]>
Commit | Line | Data |
---|---|---|
c1144c9b EB |
1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* | |
3 | * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation | |
4 | * Function"), aka RFC 5869. See also the original paper (Krawczyk 2010): | |
5 | * "Cryptographic Extraction and Key Derivation: The HKDF Scheme". | |
6 | * | |
7 | * This is used to derive keys from the fscrypt master keys. | |
8 | * | |
9 | * Copyright 2019 Google LLC | |
10 | */ | |
11 | ||
12 | #include <crypto/hash.h> | |
a24d22b2 | 13 | #include <crypto/sha2.h> |
c1144c9b EB |
14 | |
15 | #include "fscrypt_private.h" | |
16 | ||
17 | /* | |
18 | * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses | |
19 | * SHA-512 because it is reasonably secure and efficient; and since it produces | |
20 | * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of | |
21 | * entropy from the master key and requires only one iteration of HKDF-Expand. | |
22 | */ | |
23 | #define HKDF_HMAC_ALG "hmac(sha512)" | |
24 | #define HKDF_HASHLEN SHA512_DIGEST_SIZE | |
25 | ||
26 | /* | |
27 | * HKDF consists of two steps: | |
28 | * | |
29 | * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from | |
30 | * the input keying material and optional salt. | |
31 | * 2. HKDF-Expand: expand the pseudorandom key into output keying material of | |
32 | * any length, parameterized by an application-specific info string. | |
33 | * | |
34 | * HKDF-Extract can be skipped if the input is already a pseudorandom key of | |
35 | * length HKDF_HASHLEN bytes. However, cipher modes other than AES-256-XTS take | |
36 | * shorter keys, and we don't want to force users of those modes to provide | |
37 | * unnecessarily long master keys. Thus fscrypt still does HKDF-Extract. No | |
38 | * salt is used, since fscrypt master keys should already be pseudorandom and | |
39 | * there's no way to persist a random salt per master key from kernel mode. | |
40 | */ | |
41 | ||
42 | /* HKDF-Extract (RFC 5869 section 2.2), unsalted */ | |
43 | static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm, | |
44 | unsigned int ikmlen, u8 prk[HKDF_HASHLEN]) | |
45 | { | |
46 | static const u8 default_salt[HKDF_HASHLEN]; | |
c1144c9b EB |
47 | int err; |
48 | ||
49 | err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN); | |
50 | if (err) | |
51 | return err; | |
52 | ||
3e185a56 | 53 | return crypto_shash_tfm_digest(hmac_tfm, ikm, ikmlen, prk); |
c1144c9b EB |
54 | } |
55 | ||
56 | /* | |
57 | * Compute HKDF-Extract using the given master key as the input keying material, | |
58 | * and prepare an HMAC transform object keyed by the resulting pseudorandom key. | |
59 | * | |
60 | * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many | |
61 | * times without having to recompute HKDF-Extract each time. | |
62 | */ | |
63 | int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, | |
64 | unsigned int master_key_size) | |
65 | { | |
66 | struct crypto_shash *hmac_tfm; | |
67 | u8 prk[HKDF_HASHLEN]; | |
68 | int err; | |
69 | ||
70 | hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0); | |
71 | if (IS_ERR(hmac_tfm)) { | |
72 | fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld", | |
73 | PTR_ERR(hmac_tfm)); | |
74 | return PTR_ERR(hmac_tfm); | |
75 | } | |
76 | ||
77 | if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) { | |
78 | err = -EINVAL; | |
79 | goto err_free_tfm; | |
80 | } | |
81 | ||
82 | err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk); | |
83 | if (err) | |
84 | goto err_free_tfm; | |
85 | ||
86 | err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk)); | |
87 | if (err) | |
88 | goto err_free_tfm; | |
89 | ||
90 | hkdf->hmac_tfm = hmac_tfm; | |
91 | goto out; | |
92 | ||
93 | err_free_tfm: | |
94 | crypto_free_shash(hmac_tfm); | |
95 | out: | |
96 | memzero_explicit(prk, sizeof(prk)); | |
97 | return err; | |
98 | } | |
99 | ||
100 | /* | |
101 | * HKDF-Expand (RFC 5869 section 2.3). This expands the pseudorandom key, which | |
102 | * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen' | |
103 | * bytes of output keying material parameterized by the application-specific | |
104 | * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context' | |
105 | * byte. This is thread-safe and may be called by multiple threads in parallel. | |
106 | * | |
107 | * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt | |
108 | * adds to its application-specific info strings to guarantee that it doesn't | |
109 | * accidentally repeat an info string when using HKDF for different purposes.) | |
110 | */ | |
2a5831b1 | 111 | int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, |
c1144c9b EB |
112 | const u8 *info, unsigned int infolen, |
113 | u8 *okm, unsigned int okmlen) | |
114 | { | |
115 | SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm); | |
116 | u8 prefix[9]; | |
117 | unsigned int i; | |
118 | int err; | |
119 | const u8 *prev = NULL; | |
120 | u8 counter = 1; | |
121 | u8 tmp[HKDF_HASHLEN]; | |
122 | ||
123 | if (WARN_ON(okmlen > 255 * HKDF_HASHLEN)) | |
124 | return -EINVAL; | |
125 | ||
126 | desc->tfm = hkdf->hmac_tfm; | |
127 | ||
128 | memcpy(prefix, "fscrypt\0", 8); | |
129 | prefix[8] = context; | |
130 | ||
131 | for (i = 0; i < okmlen; i += HKDF_HASHLEN) { | |
132 | ||
133 | err = crypto_shash_init(desc); | |
134 | if (err) | |
135 | goto out; | |
136 | ||
137 | if (prev) { | |
138 | err = crypto_shash_update(desc, prev, HKDF_HASHLEN); | |
139 | if (err) | |
140 | goto out; | |
141 | } | |
142 | ||
143 | err = crypto_shash_update(desc, prefix, sizeof(prefix)); | |
144 | if (err) | |
145 | goto out; | |
146 | ||
147 | err = crypto_shash_update(desc, info, infolen); | |
148 | if (err) | |
149 | goto out; | |
150 | ||
151 | BUILD_BUG_ON(sizeof(counter) != 1); | |
152 | if (okmlen - i < HKDF_HASHLEN) { | |
153 | err = crypto_shash_finup(desc, &counter, 1, tmp); | |
154 | if (err) | |
155 | goto out; | |
156 | memcpy(&okm[i], tmp, okmlen - i); | |
157 | memzero_explicit(tmp, sizeof(tmp)); | |
158 | } else { | |
159 | err = crypto_shash_finup(desc, &counter, 1, &okm[i]); | |
160 | if (err) | |
161 | goto out; | |
162 | } | |
163 | counter++; | |
164 | prev = &okm[i]; | |
165 | } | |
166 | err = 0; | |
167 | out: | |
168 | if (unlikely(err)) | |
169 | memzero_explicit(okm, okmlen); /* so caller doesn't need to */ | |
170 | shash_desc_zero(desc); | |
171 | return err; | |
172 | } | |
173 | ||
174 | void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf) | |
175 | { | |
176 | crypto_free_shash(hkdf->hmac_tfm); | |
177 | } |