409f | 348 | v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); |
12d1b439 | 349 | if (v == -EAGAIN) |
1da177e4 LT |
350 | goto build_up; |
351 | return(v); | |
352 | } | |
353 | ||
3594eb28 TH |
354 | /* |
355 | * @id and @pa are from a successful allocation from idr_get_empty_slot(). | |
356 | * Install the user pointer @ptr and mark the slot full. | |
357 | */ | |
0ffc2a9c TH |
358 | static void idr_fill_slot(struct idr *idr, void *ptr, int id, |
359 | struct idr_layer **pa) | |
e33ac8bd | 360 | { |
0ffc2a9c TH |
361 | /* update hint used for lookup, cleared from free_layer() */ |
362 | rcu_assign_pointer(idr->hint, pa[0]); | |
363 | ||
3594eb28 TH |
364 | rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); |
365 | pa[0]->count++; | |
366 | idr_mark_full(pa, id); | |
e33ac8bd TH |
367 | } |
368 | ||
1da177e4 | 369 | |
d5c7409f TH |
370 | /** |
371 | * idr_preload - preload for idr_alloc() | |
372 | * @gfp_mask: allocation mask to use for preloading | |
373 | * | |
374 | * Preload per-cpu layer buffer for idr_alloc(). Can only be used from | |
375 | * process context and each idr_preload() invocation should be matched with | |
376 | * idr_preload_end(). Note that preemption is disabled while preloaded. | |
377 | * | |
378 | * The first idr_alloc() in the preloaded section can be treated as if it | |
379 | * were invoked with @gfp_mask used for preloading. This allows using more | |
380 | * permissive allocation masks for idrs protected by spinlocks. | |
381 | * | |
382 | * For example, if idr_alloc() below fails, the failure can be treated as | |
383 | * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. | |
384 | * | |
385 | * idr_preload(GFP_KERNEL); | |
386 | * spin_lock(lock); | |
387 | * | |
388 | * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); | |
389 | * | |
390 | * spin_unlock(lock); | |
391 | * idr_preload_end(); | |
392 | * if (id < 0) | |
393 | * error; | |
394 | */ | |
395 | void idr_preload(gfp_t gfp_mask) | |
396 | { | |
397 | /* | |
398 | * Consuming preload buffer from non-process context breaks preload | |
399 | * allocation guarantee. Disallow usage from those contexts. | |
400 | */ | |
401 | WARN_ON_ONCE(in_interrupt()); | |
d0164adc | 402 | might_sleep_if(gfpflags_allow_blocking(gfp_mask)); |
d5c7409f TH |
403 | |
404 | preempt_disable(); | |
405 | ||
406 | /* | |
407 | * idr_alloc() is likely to succeed w/o full idr_layer buffer and | |
408 | * return value from idr_alloc() needs to be checked for failure | |
409 | * anyway. Silently give up if allocation fails. The caller can | |
410 | * treat failures from idr_alloc() as if idr_alloc() were called | |
411 | * with @gfp_mask which should be enough. | |
412 | */ | |
413 | while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { | |
414 | struct idr_layer *new; | |
415 | ||
416 | preempt_enable(); | |
417 | new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); | |
418 | preempt_disable(); | |
419 | if (!new) | |
420 | break; | |
421 | ||
422 | /* link the new one to per-cpu preload list */ | |
423 | new->ary[0] = __this_cpu_read(idr_preload_head); | |
424 | __this_cpu_write(idr_preload_head, new); | |
425 | __this_cpu_inc(idr_preload_cnt); | |
426 | } | |
427 | } | |
428 | EXPORT_SYMBOL(idr_preload); | |
429 | ||
430 | /** | |
431 | * idr_alloc - allocate new idr entry | |
432 | * @idr: the (initialized) idr | |
433 | * @ptr: pointer to be associated with the new id | |
434 | * @start: the minimum id (inclusive) | |
435 | * @end: the maximum id (exclusive, <= 0 for max) | |
436 | * @gfp_mask: memory allocation flags | |
437 | * | |
438 | * Allocate an id in [start, end) and associate it with @ptr. If no ID is | |
439 | * available in the specified range, returns -ENOSPC. On memory allocation | |
440 | * failure, returns -ENOMEM. | |
441 | * | |
442 | * Note that @end is treated as max when <= 0. This is to always allow | |
443 | * using @start + N as @end as long as N is inside integer range. | |
444 | * | |
445 | * The user is responsible for exclusively synchronizing all operations | |
446 | * which may modify @idr. However, read-only accesses such as idr_find() | |
447 | * or iteration can be performed under RCU read lock provided the user | |
448 | * destroys @ptr in RCU-safe way after removal from idr. | |
449 | */ | |
450 | int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) | |
451 | { | |
452 | int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ | |
326cf0f0 | 453 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
d5c7409f TH |
454 | int id; |
455 | ||
d0164adc | 456 | might_sleep_if(gfpflags_allow_blocking(gfp_mask)); |
d5c7409f TH |
457 | |
458 | /* sanity checks */ | |
459 | if (WARN_ON_ONCE(start < 0)) | |
460 | return -EINVAL; | |
461 | if (unlikely(max < start)) | |
462 | return -ENOSPC; | |
463 | ||
464 | /* allocate id */ | |
465 | id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); | |
466 | if (unlikely(id < 0)) | |
467 | return id; | |
468 | if (unlikely(id > max)) | |
469 | return -ENOSPC; | |
470 | ||
0ffc2a9c | 471 | idr_fill_slot(idr, ptr, id, pa); |
d5c7409f TH |
472 | return id; |
473 | } | |
474 | EXPORT_SYMBOL_GPL(idr_alloc); | |
475 | ||
3e6628c4 JL |
476 | /** |
477 | * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion | |
478 | * @idr: the (initialized) idr | |
479 | * @ptr: pointer to be associated with the new id | |
480 | * @start: the minimum id (inclusive) | |
481 | * @end: the maximum id (exclusive, <= 0 for max) | |
482 | * @gfp_mask: memory allocation flags | |
483 | * | |
484 | * Essentially the same as idr_alloc, but prefers to allocate progressively | |
485 | * higher ids if it can. If the "cur" counter wraps, then it will start again | |
486 | * at the "start" end of the range and allocate one that has already been used. | |
487 | */ | |
488 | int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, | |
489 | gfp_t gfp_mask) | |
490 | { | |
491 | int id; | |
492 | ||
493 | id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); | |
494 | if (id == -ENOSPC) | |
495 | id = idr_alloc(idr, ptr, start, end, gfp_mask); | |
496 | ||
497 | if (likely(id >= 0)) | |
498 | idr->cur = id + 1; | |
499 | return id; | |
500 | } | |
501 | EXPORT_SYMBOL(idr_alloc_cyclic); | |
502 | ||
1da177e4 LT |
503 | static void idr_remove_warning(int id) |
504 | { | |
dd04b452 | 505 | WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); |
1da177e4 LT |
506 | } |
507 | ||
508 | static void sub_remove(struct idr *idp, int shift, int id) | |
509 | { | |
510 | struct idr_layer *p = idp->top; | |
326cf0f0 | 511 | struct idr_layer **pa[MAX_IDR_LEVEL + 1]; |
1da177e4 | 512 | struct idr_layer ***paa = &pa[0]; |
cf481c20 | 513 | struct idr_layer *to_free; |
1da177e4 LT |
514 | int n; |
515 | ||
516 | *paa = NULL; | |
517 | *++paa = &idp->top; | |
518 | ||
519 | while ((shift > 0) && p) { | |
520 | n = (id >> shift) & IDR_MASK; | |
1d9b2e1e | 521 | __clear_bit(n, p->bitmap); |
1da177e4 LT |
522 | *++paa = &p->ary[n]; |
523 | p = p->ary[n]; | |
524 | shift -= IDR_BITS; | |
525 | } | |
526 | n = id & IDR_MASK; | |
1d9b2e1e TH |
527 | if (likely(p != NULL && test_bit(n, p->bitmap))) { |
528 | __clear_bit(n, p->bitmap); | |
3f59b067 | 529 | RCU_INIT_POINTER(p->ary[n], NULL); |
cf481c20 | 530 | to_free = NULL; |
1da177e4 | 531 | while(*paa && ! --((**paa)->count)){ |
cf481c20 | 532 | if (to_free) |
0ffc2a9c | 533 | free_layer(idp, to_free); |
cf481c20 | 534 | to_free = **paa; |
1da177e4 LT |
535 | **paa-- = NULL; |
536 | } | |
e15ae2dd | 537 | if (!*paa) |
1da177e4 | 538 | idp->layers = 0; |
cf481c20 | 539 | if (to_free) |
0ffc2a9c | 540 | free_layer(idp, to_free); |
e15ae2dd | 541 | } else |
1da177e4 | 542 | idr_remove_warning(id); |
1da177e4 LT |
543 | } |
544 | ||
545 | /** | |
56083ab1 | 546 | * idr_remove - remove the given id and free its slot |
72fd4a35 RD |
547 | * @idp: idr handle |
548 | * @id: unique key | |
1da177e4 LT |
549 | */ |
550 | void idr_remove(struct idr *idp, int id) | |
551 | { | |
552 | struct idr_layer *p; | |
cf481c20 | 553 | struct idr_layer *to_free; |
1da177e4 | 554 | |
2e1c9b28 | 555 | if (id < 0) |
e8c8d1bc | 556 | return; |
1da177e4 | 557 | |
8f9f665a LJ |
558 | if (id > idr_max(idp->layers)) { |
559 | idr_remove_warning(id); | |
560 | return; | |
561 | } | |
562 | ||
1da177e4 | 563 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); |
e15ae2dd | 564 | if (idp->top && idp->top->count == 1 && (idp->layers > 1) && |
cf481c20 ND |
565 | idp->top->ary[0]) { |
566 | /* | |
567 | * Single child at leftmost slot: we can shrink the tree. | |
568 | * This level is not needed anymore since when layers are | |
569 | * inserted, they are inserted at the top of the existing | |
570 | * tree. | |
571 | */ | |
572 | to_free = idp->top; | |
1da177e4 | 573 | p = idp->top->ary[0]; |
cf481c20 | 574 | rcu_assign_pointer(idp->top, p); |
1da177e4 | 575 | --idp->layers; |
1d9b2e1e TH |
576 | to_free->count = 0; |
577 | bitmap_clear(to_free->bitmap, 0, IDR_SIZE); | |
0ffc2a9c | 578 | free_layer(idp, to_free); |
1da177e4 | 579 | } |
1da177e4 LT |
580 | } |
581 | EXPORT_SYMBOL(idr_remove); | |
582 | ||
90ae3ae5 | 583 | static void __idr_remove_all(struct idr *idp) |
23936cc0 | 584 | { |
6ace06dc | 585 | int n, id, max; |
2dcb22b3 | 586 | int bt_mask; |
23936cc0 | 587 | struct idr_layer *p; |
326cf0f0 | 588 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
23936cc0 KH |
589 | struct idr_layer **paa = &pa[0]; |
590 | ||
591 | n = idp->layers * IDR_BITS; | |
93b7aca3 | 592 | *paa = idp->top; |
3f59b067 | 593 | RCU_INIT_POINTER(idp->top, NULL); |
326cf0f0 | 594 | max = idr_max(idp->layers); |
23936cc0 KH |
595 | |
596 | id = 0; | |
326cf0f0 | 597 | while (id >= 0 && id <= max) { |
93b7aca3 | 598 | p = *paa; |
23936cc0 KH |
599 | while (n > IDR_BITS && p) { |
600 | n -= IDR_BITS; | |
23936cc0 | 601 | p = p->ary[(id >> n) & IDR_MASK]; |
93b7aca3 | 602 | *++paa = p; |
23936cc0 KH |
603 | } |
604 | ||
2dcb22b3 | 605 | bt_mask = id; |
23936cc0 | 606 | id += 1 << n; |
2dcb22b3 ID |
607 | /* Get the highest bit that the above add changed from 0->1. */ |
608 | while (n < fls(id ^ bt_mask)) { | |
93b7aca3 AR |
609 | if (*paa) |
610 | free_layer(idp, *paa); | |
23936cc0 | 611 | n += IDR_BITS; |
93b7aca3 | 612 | --paa; |
23936cc0 KH |
613 | } |
614 | } | |
23936cc0 KH |
615 | idp->layers = 0; |
616 | } | |
23936cc0 | 617 | |
8d3b3591 AM |
618 | /** |
619 | * idr_destroy - release all cached layers within an idr tree | |
ea24ea85 | 620 | * @idp: idr handle |
9bb26bc1 TH |
621 | * |
622 | * Free all id mappings and all idp_layers. After this function, @idp is | |
623 | * completely unused and can be freed / recycled. The caller is | |
624 | * responsible for ensuring that no one else accesses @idp during or after | |
625 | * idr_destroy(). | |
626 | * | |
627 | * A typical clean-up sequence for objects stored in an idr tree will use | |
da3dae54 | 628 | * idr_for_each() to free all objects, if necessary, then idr_destroy() to |
9bb26bc1 | 629 | * free up the id mappings and cached idr_layers. |
8d3b3591 AM |
630 | */ |
631 | void idr_destroy(struct idr *idp) | |
632 | { | |
fe6e24ec | 633 | __idr_remove_all(idp); |
9bb26bc1 | 634 | |
8d3b3591 | 635 | while (idp->id_free_cnt) { |
4ae53789 | 636 | struct idr_layer *p = get_from_free_list(idp); |
8d3b3591 AM |
637 | kmem_cache_free(idr_layer_cache, p); |
638 | } | |
639 | } | |
640 | EXPORT_SYMBOL(idr_destroy); | |
641 | ||
0ffc2a9c | 642 | void *idr_find_slowpath(struct idr *idp, int id) |
1da177e4 LT |
643 | { |
644 | int n; | |
645 | struct idr_layer *p; | |
646 | ||
2e1c9b28 | 647 | if (id < 0) |
e8c8d1bc TH |
648 | return NULL; |
649 | ||
96be753a | 650 | p = rcu_dereference_raw(idp->top); |
6ff2d39b MS |
651 | if (!p) |
652 | return NULL; | |
653 | n = (p->layer+1) * IDR_BITS; | |
1da177e4 | 654 | |
326cf0f0 | 655 | if (id > idr_max(p->layer + 1)) |
1da177e4 | 656 | return NULL; |
6ff2d39b | 657 | BUG_ON(n == 0); |
1da177e4 LT |
658 | |
659 | while (n > 0 && p) { | |
660 | n -= IDR_BITS; | |
6ff2d39b | 661 | BUG_ON(n != p->layer*IDR_BITS); |
96be753a | 662 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
1da177e4 LT |
663 | } |
664 | return((void *)p); | |
665 | } | |
0ffc2a9c | 666 | EXPORT_SYMBOL(idr_find_slowpath); |
1da177e4 | 667 | |
96d7fa42 KH |
668 | /** |
669 | * idr_for_each - iterate through all stored pointers | |
670 | * @idp: idr handle | |
671 | * @fn: function to be called for each pointer | |
672 | * @data: data passed back to callback function | |
673 | * | |
674 | * Iterate over the pointers registered with the given idr. The | |
675 | * callback function will be called for each pointer currently | |
676 | * registered, passing the id, the pointer and the data pointer passed | |
677 | * to this function. It is not safe to modify the idr tree while in | |
678 | * the callback, so functions such as idr_get_new and idr_remove are | |
679 | * not allowed. | |
680 | * | |
681 | * We check the return of @fn each time. If it returns anything other | |
56083ab1 | 682 | * than %0, we break out and return that value. |
96d7fa42 KH |
683 | * |
684 | * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). | |
685 | */ | |
686 | int idr_for_each(struct idr *idp, | |
687 | int (*fn)(int id, void *p, void *data), void *data) | |
688 | { | |
689 | int n, id, max, error = 0; | |
690 | struct idr_layer *p; | |
326cf0f0 | 691 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
96d7fa42 KH |
692 | struct idr_layer **paa = &pa[0]; |
693 | ||
694 | n = idp->layers * IDR_BITS; | |
93b7aca3 | 695 | *paa = rcu_dereference_raw(idp->top); |
326cf0f0 | 696 | max = idr_max(idp->layers); |
96d7fa42 KH |
697 | |
698 | id = 0; | |
326cf0f0 | 699 | while (id >= 0 && id <= max) { |
93b7aca3 | 700 | p = *paa; |
96d7fa42 KH |
701 | while (n > 0 && p) { |
702 | n -= IDR_BITS; | |
96be753a | 703 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
93b7aca3 | 704 | *++paa = p; |
96d7fa42 KH |
705 | } |
706 | ||
707 | if (p) { | |
708 | error = fn(id, (void *)p, data); | |
709 | if (error) | |
710 | break; | |
711 | } | |
712 | ||
713 | id += 1 << n; | |
714 | while (n < fls(id)) { | |
715 | n += IDR_BITS; | |
93b7aca3 | 716 | --paa; |
96d7fa42 KH |
717 | } |
718 | } | |
719 | ||
720 | return error; | |
721 | } | |
722 | EXPORT_SYMBOL(idr_for_each); | |
723 | ||
38460b48 KH |
724 | /** |
725 | * idr_get_next - lookup next object of id to given id. | |
726 | * @idp: idr handle | |
ea24ea85 | 727 | * @nextidp: pointer to lookup key |
38460b48 KH |
728 | * |
729 | * Returns pointer to registered object with id, which is next number to | |
1458ce16 NA |
730 | * given id. After being looked up, *@nextidp will be updated for the next |
731 | * iteration. | |
9f7de827 HD |
732 | * |
733 | * This function can be called under rcu_read_lock(), given that the leaf | |
734 | * pointers lifetimes are correctly managed. | |
38460b48 | 735 | */ |
38460b48 KH |
736 | void *idr_get_next(struct idr *idp, int *nextidp) |
737 | { | |
326cf0f0 | 738 | struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; |
38460b48 KH |
739 | struct idr_layer **paa = &pa[0]; |
740 | int id = *nextidp; | |
741 | int n, max; | |
742 | ||
743 | /* find first ent */ | |
93b7aca3 | 744 | p = *paa = rcu_dereference_raw(idp->top); |
38460b48 KH |
745 | if (!p) |
746 | return NULL; | |
9f7de827 | 747 | n = (p->layer + 1) * IDR_BITS; |
326cf0f0 | 748 | max = idr_max(p->layer + 1); |
38460b48 | 749 | |
326cf0f0 | 750 | while (id >= 0 && id <= max) { |
93b7aca3 | 751 | p = *paa; |
38460b48 KH |
752 | while (n > 0 && p) { |
753 | n -= IDR_BITS; | |
94bfa3b6 | 754 | p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); |
93b7aca3 | 755 | *++paa = p; |
38460b48 KH |
756 | } |
757 | ||
758 | if (p) { | |
759 | *nextidp = id; | |
760 | return p; | |
761 | } | |
762 | ||
6cdae741 TH |
763 | /* |
764 | * Proceed to the next layer at the current level. Unlike | |
765 | * idr_for_each(), @id isn't guaranteed to be aligned to | |
766 | * layer boundary at this point and adding 1 << n may | |
767 | * incorrectly skip IDs. Make sure we jump to the | |
768 | * beginning of the next layer using round_up(). | |
769 | */ | |
770 | id = round_up(id + 1, 1 << n); | |
38460b48 KH |
771 | while (n < fls(id)) { |
772 | n += IDR_BITS; | |
93b7aca3 | 773 | --paa; |
38460b48 KH |
774 | } |
775 | } | |
776 | return NULL; | |
777 | } | |
4d1ee80f | 778 | EXPORT_SYMBOL(idr_get_next); |
38460b48 KH |
779 | |
780 | ||
5806f07c JM |
781 | /** |
782 | * idr_replace - replace pointer for given id | |
783 | * @idp: idr handle | |
784 | * @ptr: pointer you want associated with the id | |
785 | * @id: lookup key | |
786 | * | |
787 | * Replace the pointer registered with an id and return the old value. | |
56083ab1 RD |
788 | * A %-ENOENT return indicates that @id was not found. |
789 | * A %-EINVAL return indicates that @id was not within valid constraints. | |
5806f07c | 790 | * |
cf481c20 | 791 | * The caller must serialize with writers. |
5806f07c JM |
792 | */ |
793 | void *idr_replace(struct idr *idp, void *ptr, int id) | |
794 | { | |
795 | int n; | |
796 | struct idr_layer *p, *old_p; | |
797 | ||
2e1c9b28 | 798 | if (id < 0) |
e8c8d1bc TH |
799 | return ERR_PTR(-EINVAL); |
800 | ||
5806f07c | 801 | p = idp->top; |
6ff2d39b | 802 | if (!p) |
b93804b2 | 803 | return ERR_PTR(-ENOENT); |
6ff2d39b | 804 | |
3afb69cb | 805 | if (id > idr_max(p->layer + 1)) |
b93804b2 | 806 | return ERR_PTR(-ENOENT); |
5806f07c | 807 | |
3afb69cb | 808 | n = p->layer * IDR_BITS; |
5806f07c JM |
809 | while ((n > 0) && p) { |
810 | p = p->ary[(id >> n) & IDR_MASK]; | |
811 | n -= IDR_BITS; | |
812 | } | |
813 | ||
814 | n = id & IDR_MASK; | |
1d9b2e1e | 815 | if (unlikely(p == NULL || !test_bit(n, p->bitmap))) |
5806f07c JM |
816 | return ERR_PTR(-ENOENT); |
817 | ||
818 | old_p = p->ary[n]; | |
cf481c20 | 819 | rcu_assign_pointer(p->ary[n], ptr); |
5806f07c JM |
820 | |
821 | return old_p; | |
822 | } | |
823 | EXPORT_SYMBOL(idr_replace); | |
824 | ||
199f0ca5 | 825 | void __init idr_init_cache(void) |
1da177e4 | 826 | { |
199f0ca5 | 827 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
5b019e99 | 828 | sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); |
1da177e4 LT |
829 | } |
830 | ||
831 | /** | |
832 | * idr_init - initialize idr handle | |
833 | * @idp: idr handle | |
834 | * | |
835 | * This function is use to set up the handle (@idp) that you will pass | |
836 | * to the rest of the functions. | |
837 | */ | |
838 | void idr_init(struct idr *idp) | |
839 | { | |
1da177e4 LT |
840 | memset(idp, 0, sizeof(struct idr)); |
841 | spin_lock_init(&idp->lock); | |
842 | } | |
843 | EXPORT_SYMBOL(idr_init); | |
72dba584 | 844 | |
05f7a7d6 AG |
845 | static int idr_has_entry(int id, void *p, void *data) |
846 | { | |
847 | return 1; | |
848 | } | |
849 | ||
850 | bool idr_is_empty(struct idr *idp) | |
851 | { | |
852 | return !idr_for_each(idp, idr_has_entry, NULL); | |
853 | } | |
854 | EXPORT_SYMBOL(idr_is_empty); | |
72dba584 | 855 | |
56083ab1 RD |
856 | /** |
857 | * DOC: IDA description | |
72dba584 TH |
858 | * IDA - IDR based ID allocator |
859 | * | |
56083ab1 | 860 | * This is id allocator without id -> pointer translation. Memory |
72dba584 TH |
861 | * usage is much lower than full blown idr because each id only |
862 | * occupies a bit. ida uses a custom leaf node which contains | |
863 | * IDA_BITMAP_BITS slots. | |
864 | * | |
865 | * 2007-04-25 written by Tejun Heo <[email protected]> | |
866 | */ | |
867 | ||
868 | static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) | |
869 | { | |
870 | unsigned long flags; | |
871 | ||
872 | if (!ida->free_bitmap) { | |
873 | spin_lock_irqsave(&ida->idr.lock, flags); | |
874 | if (!ida->free_bitmap) { | |
875 | ida->free_bitmap = bitmap; | |
876 | bitmap = NULL; | |
877 | } | |
878 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
879 | } | |
880 | ||
881 | kfree(bitmap); | |
882 | } | |
883 | ||
884 | /** | |
885 | * ida_pre_get - reserve resources for ida allocation | |
886 | * @ida: ida handle | |
887 | * @gfp_mask: memory allocation flag | |
888 | * | |
889 | * This function should be called prior to locking and calling the | |
890 | * following function. It preallocates enough memory to satisfy the | |
891 | * worst possible allocation. | |
892 | * | |
56083ab1 RD |
893 | * If the system is REALLY out of memory this function returns %0, |
894 | * otherwise %1. | |
72dba584 TH |
895 | */ |
896 | int ida_pre_get(struct ida *ida, gfp_t gfp_mask) | |
897 | { | |
898 | /* allocate idr_layers */ | |
c8615d37 | 899 | if (!__idr_pre_get(&ida->idr, gfp_mask)) |
72dba584 TH |
900 | return 0; |
901 | ||
902 | /* allocate free_bitmap */ | |
903 | if (!ida->free_bitmap) { | |
904 | struct ida_bitmap *bitmap; | |
905 | ||
906 | bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); | |
907 | if (!bitmap) | |
908 | return 0; | |
909 | ||
910 | free_bitmap(ida, bitmap); | |
911 | } | |
912 | ||
913 | return 1; | |
914 | } | |
915 | EXPORT_SYMBOL(ida_pre_get); | |
916 | ||
917 | /** | |
918 | * ida_get_new_above - allocate new ID above or equal to a start id | |
919 | * @ida: ida handle | |
ea24ea85 | 920 | * @starting_id: id to start search at |
72dba584 TH |
921 | * @p_id: pointer to the allocated handle |
922 | * | |
e3816c54 WSH |
923 | * Allocate new ID above or equal to @starting_id. It should be called |
924 | * with any required locks. | |
72dba584 | 925 | * |
56083ab1 | 926 | * If memory is required, it will return %-EAGAIN, you should unlock |
72dba584 | 927 | * and go back to the ida_pre_get() call. If the ida is full, it will |
56083ab1 | 928 | * return %-ENOSPC. |
72dba584 | 929 | * |
56083ab1 | 930 | * @p_id returns a value in the range @starting_id ... %0x7fffffff. |
72dba584 TH |
931 | */ |
932 | int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) | |
933 | { | |
326cf0f0 | 934 | struct idr_layer *pa[MAX_IDR_LEVEL + 1]; |
72dba584 TH |
935 | struct ida_bitmap *bitmap; |
936 | unsigned long flags; | |
937 | int idr_id = starting_id / IDA_BITMAP_BITS; | |
938 | int offset = starting_id % IDA_BITMAP_BITS; | |
939 | int t, id; | |
940 | ||
941 | restart: | |
942 | /* get vacant slot */ | |
d5c7409f | 943 | t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); |
944ca05c | 944 | if (t < 0) |
12d1b439 | 945 | return t == -ENOMEM ? -EAGAIN : t; |
72dba584 | 946 | |
125c4c70 | 947 | if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) |
72dba584 TH |
948 | return -ENOSPC; |
949 | ||
950 | if (t != idr_id) | |
951 | offset = 0; | |
952 | idr_id = t; | |
953 | ||
954 | /* if bitmap isn't there, create a new one */ | |
955 | bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; | |
956 | if (!bitmap) { | |
957 | spin_lock_irqsave(&ida->idr.lock, flags); | |
958 | bitmap = ida->free_bitmap; | |
959 | ida->free_bitmap = NULL; | |
960 | spin_unlock_irqrestore(&ida->idr.lock, flags); | |
961 | ||
962 | if (!bitmap) | |
963 | return -EAGAIN; | |
964 | ||
965 | memset(bitmap, 0, sizeof(struct ida_bitmap)); | |
3219b3b7 ND |
966 | rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], |
967 | (void *)bitmap); | |
72dba584 TH |
968 | pa[0]->count++; |
969 | } | |
970 | ||
971 | /* lookup for empty slot */ | |
972 | t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); | |
973 | if (t == IDA_BITMAP_BITS) { | |
974 | /* no empty slot after offset, continue to the next chunk */ | |
975 | idr_id++; | |
976 | offset = 0; | |
977 | goto restart; | |
978 | } | |
979 | ||
980 | id = idr_id * IDA_BITMAP_BITS + t; | |
125c4c70 | 981 | if (id >= MAX_IDR_BIT) |
72dba584 TH |
982 | return -ENOSPC; |
983 | ||
984 | __set_bit(t, bitmap->bitmap); | |
985 | if (++bitmap->nr_busy == IDA_BITMAP_BITS) | |
986 | idr_mark_full(pa, idr_id); | |
987 | ||
988 | *p_id = id; | |
989 | ||
990 | /* Each leaf node can handle nearly a thousand slots and the | |
991 | * whole idea of ida is to have small memory foot print. | |
992 | * Throw away extra resources one by one after each successful | |
993 | * allocation. | |
994 | */ | |
995 | if (ida->idr.id_free_cnt || ida->free_bitmap) { | |
4ae53789 | 996 | struct idr_layer *p = get_from_free_list(&ida->idr); |
72dba584 TH |
997 | if (p) |
998 | kmem_cache_free(idr_layer_cache, p); | |
999 | } | |
1000 | ||
1001 | return 0; | |
1002 | } | |
1003 | EXPORT_SYMBOL(ida_get_new_above); | |
1004 | ||
72dba584 TH |
1005 | /** |
1006 | * ida_remove - remove the given ID | |
1007 | * @ida: ida handle | |
1008 | * @id: ID to free | |
1009 | */ | |
1010 | void ida_remove(struct ida *ida, int id) | |
1011 | { | |
1012 | struct idr_layer *p = ida->idr.top; | |
1013 | int shift = (ida->idr.layers - 1) * IDR_BITS; | |
1014 | int idr_id = id / IDA_BITMAP_BITS; | |
1015 | int offset = id % IDA_BITMAP_BITS; | |
1016 | int n; | |
1017 | struct ida_bitmap *bitmap; | |
1018 | ||
8f9f665a LJ |
1019 | if (idr_id > idr_max(ida->idr.layers)) |
1020 | goto err; | |
1021 | ||
72dba584 TH |
1022 | /* clear full bits while looking up the leaf idr_layer */ |
1023 | while ((shift > 0) && p) { | |
1024 | n = (idr_id >> shift) & IDR_MASK; | |
1d9b2e1e | 1025 | __clear_bit(n, p->bitmap); |
72dba584 TH |
1026 | p = p->ary[n]; |
1027 | shift -= IDR_BITS; | |
1028 | } | |
1029 | ||
1030 | if (p == NULL) | |
1031 | goto err; | |
1032 | ||
1033 | n = idr_id & IDR_MASK; | |
1d9b2e1e | 1034 | __clear_bit(n, p->bitmap); |
72dba584 TH |
1035 | |
1036 | bitmap = (void *)p->ary[n]; | |
aef0f62e | 1037 | if (!bitmap || !test_bit(offset, bitmap->bitmap)) |
72dba584 TH |
1038 | goto err; |
1039 | ||
1040 | /* update bitmap and remove it if empty */ | |
1041 | __clear_bit(offset, bitmap->bitmap); | |
1042 | if (--bitmap->nr_busy == 0) { | |
1d9b2e1e | 1043 | __set_bit(n, p->bitmap); /* to please idr_remove() */ |
72dba584 TH |
1044 | idr_remove(&ida->idr, idr_id); |
1045 | free_bitmap(ida, bitmap); | |
1046 | } | |
1047 | ||
1048 | return; | |
1049 | ||
1050 | err: | |
dd04b452 | 1051 | WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); |
72dba584 TH |
1052 | } |
1053 | EXPORT_SYMBOL(ida_remove); | |
1054 | ||
1055 | /** | |
1056 | * ida_destroy - release all cached layers within an ida tree | |
ea24ea85 | 1057 | * @ida: ida handle |
72dba584 TH |
1058 | */ |
1059 | void ida_destroy(struct ida *ida) | |
1060 | { | |
1061 | idr_destroy(&ida->idr); | |
1062 | kfree(ida->free_bitmap); | |
1063 | } | |
1064 | EXPORT_SYMBOL(ida_destroy); | |
1065 | ||
88eca020 RR |
1066 | /** |
1067 | * ida_simple_get - get a new id. | |
1068 | * @ida: the (initialized) ida. | |
1069 | * @start: the minimum id (inclusive, < 0x8000000) | |
1070 | * @end: the maximum id (exclusive, < 0x8000000 or 0) | |
1071 | * @gfp_mask: memory allocation flags | |
1072 | * | |
1073 | * Allocates an id in the range start <= id < end, or returns -ENOSPC. | |
1074 | * On memory allocation failure, returns -ENOMEM. | |
1075 | * | |
1076 | * Use ida_simple_remove() to get rid of an id. | |
1077 | */ | |
1078 | int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, | |
1079 | gfp_t gfp_mask) | |
1080 | { | |
1081 | int ret, id; | |
1082 | unsigned int max; | |
46cbc1d3 | 1083 | unsigned long flags; |
88eca020 RR |
1084 | |
1085 | BUG_ON((int)start < 0); | |
1086 | BUG_ON((int)end < 0); | |
1087 | ||
1088 | if (end == 0) | |
1089 | max = 0x80000000; | |
1090 | else { | |
1091 | BUG_ON(end < start); | |
1092 | max = end - 1; | |
1093 | } | |
1094 | ||
1095 | again: | |
1096 | if (!ida_pre_get(ida, gfp_mask)) | |
1097 | return -ENOMEM; | |
1098 | ||
46cbc1d3 | 1099 | spin_lock_irqsave(&simple_ida_lock, flags); |
88eca020 RR |
1100 | ret = ida_get_new_above(ida, start, &id); |
1101 | if (!ret) { | |
1102 | if (id > max) { | |
1103 | ida_remove(ida, id); | |
1104 | ret = -ENOSPC; | |
1105 | } else { | |
1106 | ret = id; | |
1107 | } | |
1108 | } | |
46cbc1d3 | 1109 | spin_unlock_irqrestore(&simple_ida_lock, flags); |
88eca020 RR |
1110 | |
1111 | if (unlikely(ret == -EAGAIN)) | |
1112 | goto again; | |
1113 | ||
1114 | return ret; | |
1115 | } | |
1116 | EXPORT_SYMBOL(ida_simple_get); | |
1117 | ||
1118 | /** | |
1119 | * ida_simple_remove - remove an allocated id. | |
1120 | * @ida: the (initialized) ida. | |
1121 | * @id: the id returned by ida_simple_get. | |
1122 | */ | |
1123 | void ida_simple_remove(struct ida *ida, unsigned int id) | |
1124 | { | |
46cbc1d3 TH |
1125 | unsigned long flags; |
1126 | ||
88eca020 | 1127 | BUG_ON((int)id < 0); |
46cbc1d3 | 1128 | spin_lock_irqsave(&simple_ida_lock, flags); |
88eca020 | 1129 | ida_remove(ida, id); |
46cbc1d3 | 1130 | spin_unlock_irqrestore(&simple_ida_lock, flags); |
88eca020 RR |
1131 | } |
1132 | EXPORT_SYMBOL(ida_simple_remove); | |
1133 | ||
72dba584 TH |
1134 | /** |
1135 | * ida_init - initialize ida handle | |
1136 | * @ida: ida handle | |
1137 | * | |
1138 | * This function is use to set up the handle (@ida) that you will pass | |
1139 | * to the rest of the functions. | |
1140 | */ | |
1141 | void ida_init(struct ida *ida) | |
1142 | { | |
1143 | memset(ida, 0, sizeof(struct ida)); | |
1144 | idr_init(&ida->idr); | |
1145 | ||
1146 | } | |
1147 | EXPORT_SYMBOL(ida_init); |