]>
Commit | Line | Data |
---|---|---|
039363f3 CL |
1 | /* |
2 | * Slab allocator functions that are independent of the allocator strategy | |
3 | * | |
4 | * (C) 2012 Christoph Lameter <[email protected]> | |
5 | */ | |
6 | #include <linux/slab.h> | |
7 | ||
8 | #include <linux/mm.h> | |
9 | #include <linux/poison.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/memory.h> | |
12 | #include <linux/compiler.h> | |
13 | #include <linux/module.h> | |
20cea968 CL |
14 | #include <linux/cpu.h> |
15 | #include <linux/uaccess.h> | |
b7454ad3 GC |
16 | #include <linux/seq_file.h> |
17 | #include <linux/proc_fs.h> | |
039363f3 CL |
18 | #include <asm/cacheflush.h> |
19 | #include <asm/tlbflush.h> | |
20 | #include <asm/page.h> | |
2633d7a0 | 21 | #include <linux/memcontrol.h> |
928cec9c AR |
22 | |
23 | #define CREATE_TRACE_POINTS | |
f1b6eb6e | 24 | #include <trace/events/kmem.h> |
039363f3 | 25 | |
97d06609 CL |
26 | #include "slab.h" |
27 | ||
28 | enum slab_state slab_state; | |
18004c5d CL |
29 | LIST_HEAD(slab_caches); |
30 | DEFINE_MUTEX(slab_mutex); | |
9b030cb8 | 31 | struct kmem_cache *kmem_cache; |
97d06609 | 32 | |
423c929c JK |
33 | /* |
34 | * Set of flags that will prevent slab merging | |
35 | */ | |
36 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
37 | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | |
38 | SLAB_FAILSLAB) | |
39 | ||
230e9fc2 VD |
40 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ |
41 | SLAB_NOTRACK | SLAB_ACCOUNT) | |
423c929c JK |
42 | |
43 | /* | |
44 | * Merge control. If this is set then no merging of slab caches will occur. | |
45 | * (Could be removed. This was introduced to pacify the merge skeptics.) | |
46 | */ | |
47 | static int slab_nomerge; | |
48 | ||
49 | static int __init setup_slab_nomerge(char *str) | |
50 | { | |
51 | slab_nomerge = 1; | |
52 | return 1; | |
53 | } | |
54 | ||
55 | #ifdef CONFIG_SLUB | |
56 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | |
57 | #endif | |
58 | ||
59 | __setup("slab_nomerge", setup_slab_nomerge); | |
60 | ||
07f361b2 JK |
61 | /* |
62 | * Determine the size of a slab object | |
63 | */ | |
64 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
65 | { | |
66 | return s->object_size; | |
67 | } | |
68 | EXPORT_SYMBOL(kmem_cache_size); | |
69 | ||
77be4b13 | 70 | #ifdef CONFIG_DEBUG_VM |
794b1248 | 71 | static int kmem_cache_sanity_check(const char *name, size_t size) |
039363f3 CL |
72 | { |
73 | struct kmem_cache *s = NULL; | |
74 | ||
039363f3 CL |
75 | if (!name || in_interrupt() || size < sizeof(void *) || |
76 | size > KMALLOC_MAX_SIZE) { | |
77be4b13 SK |
77 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); |
78 | return -EINVAL; | |
039363f3 | 79 | } |
b920536a | 80 | |
20cea968 CL |
81 | list_for_each_entry(s, &slab_caches, list) { |
82 | char tmp; | |
83 | int res; | |
84 | ||
85 | /* | |
86 | * This happens when the module gets unloaded and doesn't | |
87 | * destroy its slab cache and no-one else reuses the vmalloc | |
88 | * area of the module. Print a warning. | |
89 | */ | |
90 | res = probe_kernel_address(s->name, tmp); | |
91 | if (res) { | |
77be4b13 | 92 | pr_err("Slab cache with size %d has lost its name\n", |
20cea968 CL |
93 | s->object_size); |
94 | continue; | |
95 | } | |
20cea968 CL |
96 | } |
97 | ||
98 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
77be4b13 SK |
99 | return 0; |
100 | } | |
101 | #else | |
794b1248 | 102 | static inline int kmem_cache_sanity_check(const char *name, size_t size) |
77be4b13 SK |
103 | { |
104 | return 0; | |
105 | } | |
20cea968 CL |
106 | #endif |
107 | ||
484748f0 CL |
108 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) |
109 | { | |
110 | size_t i; | |
111 | ||
112 | for (i = 0; i < nr; i++) | |
113 | kmem_cache_free(s, p[i]); | |
114 | } | |
115 | ||
865762a8 | 116 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, |
484748f0 CL |
117 | void **p) |
118 | { | |
119 | size_t i; | |
120 | ||
121 | for (i = 0; i < nr; i++) { | |
122 | void *x = p[i] = kmem_cache_alloc(s, flags); | |
123 | if (!x) { | |
124 | __kmem_cache_free_bulk(s, i, p); | |
865762a8 | 125 | return 0; |
484748f0 CL |
126 | } |
127 | } | |
865762a8 | 128 | return i; |
484748f0 CL |
129 | } |
130 | ||
55007d84 | 131 | #ifdef CONFIG_MEMCG_KMEM |
f7ce3190 | 132 | void slab_init_memcg_params(struct kmem_cache *s) |
33a690c4 | 133 | { |
f7ce3190 | 134 | s->memcg_params.is_root_cache = true; |
426589f5 | 135 | INIT_LIST_HEAD(&s->memcg_params.list); |
f7ce3190 VD |
136 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); |
137 | } | |
138 | ||
139 | static int init_memcg_params(struct kmem_cache *s, | |
140 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
141 | { | |
142 | struct memcg_cache_array *arr; | |
33a690c4 | 143 | |
f7ce3190 VD |
144 | if (memcg) { |
145 | s->memcg_params.is_root_cache = false; | |
146 | s->memcg_params.memcg = memcg; | |
147 | s->memcg_params.root_cache = root_cache; | |
33a690c4 | 148 | return 0; |
f7ce3190 | 149 | } |
33a690c4 | 150 | |
f7ce3190 | 151 | slab_init_memcg_params(s); |
33a690c4 | 152 | |
f7ce3190 VD |
153 | if (!memcg_nr_cache_ids) |
154 | return 0; | |
33a690c4 | 155 | |
f7ce3190 VD |
156 | arr = kzalloc(sizeof(struct memcg_cache_array) + |
157 | memcg_nr_cache_ids * sizeof(void *), | |
158 | GFP_KERNEL); | |
159 | if (!arr) | |
160 | return -ENOMEM; | |
33a690c4 | 161 | |
f7ce3190 | 162 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); |
33a690c4 VD |
163 | return 0; |
164 | } | |
165 | ||
f7ce3190 | 166 | static void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 | 167 | { |
f7ce3190 VD |
168 | if (is_root_cache(s)) |
169 | kfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | |
33a690c4 VD |
170 | } |
171 | ||
f7ce3190 | 172 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) |
6f817f4c | 173 | { |
f7ce3190 | 174 | struct memcg_cache_array *old, *new; |
6f817f4c | 175 | |
f7ce3190 VD |
176 | if (!is_root_cache(s)) |
177 | return 0; | |
6f817f4c | 178 | |
f7ce3190 VD |
179 | new = kzalloc(sizeof(struct memcg_cache_array) + |
180 | new_array_size * sizeof(void *), GFP_KERNEL); | |
181 | if (!new) | |
6f817f4c VD |
182 | return -ENOMEM; |
183 | ||
f7ce3190 VD |
184 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, |
185 | lockdep_is_held(&slab_mutex)); | |
186 | if (old) | |
187 | memcpy(new->entries, old->entries, | |
188 | memcg_nr_cache_ids * sizeof(void *)); | |
6f817f4c | 189 | |
f7ce3190 VD |
190 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); |
191 | if (old) | |
192 | kfree_rcu(old, rcu); | |
6f817f4c VD |
193 | return 0; |
194 | } | |
195 | ||
55007d84 GC |
196 | int memcg_update_all_caches(int num_memcgs) |
197 | { | |
198 | struct kmem_cache *s; | |
199 | int ret = 0; | |
55007d84 | 200 | |
05257a1a | 201 | mutex_lock(&slab_mutex); |
55007d84 | 202 | list_for_each_entry(s, &slab_caches, list) { |
f7ce3190 | 203 | ret = update_memcg_params(s, num_memcgs); |
55007d84 | 204 | /* |
55007d84 GC |
205 | * Instead of freeing the memory, we'll just leave the caches |
206 | * up to this point in an updated state. | |
207 | */ | |
208 | if (ret) | |
05257a1a | 209 | break; |
55007d84 | 210 | } |
55007d84 GC |
211 | mutex_unlock(&slab_mutex); |
212 | return ret; | |
213 | } | |
33a690c4 | 214 | #else |
f7ce3190 VD |
215 | static inline int init_memcg_params(struct kmem_cache *s, |
216 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
33a690c4 VD |
217 | { |
218 | return 0; | |
219 | } | |
220 | ||
f7ce3190 | 221 | static inline void destroy_memcg_params(struct kmem_cache *s) |
33a690c4 VD |
222 | { |
223 | } | |
224 | #endif /* CONFIG_MEMCG_KMEM */ | |
55007d84 | 225 | |
423c929c JK |
226 | /* |
227 | * Find a mergeable slab cache | |
228 | */ | |
229 | int slab_unmergeable(struct kmem_cache *s) | |
230 | { | |
231 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | |
232 | return 1; | |
233 | ||
234 | if (!is_root_cache(s)) | |
235 | return 1; | |
236 | ||
237 | if (s->ctor) | |
238 | return 1; | |
239 | ||
240 | /* | |
241 | * We may have set a slab to be unmergeable during bootstrap. | |
242 | */ | |
243 | if (s->refcount < 0) | |
244 | return 1; | |
245 | ||
246 | return 0; | |
247 | } | |
248 | ||
249 | struct kmem_cache *find_mergeable(size_t size, size_t align, | |
250 | unsigned long flags, const char *name, void (*ctor)(void *)) | |
251 | { | |
252 | struct kmem_cache *s; | |
253 | ||
254 | if (slab_nomerge || (flags & SLAB_NEVER_MERGE)) | |
255 | return NULL; | |
256 | ||
257 | if (ctor) | |
258 | return NULL; | |
259 | ||
260 | size = ALIGN(size, sizeof(void *)); | |
261 | align = calculate_alignment(flags, align, size); | |
262 | size = ALIGN(size, align); | |
263 | flags = kmem_cache_flags(size, flags, name, NULL); | |
264 | ||
54362057 | 265 | list_for_each_entry_reverse(s, &slab_caches, list) { |
423c929c JK |
266 | if (slab_unmergeable(s)) |
267 | continue; | |
268 | ||
269 | if (size > s->size) | |
270 | continue; | |
271 | ||
272 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | |
273 | continue; | |
274 | /* | |
275 | * Check if alignment is compatible. | |
276 | * Courtesy of Adrian Drzewiecki | |
277 | */ | |
278 | if ((s->size & ~(align - 1)) != s->size) | |
279 | continue; | |
280 | ||
281 | if (s->size - size >= sizeof(void *)) | |
282 | continue; | |
283 | ||
95069ac8 JK |
284 | if (IS_ENABLED(CONFIG_SLAB) && align && |
285 | (align > s->align || s->align % align)) | |
286 | continue; | |
287 | ||
423c929c JK |
288 | return s; |
289 | } | |
290 | return NULL; | |
291 | } | |
292 | ||
45906855 CL |
293 | /* |
294 | * Figure out what the alignment of the objects will be given a set of | |
295 | * flags, a user specified alignment and the size of the objects. | |
296 | */ | |
297 | unsigned long calculate_alignment(unsigned long flags, | |
298 | unsigned long align, unsigned long size) | |
299 | { | |
300 | /* | |
301 | * If the user wants hardware cache aligned objects then follow that | |
302 | * suggestion if the object is sufficiently large. | |
303 | * | |
304 | * The hardware cache alignment cannot override the specified | |
305 | * alignment though. If that is greater then use it. | |
306 | */ | |
307 | if (flags & SLAB_HWCACHE_ALIGN) { | |
308 | unsigned long ralign = cache_line_size(); | |
309 | while (size <= ralign / 2) | |
310 | ralign /= 2; | |
311 | align = max(align, ralign); | |
312 | } | |
313 | ||
314 | if (align < ARCH_SLAB_MINALIGN) | |
315 | align = ARCH_SLAB_MINALIGN; | |
316 | ||
317 | return ALIGN(align, sizeof(void *)); | |
318 | } | |
319 | ||
c9a77a79 VD |
320 | static struct kmem_cache *create_cache(const char *name, |
321 | size_t object_size, size_t size, size_t align, | |
322 | unsigned long flags, void (*ctor)(void *), | |
323 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | |
794b1248 VD |
324 | { |
325 | struct kmem_cache *s; | |
326 | int err; | |
327 | ||
328 | err = -ENOMEM; | |
329 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | |
330 | if (!s) | |
331 | goto out; | |
332 | ||
333 | s->name = name; | |
334 | s->object_size = object_size; | |
335 | s->size = size; | |
336 | s->align = align; | |
337 | s->ctor = ctor; | |
338 | ||
f7ce3190 | 339 | err = init_memcg_params(s, memcg, root_cache); |
794b1248 VD |
340 | if (err) |
341 | goto out_free_cache; | |
342 | ||
343 | err = __kmem_cache_create(s, flags); | |
344 | if (err) | |
345 | goto out_free_cache; | |
346 | ||
347 | s->refcount = 1; | |
348 | list_add(&s->list, &slab_caches); | |
794b1248 VD |
349 | out: |
350 | if (err) | |
351 | return ERR_PTR(err); | |
352 | return s; | |
353 | ||
354 | out_free_cache: | |
f7ce3190 | 355 | destroy_memcg_params(s); |
7c4da061 | 356 | kmem_cache_free(kmem_cache, s); |
794b1248 VD |
357 | goto out; |
358 | } | |
45906855 | 359 | |
77be4b13 SK |
360 | /* |
361 | * kmem_cache_create - Create a cache. | |
362 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
363 | * @size: The size of objects to be created in this cache. | |
364 | * @align: The required alignment for the objects. | |
365 | * @flags: SLAB flags | |
366 | * @ctor: A constructor for the objects. | |
367 | * | |
368 | * Returns a ptr to the cache on success, NULL on failure. | |
369 | * Cannot be called within a interrupt, but can be interrupted. | |
370 | * The @ctor is run when new pages are allocated by the cache. | |
371 | * | |
372 | * The flags are | |
373 | * | |
374 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
375 | * to catch references to uninitialised memory. | |
376 | * | |
377 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
378 | * for buffer overruns. | |
379 | * | |
380 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | |
381 | * cacheline. This can be beneficial if you're counting cycles as closely | |
382 | * as davem. | |
383 | */ | |
2633d7a0 | 384 | struct kmem_cache * |
794b1248 VD |
385 | kmem_cache_create(const char *name, size_t size, size_t align, |
386 | unsigned long flags, void (*ctor)(void *)) | |
77be4b13 | 387 | { |
40911a79 | 388 | struct kmem_cache *s = NULL; |
3dec16ea | 389 | const char *cache_name; |
3965fc36 | 390 | int err; |
039363f3 | 391 | |
77be4b13 | 392 | get_online_cpus(); |
03afc0e2 | 393 | get_online_mems(); |
05257a1a | 394 | memcg_get_cache_ids(); |
03afc0e2 | 395 | |
77be4b13 | 396 | mutex_lock(&slab_mutex); |
686d550d | 397 | |
794b1248 | 398 | err = kmem_cache_sanity_check(name, size); |
3aa24f51 | 399 | if (err) { |
3965fc36 | 400 | goto out_unlock; |
3aa24f51 | 401 | } |
686d550d | 402 | |
d8843922 GC |
403 | /* |
404 | * Some allocators will constraint the set of valid flags to a subset | |
405 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | |
406 | * case, and we'll just provide them with a sanitized version of the | |
407 | * passed flags. | |
408 | */ | |
409 | flags &= CACHE_CREATE_MASK; | |
686d550d | 410 | |
794b1248 VD |
411 | s = __kmem_cache_alias(name, size, align, flags, ctor); |
412 | if (s) | |
3965fc36 | 413 | goto out_unlock; |
2633d7a0 | 414 | |
3dec16ea | 415 | cache_name = kstrdup_const(name, GFP_KERNEL); |
794b1248 VD |
416 | if (!cache_name) { |
417 | err = -ENOMEM; | |
418 | goto out_unlock; | |
419 | } | |
7c9adf5a | 420 | |
c9a77a79 VD |
421 | s = create_cache(cache_name, size, size, |
422 | calculate_alignment(flags, align, size), | |
423 | flags, ctor, NULL, NULL); | |
794b1248 VD |
424 | if (IS_ERR(s)) { |
425 | err = PTR_ERR(s); | |
3dec16ea | 426 | kfree_const(cache_name); |
794b1248 | 427 | } |
3965fc36 VD |
428 | |
429 | out_unlock: | |
20cea968 | 430 | mutex_unlock(&slab_mutex); |
03afc0e2 | 431 | |
05257a1a | 432 | memcg_put_cache_ids(); |
03afc0e2 | 433 | put_online_mems(); |
20cea968 CL |
434 | put_online_cpus(); |
435 | ||
ba3253c7 | 436 | if (err) { |
686d550d CL |
437 | if (flags & SLAB_PANIC) |
438 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | |
439 | name, err); | |
440 | else { | |
441 | printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d", | |
442 | name, err); | |
443 | dump_stack(); | |
444 | } | |
686d550d CL |
445 | return NULL; |
446 | } | |
039363f3 CL |
447 | return s; |
448 | } | |
794b1248 | 449 | EXPORT_SYMBOL(kmem_cache_create); |
2633d7a0 | 450 | |
c9a77a79 | 451 | static int shutdown_cache(struct kmem_cache *s, |
d5b3cf71 VD |
452 | struct list_head *release, bool *need_rcu_barrier) |
453 | { | |
cd918c55 | 454 | if (__kmem_cache_shutdown(s) != 0) |
d5b3cf71 | 455 | return -EBUSY; |
d5b3cf71 VD |
456 | |
457 | if (s->flags & SLAB_DESTROY_BY_RCU) | |
458 | *need_rcu_barrier = true; | |
459 | ||
d5b3cf71 VD |
460 | list_move(&s->list, release); |
461 | return 0; | |
462 | } | |
463 | ||
c9a77a79 | 464 | static void release_caches(struct list_head *release, bool need_rcu_barrier) |
d5b3cf71 VD |
465 | { |
466 | struct kmem_cache *s, *s2; | |
467 | ||
468 | if (need_rcu_barrier) | |
469 | rcu_barrier(); | |
470 | ||
471 | list_for_each_entry_safe(s, s2, release, list) { | |
472 | #ifdef SLAB_SUPPORTS_SYSFS | |
473 | sysfs_slab_remove(s); | |
474 | #else | |
475 | slab_kmem_cache_release(s); | |
476 | #endif | |
477 | } | |
478 | } | |
479 | ||
794b1248 VD |
480 | #ifdef CONFIG_MEMCG_KMEM |
481 | /* | |
776ed0f0 | 482 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. |
794b1248 VD |
483 | * @memcg: The memory cgroup the new cache is for. |
484 | * @root_cache: The parent of the new cache. | |
485 | * | |
486 | * This function attempts to create a kmem cache that will serve allocation | |
487 | * requests going from @memcg to @root_cache. The new cache inherits properties | |
488 | * from its parent. | |
489 | */ | |
d5b3cf71 VD |
490 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, |
491 | struct kmem_cache *root_cache) | |
2633d7a0 | 492 | { |
3e0350a3 | 493 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ |
33398cf2 | 494 | struct cgroup_subsys_state *css = &memcg->css; |
f7ce3190 | 495 | struct memcg_cache_array *arr; |
bd673145 | 496 | struct kmem_cache *s = NULL; |
794b1248 | 497 | char *cache_name; |
f7ce3190 | 498 | int idx; |
794b1248 VD |
499 | |
500 | get_online_cpus(); | |
03afc0e2 VD |
501 | get_online_mems(); |
502 | ||
794b1248 VD |
503 | mutex_lock(&slab_mutex); |
504 | ||
2a4db7eb VD |
505 | /* |
506 | * The memory cgroup could have been deactivated while the cache | |
507 | * creation work was pending. | |
508 | */ | |
509 | if (!memcg_kmem_is_active(memcg)) | |
510 | goto out_unlock; | |
511 | ||
f7ce3190 VD |
512 | idx = memcg_cache_id(memcg); |
513 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | |
514 | lockdep_is_held(&slab_mutex)); | |
515 | ||
d5b3cf71 VD |
516 | /* |
517 | * Since per-memcg caches are created asynchronously on first | |
518 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
519 | * create the same cache, but only one of them may succeed. | |
520 | */ | |
f7ce3190 | 521 | if (arr->entries[idx]) |
d5b3cf71 VD |
522 | goto out_unlock; |
523 | ||
f1008365 | 524 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); |
073ee1c6 | 525 | cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name, |
f1008365 | 526 | css->id, memcg_name_buf); |
794b1248 VD |
527 | if (!cache_name) |
528 | goto out_unlock; | |
529 | ||
c9a77a79 VD |
530 | s = create_cache(cache_name, root_cache->object_size, |
531 | root_cache->size, root_cache->align, | |
532 | root_cache->flags, root_cache->ctor, | |
533 | memcg, root_cache); | |
d5b3cf71 VD |
534 | /* |
535 | * If we could not create a memcg cache, do not complain, because | |
536 | * that's not critical at all as we can always proceed with the root | |
537 | * cache. | |
538 | */ | |
bd673145 | 539 | if (IS_ERR(s)) { |
794b1248 | 540 | kfree(cache_name); |
d5b3cf71 | 541 | goto out_unlock; |
bd673145 | 542 | } |
794b1248 | 543 | |
426589f5 VD |
544 | list_add(&s->memcg_params.list, &root_cache->memcg_params.list); |
545 | ||
d5b3cf71 VD |
546 | /* |
547 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | |
548 | * barrier here to ensure nobody will see the kmem_cache partially | |
549 | * initialized. | |
550 | */ | |
551 | smp_wmb(); | |
f7ce3190 | 552 | arr->entries[idx] = s; |
d5b3cf71 | 553 | |
794b1248 VD |
554 | out_unlock: |
555 | mutex_unlock(&slab_mutex); | |
03afc0e2 VD |
556 | |
557 | put_online_mems(); | |
794b1248 | 558 | put_online_cpus(); |
2633d7a0 | 559 | } |
b8529907 | 560 | |
2a4db7eb VD |
561 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) |
562 | { | |
563 | int idx; | |
564 | struct memcg_cache_array *arr; | |
d6e0b7fa | 565 | struct kmem_cache *s, *c; |
2a4db7eb VD |
566 | |
567 | idx = memcg_cache_id(memcg); | |
568 | ||
d6e0b7fa VD |
569 | get_online_cpus(); |
570 | get_online_mems(); | |
571 | ||
2a4db7eb VD |
572 | mutex_lock(&slab_mutex); |
573 | list_for_each_entry(s, &slab_caches, list) { | |
574 | if (!is_root_cache(s)) | |
575 | continue; | |
576 | ||
577 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
578 | lockdep_is_held(&slab_mutex)); | |
d6e0b7fa VD |
579 | c = arr->entries[idx]; |
580 | if (!c) | |
581 | continue; | |
582 | ||
583 | __kmem_cache_shrink(c, true); | |
2a4db7eb VD |
584 | arr->entries[idx] = NULL; |
585 | } | |
586 | mutex_unlock(&slab_mutex); | |
d6e0b7fa VD |
587 | |
588 | put_online_mems(); | |
589 | put_online_cpus(); | |
2a4db7eb VD |
590 | } |
591 | ||
d60fdcc9 VD |
592 | static int __shutdown_memcg_cache(struct kmem_cache *s, |
593 | struct list_head *release, bool *need_rcu_barrier) | |
594 | { | |
595 | BUG_ON(is_root_cache(s)); | |
596 | ||
597 | if (shutdown_cache(s, release, need_rcu_barrier)) | |
598 | return -EBUSY; | |
599 | ||
600 | list_del(&s->memcg_params.list); | |
601 | return 0; | |
602 | } | |
603 | ||
d5b3cf71 | 604 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) |
b8529907 | 605 | { |
d5b3cf71 VD |
606 | LIST_HEAD(release); |
607 | bool need_rcu_barrier = false; | |
608 | struct kmem_cache *s, *s2; | |
b8529907 | 609 | |
d5b3cf71 VD |
610 | get_online_cpus(); |
611 | get_online_mems(); | |
b8529907 | 612 | |
b8529907 | 613 | mutex_lock(&slab_mutex); |
d5b3cf71 | 614 | list_for_each_entry_safe(s, s2, &slab_caches, list) { |
f7ce3190 | 615 | if (is_root_cache(s) || s->memcg_params.memcg != memcg) |
d5b3cf71 VD |
616 | continue; |
617 | /* | |
618 | * The cgroup is about to be freed and therefore has no charges | |
619 | * left. Hence, all its caches must be empty by now. | |
620 | */ | |
d60fdcc9 | 621 | BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier)); |
d5b3cf71 VD |
622 | } |
623 | mutex_unlock(&slab_mutex); | |
b8529907 | 624 | |
d5b3cf71 VD |
625 | put_online_mems(); |
626 | put_online_cpus(); | |
627 | ||
c9a77a79 | 628 | release_caches(&release, need_rcu_barrier); |
b8529907 | 629 | } |
d60fdcc9 VD |
630 | |
631 | static int shutdown_memcg_caches(struct kmem_cache *s, | |
632 | struct list_head *release, bool *need_rcu_barrier) | |
633 | { | |
634 | struct memcg_cache_array *arr; | |
635 | struct kmem_cache *c, *c2; | |
636 | LIST_HEAD(busy); | |
637 | int i; | |
638 | ||
639 | BUG_ON(!is_root_cache(s)); | |
640 | ||
641 | /* | |
642 | * First, shutdown active caches, i.e. caches that belong to online | |
643 | * memory cgroups. | |
644 | */ | |
645 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | |
646 | lockdep_is_held(&slab_mutex)); | |
647 | for_each_memcg_cache_index(i) { | |
648 | c = arr->entries[i]; | |
649 | if (!c) | |
650 | continue; | |
651 | if (__shutdown_memcg_cache(c, release, need_rcu_barrier)) | |
652 | /* | |
653 | * The cache still has objects. Move it to a temporary | |
654 | * list so as not to try to destroy it for a second | |
655 | * time while iterating over inactive caches below. | |
656 | */ | |
657 | list_move(&c->memcg_params.list, &busy); | |
658 | else | |
659 | /* | |
660 | * The cache is empty and will be destroyed soon. Clear | |
661 | * the pointer to it in the memcg_caches array so that | |
662 | * it will never be accessed even if the root cache | |
663 | * stays alive. | |
664 | */ | |
665 | arr->entries[i] = NULL; | |
666 | } | |
667 | ||
668 | /* | |
669 | * Second, shutdown all caches left from memory cgroups that are now | |
670 | * offline. | |
671 | */ | |
672 | list_for_each_entry_safe(c, c2, &s->memcg_params.list, | |
673 | memcg_params.list) | |
674 | __shutdown_memcg_cache(c, release, need_rcu_barrier); | |
675 | ||
676 | list_splice(&busy, &s->memcg_params.list); | |
677 | ||
678 | /* | |
679 | * A cache being destroyed must be empty. In particular, this means | |
680 | * that all per memcg caches attached to it must be empty too. | |
681 | */ | |
682 | if (!list_empty(&s->memcg_params.list)) | |
683 | return -EBUSY; | |
684 | return 0; | |
685 | } | |
686 | #else | |
687 | static inline int shutdown_memcg_caches(struct kmem_cache *s, | |
688 | struct list_head *release, bool *need_rcu_barrier) | |
689 | { | |
690 | return 0; | |
691 | } | |
794b1248 | 692 | #endif /* CONFIG_MEMCG_KMEM */ |
97d06609 | 693 | |
41a21285 CL |
694 | void slab_kmem_cache_release(struct kmem_cache *s) |
695 | { | |
f7ce3190 | 696 | destroy_memcg_params(s); |
3dec16ea | 697 | kfree_const(s->name); |
41a21285 CL |
698 | kmem_cache_free(kmem_cache, s); |
699 | } | |
700 | ||
945cf2b6 CL |
701 | void kmem_cache_destroy(struct kmem_cache *s) |
702 | { | |
d5b3cf71 VD |
703 | LIST_HEAD(release); |
704 | bool need_rcu_barrier = false; | |
d60fdcc9 | 705 | int err; |
d5b3cf71 | 706 | |
3942d299 SS |
707 | if (unlikely(!s)) |
708 | return; | |
709 | ||
945cf2b6 | 710 | get_online_cpus(); |
03afc0e2 VD |
711 | get_online_mems(); |
712 | ||
945cf2b6 | 713 | mutex_lock(&slab_mutex); |
b8529907 | 714 | |
945cf2b6 | 715 | s->refcount--; |
b8529907 VD |
716 | if (s->refcount) |
717 | goto out_unlock; | |
718 | ||
d60fdcc9 VD |
719 | err = shutdown_memcg_caches(s, &release, &need_rcu_barrier); |
720 | if (!err) | |
cd918c55 | 721 | err = shutdown_cache(s, &release, &need_rcu_barrier); |
b8529907 | 722 | |
cd918c55 VD |
723 | if (err) { |
724 | pr_err("kmem_cache_destroy %s: " | |
725 | "Slab cache still has objects\n", s->name); | |
726 | dump_stack(); | |
727 | } | |
b8529907 VD |
728 | out_unlock: |
729 | mutex_unlock(&slab_mutex); | |
d5b3cf71 | 730 | |
03afc0e2 | 731 | put_online_mems(); |
945cf2b6 | 732 | put_online_cpus(); |
d5b3cf71 | 733 | |
c9a77a79 | 734 | release_caches(&release, need_rcu_barrier); |
945cf2b6 CL |
735 | } |
736 | EXPORT_SYMBOL(kmem_cache_destroy); | |
737 | ||
03afc0e2 VD |
738 | /** |
739 | * kmem_cache_shrink - Shrink a cache. | |
740 | * @cachep: The cache to shrink. | |
741 | * | |
742 | * Releases as many slabs as possible for a cache. | |
743 | * To help debugging, a zero exit status indicates all slabs were released. | |
744 | */ | |
745 | int kmem_cache_shrink(struct kmem_cache *cachep) | |
746 | { | |
747 | int ret; | |
748 | ||
749 | get_online_cpus(); | |
750 | get_online_mems(); | |
d6e0b7fa | 751 | ret = __kmem_cache_shrink(cachep, false); |
03afc0e2 VD |
752 | put_online_mems(); |
753 | put_online_cpus(); | |
754 | return ret; | |
755 | } | |
756 | EXPORT_SYMBOL(kmem_cache_shrink); | |
757 | ||
fda90124 | 758 | bool slab_is_available(void) |
97d06609 CL |
759 | { |
760 | return slab_state >= UP; | |
761 | } | |
b7454ad3 | 762 | |
45530c44 CL |
763 | #ifndef CONFIG_SLOB |
764 | /* Create a cache during boot when no slab services are available yet */ | |
765 | void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size, | |
766 | unsigned long flags) | |
767 | { | |
768 | int err; | |
769 | ||
770 | s->name = name; | |
771 | s->size = s->object_size = size; | |
45906855 | 772 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); |
f7ce3190 VD |
773 | |
774 | slab_init_memcg_params(s); | |
775 | ||
45530c44 CL |
776 | err = __kmem_cache_create(s, flags); |
777 | ||
778 | if (err) | |
31ba7346 | 779 | panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n", |
45530c44 CL |
780 | name, size, err); |
781 | ||
782 | s->refcount = -1; /* Exempt from merging for now */ | |
783 | } | |
784 | ||
785 | struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size, | |
786 | unsigned long flags) | |
787 | { | |
788 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | |
789 | ||
790 | if (!s) | |
791 | panic("Out of memory when creating slab %s\n", name); | |
792 | ||
793 | create_boot_cache(s, name, size, flags); | |
794 | list_add(&s->list, &slab_caches); | |
795 | s->refcount = 1; | |
796 | return s; | |
797 | } | |
798 | ||
9425c58e CL |
799 | struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; |
800 | EXPORT_SYMBOL(kmalloc_caches); | |
801 | ||
802 | #ifdef CONFIG_ZONE_DMA | |
803 | struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; | |
804 | EXPORT_SYMBOL(kmalloc_dma_caches); | |
805 | #endif | |
806 | ||
2c59dd65 CL |
807 | /* |
808 | * Conversion table for small slabs sizes / 8 to the index in the | |
809 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
810 | * of two cache sizes there. The size of larger slabs can be determined using | |
811 | * fls. | |
812 | */ | |
813 | static s8 size_index[24] = { | |
814 | 3, /* 8 */ | |
815 | 4, /* 16 */ | |
816 | 5, /* 24 */ | |
817 | 5, /* 32 */ | |
818 | 6, /* 40 */ | |
819 | 6, /* 48 */ | |
820 | 6, /* 56 */ | |
821 | 6, /* 64 */ | |
822 | 1, /* 72 */ | |
823 | 1, /* 80 */ | |
824 | 1, /* 88 */ | |
825 | 1, /* 96 */ | |
826 | 7, /* 104 */ | |
827 | 7, /* 112 */ | |
828 | 7, /* 120 */ | |
829 | 7, /* 128 */ | |
830 | 2, /* 136 */ | |
831 | 2, /* 144 */ | |
832 | 2, /* 152 */ | |
833 | 2, /* 160 */ | |
834 | 2, /* 168 */ | |
835 | 2, /* 176 */ | |
836 | 2, /* 184 */ | |
837 | 2 /* 192 */ | |
838 | }; | |
839 | ||
840 | static inline int size_index_elem(size_t bytes) | |
841 | { | |
842 | return (bytes - 1) / 8; | |
843 | } | |
844 | ||
845 | /* | |
846 | * Find the kmem_cache structure that serves a given size of | |
847 | * allocation | |
848 | */ | |
849 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | |
850 | { | |
851 | int index; | |
852 | ||
9de1bc87 | 853 | if (unlikely(size > KMALLOC_MAX_SIZE)) { |
907985f4 | 854 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); |
6286ae97 | 855 | return NULL; |
907985f4 | 856 | } |
6286ae97 | 857 | |
2c59dd65 CL |
858 | if (size <= 192) { |
859 | if (!size) | |
860 | return ZERO_SIZE_PTR; | |
861 | ||
862 | index = size_index[size_index_elem(size)]; | |
863 | } else | |
864 | index = fls(size - 1); | |
865 | ||
866 | #ifdef CONFIG_ZONE_DMA | |
b1e05416 | 867 | if (unlikely((flags & GFP_DMA))) |
2c59dd65 CL |
868 | return kmalloc_dma_caches[index]; |
869 | ||
870 | #endif | |
871 | return kmalloc_caches[index]; | |
872 | } | |
873 | ||
4066c33d GG |
874 | /* |
875 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | |
876 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | |
877 | * kmalloc-67108864. | |
878 | */ | |
879 | static struct { | |
880 | const char *name; | |
881 | unsigned long size; | |
882 | } const kmalloc_info[] __initconst = { | |
883 | {NULL, 0}, {"kmalloc-96", 96}, | |
884 | {"kmalloc-192", 192}, {"kmalloc-8", 8}, | |
885 | {"kmalloc-16", 16}, {"kmalloc-32", 32}, | |
886 | {"kmalloc-64", 64}, {"kmalloc-128", 128}, | |
887 | {"kmalloc-256", 256}, {"kmalloc-512", 512}, | |
888 | {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048}, | |
889 | {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192}, | |
890 | {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768}, | |
891 | {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072}, | |
892 | {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288}, | |
893 | {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152}, | |
894 | {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608}, | |
895 | {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432}, | |
896 | {"kmalloc-67108864", 67108864} | |
897 | }; | |
898 | ||
f97d5f63 | 899 | /* |
34cc6990 DS |
900 | * Patch up the size_index table if we have strange large alignment |
901 | * requirements for the kmalloc array. This is only the case for | |
902 | * MIPS it seems. The standard arches will not generate any code here. | |
903 | * | |
904 | * Largest permitted alignment is 256 bytes due to the way we | |
905 | * handle the index determination for the smaller caches. | |
906 | * | |
907 | * Make sure that nothing crazy happens if someone starts tinkering | |
908 | * around with ARCH_KMALLOC_MINALIGN | |
f97d5f63 | 909 | */ |
34cc6990 | 910 | void __init setup_kmalloc_cache_index_table(void) |
f97d5f63 CL |
911 | { |
912 | int i; | |
913 | ||
2c59dd65 CL |
914 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || |
915 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
916 | ||
917 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | |
918 | int elem = size_index_elem(i); | |
919 | ||
920 | if (elem >= ARRAY_SIZE(size_index)) | |
921 | break; | |
922 | size_index[elem] = KMALLOC_SHIFT_LOW; | |
923 | } | |
924 | ||
925 | if (KMALLOC_MIN_SIZE >= 64) { | |
926 | /* | |
927 | * The 96 byte size cache is not used if the alignment | |
928 | * is 64 byte. | |
929 | */ | |
930 | for (i = 64 + 8; i <= 96; i += 8) | |
931 | size_index[size_index_elem(i)] = 7; | |
932 | ||
933 | } | |
934 | ||
935 | if (KMALLOC_MIN_SIZE >= 128) { | |
936 | /* | |
937 | * The 192 byte sized cache is not used if the alignment | |
938 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
939 | * instead. | |
940 | */ | |
941 | for (i = 128 + 8; i <= 192; i += 8) | |
942 | size_index[size_index_elem(i)] = 8; | |
943 | } | |
34cc6990 DS |
944 | } |
945 | ||
ae6f2462 | 946 | static void __init new_kmalloc_cache(int idx, unsigned long flags) |
a9730fca CL |
947 | { |
948 | kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name, | |
949 | kmalloc_info[idx].size, flags); | |
950 | } | |
951 | ||
34cc6990 DS |
952 | /* |
953 | * Create the kmalloc array. Some of the regular kmalloc arrays | |
954 | * may already have been created because they were needed to | |
955 | * enable allocations for slab creation. | |
956 | */ | |
957 | void __init create_kmalloc_caches(unsigned long flags) | |
958 | { | |
959 | int i; | |
960 | ||
a9730fca CL |
961 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { |
962 | if (!kmalloc_caches[i]) | |
963 | new_kmalloc_cache(i, flags); | |
f97d5f63 | 964 | |
956e46ef | 965 | /* |
a9730fca CL |
966 | * Caches that are not of the two-to-the-power-of size. |
967 | * These have to be created immediately after the | |
968 | * earlier power of two caches | |
956e46ef | 969 | */ |
a9730fca CL |
970 | if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6) |
971 | new_kmalloc_cache(1, flags); | |
972 | if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7) | |
973 | new_kmalloc_cache(2, flags); | |
8a965b3b CL |
974 | } |
975 | ||
f97d5f63 CL |
976 | /* Kmalloc array is now usable */ |
977 | slab_state = UP; | |
978 | ||
f97d5f63 CL |
979 | #ifdef CONFIG_ZONE_DMA |
980 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | |
981 | struct kmem_cache *s = kmalloc_caches[i]; | |
982 | ||
983 | if (s) { | |
984 | int size = kmalloc_size(i); | |
985 | char *n = kasprintf(GFP_NOWAIT, | |
986 | "dma-kmalloc-%d", size); | |
987 | ||
988 | BUG_ON(!n); | |
989 | kmalloc_dma_caches[i] = create_kmalloc_cache(n, | |
990 | size, SLAB_CACHE_DMA | flags); | |
991 | } | |
992 | } | |
993 | #endif | |
994 | } | |
45530c44 CL |
995 | #endif /* !CONFIG_SLOB */ |
996 | ||
cea371f4 VD |
997 | /* |
998 | * To avoid unnecessary overhead, we pass through large allocation requests | |
999 | * directly to the page allocator. We use __GFP_COMP, because we will need to | |
1000 | * know the allocation order to free the pages properly in kfree. | |
1001 | */ | |
52383431 VD |
1002 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) |
1003 | { | |
1004 | void *ret; | |
1005 | struct page *page; | |
1006 | ||
1007 | flags |= __GFP_COMP; | |
1008 | page = alloc_kmem_pages(flags, order); | |
1009 | ret = page ? page_address(page) : NULL; | |
1010 | kmemleak_alloc(ret, size, 1, flags); | |
0316bec2 | 1011 | kasan_kmalloc_large(ret, size); |
52383431 VD |
1012 | return ret; |
1013 | } | |
1014 | EXPORT_SYMBOL(kmalloc_order); | |
1015 | ||
f1b6eb6e CL |
1016 | #ifdef CONFIG_TRACING |
1017 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | |
1018 | { | |
1019 | void *ret = kmalloc_order(size, flags, order); | |
1020 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | |
1021 | return ret; | |
1022 | } | |
1023 | EXPORT_SYMBOL(kmalloc_order_trace); | |
1024 | #endif | |
45530c44 | 1025 | |
b7454ad3 | 1026 | #ifdef CONFIG_SLABINFO |
e9b4db2b WL |
1027 | |
1028 | #ifdef CONFIG_SLAB | |
1029 | #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) | |
1030 | #else | |
1031 | #define SLABINFO_RIGHTS S_IRUSR | |
1032 | #endif | |
1033 | ||
b047501c | 1034 | static void print_slabinfo_header(struct seq_file *m) |
bcee6e2a GC |
1035 | { |
1036 | /* | |
1037 | * Output format version, so at least we can change it | |
1038 | * without _too_ many complaints. | |
1039 | */ | |
1040 | #ifdef CONFIG_DEBUG_SLAB | |
1041 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | |
1042 | #else | |
1043 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
1044 | #endif | |
1045 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
1046 | "<objperslab> <pagesperslab>"); | |
1047 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
1048 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1049 | #ifdef CONFIG_DEBUG_SLAB | |
1050 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " | |
1051 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | |
1052 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | |
1053 | #endif | |
1054 | seq_putc(m, '\n'); | |
1055 | } | |
1056 | ||
1df3b26f | 1057 | void *slab_start(struct seq_file *m, loff_t *pos) |
b7454ad3 | 1058 | { |
b7454ad3 | 1059 | mutex_lock(&slab_mutex); |
b7454ad3 GC |
1060 | return seq_list_start(&slab_caches, *pos); |
1061 | } | |
1062 | ||
276a2439 | 1063 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) |
b7454ad3 GC |
1064 | { |
1065 | return seq_list_next(p, &slab_caches, pos); | |
1066 | } | |
1067 | ||
276a2439 | 1068 | void slab_stop(struct seq_file *m, void *p) |
b7454ad3 GC |
1069 | { |
1070 | mutex_unlock(&slab_mutex); | |
1071 | } | |
1072 | ||
749c5415 GC |
1073 | static void |
1074 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | |
1075 | { | |
1076 | struct kmem_cache *c; | |
1077 | struct slabinfo sinfo; | |
749c5415 GC |
1078 | |
1079 | if (!is_root_cache(s)) | |
1080 | return; | |
1081 | ||
426589f5 | 1082 | for_each_memcg_cache(c, s) { |
749c5415 GC |
1083 | memset(&sinfo, 0, sizeof(sinfo)); |
1084 | get_slabinfo(c, &sinfo); | |
1085 | ||
1086 | info->active_slabs += sinfo.active_slabs; | |
1087 | info->num_slabs += sinfo.num_slabs; | |
1088 | info->shared_avail += sinfo.shared_avail; | |
1089 | info->active_objs += sinfo.active_objs; | |
1090 | info->num_objs += sinfo.num_objs; | |
1091 | } | |
1092 | } | |
1093 | ||
b047501c | 1094 | static void cache_show(struct kmem_cache *s, struct seq_file *m) |
b7454ad3 | 1095 | { |
0d7561c6 GC |
1096 | struct slabinfo sinfo; |
1097 | ||
1098 | memset(&sinfo, 0, sizeof(sinfo)); | |
1099 | get_slabinfo(s, &sinfo); | |
1100 | ||
749c5415 GC |
1101 | memcg_accumulate_slabinfo(s, &sinfo); |
1102 | ||
0d7561c6 | 1103 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", |
749c5415 | 1104 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, |
0d7561c6 GC |
1105 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); |
1106 | ||
1107 | seq_printf(m, " : tunables %4u %4u %4u", | |
1108 | sinfo.limit, sinfo.batchcount, sinfo.shared); | |
1109 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | |
1110 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | |
1111 | slabinfo_show_stats(m, s); | |
1112 | seq_putc(m, '\n'); | |
b7454ad3 GC |
1113 | } |
1114 | ||
1df3b26f | 1115 | static int slab_show(struct seq_file *m, void *p) |
749c5415 GC |
1116 | { |
1117 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1118 | ||
1df3b26f VD |
1119 | if (p == slab_caches.next) |
1120 | print_slabinfo_header(m); | |
b047501c VD |
1121 | if (is_root_cache(s)) |
1122 | cache_show(s, m); | |
1123 | return 0; | |
1124 | } | |
1125 | ||
1126 | #ifdef CONFIG_MEMCG_KMEM | |
1127 | int memcg_slab_show(struct seq_file *m, void *p) | |
1128 | { | |
1129 | struct kmem_cache *s = list_entry(p, struct kmem_cache, list); | |
1130 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | |
1131 | ||
1132 | if (p == slab_caches.next) | |
1133 | print_slabinfo_header(m); | |
f7ce3190 | 1134 | if (!is_root_cache(s) && s->memcg_params.memcg == memcg) |
b047501c VD |
1135 | cache_show(s, m); |
1136 | return 0; | |
749c5415 | 1137 | } |
b047501c | 1138 | #endif |
749c5415 | 1139 | |
b7454ad3 GC |
1140 | /* |
1141 | * slabinfo_op - iterator that generates /proc/slabinfo | |
1142 | * | |
1143 | * Output layout: | |
1144 | * cache-name | |
1145 | * num-active-objs | |
1146 | * total-objs | |
1147 | * object size | |
1148 | * num-active-slabs | |
1149 | * total-slabs | |
1150 | * num-pages-per-slab | |
1151 | * + further values on SMP and with statistics enabled | |
1152 | */ | |
1153 | static const struct seq_operations slabinfo_op = { | |
1df3b26f | 1154 | .start = slab_start, |
276a2439 WL |
1155 | .next = slab_next, |
1156 | .stop = slab_stop, | |
1df3b26f | 1157 | .show = slab_show, |
b7454ad3 GC |
1158 | }; |
1159 | ||
1160 | static int slabinfo_open(struct inode *inode, struct file *file) | |
1161 | { | |
1162 | return seq_open(file, &slabinfo_op); | |
1163 | } | |
1164 | ||
1165 | static const struct file_operations proc_slabinfo_operations = { | |
1166 | .open = slabinfo_open, | |
1167 | .read = seq_read, | |
1168 | .write = slabinfo_write, | |
1169 | .llseek = seq_lseek, | |
1170 | .release = seq_release, | |
1171 | }; | |
1172 | ||
1173 | static int __init slab_proc_init(void) | |
1174 | { | |
e9b4db2b WL |
1175 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, |
1176 | &proc_slabinfo_operations); | |
b7454ad3 GC |
1177 | return 0; |
1178 | } | |
1179 | module_init(slab_proc_init); | |
1180 | #endif /* CONFIG_SLABINFO */ | |
928cec9c AR |
1181 | |
1182 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | |
1183 | gfp_t flags) | |
1184 | { | |
1185 | void *ret; | |
1186 | size_t ks = 0; | |
1187 | ||
1188 | if (p) | |
1189 | ks = ksize(p); | |
1190 | ||
0316bec2 AR |
1191 | if (ks >= new_size) { |
1192 | kasan_krealloc((void *)p, new_size); | |
928cec9c | 1193 | return (void *)p; |
0316bec2 | 1194 | } |
928cec9c AR |
1195 | |
1196 | ret = kmalloc_track_caller(new_size, flags); | |
1197 | if (ret && p) | |
1198 | memcpy(ret, p, ks); | |
1199 | ||
1200 | return ret; | |
1201 | } | |
1202 | ||
1203 | /** | |
1204 | * __krealloc - like krealloc() but don't free @p. | |
1205 | * @p: object to reallocate memory for. | |
1206 | * @new_size: how many bytes of memory are required. | |
1207 | * @flags: the type of memory to allocate. | |
1208 | * | |
1209 | * This function is like krealloc() except it never frees the originally | |
1210 | * allocated buffer. Use this if you don't want to free the buffer immediately | |
1211 | * like, for example, with RCU. | |
1212 | */ | |
1213 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | |
1214 | { | |
1215 | if (unlikely(!new_size)) | |
1216 | return ZERO_SIZE_PTR; | |
1217 | ||
1218 | return __do_krealloc(p, new_size, flags); | |
1219 | ||
1220 | } | |
1221 | EXPORT_SYMBOL(__krealloc); | |
1222 | ||
1223 | /** | |
1224 | * krealloc - reallocate memory. The contents will remain unchanged. | |
1225 | * @p: object to reallocate memory for. | |
1226 | * @new_size: how many bytes of memory are required. | |
1227 | * @flags: the type of memory to allocate. | |
1228 | * | |
1229 | * The contents of the object pointed to are preserved up to the | |
1230 | * lesser of the new and old sizes. If @p is %NULL, krealloc() | |
1231 | * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a | |
1232 | * %NULL pointer, the object pointed to is freed. | |
1233 | */ | |
1234 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | |
1235 | { | |
1236 | void *ret; | |
1237 | ||
1238 | if (unlikely(!new_size)) { | |
1239 | kfree(p); | |
1240 | return ZERO_SIZE_PTR; | |
1241 | } | |
1242 | ||
1243 | ret = __do_krealloc(p, new_size, flags); | |
1244 | if (ret && p != ret) | |
1245 | kfree(p); | |
1246 | ||
1247 | return ret; | |
1248 | } | |
1249 | EXPORT_SYMBOL(krealloc); | |
1250 | ||
1251 | /** | |
1252 | * kzfree - like kfree but zero memory | |
1253 | * @p: object to free memory of | |
1254 | * | |
1255 | * The memory of the object @p points to is zeroed before freed. | |
1256 | * If @p is %NULL, kzfree() does nothing. | |
1257 | * | |
1258 | * Note: this function zeroes the whole allocated buffer which can be a good | |
1259 | * deal bigger than the requested buffer size passed to kmalloc(). So be | |
1260 | * careful when using this function in performance sensitive code. | |
1261 | */ | |
1262 | void kzfree(const void *p) | |
1263 | { | |
1264 | size_t ks; | |
1265 | void *mem = (void *)p; | |
1266 | ||
1267 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | |
1268 | return; | |
1269 | ks = ksize(mem); | |
1270 | memset(mem, 0, ks); | |
1271 | kfree(mem); | |
1272 | } | |
1273 | EXPORT_SYMBOL(kzfree); | |
1274 | ||
1275 | /* Tracepoints definitions. */ | |
1276 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | |
1277 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | |
1278 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | |
1279 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | |
1280 | EXPORT_TRACEPOINT_SYMBOL(kfree); | |
1281 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); |