]>
Commit | Line | Data |
---|---|---|
c942fddf | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2b281117 SJ |
2 | /* |
3 | * zswap.c - zswap driver file | |
4 | * | |
42c06a0e | 5 | * zswap is a cache that takes pages that are in the process |
2b281117 SJ |
6 | * of being swapped out and attempts to compress and store them in a |
7 | * RAM-based memory pool. This can result in a significant I/O reduction on | |
8 | * the swap device and, in the case where decompressing from RAM is faster | |
9 | * than reading from the swap device, can also improve workload performance. | |
10 | * | |
11 | * Copyright (C) 2012 Seth Jennings <[email protected]> | |
2b281117 SJ |
12 | */ |
13 | ||
14 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
15 | ||
16 | #include <linux/module.h> | |
17 | #include <linux/cpu.h> | |
18 | #include <linux/highmem.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/spinlock.h> | |
21 | #include <linux/types.h> | |
22 | #include <linux/atomic.h> | |
2b281117 SJ |
23 | #include <linux/swap.h> |
24 | #include <linux/crypto.h> | |
1ec3b5fe | 25 | #include <linux/scatterlist.h> |
ddc1a5cb | 26 | #include <linux/mempolicy.h> |
2b281117 | 27 | #include <linux/mempool.h> |
12d79d64 | 28 | #include <linux/zpool.h> |
1ec3b5fe | 29 | #include <crypto/acompress.h> |
42c06a0e | 30 | #include <linux/zswap.h> |
2b281117 SJ |
31 | #include <linux/mm_types.h> |
32 | #include <linux/page-flags.h> | |
33 | #include <linux/swapops.h> | |
34 | #include <linux/writeback.h> | |
35 | #include <linux/pagemap.h> | |
45190f01 | 36 | #include <linux/workqueue.h> |
a65b0e76 | 37 | #include <linux/list_lru.h> |
2b281117 | 38 | |
014bb1de | 39 | #include "swap.h" |
e0228d59 | 40 | #include "internal.h" |
014bb1de | 41 | |
2b281117 SJ |
42 | /********************************* |
43 | * statistics | |
44 | **********************************/ | |
2b281117 | 45 | /* The number of compressed pages currently stored in zswap */ |
f6498b77 | 46 | atomic_t zswap_stored_pages = ATOMIC_INIT(0); |
a85f878b SD |
47 | /* The number of same-value filled pages currently stored in zswap */ |
48 | static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0); | |
2b281117 SJ |
49 | |
50 | /* | |
51 | * The statistics below are not protected from concurrent access for | |
52 | * performance reasons so they may not be a 100% accurate. However, | |
53 | * they do provide useful information on roughly how many times a | |
54 | * certain event is occurring. | |
55 | */ | |
56 | ||
57 | /* Pool limit was hit (see zswap_max_pool_percent) */ | |
58 | static u64 zswap_pool_limit_hit; | |
59 | /* Pages written back when pool limit was reached */ | |
60 | static u64 zswap_written_back_pages; | |
61 | /* Store failed due to a reclaim failure after pool limit was reached */ | |
62 | static u64 zswap_reject_reclaim_fail; | |
cb61dad8 NP |
63 | /* Store failed due to compression algorithm failure */ |
64 | static u64 zswap_reject_compress_fail; | |
2b281117 SJ |
65 | /* Compressed page was too big for the allocator to (optimally) store */ |
66 | static u64 zswap_reject_compress_poor; | |
67 | /* Store failed because underlying allocator could not get memory */ | |
68 | static u64 zswap_reject_alloc_fail; | |
69 | /* Store failed because the entry metadata could not be allocated (rare) */ | |
70 | static u64 zswap_reject_kmemcache_fail; | |
2b281117 | 71 | |
45190f01 VW |
72 | /* Shrinker work queue */ |
73 | static struct workqueue_struct *shrink_wq; | |
74 | /* Pool limit was hit, we need to calm down */ | |
75 | static bool zswap_pool_reached_full; | |
76 | ||
2b281117 SJ |
77 | /********************************* |
78 | * tunables | |
79 | **********************************/ | |
c00ed16a | 80 | |
bae21db8 DS |
81 | #define ZSWAP_PARAM_UNSET "" |
82 | ||
141fdeec LS |
83 | static int zswap_setup(void); |
84 | ||
bb8b93b5 | 85 | /* Enable/disable zswap */ |
2d4d2b1c | 86 | static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled); |
bb8b93b5 | 87 | static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON); |
d7b028f5 DS |
88 | static int zswap_enabled_param_set(const char *, |
89 | const struct kernel_param *); | |
83aed6cd | 90 | static const struct kernel_param_ops zswap_enabled_param_ops = { |
d7b028f5 DS |
91 | .set = zswap_enabled_param_set, |
92 | .get = param_get_bool, | |
93 | }; | |
94 | module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644); | |
2b281117 | 95 | |
90b0fc26 | 96 | /* Crypto compressor to use */ |
bb8b93b5 | 97 | static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; |
90b0fc26 DS |
98 | static int zswap_compressor_param_set(const char *, |
99 | const struct kernel_param *); | |
83aed6cd | 100 | static const struct kernel_param_ops zswap_compressor_param_ops = { |
90b0fc26 | 101 | .set = zswap_compressor_param_set, |
c99b42c3 DS |
102 | .get = param_get_charp, |
103 | .free = param_free_charp, | |
90b0fc26 DS |
104 | }; |
105 | module_param_cb(compressor, &zswap_compressor_param_ops, | |
c99b42c3 | 106 | &zswap_compressor, 0644); |
2b281117 | 107 | |
90b0fc26 | 108 | /* Compressed storage zpool to use */ |
bb8b93b5 | 109 | static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; |
90b0fc26 | 110 | static int zswap_zpool_param_set(const char *, const struct kernel_param *); |
83aed6cd | 111 | static const struct kernel_param_ops zswap_zpool_param_ops = { |
c99b42c3 DS |
112 | .set = zswap_zpool_param_set, |
113 | .get = param_get_charp, | |
114 | .free = param_free_charp, | |
90b0fc26 | 115 | }; |
c99b42c3 | 116 | module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644); |
12d79d64 | 117 | |
90b0fc26 DS |
118 | /* The maximum percentage of memory that the compressed pool can occupy */ |
119 | static unsigned int zswap_max_pool_percent = 20; | |
120 | module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); | |
60105e12 | 121 | |
45190f01 VW |
122 | /* The threshold for accepting new pages after the max_pool_percent was hit */ |
123 | static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */ | |
124 | module_param_named(accept_threshold_percent, zswap_accept_thr_percent, | |
125 | uint, 0644); | |
126 | ||
b5ba474f NP |
127 | /* Enable/disable memory pressure-based shrinker. */ |
128 | static bool zswap_shrinker_enabled = IS_ENABLED( | |
129 | CONFIG_ZSWAP_SHRINKER_DEFAULT_ON); | |
130 | module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644); | |
131 | ||
2b33a97c | 132 | bool zswap_is_enabled(void) |
501a06fe NP |
133 | { |
134 | return zswap_enabled; | |
135 | } | |
136 | ||
2d4d2b1c YA |
137 | bool zswap_never_enabled(void) |
138 | { | |
139 | return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled); | |
140 | } | |
141 | ||
2b281117 | 142 | /********************************* |
f1c54846 | 143 | * data structures |
2b281117 | 144 | **********************************/ |
2b281117 | 145 | |
1ec3b5fe BS |
146 | struct crypto_acomp_ctx { |
147 | struct crypto_acomp *acomp; | |
148 | struct acomp_req *req; | |
149 | struct crypto_wait wait; | |
8ba2f844 CZ |
150 | u8 *buffer; |
151 | struct mutex mutex; | |
270700dd | 152 | bool is_sleepable; |
1ec3b5fe BS |
153 | }; |
154 | ||
f999f38b DC |
155 | /* |
156 | * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock. | |
157 | * The only case where lru_lock is not acquired while holding tree.lock is | |
158 | * when a zswap_entry is taken off the lru for writeback, in that case it | |
159 | * needs to be verified that it's still valid in the tree. | |
160 | */ | |
f1c54846 | 161 | struct zswap_pool { |
8edc9c4e | 162 | struct zpool *zpool; |
1ec3b5fe | 163 | struct crypto_acomp_ctx __percpu *acomp_ctx; |
94ace3fe | 164 | struct percpu_ref ref; |
f1c54846 | 165 | struct list_head list; |
45190f01 | 166 | struct work_struct release_work; |
cab7a7e5 | 167 | struct hlist_node node; |
f1c54846 | 168 | char tfm_name[CRYPTO_MAX_ALG_NAME]; |
bf9b7df2 CZ |
169 | }; |
170 | ||
e35606e4 CZ |
171 | /* Global LRU lists shared by all zswap pools. */ |
172 | static struct list_lru zswap_list_lru; | |
e35606e4 CZ |
173 | |
174 | /* The lock protects zswap_next_shrink updates. */ | |
175 | static DEFINE_SPINLOCK(zswap_shrink_lock); | |
176 | static struct mem_cgroup *zswap_next_shrink; | |
177 | static struct work_struct zswap_shrink_work; | |
178 | static struct shrinker *zswap_shrinker; | |
2b281117 | 179 | |
2b281117 SJ |
180 | /* |
181 | * struct zswap_entry | |
182 | * | |
183 | * This structure contains the metadata for tracking a single compressed | |
184 | * page within zswap. | |
185 | * | |
97157d89 | 186 | * swpentry - associated swap entry, the offset indexes into the red-black tree |
2b281117 | 187 | * length - the length in bytes of the compressed page data. Needed during |
f999f38b DC |
188 | * decompression. For a same value filled page length is 0, and both |
189 | * pool and lru are invalid and must be ignored. | |
e31c38e0 NP |
190 | * referenced - true if the entry recently entered the zswap pool. Unset by the |
191 | * writeback logic. The entry is only reclaimed by the writeback | |
192 | * logic if referenced is unset. See comments in the shrinker | |
193 | * section for context. | |
f1c54846 DS |
194 | * pool - the zswap_pool the entry's data is in |
195 | * handle - zpool allocation handle that stores the compressed page data | |
a85f878b | 196 | * value - value of the same-value filled pages which have same content |
97157d89 | 197 | * objcg - the obj_cgroup that the compressed memory is charged to |
f999f38b | 198 | * lru - handle to the pool's lru used to evict pages. |
2b281117 SJ |
199 | */ |
200 | struct zswap_entry { | |
0bb48849 | 201 | swp_entry_t swpentry; |
2b281117 | 202 | unsigned int length; |
e31c38e0 | 203 | bool referenced; |
f1c54846 | 204 | struct zswap_pool *pool; |
a85f878b SD |
205 | union { |
206 | unsigned long handle; | |
207 | unsigned long value; | |
208 | }; | |
f4840ccf | 209 | struct obj_cgroup *objcg; |
f999f38b | 210 | struct list_head lru; |
2b281117 SJ |
211 | }; |
212 | ||
796c2c23 | 213 | static struct xarray *zswap_trees[MAX_SWAPFILES]; |
44c7c734 | 214 | static unsigned int nr_zswap_trees[MAX_SWAPFILES]; |
2b281117 | 215 | |
f1c54846 DS |
216 | /* RCU-protected iteration */ |
217 | static LIST_HEAD(zswap_pools); | |
218 | /* protects zswap_pools list modification */ | |
219 | static DEFINE_SPINLOCK(zswap_pools_lock); | |
32a4e169 DS |
220 | /* pool counter to provide unique names to zpool */ |
221 | static atomic_t zswap_pools_count = ATOMIC_INIT(0); | |
f1c54846 | 222 | |
9021ccec LS |
223 | enum zswap_init_type { |
224 | ZSWAP_UNINIT, | |
225 | ZSWAP_INIT_SUCCEED, | |
226 | ZSWAP_INIT_FAILED | |
227 | }; | |
90b0fc26 | 228 | |
9021ccec | 229 | static enum zswap_init_type zswap_init_state; |
90b0fc26 | 230 | |
141fdeec LS |
231 | /* used to ensure the integrity of initialization */ |
232 | static DEFINE_MUTEX(zswap_init_lock); | |
d7b028f5 | 233 | |
ae3d89a7 DS |
234 | /* init completed, but couldn't create the initial pool */ |
235 | static bool zswap_has_pool; | |
236 | ||
f1c54846 DS |
237 | /********************************* |
238 | * helpers and fwd declarations | |
239 | **********************************/ | |
240 | ||
796c2c23 | 241 | static inline struct xarray *swap_zswap_tree(swp_entry_t swp) |
44c7c734 CZ |
242 | { |
243 | return &zswap_trees[swp_type(swp)][swp_offset(swp) | |
244 | >> SWAP_ADDRESS_SPACE_SHIFT]; | |
245 | } | |
246 | ||
f1c54846 DS |
247 | #define zswap_pool_debug(msg, p) \ |
248 | pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ | |
8edc9c4e | 249 | zpool_get_type((p)->zpool)) |
f1c54846 | 250 | |
a984649b JW |
251 | /********************************* |
252 | * pool functions | |
253 | **********************************/ | |
94ace3fe | 254 | static void __zswap_pool_empty(struct percpu_ref *ref); |
a984649b | 255 | |
a984649b JW |
256 | static struct zswap_pool *zswap_pool_create(char *type, char *compressor) |
257 | { | |
a984649b JW |
258 | struct zswap_pool *pool; |
259 | char name[38]; /* 'zswap' + 32 char (max) num + \0 */ | |
260 | gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; | |
261 | int ret; | |
262 | ||
263 | if (!zswap_has_pool) { | |
264 | /* if either are unset, pool initialization failed, and we | |
265 | * need both params to be set correctly before trying to | |
266 | * create a pool. | |
267 | */ | |
268 | if (!strcmp(type, ZSWAP_PARAM_UNSET)) | |
269 | return NULL; | |
270 | if (!strcmp(compressor, ZSWAP_PARAM_UNSET)) | |
271 | return NULL; | |
272 | } | |
273 | ||
274 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); | |
275 | if (!pool) | |
276 | return NULL; | |
277 | ||
8edc9c4e CZ |
278 | /* unique name for each pool specifically required by zsmalloc */ |
279 | snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count)); | |
280 | pool->zpool = zpool_create_pool(type, name, gfp); | |
281 | if (!pool->zpool) { | |
282 | pr_err("%s zpool not available\n", type); | |
283 | goto error; | |
a984649b | 284 | } |
8edc9c4e | 285 | pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); |
a984649b JW |
286 | |
287 | strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); | |
288 | ||
289 | pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx); | |
290 | if (!pool->acomp_ctx) { | |
291 | pr_err("percpu alloc failed\n"); | |
292 | goto error; | |
293 | } | |
294 | ||
295 | ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE, | |
296 | &pool->node); | |
297 | if (ret) | |
298 | goto error; | |
299 | ||
a984649b JW |
300 | /* being the current pool takes 1 ref; this func expects the |
301 | * caller to always add the new pool as the current pool | |
302 | */ | |
94ace3fe CZ |
303 | ret = percpu_ref_init(&pool->ref, __zswap_pool_empty, |
304 | PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); | |
305 | if (ret) | |
306 | goto ref_fail; | |
a984649b | 307 | INIT_LIST_HEAD(&pool->list); |
a984649b JW |
308 | |
309 | zswap_pool_debug("created", pool); | |
310 | ||
311 | return pool; | |
312 | ||
94ace3fe CZ |
313 | ref_fail: |
314 | cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); | |
a984649b JW |
315 | error: |
316 | if (pool->acomp_ctx) | |
317 | free_percpu(pool->acomp_ctx); | |
8edc9c4e CZ |
318 | if (pool->zpool) |
319 | zpool_destroy_pool(pool->zpool); | |
a984649b JW |
320 | kfree(pool); |
321 | return NULL; | |
322 | } | |
323 | ||
324 | static struct zswap_pool *__zswap_pool_create_fallback(void) | |
325 | { | |
326 | bool has_comp, has_zpool; | |
327 | ||
328 | has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | |
329 | if (!has_comp && strcmp(zswap_compressor, | |
330 | CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) { | |
331 | pr_err("compressor %s not available, using default %s\n", | |
332 | zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT); | |
333 | param_free_charp(&zswap_compressor); | |
334 | zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT; | |
335 | has_comp = crypto_has_acomp(zswap_compressor, 0, 0); | |
336 | } | |
337 | if (!has_comp) { | |
338 | pr_err("default compressor %s not available\n", | |
339 | zswap_compressor); | |
340 | param_free_charp(&zswap_compressor); | |
341 | zswap_compressor = ZSWAP_PARAM_UNSET; | |
342 | } | |
343 | ||
344 | has_zpool = zpool_has_pool(zswap_zpool_type); | |
345 | if (!has_zpool && strcmp(zswap_zpool_type, | |
346 | CONFIG_ZSWAP_ZPOOL_DEFAULT)) { | |
347 | pr_err("zpool %s not available, using default %s\n", | |
348 | zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT); | |
349 | param_free_charp(&zswap_zpool_type); | |
350 | zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT; | |
351 | has_zpool = zpool_has_pool(zswap_zpool_type); | |
352 | } | |
353 | if (!has_zpool) { | |
354 | pr_err("default zpool %s not available\n", | |
355 | zswap_zpool_type); | |
356 | param_free_charp(&zswap_zpool_type); | |
357 | zswap_zpool_type = ZSWAP_PARAM_UNSET; | |
358 | } | |
359 | ||
360 | if (!has_comp || !has_zpool) | |
361 | return NULL; | |
362 | ||
363 | return zswap_pool_create(zswap_zpool_type, zswap_compressor); | |
364 | } | |
365 | ||
366 | static void zswap_pool_destroy(struct zswap_pool *pool) | |
367 | { | |
a984649b JW |
368 | zswap_pool_debug("destroying", pool); |
369 | ||
a984649b JW |
370 | cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node); |
371 | free_percpu(pool->acomp_ctx); | |
a984649b | 372 | |
8edc9c4e | 373 | zpool_destroy_pool(pool->zpool); |
a984649b JW |
374 | kfree(pool); |
375 | } | |
376 | ||
39f3ec8e JW |
377 | static void __zswap_pool_release(struct work_struct *work) |
378 | { | |
379 | struct zswap_pool *pool = container_of(work, typeof(*pool), | |
380 | release_work); | |
381 | ||
382 | synchronize_rcu(); | |
383 | ||
94ace3fe CZ |
384 | /* nobody should have been able to get a ref... */ |
385 | WARN_ON(!percpu_ref_is_zero(&pool->ref)); | |
386 | percpu_ref_exit(&pool->ref); | |
39f3ec8e JW |
387 | |
388 | /* pool is now off zswap_pools list and has no references. */ | |
389 | zswap_pool_destroy(pool); | |
390 | } | |
391 | ||
392 | static struct zswap_pool *zswap_pool_current(void); | |
393 | ||
94ace3fe | 394 | static void __zswap_pool_empty(struct percpu_ref *ref) |
39f3ec8e JW |
395 | { |
396 | struct zswap_pool *pool; | |
397 | ||
94ace3fe | 398 | pool = container_of(ref, typeof(*pool), ref); |
39f3ec8e | 399 | |
94ace3fe | 400 | spin_lock_bh(&zswap_pools_lock); |
39f3ec8e JW |
401 | |
402 | WARN_ON(pool == zswap_pool_current()); | |
403 | ||
404 | list_del_rcu(&pool->list); | |
405 | ||
406 | INIT_WORK(&pool->release_work, __zswap_pool_release); | |
407 | schedule_work(&pool->release_work); | |
408 | ||
94ace3fe | 409 | spin_unlock_bh(&zswap_pools_lock); |
39f3ec8e JW |
410 | } |
411 | ||
412 | static int __must_check zswap_pool_get(struct zswap_pool *pool) | |
413 | { | |
414 | if (!pool) | |
415 | return 0; | |
416 | ||
94ace3fe | 417 | return percpu_ref_tryget(&pool->ref); |
39f3ec8e JW |
418 | } |
419 | ||
420 | static void zswap_pool_put(struct zswap_pool *pool) | |
421 | { | |
94ace3fe | 422 | percpu_ref_put(&pool->ref); |
39f3ec8e JW |
423 | } |
424 | ||
c1a0ecb8 JW |
425 | static struct zswap_pool *__zswap_pool_current(void) |
426 | { | |
427 | struct zswap_pool *pool; | |
428 | ||
429 | pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); | |
430 | WARN_ONCE(!pool && zswap_has_pool, | |
431 | "%s: no page storage pool!\n", __func__); | |
432 | ||
433 | return pool; | |
434 | } | |
435 | ||
436 | static struct zswap_pool *zswap_pool_current(void) | |
437 | { | |
438 | assert_spin_locked(&zswap_pools_lock); | |
439 | ||
440 | return __zswap_pool_current(); | |
441 | } | |
442 | ||
443 | static struct zswap_pool *zswap_pool_current_get(void) | |
444 | { | |
445 | struct zswap_pool *pool; | |
446 | ||
447 | rcu_read_lock(); | |
448 | ||
449 | pool = __zswap_pool_current(); | |
450 | if (!zswap_pool_get(pool)) | |
451 | pool = NULL; | |
452 | ||
453 | rcu_read_unlock(); | |
454 | ||
455 | return pool; | |
456 | } | |
457 | ||
c1a0ecb8 JW |
458 | /* type and compressor must be null-terminated */ |
459 | static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) | |
460 | { | |
461 | struct zswap_pool *pool; | |
462 | ||
463 | assert_spin_locked(&zswap_pools_lock); | |
464 | ||
465 | list_for_each_entry_rcu(pool, &zswap_pools, list) { | |
466 | if (strcmp(pool->tfm_name, compressor)) | |
467 | continue; | |
8edc9c4e | 468 | if (strcmp(zpool_get_type(pool->zpool), type)) |
c1a0ecb8 JW |
469 | continue; |
470 | /* if we can't get it, it's about to be destroyed */ | |
471 | if (!zswap_pool_get(pool)) | |
472 | continue; | |
473 | return pool; | |
474 | } | |
475 | ||
476 | return NULL; | |
477 | } | |
478 | ||
91cdcd8d JW |
479 | static unsigned long zswap_max_pages(void) |
480 | { | |
481 | return totalram_pages() * zswap_max_pool_percent / 100; | |
482 | } | |
483 | ||
484 | static unsigned long zswap_accept_thr_pages(void) | |
485 | { | |
486 | return zswap_max_pages() * zswap_accept_thr_percent / 100; | |
487 | } | |
488 | ||
489 | unsigned long zswap_total_pages(void) | |
490 | { | |
491 | struct zswap_pool *pool; | |
4196b48d | 492 | unsigned long total = 0; |
91cdcd8d JW |
493 | |
494 | rcu_read_lock(); | |
8edc9c4e CZ |
495 | list_for_each_entry_rcu(pool, &zswap_pools, list) |
496 | total += zpool_get_total_pages(pool->zpool); | |
91cdcd8d JW |
497 | rcu_read_unlock(); |
498 | ||
4196b48d | 499 | return total; |
91cdcd8d JW |
500 | } |
501 | ||
82e0f8e4 YA |
502 | static bool zswap_check_limits(void) |
503 | { | |
504 | unsigned long cur_pages = zswap_total_pages(); | |
505 | unsigned long max_pages = zswap_max_pages(); | |
506 | ||
507 | if (cur_pages >= max_pages) { | |
508 | zswap_pool_limit_hit++; | |
509 | zswap_pool_reached_full = true; | |
510 | } else if (zswap_pool_reached_full && | |
511 | cur_pages <= zswap_accept_thr_pages()) { | |
512 | zswap_pool_reached_full = false; | |
513 | } | |
514 | return zswap_pool_reached_full; | |
515 | } | |
516 | ||
abca07c0 JW |
517 | /********************************* |
518 | * param callbacks | |
519 | **********************************/ | |
520 | ||
521 | static bool zswap_pool_changed(const char *s, const struct kernel_param *kp) | |
522 | { | |
523 | /* no change required */ | |
524 | if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool) | |
525 | return false; | |
526 | return true; | |
527 | } | |
528 | ||
529 | /* val must be a null-terminated string */ | |
530 | static int __zswap_param_set(const char *val, const struct kernel_param *kp, | |
531 | char *type, char *compressor) | |
532 | { | |
533 | struct zswap_pool *pool, *put_pool = NULL; | |
534 | char *s = strstrip((char *)val); | |
535 | int ret = 0; | |
536 | bool new_pool = false; | |
537 | ||
538 | mutex_lock(&zswap_init_lock); | |
539 | switch (zswap_init_state) { | |
540 | case ZSWAP_UNINIT: | |
541 | /* if this is load-time (pre-init) param setting, | |
542 | * don't create a pool; that's done during init. | |
543 | */ | |
544 | ret = param_set_charp(s, kp); | |
545 | break; | |
546 | case ZSWAP_INIT_SUCCEED: | |
547 | new_pool = zswap_pool_changed(s, kp); | |
548 | break; | |
549 | case ZSWAP_INIT_FAILED: | |
550 | pr_err("can't set param, initialization failed\n"); | |
551 | ret = -ENODEV; | |
552 | } | |
553 | mutex_unlock(&zswap_init_lock); | |
554 | ||
555 | /* no need to create a new pool, return directly */ | |
556 | if (!new_pool) | |
557 | return ret; | |
558 | ||
559 | if (!type) { | |
560 | if (!zpool_has_pool(s)) { | |
561 | pr_err("zpool %s not available\n", s); | |
562 | return -ENOENT; | |
563 | } | |
564 | type = s; | |
565 | } else if (!compressor) { | |
566 | if (!crypto_has_acomp(s, 0, 0)) { | |
567 | pr_err("compressor %s not available\n", s); | |
568 | return -ENOENT; | |
569 | } | |
570 | compressor = s; | |
571 | } else { | |
572 | WARN_ON(1); | |
573 | return -EINVAL; | |
574 | } | |
575 | ||
94ace3fe | 576 | spin_lock_bh(&zswap_pools_lock); |
abca07c0 JW |
577 | |
578 | pool = zswap_pool_find_get(type, compressor); | |
579 | if (pool) { | |
580 | zswap_pool_debug("using existing", pool); | |
581 | WARN_ON(pool == zswap_pool_current()); | |
582 | list_del_rcu(&pool->list); | |
583 | } | |
584 | ||
94ace3fe | 585 | spin_unlock_bh(&zswap_pools_lock); |
abca07c0 JW |
586 | |
587 | if (!pool) | |
588 | pool = zswap_pool_create(type, compressor); | |
94ace3fe CZ |
589 | else { |
590 | /* | |
591 | * Restore the initial ref dropped by percpu_ref_kill() | |
592 | * when the pool was decommissioned and switch it again | |
593 | * to percpu mode. | |
594 | */ | |
595 | percpu_ref_resurrect(&pool->ref); | |
596 | ||
597 | /* Drop the ref from zswap_pool_find_get(). */ | |
598 | zswap_pool_put(pool); | |
599 | } | |
abca07c0 JW |
600 | |
601 | if (pool) | |
602 | ret = param_set_charp(s, kp); | |
603 | else | |
604 | ret = -EINVAL; | |
605 | ||
94ace3fe | 606 | spin_lock_bh(&zswap_pools_lock); |
abca07c0 JW |
607 | |
608 | if (!ret) { | |
609 | put_pool = zswap_pool_current(); | |
610 | list_add_rcu(&pool->list, &zswap_pools); | |
611 | zswap_has_pool = true; | |
612 | } else if (pool) { | |
613 | /* add the possibly pre-existing pool to the end of the pools | |
614 | * list; if it's new (and empty) then it'll be removed and | |
615 | * destroyed by the put after we drop the lock | |
616 | */ | |
617 | list_add_tail_rcu(&pool->list, &zswap_pools); | |
618 | put_pool = pool; | |
619 | } | |
620 | ||
94ace3fe | 621 | spin_unlock_bh(&zswap_pools_lock); |
abca07c0 JW |
622 | |
623 | if (!zswap_has_pool && !pool) { | |
624 | /* if initial pool creation failed, and this pool creation also | |
625 | * failed, maybe both compressor and zpool params were bad. | |
626 | * Allow changing this param, so pool creation will succeed | |
627 | * when the other param is changed. We already verified this | |
628 | * param is ok in the zpool_has_pool() or crypto_has_acomp() | |
629 | * checks above. | |
630 | */ | |
631 | ret = param_set_charp(s, kp); | |
632 | } | |
633 | ||
634 | /* drop the ref from either the old current pool, | |
635 | * or the new pool we failed to add | |
636 | */ | |
637 | if (put_pool) | |
94ace3fe | 638 | percpu_ref_kill(&put_pool->ref); |
abca07c0 JW |
639 | |
640 | return ret; | |
641 | } | |
642 | ||
643 | static int zswap_compressor_param_set(const char *val, | |
644 | const struct kernel_param *kp) | |
645 | { | |
646 | return __zswap_param_set(val, kp, zswap_zpool_type, NULL); | |
647 | } | |
648 | ||
649 | static int zswap_zpool_param_set(const char *val, | |
650 | const struct kernel_param *kp) | |
651 | { | |
652 | return __zswap_param_set(val, kp, NULL, zswap_compressor); | |
653 | } | |
654 | ||
655 | static int zswap_enabled_param_set(const char *val, | |
656 | const struct kernel_param *kp) | |
657 | { | |
658 | int ret = -ENODEV; | |
659 | ||
660 | /* if this is load-time (pre-init) param setting, only set param. */ | |
661 | if (system_state != SYSTEM_RUNNING) | |
662 | return param_set_bool(val, kp); | |
663 | ||
664 | mutex_lock(&zswap_init_lock); | |
665 | switch (zswap_init_state) { | |
666 | case ZSWAP_UNINIT: | |
667 | if (zswap_setup()) | |
668 | break; | |
669 | fallthrough; | |
670 | case ZSWAP_INIT_SUCCEED: | |
671 | if (!zswap_has_pool) | |
672 | pr_err("can't enable, no pool configured\n"); | |
673 | else | |
674 | ret = param_set_bool(val, kp); | |
675 | break; | |
676 | case ZSWAP_INIT_FAILED: | |
677 | pr_err("can't enable, initialization failed\n"); | |
678 | } | |
679 | mutex_unlock(&zswap_init_lock); | |
680 | ||
681 | return ret; | |
682 | } | |
683 | ||
506a86c5 JW |
684 | /********************************* |
685 | * lru functions | |
686 | **********************************/ | |
687 | ||
a65b0e76 DC |
688 | /* should be called under RCU */ |
689 | #ifdef CONFIG_MEMCG | |
690 | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | |
691 | { | |
692 | return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL; | |
693 | } | |
694 | #else | |
695 | static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry) | |
696 | { | |
697 | return NULL; | |
698 | } | |
699 | #endif | |
700 | ||
701 | static inline int entry_to_nid(struct zswap_entry *entry) | |
702 | { | |
703 | return page_to_nid(virt_to_page(entry)); | |
704 | } | |
705 | ||
a65b0e76 DC |
706 | static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry) |
707 | { | |
708 | int nid = entry_to_nid(entry); | |
709 | struct mem_cgroup *memcg; | |
710 | ||
711 | /* | |
712 | * Note that it is safe to use rcu_read_lock() here, even in the face of | |
713 | * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection | |
714 | * used in list_lru lookup, only two scenarios are possible: | |
715 | * | |
716 | * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The | |
717 | * new entry will be reparented to memcg's parent's list_lru. | |
718 | * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The | |
719 | * new entry will be added directly to memcg's parent's list_lru. | |
720 | * | |
3f798aa6 | 721 | * Similar reasoning holds for list_lru_del(). |
a65b0e76 DC |
722 | */ |
723 | rcu_read_lock(); | |
724 | memcg = mem_cgroup_from_entry(entry); | |
725 | /* will always succeed */ | |
726 | list_lru_add(list_lru, &entry->lru, nid, memcg); | |
727 | rcu_read_unlock(); | |
728 | } | |
729 | ||
730 | static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry) | |
731 | { | |
732 | int nid = entry_to_nid(entry); | |
733 | struct mem_cgroup *memcg; | |
734 | ||
735 | rcu_read_lock(); | |
736 | memcg = mem_cgroup_from_entry(entry); | |
737 | /* will always succeed */ | |
738 | list_lru_del(list_lru, &entry->lru, nid, memcg); | |
739 | rcu_read_unlock(); | |
740 | } | |
741 | ||
5182661a JW |
742 | void zswap_lruvec_state_init(struct lruvec *lruvec) |
743 | { | |
e31c38e0 | 744 | atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0); |
5182661a JW |
745 | } |
746 | ||
747 | void zswap_folio_swapin(struct folio *folio) | |
748 | { | |
749 | struct lruvec *lruvec; | |
750 | ||
751 | if (folio) { | |
752 | lruvec = folio_lruvec(folio); | |
e31c38e0 | 753 | atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins); |
5182661a JW |
754 | } |
755 | } | |
756 | ||
c5519e0a TF |
757 | /* |
758 | * This function should be called when a memcg is being offlined. | |
759 | * | |
760 | * Since the global shrinker shrink_worker() may hold a reference | |
761 | * of the memcg, we must check and release the reference in | |
762 | * zswap_next_shrink. | |
763 | * | |
764 | * shrink_worker() must handle the case where this function releases | |
765 | * the reference of memcg being shrunk. | |
766 | */ | |
5182661a JW |
767 | void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg) |
768 | { | |
bf9b7df2 | 769 | /* lock out zswap shrinker walking memcg tree */ |
e35606e4 | 770 | spin_lock(&zswap_shrink_lock); |
c5519e0a TF |
771 | if (zswap_next_shrink == memcg) { |
772 | do { | |
773 | zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | |
774 | } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink)); | |
775 | } | |
e35606e4 | 776 | spin_unlock(&zswap_shrink_lock); |
5182661a JW |
777 | } |
778 | ||
36034bf6 JW |
779 | /********************************* |
780 | * zswap entry functions | |
781 | **********************************/ | |
782 | static struct kmem_cache *zswap_entry_cache; | |
783 | ||
784 | static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid) | |
785 | { | |
786 | struct zswap_entry *entry; | |
787 | entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid); | |
788 | if (!entry) | |
789 | return NULL; | |
36034bf6 JW |
790 | return entry; |
791 | } | |
792 | ||
793 | static void zswap_entry_cache_free(struct zswap_entry *entry) | |
794 | { | |
795 | kmem_cache_free(zswap_entry_cache, entry); | |
796 | } | |
797 | ||
0ab0abcf | 798 | /* |
12d79d64 | 799 | * Carries out the common pattern of freeing and entry's zpool allocation, |
0ab0abcf WY |
800 | * freeing the entry itself, and decrementing the number of stored pages. |
801 | */ | |
42398be2 | 802 | static void zswap_entry_free(struct zswap_entry *entry) |
0ab0abcf | 803 | { |
a85f878b SD |
804 | if (!entry->length) |
805 | atomic_dec(&zswap_same_filled_pages); | |
806 | else { | |
e35606e4 | 807 | zswap_lru_del(&zswap_list_lru, entry); |
b749cb0d | 808 | zpool_free(entry->pool->zpool, entry->handle); |
a85f878b SD |
809 | zswap_pool_put(entry->pool); |
810 | } | |
2e601e1e JW |
811 | if (entry->objcg) { |
812 | obj_cgroup_uncharge_zswap(entry->objcg, entry->length); | |
813 | obj_cgroup_put(entry->objcg); | |
814 | } | |
0ab0abcf WY |
815 | zswap_entry_cache_free(entry); |
816 | atomic_dec(&zswap_stored_pages); | |
0ab0abcf WY |
817 | } |
818 | ||
f91e81d3 JW |
819 | /********************************* |
820 | * compressed storage functions | |
821 | **********************************/ | |
64f200b8 JW |
822 | static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node) |
823 | { | |
824 | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | |
825 | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | |
826 | struct crypto_acomp *acomp; | |
827 | struct acomp_req *req; | |
828 | int ret; | |
829 | ||
830 | mutex_init(&acomp_ctx->mutex); | |
831 | ||
832 | acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); | |
833 | if (!acomp_ctx->buffer) | |
834 | return -ENOMEM; | |
835 | ||
836 | acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu)); | |
837 | if (IS_ERR(acomp)) { | |
838 | pr_err("could not alloc crypto acomp %s : %ld\n", | |
839 | pool->tfm_name, PTR_ERR(acomp)); | |
840 | ret = PTR_ERR(acomp); | |
841 | goto acomp_fail; | |
842 | } | |
843 | acomp_ctx->acomp = acomp; | |
270700dd | 844 | acomp_ctx->is_sleepable = acomp_is_async(acomp); |
64f200b8 JW |
845 | |
846 | req = acomp_request_alloc(acomp_ctx->acomp); | |
847 | if (!req) { | |
848 | pr_err("could not alloc crypto acomp_request %s\n", | |
849 | pool->tfm_name); | |
850 | ret = -ENOMEM; | |
851 | goto req_fail; | |
852 | } | |
853 | acomp_ctx->req = req; | |
854 | ||
855 | crypto_init_wait(&acomp_ctx->wait); | |
856 | /* | |
857 | * if the backend of acomp is async zip, crypto_req_done() will wakeup | |
858 | * crypto_wait_req(); if the backend of acomp is scomp, the callback | |
859 | * won't be called, crypto_wait_req() will return without blocking. | |
860 | */ | |
861 | acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, | |
862 | crypto_req_done, &acomp_ctx->wait); | |
863 | ||
864 | return 0; | |
865 | ||
866 | req_fail: | |
867 | crypto_free_acomp(acomp_ctx->acomp); | |
868 | acomp_fail: | |
869 | kfree(acomp_ctx->buffer); | |
870 | return ret; | |
871 | } | |
872 | ||
873 | static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node) | |
874 | { | |
875 | struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node); | |
876 | struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu); | |
877 | ||
878 | if (!IS_ERR_OR_NULL(acomp_ctx)) { | |
879 | if (!IS_ERR_OR_NULL(acomp_ctx->req)) | |
880 | acomp_request_free(acomp_ctx->req); | |
881 | if (!IS_ERR_OR_NULL(acomp_ctx->acomp)) | |
882 | crypto_free_acomp(acomp_ctx->acomp); | |
883 | kfree(acomp_ctx->buffer); | |
884 | } | |
885 | ||
886 | return 0; | |
887 | } | |
888 | ||
f91e81d3 JW |
889 | static bool zswap_compress(struct folio *folio, struct zswap_entry *entry) |
890 | { | |
891 | struct crypto_acomp_ctx *acomp_ctx; | |
892 | struct scatterlist input, output; | |
55e78c93 | 893 | int comp_ret = 0, alloc_ret = 0; |
f91e81d3 JW |
894 | unsigned int dlen = PAGE_SIZE; |
895 | unsigned long handle; | |
896 | struct zpool *zpool; | |
897 | char *buf; | |
898 | gfp_t gfp; | |
f91e81d3 JW |
899 | u8 *dst; |
900 | ||
901 | acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); | |
902 | ||
903 | mutex_lock(&acomp_ctx->mutex); | |
904 | ||
905 | dst = acomp_ctx->buffer; | |
906 | sg_init_table(&input, 1); | |
5d19f5de | 907 | sg_set_folio(&input, folio, PAGE_SIZE, 0); |
f91e81d3 JW |
908 | |
909 | /* | |
910 | * We need PAGE_SIZE * 2 here since there maybe over-compression case, | |
911 | * and hardware-accelerators may won't check the dst buffer size, so | |
912 | * giving the dst buffer with enough length to avoid buffer overflow. | |
913 | */ | |
914 | sg_init_one(&output, dst, PAGE_SIZE * 2); | |
915 | acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen); | |
916 | ||
917 | /* | |
918 | * it maybe looks a little bit silly that we send an asynchronous request, | |
919 | * then wait for its completion synchronously. This makes the process look | |
920 | * synchronous in fact. | |
921 | * Theoretically, acomp supports users send multiple acomp requests in one | |
922 | * acomp instance, then get those requests done simultaneously. but in this | |
923 | * case, zswap actually does store and load page by page, there is no | |
924 | * existing method to send the second page before the first page is done | |
925 | * in one thread doing zwap. | |
926 | * but in different threads running on different cpu, we have different | |
927 | * acomp instance, so multiple threads can do (de)compression in parallel. | |
928 | */ | |
55e78c93 | 929 | comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait); |
f91e81d3 | 930 | dlen = acomp_ctx->req->dlen; |
55e78c93 | 931 | if (comp_ret) |
f91e81d3 | 932 | goto unlock; |
f91e81d3 | 933 | |
8edc9c4e | 934 | zpool = entry->pool->zpool; |
f91e81d3 JW |
935 | gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM; |
936 | if (zpool_malloc_support_movable(zpool)) | |
937 | gfp |= __GFP_HIGHMEM | __GFP_MOVABLE; | |
55e78c93 BS |
938 | alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle); |
939 | if (alloc_ret) | |
f91e81d3 | 940 | goto unlock; |
f91e81d3 JW |
941 | |
942 | buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO); | |
943 | memcpy(buf, dst, dlen); | |
944 | zpool_unmap_handle(zpool, handle); | |
945 | ||
946 | entry->handle = handle; | |
947 | entry->length = dlen; | |
948 | ||
949 | unlock: | |
55e78c93 BS |
950 | if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC) |
951 | zswap_reject_compress_poor++; | |
952 | else if (comp_ret) | |
953 | zswap_reject_compress_fail++; | |
954 | else if (alloc_ret) | |
955 | zswap_reject_alloc_fail++; | |
956 | ||
f91e81d3 | 957 | mutex_unlock(&acomp_ctx->mutex); |
55e78c93 | 958 | return comp_ret == 0 && alloc_ret == 0; |
f91e81d3 JW |
959 | } |
960 | ||
5d19f5de | 961 | static void zswap_decompress(struct zswap_entry *entry, struct folio *folio) |
f91e81d3 | 962 | { |
8edc9c4e | 963 | struct zpool *zpool = entry->pool->zpool; |
f91e81d3 JW |
964 | struct scatterlist input, output; |
965 | struct crypto_acomp_ctx *acomp_ctx; | |
966 | u8 *src; | |
967 | ||
968 | acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); | |
969 | mutex_lock(&acomp_ctx->mutex); | |
970 | ||
971 | src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO); | |
9c500835 BS |
972 | /* |
973 | * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer | |
974 | * to do crypto_acomp_decompress() which might sleep. In such cases, we must | |
975 | * resort to copying the buffer to a temporary one. | |
976 | * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer, | |
977 | * such as a kmap address of high memory or even ever a vmap address. | |
978 | * However, sg_init_one is only equipped to handle linearly mapped low memory. | |
979 | * In such cases, we also must copy the buffer to a temporary and lowmem one. | |
980 | */ | |
981 | if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) || | |
982 | !virt_addr_valid(src)) { | |
f91e81d3 JW |
983 | memcpy(acomp_ctx->buffer, src, entry->length); |
984 | src = acomp_ctx->buffer; | |
985 | zpool_unmap_handle(zpool, entry->handle); | |
986 | } | |
987 | ||
988 | sg_init_one(&input, src, entry->length); | |
989 | sg_init_table(&output, 1); | |
5d19f5de | 990 | sg_set_folio(&output, folio, PAGE_SIZE, 0); |
f91e81d3 JW |
991 | acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE); |
992 | BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait)); | |
993 | BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE); | |
994 | mutex_unlock(&acomp_ctx->mutex); | |
995 | ||
9c500835 | 996 | if (src != acomp_ctx->buffer) |
f91e81d3 JW |
997 | zpool_unmap_handle(zpool, entry->handle); |
998 | } | |
999 | ||
9986d35d JW |
1000 | /********************************* |
1001 | * writeback code | |
1002 | **********************************/ | |
1003 | /* | |
1004 | * Attempts to free an entry by adding a folio to the swap cache, | |
1005 | * decompressing the entry data into the folio, and issuing a | |
1006 | * bio write to write the folio back to the swap device. | |
1007 | * | |
1008 | * This can be thought of as a "resumed writeback" of the folio | |
1009 | * to the swap device. We are basically resuming the same swap | |
1010 | * writeback path that was intercepted with the zswap_store() | |
1011 | * in the first place. After the folio has been decompressed into | |
1012 | * the swap cache, the compressed version stored by zswap can be | |
1013 | * freed. | |
1014 | */ | |
1015 | static int zswap_writeback_entry(struct zswap_entry *entry, | |
1016 | swp_entry_t swpentry) | |
1017 | { | |
796c2c23 CL |
1018 | struct xarray *tree; |
1019 | pgoff_t offset = swp_offset(swpentry); | |
9986d35d JW |
1020 | struct folio *folio; |
1021 | struct mempolicy *mpol; | |
1022 | bool folio_was_allocated; | |
1023 | struct writeback_control wbc = { | |
1024 | .sync_mode = WB_SYNC_NONE, | |
1025 | }; | |
1026 | ||
1027 | /* try to allocate swap cache folio */ | |
1028 | mpol = get_task_policy(current); | |
1029 | folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol, | |
1030 | NO_INTERLEAVE_INDEX, &folio_was_allocated, true); | |
1031 | if (!folio) | |
1032 | return -ENOMEM; | |
1033 | ||
1034 | /* | |
1035 | * Found an existing folio, we raced with swapin or concurrent | |
1036 | * shrinker. We generally writeback cold folios from zswap, and | |
1037 | * swapin means the folio just became hot, so skip this folio. | |
1038 | * For unlikely concurrent shrinker case, it will be unlinked | |
1039 | * and freed when invalidated by the concurrent shrinker anyway. | |
1040 | */ | |
1041 | if (!folio_was_allocated) { | |
1042 | folio_put(folio); | |
1043 | return -EEXIST; | |
1044 | } | |
1045 | ||
1046 | /* | |
1047 | * folio is locked, and the swapcache is now secured against | |
f9c0f1c3 CZ |
1048 | * concurrent swapping to and from the slot, and concurrent |
1049 | * swapoff so we can safely dereference the zswap tree here. | |
1050 | * Verify that the swap entry hasn't been invalidated and recycled | |
1051 | * behind our backs, to avoid overwriting a new swap folio with | |
1052 | * old compressed data. Only when this is successful can the entry | |
1053 | * be dereferenced. | |
9986d35d JW |
1054 | */ |
1055 | tree = swap_zswap_tree(swpentry); | |
796c2c23 | 1056 | if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) { |
9986d35d JW |
1057 | delete_from_swap_cache(folio); |
1058 | folio_unlock(folio); | |
1059 | folio_put(folio); | |
1060 | return -ENOMEM; | |
1061 | } | |
1062 | ||
5d19f5de | 1063 | zswap_decompress(entry, folio); |
9986d35d JW |
1064 | |
1065 | count_vm_event(ZSWPWB); | |
1066 | if (entry->objcg) | |
1067 | count_objcg_event(entry->objcg, ZSWPWB); | |
1068 | ||
a230c20e | 1069 | zswap_entry_free(entry); |
9986d35d JW |
1070 | |
1071 | /* folio is up to date */ | |
1072 | folio_mark_uptodate(folio); | |
1073 | ||
1074 | /* move it to the tail of the inactive list after end_writeback */ | |
1075 | folio_set_reclaim(folio); | |
1076 | ||
1077 | /* start writeback */ | |
1078 | __swap_writepage(folio, &wbc); | |
1079 | folio_put(folio); | |
1080 | ||
1081 | return 0; | |
1082 | } | |
1083 | ||
b5ba474f NP |
1084 | /********************************* |
1085 | * shrinker functions | |
1086 | **********************************/ | |
e31c38e0 NP |
1087 | /* |
1088 | * The dynamic shrinker is modulated by the following factors: | |
1089 | * | |
1090 | * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving | |
1091 | * the entry a second chance) before rotating it in the LRU list. If the | |
1092 | * entry is considered again by the shrinker, with its referenced bit unset, | |
1093 | * it is written back. The writeback rate as a result is dynamically | |
1094 | * adjusted by the pool activities - if the pool is dominated by new entries | |
1095 | * (i.e lots of recent zswapouts), these entries will be protected and | |
1096 | * the writeback rate will slow down. On the other hand, if the pool has a | |
1097 | * lot of stagnant entries, these entries will be reclaimed immediately, | |
1098 | * effectively increasing the writeback rate. | |
1099 | * | |
1100 | * 2. Swapins counter: If we observe swapins, it is a sign that we are | |
1101 | * overshrinking and should slow down. We maintain a swapins counter, which | |
1102 | * is consumed and subtract from the number of eligible objects on the LRU | |
1103 | * in zswap_shrinker_count(). | |
1104 | * | |
1105 | * 3. Compression ratio. The better the workload compresses, the less gains we | |
1106 | * can expect from writeback. We scale down the number of objects available | |
1107 | * for reclaim by this ratio. | |
1108 | */ | |
b5ba474f | 1109 | static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l, |
eb23ee4f JW |
1110 | spinlock_t *lock, void *arg) |
1111 | { | |
1112 | struct zswap_entry *entry = container_of(item, struct zswap_entry, lru); | |
1113 | bool *encountered_page_in_swapcache = (bool *)arg; | |
1114 | swp_entry_t swpentry; | |
1115 | enum lru_status ret = LRU_REMOVED_RETRY; | |
1116 | int writeback_result; | |
1117 | ||
e31c38e0 NP |
1118 | /* |
1119 | * Second chance algorithm: if the entry has its referenced bit set, give it | |
1120 | * a second chance. Only clear the referenced bit and rotate it in the | |
1121 | * zswap's LRU list. | |
1122 | */ | |
1123 | if (entry->referenced) { | |
1124 | entry->referenced = false; | |
1125 | return LRU_ROTATE; | |
1126 | } | |
1127 | ||
eb23ee4f | 1128 | /* |
f9c0f1c3 CZ |
1129 | * As soon as we drop the LRU lock, the entry can be freed by |
1130 | * a concurrent invalidation. This means the following: | |
eb23ee4f | 1131 | * |
f9c0f1c3 CZ |
1132 | * 1. We extract the swp_entry_t to the stack, allowing |
1133 | * zswap_writeback_entry() to pin the swap entry and | |
1134 | * then validate the zwap entry against that swap entry's | |
1135 | * tree using pointer value comparison. Only when that | |
1136 | * is successful can the entry be dereferenced. | |
eb23ee4f | 1137 | * |
f9c0f1c3 CZ |
1138 | * 2. Usually, objects are taken off the LRU for reclaim. In |
1139 | * this case this isn't possible, because if reclaim fails | |
1140 | * for whatever reason, we have no means of knowing if the | |
1141 | * entry is alive to put it back on the LRU. | |
eb23ee4f | 1142 | * |
f9c0f1c3 CZ |
1143 | * So rotate it before dropping the lock. If the entry is |
1144 | * written back or invalidated, the free path will unlink | |
1145 | * it. For failures, rotation is the right thing as well. | |
1146 | * | |
1147 | * Temporary failures, where the same entry should be tried | |
1148 | * again immediately, almost never happen for this shrinker. | |
1149 | * We don't do any trylocking; -ENOMEM comes closest, | |
1150 | * but that's extremely rare and doesn't happen spuriously | |
1151 | * either. Don't bother distinguishing this case. | |
eb23ee4f JW |
1152 | */ |
1153 | list_move_tail(item, &l->list); | |
1154 | ||
1155 | /* | |
1156 | * Once the lru lock is dropped, the entry might get freed. The | |
1157 | * swpentry is copied to the stack, and entry isn't deref'd again | |
1158 | * until the entry is verified to still be alive in the tree. | |
1159 | */ | |
1160 | swpentry = entry->swpentry; | |
1161 | ||
1162 | /* | |
1163 | * It's safe to drop the lock here because we return either | |
1164 | * LRU_REMOVED_RETRY or LRU_RETRY. | |
1165 | */ | |
1166 | spin_unlock(lock); | |
1167 | ||
1168 | writeback_result = zswap_writeback_entry(entry, swpentry); | |
1169 | ||
1170 | if (writeback_result) { | |
1171 | zswap_reject_reclaim_fail++; | |
1172 | ret = LRU_RETRY; | |
1173 | ||
1174 | /* | |
1175 | * Encountering a page already in swap cache is a sign that we are shrinking | |
1176 | * into the warmer region. We should terminate shrinking (if we're in the dynamic | |
1177 | * shrinker context). | |
1178 | */ | |
b49547ad CZ |
1179 | if (writeback_result == -EEXIST && encountered_page_in_swapcache) { |
1180 | ret = LRU_STOP; | |
eb23ee4f | 1181 | *encountered_page_in_swapcache = true; |
b49547ad | 1182 | } |
eb23ee4f JW |
1183 | } else { |
1184 | zswap_written_back_pages++; | |
1185 | } | |
1186 | ||
1187 | spin_lock(lock); | |
1188 | return ret; | |
1189 | } | |
b5ba474f NP |
1190 | |
1191 | static unsigned long zswap_shrinker_scan(struct shrinker *shrinker, | |
1192 | struct shrink_control *sc) | |
1193 | { | |
e31c38e0 | 1194 | unsigned long shrink_ret; |
b5ba474f NP |
1195 | bool encountered_page_in_swapcache = false; |
1196 | ||
501a06fe NP |
1197 | if (!zswap_shrinker_enabled || |
1198 | !mem_cgroup_zswap_writeback_enabled(sc->memcg)) { | |
b5ba474f NP |
1199 | sc->nr_scanned = 0; |
1200 | return SHRINK_STOP; | |
1201 | } | |
1202 | ||
e35606e4 | 1203 | shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb, |
b5ba474f NP |
1204 | &encountered_page_in_swapcache); |
1205 | ||
1206 | if (encountered_page_in_swapcache) | |
1207 | return SHRINK_STOP; | |
1208 | ||
1209 | return shrink_ret ? shrink_ret : SHRINK_STOP; | |
1210 | } | |
1211 | ||
1212 | static unsigned long zswap_shrinker_count(struct shrinker *shrinker, | |
1213 | struct shrink_control *sc) | |
1214 | { | |
b5ba474f NP |
1215 | struct mem_cgroup *memcg = sc->memcg; |
1216 | struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid)); | |
e31c38e0 NP |
1217 | atomic_long_t *nr_disk_swapins = |
1218 | &lruvec->zswap_lruvec_state.nr_disk_swapins; | |
1219 | unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur, | |
1220 | nr_remain; | |
b5ba474f | 1221 | |
501a06fe | 1222 | if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg)) |
b5ba474f NP |
1223 | return 0; |
1224 | ||
30fb6a8d JW |
1225 | /* |
1226 | * The shrinker resumes swap writeback, which will enter block | |
1227 | * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS | |
1228 | * rules (may_enter_fs()), which apply on a per-folio basis. | |
1229 | */ | |
1230 | if (!gfp_has_io_fs(sc->gfp_mask)) | |
1231 | return 0; | |
1232 | ||
682886ec JW |
1233 | /* |
1234 | * For memcg, use the cgroup-wide ZSWAP stats since we don't | |
1235 | * have them per-node and thus per-lruvec. Careful if memcg is | |
1236 | * runtime-disabled: we can get sc->memcg == NULL, which is ok | |
1237 | * for the lruvec, but not for memcg_page_state(). | |
1238 | * | |
1239 | * Without memcg, use the zswap pool-wide metrics. | |
1240 | */ | |
1241 | if (!mem_cgroup_disabled()) { | |
1242 | mem_cgroup_flush_stats(memcg); | |
1243 | nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT; | |
1244 | nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED); | |
1245 | } else { | |
91cdcd8d | 1246 | nr_backing = zswap_total_pages(); |
cc9bc36e | 1247 | nr_stored = atomic_read(&zswap_stored_pages); |
682886ec | 1248 | } |
b5ba474f NP |
1249 | |
1250 | if (!nr_stored) | |
1251 | return 0; | |
1252 | ||
e35606e4 | 1253 | nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc); |
e31c38e0 NP |
1254 | if (!nr_freeable) |
1255 | return 0; | |
1256 | ||
b5ba474f | 1257 | /* |
e31c38e0 NP |
1258 | * Subtract from the lru size the number of pages that are recently swapped |
1259 | * in from disk. The idea is that had we protect the zswap's LRU by this | |
1260 | * amount of pages, these disk swapins would not have happened. | |
b5ba474f | 1261 | */ |
e31c38e0 NP |
1262 | nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins); |
1263 | do { | |
1264 | if (nr_freeable >= nr_disk_swapins_cur) | |
1265 | nr_remain = 0; | |
1266 | else | |
1267 | nr_remain = nr_disk_swapins_cur - nr_freeable; | |
1268 | } while (!atomic_long_try_cmpxchg( | |
1269 | nr_disk_swapins, &nr_disk_swapins_cur, nr_remain)); | |
1270 | ||
1271 | nr_freeable -= nr_disk_swapins_cur - nr_remain; | |
1272 | if (!nr_freeable) | |
1273 | return 0; | |
b5ba474f NP |
1274 | |
1275 | /* | |
1276 | * Scale the number of freeable pages by the memory saving factor. | |
1277 | * This ensures that the better zswap compresses memory, the fewer | |
1278 | * pages we will evict to swap (as it will otherwise incur IO for | |
1279 | * relatively small memory saving). | |
cc9bc36e YA |
1280 | * |
1281 | * The memory saving factor calculated here takes same-filled pages into | |
1282 | * account, but those are not freeable since they almost occupy no | |
1283 | * space. Hence, we may scale nr_freeable down a little bit more than we | |
1284 | * should if we have a lot of same-filled pages. | |
b5ba474f NP |
1285 | */ |
1286 | return mult_frac(nr_freeable, nr_backing, nr_stored); | |
1287 | } | |
1288 | ||
bf9b7df2 | 1289 | static struct shrinker *zswap_alloc_shrinker(void) |
b5ba474f | 1290 | { |
bf9b7df2 CZ |
1291 | struct shrinker *shrinker; |
1292 | ||
1293 | shrinker = | |
b5ba474f | 1294 | shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap"); |
bf9b7df2 CZ |
1295 | if (!shrinker) |
1296 | return NULL; | |
b5ba474f | 1297 | |
bf9b7df2 CZ |
1298 | shrinker->scan_objects = zswap_shrinker_scan; |
1299 | shrinker->count_objects = zswap_shrinker_count; | |
1300 | shrinker->batch = 0; | |
1301 | shrinker->seeks = DEFAULT_SEEKS; | |
1302 | return shrinker; | |
b5ba474f NP |
1303 | } |
1304 | ||
a65b0e76 DC |
1305 | static int shrink_memcg(struct mem_cgroup *memcg) |
1306 | { | |
81920438 | 1307 | int nid, shrunk = 0, scanned = 0; |
a65b0e76 | 1308 | |
501a06fe | 1309 | if (!mem_cgroup_zswap_writeback_enabled(memcg)) |
81920438 | 1310 | return -ENOENT; |
501a06fe | 1311 | |
a65b0e76 DC |
1312 | /* |
1313 | * Skip zombies because their LRUs are reparented and we would be | |
1314 | * reclaiming from the parent instead of the dead memcg. | |
1315 | */ | |
1316 | if (memcg && !mem_cgroup_online(memcg)) | |
1317 | return -ENOENT; | |
1318 | ||
a65b0e76 DC |
1319 | for_each_node_state(nid, N_NORMAL_MEMORY) { |
1320 | unsigned long nr_to_walk = 1; | |
1321 | ||
e35606e4 | 1322 | shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg, |
a65b0e76 | 1323 | &shrink_memcg_cb, NULL, &nr_to_walk); |
81920438 | 1324 | scanned += 1 - nr_to_walk; |
a65b0e76 | 1325 | } |
81920438 TF |
1326 | |
1327 | if (!scanned) | |
1328 | return -ENOENT; | |
1329 | ||
a65b0e76 | 1330 | return shrunk ? 0 : -EAGAIN; |
f999f38b DC |
1331 | } |
1332 | ||
45190f01 VW |
1333 | static void shrink_worker(struct work_struct *w) |
1334 | { | |
a65b0e76 | 1335 | struct mem_cgroup *memcg; |
81920438 | 1336 | int ret, failures = 0, attempts = 0; |
91cdcd8d JW |
1337 | unsigned long thr; |
1338 | ||
1339 | /* Reclaim down to the accept threshold */ | |
1340 | thr = zswap_accept_thr_pages(); | |
e0228d59 | 1341 | |
c5519e0a | 1342 | /* |
81920438 TF |
1343 | * Global reclaim will select cgroup in a round-robin fashion from all |
1344 | * online memcgs, but memcgs that have no pages in zswap and | |
1345 | * writeback-disabled memcgs (memory.zswap.writeback=0) are not | |
1346 | * candidates for shrinking. | |
1347 | * | |
1348 | * Shrinking will be aborted if we encounter the following | |
1349 | * MAX_RECLAIM_RETRIES times: | |
1350 | * - No writeback-candidate memcgs found in a memcg tree walk. | |
1351 | * - Shrinking a writeback-candidate memcg failed. | |
c5519e0a TF |
1352 | * |
1353 | * We save iteration cursor memcg into zswap_next_shrink, | |
1354 | * which can be modified by the offline memcg cleaner | |
1355 | * zswap_memcg_offline_cleanup(). | |
1356 | * | |
1357 | * Since the offline cleaner is called only once, we cannot leave an | |
1358 | * offline memcg reference in zswap_next_shrink. | |
1359 | * We can rely on the cleaner only if we get online memcg under lock. | |
1360 | * | |
1361 | * If we get an offline memcg, we cannot determine if the cleaner has | |
1362 | * already been called or will be called later. We must put back the | |
1363 | * reference before returning from this function. Otherwise, the | |
1364 | * offline memcg left in zswap_next_shrink will hold the reference | |
1365 | * until the next run of shrink_worker(). | |
1366 | */ | |
e0228d59 | 1367 | do { |
a65b0e76 | 1368 | /* |
c5519e0a TF |
1369 | * Start shrinking from the next memcg after zswap_next_shrink. |
1370 | * When the offline cleaner has already advanced the cursor, | |
1371 | * advancing the cursor here overlooks one memcg, but this | |
1372 | * should be negligibly rare. | |
a65b0e76 | 1373 | * |
c5519e0a TF |
1374 | * If we get an online memcg, keep the extra reference in case |
1375 | * the original one obtained by mem_cgroup_iter() is dropped by | |
1376 | * zswap_memcg_offline_cleanup() while we are shrinking the | |
1377 | * memcg. | |
a65b0e76 | 1378 | */ |
c5519e0a TF |
1379 | spin_lock(&zswap_shrink_lock); |
1380 | do { | |
1381 | memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL); | |
1382 | zswap_next_shrink = memcg; | |
1383 | } while (memcg && !mem_cgroup_tryget_online(memcg)); | |
1384 | spin_unlock(&zswap_shrink_lock); | |
a65b0e76 | 1385 | |
c5519e0a | 1386 | if (!memcg) { |
81920438 TF |
1387 | /* |
1388 | * Continue shrinking without incrementing failures if | |
1389 | * we found candidate memcgs in the last tree walk. | |
1390 | */ | |
1391 | if (!attempts && ++failures == MAX_RECLAIM_RETRIES) | |
e0228d59 | 1392 | break; |
a65b0e76 | 1393 | |
81920438 | 1394 | attempts = 0; |
a65b0e76 | 1395 | goto resched; |
e0228d59 | 1396 | } |
a65b0e76 DC |
1397 | |
1398 | ret = shrink_memcg(memcg); | |
1399 | /* drop the extra reference */ | |
1400 | mem_cgroup_put(memcg); | |
1401 | ||
81920438 TF |
1402 | /* |
1403 | * There are no writeback-candidate pages in the memcg. | |
1404 | * This is not an issue as long as we can find another memcg | |
1405 | * with pages in zswap. Skip this without incrementing attempts | |
1406 | * and failures. | |
1407 | */ | |
1408 | if (ret == -ENOENT) | |
1409 | continue; | |
1410 | ++attempts; | |
1411 | ||
a65b0e76 DC |
1412 | if (ret && ++failures == MAX_RECLAIM_RETRIES) |
1413 | break; | |
a65b0e76 | 1414 | resched: |
e0228d59 | 1415 | cond_resched(); |
91cdcd8d | 1416 | } while (zswap_total_pages() > thr); |
45190f01 VW |
1417 | } |
1418 | ||
e87b8814 YA |
1419 | /********************************* |
1420 | * same-filled functions | |
1421 | **********************************/ | |
1422 | static bool zswap_is_folio_same_filled(struct folio *folio, unsigned long *value) | |
a85f878b | 1423 | { |
5a3f572a | 1424 | unsigned long *data; |
62bf1258 | 1425 | unsigned long val; |
5a3f572a | 1426 | unsigned int pos, last_pos = PAGE_SIZE / sizeof(*data) - 1; |
e87b8814 | 1427 | bool ret = false; |
a85f878b | 1428 | |
5a3f572a YA |
1429 | data = kmap_local_folio(folio, 0); |
1430 | val = data[0]; | |
62bf1258 | 1431 | |
5a3f572a | 1432 | if (val != data[last_pos]) |
e87b8814 | 1433 | goto out; |
62bf1258 TS |
1434 | |
1435 | for (pos = 1; pos < last_pos; pos++) { | |
5a3f572a | 1436 | if (val != data[pos]) |
e87b8814 | 1437 | goto out; |
a85f878b | 1438 | } |
62bf1258 TS |
1439 | |
1440 | *value = val; | |
e87b8814 YA |
1441 | ret = true; |
1442 | out: | |
5a3f572a | 1443 | kunmap_local(data); |
e87b8814 | 1444 | return ret; |
a85f878b SD |
1445 | } |
1446 | ||
5a3f572a | 1447 | static void zswap_fill_folio(struct folio *folio, unsigned long value) |
a85f878b | 1448 | { |
5a3f572a | 1449 | unsigned long *data = kmap_local_folio(folio, 0); |
a85f878b | 1450 | |
5a3f572a YA |
1451 | memset_l(data, value, PAGE_SIZE / sizeof(unsigned long)); |
1452 | kunmap_local(data); | |
a85f878b SD |
1453 | } |
1454 | ||
e87b8814 YA |
1455 | /********************************* |
1456 | * main API | |
1457 | **********************************/ | |
34f4c198 | 1458 | bool zswap_store(struct folio *folio) |
2b281117 | 1459 | { |
3d2c9087 | 1460 | swp_entry_t swp = folio->swap; |
42c06a0e | 1461 | pgoff_t offset = swp_offset(swp); |
796c2c23 CL |
1462 | struct xarray *tree = swap_zswap_tree(swp); |
1463 | struct zswap_entry *entry, *old; | |
f4840ccf | 1464 | struct obj_cgroup *objcg = NULL; |
a65b0e76 | 1465 | struct mem_cgroup *memcg = NULL; |
e87b8814 | 1466 | unsigned long value; |
42c06a0e | 1467 | |
34f4c198 MWO |
1468 | VM_WARN_ON_ONCE(!folio_test_locked(folio)); |
1469 | VM_WARN_ON_ONCE(!folio_test_swapcache(folio)); | |
2b281117 | 1470 | |
34f4c198 MWO |
1471 | /* Large folios aren't supported */ |
1472 | if (folio_test_large(folio)) | |
42c06a0e | 1473 | return false; |
7ba71669 | 1474 | |
678e54d4 | 1475 | if (!zswap_enabled) |
f576a1e8 | 1476 | goto check_old; |
678e54d4 | 1477 | |
91cdcd8d | 1478 | /* Check cgroup limits */ |
074e3e26 | 1479 | objcg = get_obj_cgroup_from_folio(folio); |
a65b0e76 DC |
1480 | if (objcg && !obj_cgroup_may_zswap(objcg)) { |
1481 | memcg = get_mem_cgroup_from_objcg(objcg); | |
1482 | if (shrink_memcg(memcg)) { | |
1483 | mem_cgroup_put(memcg); | |
1484 | goto reject; | |
1485 | } | |
1486 | mem_cgroup_put(memcg); | |
1487 | } | |
f4840ccf | 1488 | |
82e0f8e4 | 1489 | if (zswap_check_limits()) |
4ea3fa9d | 1490 | goto reject; |
2b281117 SJ |
1491 | |
1492 | /* allocate entry */ | |
be7fc97c | 1493 | entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio)); |
2b281117 SJ |
1494 | if (!entry) { |
1495 | zswap_reject_kmemcache_fail++; | |
2b281117 SJ |
1496 | goto reject; |
1497 | } | |
1498 | ||
e87b8814 YA |
1499 | if (zswap_is_folio_same_filled(folio, &value)) { |
1500 | entry->length = 0; | |
1501 | entry->value = value; | |
1502 | atomic_inc(&zswap_same_filled_pages); | |
1503 | goto store_entry; | |
a85f878b SD |
1504 | } |
1505 | ||
f1c54846 DS |
1506 | /* if entry is successfully added, it keeps the reference */ |
1507 | entry->pool = zswap_pool_current_get(); | |
42c06a0e | 1508 | if (!entry->pool) |
f1c54846 | 1509 | goto freepage; |
f1c54846 | 1510 | |
a65b0e76 DC |
1511 | if (objcg) { |
1512 | memcg = get_mem_cgroup_from_objcg(objcg); | |
e35606e4 | 1513 | if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) { |
a65b0e76 DC |
1514 | mem_cgroup_put(memcg); |
1515 | goto put_pool; | |
1516 | } | |
1517 | mem_cgroup_put(memcg); | |
1518 | } | |
1519 | ||
fa9ad6e2 JW |
1520 | if (!zswap_compress(folio, entry)) |
1521 | goto put_pool; | |
1ec3b5fe | 1522 | |
e87b8814 | 1523 | store_entry: |
be7fc97c | 1524 | entry->swpentry = swp; |
f4840ccf | 1525 | entry->objcg = objcg; |
e31c38e0 | 1526 | entry->referenced = true; |
796c2c23 CL |
1527 | |
1528 | old = xa_store(tree, offset, entry, GFP_KERNEL); | |
1529 | if (xa_is_err(old)) { | |
1530 | int err = xa_err(old); | |
1531 | ||
1532 | WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err); | |
1533 | zswap_reject_alloc_fail++; | |
1534 | goto store_failed; | |
1535 | } | |
1536 | ||
1537 | /* | |
1538 | * We may have had an existing entry that became stale when | |
1539 | * the folio was redirtied and now the new version is being | |
1540 | * swapped out. Get rid of the old. | |
1541 | */ | |
1542 | if (old) | |
1543 | zswap_entry_free(old); | |
1544 | ||
f4840ccf JW |
1545 | if (objcg) { |
1546 | obj_cgroup_charge_zswap(objcg, entry->length); | |
f4840ccf JW |
1547 | count_objcg_event(objcg, ZSWPOUT); |
1548 | } | |
1549 | ||
ca56489c | 1550 | /* |
796c2c23 CL |
1551 | * We finish initializing the entry while it's already in xarray. |
1552 | * This is safe because: | |
1553 | * | |
1554 | * 1. Concurrent stores and invalidations are excluded by folio lock. | |
1555 | * | |
1556 | * 2. Writeback is excluded by the entry not being on the LRU yet. | |
1557 | * The publishing order matters to prevent writeback from seeing | |
1558 | * an incoherent entry. | |
ca56489c | 1559 | */ |
35499e2b | 1560 | if (entry->length) { |
a65b0e76 | 1561 | INIT_LIST_HEAD(&entry->lru); |
e35606e4 | 1562 | zswap_lru_add(&zswap_list_lru, entry); |
f999f38b | 1563 | } |
2b281117 SJ |
1564 | |
1565 | /* update stats */ | |
1566 | atomic_inc(&zswap_stored_pages); | |
f6498b77 | 1567 | count_vm_event(ZSWPOUT); |
2b281117 | 1568 | |
42c06a0e | 1569 | return true; |
2b281117 | 1570 | |
796c2c23 CL |
1571 | store_failed: |
1572 | if (!entry->length) | |
1573 | atomic_dec(&zswap_same_filled_pages); | |
1574 | else { | |
8edc9c4e | 1575 | zpool_free(entry->pool->zpool, entry->handle); |
a65b0e76 | 1576 | put_pool: |
796c2c23 CL |
1577 | zswap_pool_put(entry->pool); |
1578 | } | |
f1c54846 | 1579 | freepage: |
2b281117 SJ |
1580 | zswap_entry_cache_free(entry); |
1581 | reject: | |
91b71e78 | 1582 | obj_cgroup_put(objcg); |
4ea3fa9d YA |
1583 | if (zswap_pool_reached_full) |
1584 | queue_work(shrink_wq, &zswap_shrink_work); | |
f576a1e8 CZ |
1585 | check_old: |
1586 | /* | |
1587 | * If the zswap store fails or zswap is disabled, we must invalidate the | |
1588 | * possibly stale entry which was previously stored at this offset. | |
1589 | * Otherwise, writeback could overwrite the new data in the swapfile. | |
1590 | */ | |
796c2c23 | 1591 | entry = xa_erase(tree, offset); |
f576a1e8 | 1592 | if (entry) |
796c2c23 | 1593 | zswap_entry_free(entry); |
42c06a0e | 1594 | return false; |
2b281117 SJ |
1595 | } |
1596 | ||
ca54f6d8 | 1597 | bool zswap_load(struct folio *folio) |
2b281117 | 1598 | { |
3d2c9087 | 1599 | swp_entry_t swp = folio->swap; |
42c06a0e | 1600 | pgoff_t offset = swp_offset(swp); |
25cd2414 | 1601 | bool swapcache = folio_test_swapcache(folio); |
796c2c23 | 1602 | struct xarray *tree = swap_zswap_tree(swp); |
2b281117 | 1603 | struct zswap_entry *entry; |
42c06a0e | 1604 | |
ca54f6d8 | 1605 | VM_WARN_ON_ONCE(!folio_test_locked(folio)); |
2b281117 | 1606 | |
2d4d2b1c YA |
1607 | if (zswap_never_enabled()) |
1608 | return false; | |
1609 | ||
c63f210d YA |
1610 | /* |
1611 | * Large folios should not be swapped in while zswap is being used, as | |
1612 | * they are not properly handled. Zswap does not properly load large | |
1613 | * folios, and a large folio may only be partially in zswap. | |
1614 | * | |
1615 | * Return true without marking the folio uptodate so that an IO error is | |
1616 | * emitted (e.g. do_swap_page() will sigbus). | |
1617 | */ | |
1618 | if (WARN_ON_ONCE(folio_test_large(folio))) | |
1619 | return true; | |
1620 | ||
25cd2414 JW |
1621 | /* |
1622 | * When reading into the swapcache, invalidate our entry. The | |
1623 | * swapcache can be the authoritative owner of the page and | |
1624 | * its mappings, and the pressure that results from having two | |
1625 | * in-memory copies outweighs any benefits of caching the | |
1626 | * compression work. | |
1627 | * | |
1628 | * (Most swapins go through the swapcache. The notable | |
1629 | * exception is the singleton fault on SWP_SYNCHRONOUS_IO | |
1630 | * files, which reads into a private page and may free it if | |
1631 | * the fault fails. We remain the primary owner of the entry.) | |
1632 | */ | |
1633 | if (swapcache) | |
796c2c23 CL |
1634 | entry = xa_erase(tree, offset); |
1635 | else | |
1636 | entry = xa_load(tree, offset); | |
1637 | ||
1638 | if (!entry) | |
1639 | return false; | |
2b281117 | 1640 | |
66447fd0 | 1641 | if (entry->length) |
5d19f5de | 1642 | zswap_decompress(entry, folio); |
5a3f572a YA |
1643 | else |
1644 | zswap_fill_folio(folio, entry->value); | |
a85f878b | 1645 | |
f6498b77 | 1646 | count_vm_event(ZSWPIN); |
f4840ccf JW |
1647 | if (entry->objcg) |
1648 | count_objcg_event(entry->objcg, ZSWPIN); | |
c75f5c1e | 1649 | |
25cd2414 JW |
1650 | if (swapcache) { |
1651 | zswap_entry_free(entry); | |
1652 | folio_mark_dirty(folio); | |
1653 | } | |
c2e2ba77 | 1654 | |
c63f210d | 1655 | folio_mark_uptodate(folio); |
66447fd0 | 1656 | return true; |
2b281117 SJ |
1657 | } |
1658 | ||
0827a1fb | 1659 | void zswap_invalidate(swp_entry_t swp) |
2b281117 | 1660 | { |
0827a1fb | 1661 | pgoff_t offset = swp_offset(swp); |
796c2c23 | 1662 | struct xarray *tree = swap_zswap_tree(swp); |
2b281117 | 1663 | struct zswap_entry *entry; |
2b281117 | 1664 | |
796c2c23 | 1665 | entry = xa_erase(tree, offset); |
06ed2289 | 1666 | if (entry) |
796c2c23 | 1667 | zswap_entry_free(entry); |
2b281117 SJ |
1668 | } |
1669 | ||
44c7c734 | 1670 | int zswap_swapon(int type, unsigned long nr_pages) |
42c06a0e | 1671 | { |
796c2c23 | 1672 | struct xarray *trees, *tree; |
44c7c734 | 1673 | unsigned int nr, i; |
42c06a0e | 1674 | |
44c7c734 CZ |
1675 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); |
1676 | trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL); | |
1677 | if (!trees) { | |
42c06a0e | 1678 | pr_err("alloc failed, zswap disabled for swap type %d\n", type); |
bb29fd77 | 1679 | return -ENOMEM; |
42c06a0e JW |
1680 | } |
1681 | ||
796c2c23 CL |
1682 | for (i = 0; i < nr; i++) |
1683 | xa_init(trees + i); | |
44c7c734 CZ |
1684 | |
1685 | nr_zswap_trees[type] = nr; | |
1686 | zswap_trees[type] = trees; | |
bb29fd77 | 1687 | return 0; |
42c06a0e JW |
1688 | } |
1689 | ||
1690 | void zswap_swapoff(int type) | |
2b281117 | 1691 | { |
796c2c23 | 1692 | struct xarray *trees = zswap_trees[type]; |
44c7c734 | 1693 | unsigned int i; |
2b281117 | 1694 | |
44c7c734 | 1695 | if (!trees) |
2b281117 SJ |
1696 | return; |
1697 | ||
83e68f25 YA |
1698 | /* try_to_unuse() invalidated all the entries already */ |
1699 | for (i = 0; i < nr_zswap_trees[type]; i++) | |
796c2c23 | 1700 | WARN_ON_ONCE(!xa_empty(trees + i)); |
44c7c734 CZ |
1701 | |
1702 | kvfree(trees); | |
1703 | nr_zswap_trees[type] = 0; | |
aa9bca05 | 1704 | zswap_trees[type] = NULL; |
2b281117 SJ |
1705 | } |
1706 | ||
2b281117 SJ |
1707 | /********************************* |
1708 | * debugfs functions | |
1709 | **********************************/ | |
1710 | #ifdef CONFIG_DEBUG_FS | |
1711 | #include <linux/debugfs.h> | |
1712 | ||
1713 | static struct dentry *zswap_debugfs_root; | |
1714 | ||
91cdcd8d JW |
1715 | static int debugfs_get_total_size(void *data, u64 *val) |
1716 | { | |
1717 | *val = zswap_total_pages() * PAGE_SIZE; | |
1718 | return 0; | |
1719 | } | |
1720 | DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n"); | |
1721 | ||
141fdeec | 1722 | static int zswap_debugfs_init(void) |
2b281117 SJ |
1723 | { |
1724 | if (!debugfs_initialized()) | |
1725 | return -ENODEV; | |
1726 | ||
1727 | zswap_debugfs_root = debugfs_create_dir("zswap", NULL); | |
2b281117 | 1728 | |
0825a6f9 JP |
1729 | debugfs_create_u64("pool_limit_hit", 0444, |
1730 | zswap_debugfs_root, &zswap_pool_limit_hit); | |
1731 | debugfs_create_u64("reject_reclaim_fail", 0444, | |
1732 | zswap_debugfs_root, &zswap_reject_reclaim_fail); | |
1733 | debugfs_create_u64("reject_alloc_fail", 0444, | |
1734 | zswap_debugfs_root, &zswap_reject_alloc_fail); | |
1735 | debugfs_create_u64("reject_kmemcache_fail", 0444, | |
1736 | zswap_debugfs_root, &zswap_reject_kmemcache_fail); | |
cb61dad8 NP |
1737 | debugfs_create_u64("reject_compress_fail", 0444, |
1738 | zswap_debugfs_root, &zswap_reject_compress_fail); | |
0825a6f9 JP |
1739 | debugfs_create_u64("reject_compress_poor", 0444, |
1740 | zswap_debugfs_root, &zswap_reject_compress_poor); | |
1741 | debugfs_create_u64("written_back_pages", 0444, | |
1742 | zswap_debugfs_root, &zswap_written_back_pages); | |
91cdcd8d JW |
1743 | debugfs_create_file("pool_total_size", 0444, |
1744 | zswap_debugfs_root, NULL, &total_size_fops); | |
0825a6f9 JP |
1745 | debugfs_create_atomic_t("stored_pages", 0444, |
1746 | zswap_debugfs_root, &zswap_stored_pages); | |
a85f878b | 1747 | debugfs_create_atomic_t("same_filled_pages", 0444, |
0825a6f9 | 1748 | zswap_debugfs_root, &zswap_same_filled_pages); |
2b281117 SJ |
1749 | |
1750 | return 0; | |
1751 | } | |
2b281117 | 1752 | #else |
141fdeec | 1753 | static int zswap_debugfs_init(void) |
2b281117 SJ |
1754 | { |
1755 | return 0; | |
1756 | } | |
2b281117 SJ |
1757 | #endif |
1758 | ||
1759 | /********************************* | |
1760 | * module init and exit | |
1761 | **********************************/ | |
141fdeec | 1762 | static int zswap_setup(void) |
2b281117 | 1763 | { |
f1c54846 | 1764 | struct zswap_pool *pool; |
ad7ed770 | 1765 | int ret; |
60105e12 | 1766 | |
b7919122 LS |
1767 | zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); |
1768 | if (!zswap_entry_cache) { | |
2b281117 | 1769 | pr_err("entry cache creation failed\n"); |
f1c54846 | 1770 | goto cache_fail; |
2b281117 | 1771 | } |
f1c54846 | 1772 | |
cab7a7e5 SAS |
1773 | ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE, |
1774 | "mm/zswap_pool:prepare", | |
1775 | zswap_cpu_comp_prepare, | |
1776 | zswap_cpu_comp_dead); | |
1777 | if (ret) | |
1778 | goto hp_fail; | |
1779 | ||
bf9b7df2 CZ |
1780 | shrink_wq = alloc_workqueue("zswap-shrink", |
1781 | WQ_UNBOUND|WQ_MEM_RECLAIM, 1); | |
1782 | if (!shrink_wq) | |
1783 | goto shrink_wq_fail; | |
1784 | ||
e35606e4 CZ |
1785 | zswap_shrinker = zswap_alloc_shrinker(); |
1786 | if (!zswap_shrinker) | |
bf9b7df2 | 1787 | goto shrinker_fail; |
e35606e4 | 1788 | if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker)) |
bf9b7df2 | 1789 | goto lru_fail; |
e35606e4 | 1790 | shrinker_register(zswap_shrinker); |
bf9b7df2 | 1791 | |
e35606e4 | 1792 | INIT_WORK(&zswap_shrink_work, shrink_worker); |
bf9b7df2 | 1793 | |
f1c54846 | 1794 | pool = __zswap_pool_create_fallback(); |
ae3d89a7 DS |
1795 | if (pool) { |
1796 | pr_info("loaded using pool %s/%s\n", pool->tfm_name, | |
8edc9c4e | 1797 | zpool_get_type(pool->zpool)); |
ae3d89a7 DS |
1798 | list_add(&pool->list, &zswap_pools); |
1799 | zswap_has_pool = true; | |
2d4d2b1c | 1800 | static_branch_enable(&zswap_ever_enabled); |
ae3d89a7 | 1801 | } else { |
f1c54846 | 1802 | pr_err("pool creation failed\n"); |
ae3d89a7 | 1803 | zswap_enabled = false; |
2b281117 | 1804 | } |
60105e12 | 1805 | |
2b281117 SJ |
1806 | if (zswap_debugfs_init()) |
1807 | pr_warn("debugfs initialization failed\n"); | |
9021ccec | 1808 | zswap_init_state = ZSWAP_INIT_SUCCEED; |
2b281117 | 1809 | return 0; |
f1c54846 | 1810 | |
bf9b7df2 | 1811 | lru_fail: |
e35606e4 | 1812 | shrinker_free(zswap_shrinker); |
bf9b7df2 CZ |
1813 | shrinker_fail: |
1814 | destroy_workqueue(shrink_wq); | |
1815 | shrink_wq_fail: | |
1816 | cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE); | |
cab7a7e5 | 1817 | hp_fail: |
b7919122 | 1818 | kmem_cache_destroy(zswap_entry_cache); |
f1c54846 | 1819 | cache_fail: |
d7b028f5 | 1820 | /* if built-in, we aren't unloaded on failure; don't allow use */ |
9021ccec | 1821 | zswap_init_state = ZSWAP_INIT_FAILED; |
d7b028f5 | 1822 | zswap_enabled = false; |
2b281117 SJ |
1823 | return -ENOMEM; |
1824 | } | |
141fdeec LS |
1825 | |
1826 | static int __init zswap_init(void) | |
1827 | { | |
1828 | if (!zswap_enabled) | |
1829 | return 0; | |
1830 | return zswap_setup(); | |
1831 | } | |
2b281117 | 1832 | /* must be late so crypto has time to come up */ |
141fdeec | 1833 | late_initcall(zswap_init); |
2b281117 | 1834 | |
68386da8 | 1835 | MODULE_AUTHOR("Seth Jennings <[email protected]>"); |
2b281117 | 1836 | MODULE_DESCRIPTION("Compressed cache for swap pages"); |